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Self-iterative multiple-instance learning 
enables the prediction of CD4+ T cell 
immunogenic epitopes
 

Accurate prediction of antigen presentation to CD4+ T cells and subsequent 
induction of immune response are fundamentally important for vaccine 
development, autoimmune disease treatment and cancer neoepitope 
discovery. In immunopeptidomics, single-allelic data offer high specificity 
but limited allele coverage, whereas multi-allelic data provide broader 
representation at the expense of weak labelling. Current computational 
approaches either overlook the abundance of multi-allelic data or suffer 
from label ambiguity due to inadequate modelling strategies. To address 
these limitations, we present ImmuScope, a weakly supervised deep learning 
framework that integrates major histocompatibility complex class II (MHC-II) 
antigen presentation, CD4+ T cell epitopes and immunogenicity assessment. 
ImmuScope leverages self-iterative multiple-instance learning with 
positive-anchor triplet loss to decipher peptide-MHC-II binding from weakly 
labelled multi-allelic data and high-confidence single-allelic data. The training 
dataset comprises over 600,000 ligands across 142 alleles. Additionally, 
ImmuScope enables the interpretation of MHC-II binding specificity and 
motif deconvolution of immunopeptidomics data. We successfully applied 
ImmuScope to identify melanoma neoantigens, uncovering mutation-driven 
variations in peptide-MHC-II binding and immunogenicity. Furthermore, 
we employed ImmuScope to evaluate the effects of SARS-CoV-2 epitope 
mutations associated with immune escape, with predictions well aligned 
with experimentally observed immune escape dynamics. Overall, by offering 
a unified solution for CD4+ T cell antigen recognition and immunogenicity 
assessment, ImmuScope holds substantial promise for accelerating vaccine 
design and advancing personalized immunotherapy.

T cell-mediated adaptive immunity is crucial for protection against 
pathogens and diseases1–7. Antigen presentation by major histocompat-
ibility complex class II (MHC-II) molecules to CD4+ T cells is essential 
in initiating and coordinating a wide range of immune responses8. The 
experimental identification of CD4+ epitopes and characterization of 
MHC-II binding specificities are time-consuming and costly due to the 
complex nature of antigen processing and the extensive polymorphism 
of MHC-II molecules9. Consequently, the effective high-throughput 

prediction of CD4+ T cell epitopes, understanding MHC-II binding speci-
ficity and assessing epitope immunogenicity are vital in developing 
vaccines and immunotherapies10–15.

Large-scale immunopeptidome datasets derived from liquid 
chromatography and mass spectrometry16 have greatly enhanced 
our understanding of MHC-II antigen presentation. These datasets, also 
known as eluted ligands (EL), are categorized into single-allelic (SA) data 
and multi-allelic (MA) data17,18, depending on whether allele-specific 
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ImmuScope to investigate the immunogenicity of melanoma neoan-
tigens and assess the impact of epitope mutations on peptide-MHC-II 
binding. We further analyse SARS-CoV-2 epitopes to identify key bind-
ing cores and explore immune escape mechanisms, particularly in 
the Omicron variant. These findings underscore ImmuScope’s broad 
applicability in understanding T cell activation and advancing clinical 
applications in cancer and viral immunology.

Results
Overview of ImmuScope framework
We have developed ImmuScope, a weakly supervised deep learning 
framework integrating metric learning to robustly predict CD4+ T cell 
responses. It supports a comprehensive suite of tasks including anti-
gen presentation prediction, MHC-II binding specificity discovery, 
CD4+ T cell epitope prediction, immunogenicity prediction and motif 
deconvolution, facilitating a thorough exploration of the cascaded 
immune process (Fig. 1a). In particular, the weakly labelled MA data span 
a diverse range of allomorphs and contains massive peptide-binding 
data, particularly for the HLA-DQ and HLA-DP loci. Specifically, it com-
prises over 430,000 peptide samples—about 1.75 times that of the 
SA data—and encompasses about 2.2 times more MHC-II allomorphs 
(Fig. 1b). ImmuScope employs an MIL module to seamlessly integrate 
weakly labelled MA data with precisely annotated SA data, thereby 
harnessing the broad MHC coverage and extensive immunopeptidome 
of MA data alongside the specificity of SA data. Furthermore, Immu-
Scope employs a metric loss to capture more nuanced MHC-II binding 
specificities, thereby enhancing model discrimination.

The workflow of ImmuScope is as follows: paired pMHC-II 
sequences are processed through a core-aware convolutional mod-
ule and a multi-head cross-attention module to extract interaction 
embeddings (Supplementary Fig. 1). These embeddings are then pro-
cessed by residual convolutional blocks to construct the final pMHC-II 
representations. To effectively distinguish positive pairs from nega-
tive samples, we apply a positive-anchor triplet loss that minimizes 
distances among positive pairs and maximizes those from negatives, 
improving feature discrimination without increasing computational 
cost. Branch a employs an attention-based MIL aggregator to estimate 
the contribution of individual alleles within MA samples and compute 
the bag-level score. Meanwhile, branch b utilizes a multilayer percep-
tron (MLP) adapted to the specific type of training data for predicting 
CD4+ T cell epitopes, antigen presentation and immunogenicity. A 
self-iterative boosting strategy is applied to select high-confidence 
positive pseudo-labels, which are then combined with SA data to train 
the final antigen presentation model—ImmuScope-EL (Fig. 1c). Rec-
ognizing that MHC-II-mediated antigen presentation is essential for 
initiating CD4+ T cell activation, ImmuScope-EL is further fine-tuned 
for downstream tasks, including T cell epitope recognition and immu-
nogenicity assessment (Fig. 1d). To evaluate model interpretability 
and applicability, we applied ImmuScope to analyse antigen presen-
tation and neoantigen immunogenicity in a melanoma cohort, and to 
explore SARS-CoV-2 epitope discovery and immune escape mecha-
nisms (Fig. 1e).

ImmuScope achieves state-of-the-art performance on CD4+ 
epitope benchmark
We evaluated the performance of ImmuScope and other algo-
rithms, including Graph-pMHC25, MixMHC2pred-2.0 (ref. 26), 
NetMHCIIpan-4.2 (ref. 30) and NetMHCIIpan-4.3 (ref. 18), for identi-
fying CD4+ T cell epitopes on the epitope benchmark. We employed 
them to predict the binding probability of each peptide to its given 
MHC-II allomorph and calculated the area under the curve (AUC) for 
each source protein, epitope and MHC-II allele entry. The AUCs dem-
onstrated that ImmuScope significantly outperformed the current 
state-of-the-art methods, namely, NetMHCIIpan-4.3 and MixMH-
C2pred-2.0 (average AUC of 0.825 versus 0.771 and 0.761, respectively; 

or pan-allelic antibodies are used during affinity purification. SA 
data provide precise, one-to-one peptide-MHC-II (pMHC-II) binding 
information. By contrast, MA data are weakly labelled, encompass-
ing peptide interactions with multiple MHC-II alleles, where positive 
samples represent peptides that bind to at least one allele and negative 
samples represent non-binders. MA data offer broader allele coverage, 
over twice the coverage of SA data, especially for human leucocyte 
antigens (HLA)-DQ and HLA-DP loci. Recent findings underscore the 
clinical relevance of previously underexplored molecules (for example, 
HLA-DR3/4/5, HLA-DQ and HLA-DP) in autoimmune diseases19–21 and 
transplantation22, highlighting the necessity for the integrated analysis 
of SA and MA data. Ultimately, incorporating weakly labelled MA data 
alongside SA data mitigates SA-only biases and enables a comprehen-
sive view of allele-specific binding patterns.

However, the weak labelling inherent in MA data (that is, peptides 
are not directly assigned to specific allomorphs) presents unique chal-
lenges for model design and training. Most studies (for example, HLAII-
master23 and BigMHC24) rely solely on SA data, which restricts their 
ability to cover broader allele sets. Although Graph-pMHC25 and MixM-
HC2pred-2.0 (ref. 26) incorporate all possible pMHC-II pairs from MA 
data during training, these approaches often yield high false-positive 
rates. NNAlign_MA27 and NetMHCIIpan17,28 leverage SA-trained neu-
ral networks to annotate MA data and are then fine-tuned with the 
pseudo-labelled data. However, prediction biases from the SA-based 
annotations can propagate through model training, particularly for 
alleles absent in SA data. Furthermore, naive self-training strategies fail 
to capture the rich allelic diversity within MA data. Therefore, there is 
an urgent need to develop a highly precise model that effectively inte-
grates both SA and MA data for predicting CD4+ T cell-related immunity.

Besides antigen presentation, numerous computational 
approaches have demonstrated impressive potential in predicting 
epitope characteristics and immunogenicity18,26,29–33. Nonetheless, 
the complexity of CD4+ T cell activation and differentiation still poses 
a hurdle11,34–36. Most tools target a single facet of the cascaded immune 
process, such as NetMHCIIpan-4.0 (ref. 17) and NetMHCIIpan-4.2 
(ref. 30) for antigen presentation, and DeepNeo37,38 and TLimmuno2 
(ref. 39) for epitope immunogenicity. HLAIImaster23, BigMHC24 and 
Graph-pMHC25 are designed to handle both facets, whereas MoDec29, 
NNAlign_MA27, MixMHC2pred-2.0 (ref. 26) and NetMHCIIpan-4.3  
(ref. 18) can deconvolve MHC-II binding specificity. However, no studies 
integrate the complete CD4+ T cell immune process—from antigen pres-
entation and T cell recognition to immune response initiation—within 
one framework8. Transferring cascaded immunological knowledge 
from the previous stage can enhance CD4+ T cell epitope predictions 
and help understand how individual components of T cell immunity 
shape the immune response40–42. Furthermore, current algorithms 
lack fine-grained investigations across diverse immunopathological 
contexts or disease conditions, which may constrain their application 
potential in disease diagnosis and therapy43,44.

Here we propose ImmuScope, a weakly supervised deep learning 
framework for CD4+ T cell immunity prediction, empowered by both 
SA and MA data. Utilizing self-iterative multiple-instance learning 
(MIL) approach and quality annotation filtering, ImmuScope pin-
points high-confidence pMHC-II pairs from weakly labelled MA data 
to broaden allele coverage. It utilizes a positive-anchor triplet loss to 
uncover discriminative pMHC-II binding patterns. Trained on over 
600,000 ligands covering 142 MHC-II alleles, ImmuScope achieves 
state-of-the-art prediction accuracy with superior robustness and gen-
eralizability, expertly designed to navigate the complexities of highly 
polymorphic alleles in antigen presentation and immune response 
modelling. Moreover, ImmuScope serves as a comprehensive model 
that mirrors the cascade of T cell responses through transfer learning 
on multiple tasks, including antigen presentation prediction, MHC-II 
binding specificity discovery, CD4+ T cell epitope prediction, immu-
nogenicity prediction and motif deconvolution. We successfully apply 
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Fig. 2a). In particular, ImmuScope demonstrated greater stability 
and higher average AUCs across diverse HLA loci (Extended Data 
Fig. 1a,b). In pairwise comparisons, it surpassed MixMHC2pred-2.0, 
NetMHCIIpan-4.2 and NetMHCIIpan-4.3 in 71.9%, 77.2%, and 73.7% of 

alleles, respectively (Fig. 2b). Despite potential statistical noise from 
few-sample subsets, ImmuScope demonstrated superior performance 
in most cases. Analysis across peptide lengths (Extended Data Fig. 1c) 
further confirmed its robustness, with ImmuScope performing best at 
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Fig. 1 | Overview of ImmuScope. a, Model backbone of ImmuScope consists of a 
pMHC-II interaction module (including core-aware convolution and multi-head 
cross-attention), a residual convolution module and positive-anchor triplet 
loss. Branch a focuses on learning bag-level features via an attention-based MIL 
aggregator, whereas branch b utilizes an MLP to learn instance-level features 
for various application tasks. b, Numbers of MA and SA datasets per MHC-II 

locus within the EL data, and the ratio of peptide counts for MA and SA data. 
c, Illustration of the self-iterative boosting strategy to generate high-quality 
pseudo-labels for MA data and refine the model. d, Downstream tasks of 
ImmuScope and corresponding data inputs. e, Applying ImmuScope in cohort 
studies on melanoma neoantigens and SARS-CoV-2. IMM, immunogenicity. 
Panels a, d and e created with BioRender.com.
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most lengths, except for 16-mers where it matched NetMHCIIpan-4.3. 
Overall, the benchmarking results show that ImmuScope accurately 
predicts CD4+ T cell epitopes.

Triplet loss and high-confidence pseudo-labels boost antigen 
presentation prediction
To evaluate the contribution of triplet loss and high-confidence 
pseudo-labels, we performed three ablation experiments using five-
fold cross-validation: (1) a baseline SA model trained solely on SA data 
via branch b; (2) an SA + MA-MIL model incorporating both SA and MA 
data via MIL and triplet loss, without pseudo-label refinement; and  

(3) ImmuScope-EL, which additionally employed high-confidence 
positive pseudo-labels for iterative model refinement.

Integrating weakly labelled MA data through MIL substantially 
improved the predictive performance, whereas the auxiliary triplet 
loss helped refine feature-space boundaries, as shown by compari-
sons between SA + MA-MIL and the SA model in area under the preci-
sion–recall curve (AUPR), positive predictive value (PPV) and AUC0.1 
(Fig. 2c and Extended Data Fig. 2a). The addition of high-confidence 
pseudo-labels further improved ImmuScope-EL’s performance over 
SA + MA-MIL (AUPR, 0.856 versus 0.836; PPV, 0.796 versus 0.779; 
AUC0.1, 0.823 versus 0.805). Pairwise allele-level analysis demonstrated 
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Fig. 2 | ImmuScope improves prediction of CD4+ T cell epitope and antigen 
presentation. a, Box plot of AUCs on the CD4+ epitope benchmark. The 
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the 95% CIs. e, UMAP visualization of instance embeddings from the SA and 
ImmuScope-EL models on the test set. In c and d, each data point represents the 
performance of the corresponding MHC allele.
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consistent improvements across almost all MHC-II alleles (Extended 
Data Fig. 2b and Supplementary Fig. 2), and the performance gain was 
robust across different HLA loci and evaluation metrics (Fig. 2d and 
Extended Data Fig. 2c).

To better understand the impact of these components on 
feature learning, we visualized pMHC-II embeddings generated 
by the SA and ImmuScope-EL models using uniform manifold 
approximation and projection (UMAP)45 for representative alleles, 
including HLA-DRB1*01:01, HLA-DPA1*02:01/DPB1*09:01, H2-IAb, 
BoLA-DRB3*010:01 and BoLA-DRB3*020:02 (Fig. 2e and Extended 
Data Fig. 2d). In the ImmuScope-EL model, positive samples (red 
and blue) formed tight clusters, clearly separated from negatives. 
This improved clustering is attributed to the positive-anchor triplet 
loss, where only positives served as anchors due to the heterogeneity 
and noise in negatives derived from random natural peptides18. The 
auxiliary loss not only promotes a bottleneck-like transition zone 
between positives and negatives but also enhances the discriminative 
capacity of the learned pMHC representations, providing a stronger 
foundation for high-precision epitope identification and allele bind-
ing specificity analysis.

Motif deconvolution on MA data with attention-based  
MIL module
We applied ImmuScope’s attention-based MIL module to perform motif 
deconvolution on MA data, integrating attention outputs with antigen 
presentation scores (Fig. 3a). Due to the absence of precise labels in 
experimental MA datasets, we first validated this method via fivefold 
cross-validation on simulated MA data, achieving an average AUPR of 
0.884 (95% confidence interval (CI), 0.882–0.885), AUC0.1 of 0.815 
(95% CI, 0.814–0.817) and PPV of 0.819 (95% CI, 0.818–0.820; Fig. 3b). 
Clustering patterns based on the predicted attention scores revealed 
that ImmuScope accurately identified positives under weak supervi-
sion (Fig. 3c). Consequently, leveraging high-confidence positives from 
MA data via motif deconvolution may enhance antigen presentation 
prediction by enriching training data and broadening allele coverage.

We further assessed the attention-based MIL module on several 
subsets of heterozygous MA datasets comprising varying numbers 
of HLA alleles. Specifically, subsets Racle__4037_DC29, Racle__RA957  
(ref. 29) and Racle__3830_NJF_DQP29 include 4, 9 and 12 HLA alleles, 
respectively. Motifs derived from the predicted binding peptides 
were visualized using Seq2Logo46 for different MHC-II allomorphs 
(Fig. 3d and Extended Data Fig. 3a–c), with a focus on under-represented 
HLA-DQ and HLA-DP molecules. Comparison with the MHC Motif 
Atlas47 revealed high similarity at conserved positions (Supplementary 
Fig. 3a). We computed Kullback–Leibler divergence (KLD) between 
position-specific frequency matrices (PSFMs) from deconvoluted 
peptides and those from immunopeptidomics datasets. Most alleles, 
except HLA-DQA1*01:01/DQB1*05:01, demonstrated high similar-
ity in the Racle__4037_DC dataset (Fig. 3d). Limited peptide ligands 
may explain the less-defined motif for HLA-DQA1*01:01/DQB1*05:01. 
Additionally, ImmuScope-EL successfully inferred motifs for MHC-II 
alleles absent from the database, with performance comparable with 
NetMHCIIpan-4.3, for example, HLA-DQA1*03:03/DQB1*04:02 and 
HLA-DQA1*05:05/DQB1*03:02 (Extended Data Fig. 3a,b and Supple-
mentary Fig. 3b). These results highlight ImmuScope-EL’s capability as 
a robust tool for deciphering MHC-II binding motifs from MA datasets.

ImmuScope quantifies MHC-II binding specificities for 
allomorphs without known ligands
MHC-II polymorphism may hinder the prediction of pan-allelic binding 
specificity. To evaluate ImmuScope-EL on unseen alleles, we compared 
it with state-of-the-art methods, including NetMHCIIpan-4.3 and MixM-
HC2pred, in predicting binding specificity across different MHC-II loci. 
A leave-one-allele-out cross-validation strategy was used, excluding 
the target allele from training. We generated PSFMs for each allele by 

predicting 100,000 random human peptides using ImmuScope-EL 
and selecting the top 1% with the highest scores (Fig. 4a). Consistency 
with immunopeptidomics-derived PSFMs was assessed using KLD 
distance. ImmuScope-EL showed superior performance in inferring 
binding specificity for allomorphs without known ligands (Fig. 4b), 
particularly capturing the multiple specificities of HLA-DRB1*08:02 
and the bidirectional specificity of HLA-DPA1*02:01/DPB1*09:01.

Despite the constraint of a limited dataset, which included only 
two SA HLA-DQ sets, ImmuScope-EL successfully predicted the bind-
ing specificity of HLA-DQA1*01:02/DQB1*05:02. The prediction was 
supported by MHC Motif Atlas data, reinforcing the reliability of our 
approach. The binding motifs highlighted substantial differences 
in binding preferences between HLA-DQA1*01:02/DQB1*05:02 and 
HLA-DQ allomorphs in the training set, for example, HLA-DQA1*01:02/
DQB1*06:02 and HLA-DQA1*01:02/DQB1*06:04 (Supplementary Fig. 4). 
These findings illustrate ImmuScope-EL’s capability to elucidate local 
binding patterns across alleles, adeptly addressing the extensive poly-
morphism characteristic of MHC-II alleles.

ImmuScope enhances the accuracy of epitope 
immunogenicity prediction
An accurate prediction of immunogenic peptides that activate CD4+ 
T cells is essential for both vaccine development48 and immunother-
apy49. To demonstrate the effectiveness of ImmuScope-IM in predicting 
immunogenicity, we compared it with five existing algorithms, includ-
ing DeepNeo37, MixMHC2pred-2.0 (ref. 26), NetMHCIIpan-4.3 (ref. 18), 
TLimmuno2 (ref. 39) and HLAIImaster23. In particular, ImmuScope-IM 
exhibited superior performance on the immunogenicity benchmark 
with an overall AUC of 0.909 (95% CI, 0.901–0.918; Fig. 5a). We further 
assessed the performance across different MHC-II alleles. For MHC-II 
alleles with a sample size greater than ten and at least one immuno-
genic epitope, ImmuScope-IM consistently showed statistically higher 
AUCs than TLimmuno2 and HLAIImaster, with P values of 1.4 × 10−7 and 
2.2 × 10−7, respectively (Fig. 5b). ImmuScope-IM outperformed HLAII-
master in 89.1% of the MHC-II alleles (Fig. 5c). Given the prevalence of 
fewer positive samples in real-world scenarios, we adopted a positive to 
negative ratio of 1:10 in building the immunogenicity dataset. Consider-
ing data imbalance, the precision–recall curve was utilized for a more 
accurate assessment of the model performance. The AUPRs highlighted 
substantial improvements in ImmuScope-IM over existing methods 
(Extended Data Fig. 4a,b). Predicted AUPRs for ImmuScope-IM and the 
leading existing model, HLAIImaster, were compared across different 
MHC-II alleles (Extended Data Fig. 4c). ImmuScope-IM demonstrated 
superior or comparable performance compared with HLAIImaster in 
92.7% of the 55 MHC-II alleles.

ImmuScope precisely reveals immunogenic neoantigens in 
melanoma
To investigate the practicality of ImmuScope for neoantigen identifica-
tion, we applied it to a cutaneous melanoma cohort50 (Supplementary 
Tables 1 and 2). ImmuScope effectively detected HLA class II-presented 
immunogenic neoantigens within the tumour microenvironment and 
facilitated the evaluation of clinical outcomes. Using ImmuScope-EL, 
we predicted the binding probabilities of neoantigens to various HLA 
class II allomorphs in Pt-C and Pt-D, determining the most likely HLA 
class II restrictions and binding cores (Extended Data Fig. 4d,e and 
Supplementary Fig. 5). Except for EDIL3, predictions closely aligned 
with those from ref. 51 using NetMHCIIpan-4.0. Both HLA-DPA1*01:03/
DPB1*02:01 and HLA-DPA1*01:03/DPB1*04:02 were predicted to pre-
sent EDIL3, probably due to their high sequence similarity and com-
parable presentation capabilities. Further analysis revealed distinct 
differences in antigen presentation between mutant and wild-type 
antigens, especially concerning their structural organizations around 
the mutation site (Fig. 5d). In particular, mutations at key MHC-II anchor 
positions resulted in substantial changes in antigen presentation 
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probability compared with wild-type antigens, as observed in LAMC1, 
EDIL3, ATXN2L II and PLXNB2. The corresponding wild-type epitopes 
failed to elicit immune responses, probably due to inadequate biophysi-
cal conditions for MHC-II binding.

Moreover, we employed AlphaFold3 to predict interaction confor-
mations between EDIL3290-304 and HLA-DPA1*01:03/DPB1*02:01 before 
and after mutation (Fig. 5e and Supplementary Table 3). The proline- 
to-phenylalanine substitution probably enhanced peptide-MHC-II 
binding by increasing hydrophobic contacts and steric complementa-
rity. An additional hydrogen bond further stabilized the complex and 
may have contributed to increased conformational flexibility. Struc-
tural analysis indicated that the mutated peptide fit better within the 
MHC binding groove, potentially enhancing presentation efficiency. 
SHapley Additive exPlanations (SHAP) analysis highlighted the mutated 
residue as critical for both peptide-MHC binding and T cell activa-
tion (Fig. 5f and Supplementary Fig. 6). Consistently, ImmuScope-IM 
demonstrated that most mutant neoantigens elicited stronger T cell 
responses than wild-type counterparts, except for RPS9 (Fig. 5g). A 
comparison with other methods is provided in Supplementary Note 6.  

These findings support the robustness of ImmuScope in predicting 
antigen presentation, binding core structure and immunogenicity, rein-
forcing its utility in neoantigen discovery for cancer immunotherapy.

ImmuScope predictions align closely with SARS-CoV-2 epitope 
discovery results
To rigorously evaluate ImmuScope’s performance in predicting 
SARS-CoV-2-specific T cell immunogenicity, we conducted compre-
hensive benchmarking using curated SARS-CoV-2 epitope data. Our 
analysis showed that ImmuScope-IM consistently outperformed 
existing methods in immunogenicity prediction (Fig. 5h). We further 
validated its clinical potential via a longitudinal study52, which system-
atically characterized CD4+ T cell epitopes derived from SARS-CoV-2 
and restricted by the prevalent HLA-DR1 (DRB1*01:01) allotype. Their 
experimental study measured the maximal immune responses across 
eight donors against 29 candidate SARS-CoV-2 epitopes (Extended 
Data Fig. 5a), using HLA-DR4 (DRB1*04:01) as a negative control. This 
study design enabled the direct comparison of peptide immuno-
genicity between DR1+ and DR4+ donors via in vitro assays. Applying 
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ImmuScope-IM to this clinical dataset, we predicted the immunogenic-
ity of all peptides in both DR1+ and DR4+ donors (Extended Data Fig. 5b). 
Statistical validation via a paired Wilcoxon signed-rank test yielded a 
significant P value of 0.002, confirming that HLA-DR1-restricted pep-
tides were consistently more immunogenic. In particular, this finding 
precisely matches the experimental observations from ref. 52. This 
strong concordance between computational predictions and clinical 

measurements highlights ImmuScope’s ability to accurately capture 
HLA-restricted immunogenicity patterns.

We also predicted the antigen presentation and immunogenicity- 
related binding motifs of peptides bound to HLA-DRB1*01:01 (Fig. 5i). 
We accurately identified the peptide-binding groove of HLA-DR1 
epitopes derived from SARS-CoV-2, as defined structurally in ref. 52, 
through computational alignment scores (Fig. 6a,b and Extended Data 
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Fig. 5c–f). In particular, we identified a more closely matching core 
binding site on the spike protein epitope S486-505. The complex structure 
of the binding peptide LQSYGFQPTNGVGY with HLA-DRB1*01:01 was 
predicted by AlphaFold3 with a predicted local distance difference test 
score above 90 and an interface-predicted template modelling score 
of 0.94 (Supplementary Table 3). The structure exhibited high local 
accuracy and interface alignment quality, rendering it highly reliable 
and instrumental in identifying potential immunogenic epitopes.

ImmuScope facilitates understanding SARS-CoV-2 immune 
escape dynamics
Building on the work of ref. 52, who employed crystallographic analyses 
to elucidate how SARS-CoV-2 variant mutations affect epitope presenta-
tion and enable immune escape, we further investigated these mecha-
nisms using ImmuScope-IM. Their structural studies of HLA-peptide 
complexes revealed that although Omicron (BA.1) variants S486–505 and 
S761–775 exhibited enhanced binding to HLA-DR1, they effectively escaped 
T cell recognition. We utilized ImmuScope-IM to investigate changes 
in the binding cores and immunogenicity of SARS-CoV-2 epitopes fol-
lowing mutation.

Structural analysis of HLA-DR1-S486-505
Wuhan HU-1 revealed that 

S486-505
Omicron (BA.1) induced mutations located within both the binding 

core and the peptide-flanking region. The S486-505
Omicron (BA.1) epitope 

was bound by HLA-DR1 using the same register (Fig. 6c), consistent 
with core binding alignment scores predicted by ImmuScope-EL 
(Fig. 6e). The core sequence YFPLRSYSF exhibited a slight reduction 
in the post-mutation binding score, indicating that S486-505

Omicron (BA.1)  
maintained favourable binding affinity (BA) with HLA-DR1. All 
core-positioned mutations occurred at potential T cell receptor (TCR) 
contact positions, particularly non-anchor residues Q493R (P5) and 
G496S (P8). Q493R (P5) introduced the most evident conformational 
change, with positively charged P5-Arg positioned centrally in the 
binding core. G496S added a polar hydroxyl at P8-Ser. The immuno-
genicity scores predicted by ImmuScope-IM decreased from 0.248 to 
0.188 after mutation, consistent with the immune escape mechanisms 
of S486-505

Omicron (BA.1), as revealed by structural analysis and further sup-
ported by SHAP analysis (Fig. 6e and Supplementary Fig. 7a). We also 
analysed a register shift caused by a single mutation in S761-775

Omicron (BA.1)  
by ImmuScope. N764K, positioned at archetypal P1 anchor posi-
tion for HLA-DR1, resulted in two distinct peptide conformations of 
HLA-DR1-S761-775

Omicron (BA.1) (Fig. 6d). In the first conformation, the HLA 
molecule contacted the neighbouring Leu at the P1 pocket, generat-
ing a +1 register shift (that is, TQLKRALTGIAVEQD to TQLKRALTGIA-
VEQD). This new peptide conformation bound to HLA-DR1 via P1-Leu, 
P4-Ala and P9-Ala, with an unfavourable Thr at P6 due to its large polar 
hydroxyl side chain52. The second conformation accommodated the 
N764K mutation at P1 to bind S761-775

Omicron (BA.1), aligning with the binding 
register of S761-775

Wuhan HU-1.
We also calculated the alignment scores of binding regions after 

mutation. KRALTGIAV achieved the highest score, corresponding to the 
second peptide conformation. The alignment score of LKRALTGIA was 
–0.758 (Fig. 6f) and 1.574 when excluding P6 (Supplementary Fig. 8). 

LKRALTGIA still exhibited suboptimal binding probability relative 
to other regions, consistent with structural analysis52. In particular, 
ImmuScope-IM predicted a 72.8% reduction in immunogenicity score 
for HLA-DR1-S761-775

Omicron (BA.1) compared with its HLA-DR1-S761-775
Wuhan HU-1  

counterpart (Fig. 6g), probably due to sequence alterations and 
structural rearrangements introduced by the mutation. SHAP analy-
sis (Supp lementary Fig. 7b) supported this reduction, suggesting 
impaired T cell recognition. Additional analyses of epitope mutations 
across diverse SARS-CoV-2 variants and HLA-II alleles are provided in 
Supplementary Note 7, offering broader insights into immune escape 
strategies.

Discussion
ImmuScope represents a significant advance in computational immu-
nology by integrating weakly supervised learning and metric learning 
to predict CD4+ T cell-mediated immune responses with unprecedented 
accuracy. Our framework overcomes key limitations of existing 
approaches through its self-iterative MIL architecture, which effectively 
combines weakly labelled MA data with highly specific SA datasets 
to achieve a twofold improvement in allele coverage. Incorporating 
positive-anchor triplet loss further enhances ImmuScope’s ability to 
resolve challenging pMHC-II interactions, enabling state-of-the-art 
performance in antigen presentation prediction, T cell epitope recog-
nition and immunogenicity assessment. Beyond these core capabili-
ties, ImmuScope provides robust tools for motif deconvolution and 
binding specificity analysis, demonstrating particular value in two 
clinically important applications: evaluating melanoma neoepitope 
immunogenicity and deciphering SARS-CoV-2 immune escape mecha-
nisms associated with mutations. Different from the established CD4+ 
T cell epitope predictors, ImmuScope uniquely integrates SA and MA 
immunopeptidomics data within a unified framework that mirrors 
the biological MHC-II antigen processing and CD4+ T cell recognition 
cascade. This design broadens allele coverage and boosts accuracy 
across key tasks, addressing long-standing limitations in the field. A 
key feature of ImmuScope is its residue-level attribution module, which 
enables molecular insight into CD4+ T cell immunity by elucidating 
binding specificity and immune escape dynamics at residue-level reso-
lution. As immunopeptidomics resources continue to grow in scale and 
resolution, ImmuScope’s biologically grounded design and analytical 
capabilities position it as a powerful AI platform for next-generation 
vaccine development and precision immunotherapy, bridging the 
gap between epitope prediction and mechanistic understanding of 
CD4+ T cell responses.

Although these advances are substantial, several challenges must 
be addressed to fully realize ImmuScope’s clinical potential. Our cur-
rent reliance on IFN-γ production as the primary readout for CD4+ T cell 
responses, although conventional, provides an incomplete picture of 
T cell immunity. A comprehensive assessment should incorporate Th2/
Th17 cytokine profiles (IL-4, IL-10 and IL-17), T cell proliferation assays 
and activation markers (CD25 and CD69) to better capture the full 
spectrum of T cell functionality53–55. Another critical limitation is Immu-
Scope’s current inability to systematically evaluate how mutations 

Fig. 5 | Immunogenicity benchmarking and analysis of melanoma neoantigens 
and SARS-CoV-2 epitopes. a, Receiver operating characteristic curves of 
ImmuScope-IM and other methods on the immunogenicity benchmark. b, AUCs 
of ImmuScope-IM and other methods on the immunogenicity benchmark. The 
P values were calculated by the two-sided Wilcoxon signed-rank test to compare 
ImmuScope-IM with existing methods (HLAIImaster, P = 2.2 × 10−7; TLimmuno2, 
P = 1.4 × 10−7, n = 62). Box centre line, median; box limits, upper and lower 
quartiles; whiskers, 1.5× interquartile range; points, data points; ****P < 0.0001. 
c, Pairwise comparison of AUCs between HLAIImaster and ImmuScope across 
different MHC-II alleles. d, Predictive analysis of melanoma neoantigen 
presentation based on ImmuScope-EL. e, Structural conformation of EDIL3290-304 
epitopes bound to HLA-DPA1*01:03/DPB1*02:01 on the mutation predicted by 

AlphaFold3 (average predicted local distance difference test = 92.5; interface-
predicted template modelling score = 0.92). The mutated residue is highlighted 
in red. The dashed lines indicate the hydrogen bonds, and interaction sites 
within 4 Å are displayed in dark blue. f, SHAP interpretation of p.P298F impact on 
EDIL3290-304 presentation by HLA-DPA1*01:03/DPB1*02:01. g, Predictive analysis  
of the immunogenicity of melanoma neoantigens based on ImmuScope-IM.  
h, Bar plots of AUCs on the SARS-CoV-2 immunogenic epitope benchmark. The 
bars represent the mean AUCs by 1,000 bootstrap iterations, and the error bars 
indicate the 95% CIs. i, Predicted binding peptide motifs for HLA-DRB1*01:01 as 
determined by the antigen presentation (ImmuScope-EL) and immunogenicity 
(ImmuScope-IM) models.
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affect epitope immunogenicity, despite the profound impact such 
alterations can have on MHC-II binding and T cell recognition. This 
gap could be addressed by incorporating deep mutational scanning 
data or in silico mutagenesis approaches to enable the quantitative 
prediction of mutation effects56. Furthermore, although ImmuScope 
effectively leverages large-scale pMHC-II sequence datasets to predict 

CD4+ T cell epitopes, the limited availability of structural data for 
pMHC-II and TCR-pMHC-II complexes constrains its ability to cap-
ture peptide-MHC binding preferences. With only approximately 300 
experimentally resolved complex structures currently available in the 
TCR3d57 database, our understanding of the structural determinants 
of T cell recognition remains incomplete.
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Fig. 6 | Predictive analysis of the spike epitope binding core and the structural 
variations of Omicron (BA.1). a,b, Predicted binding positions and alignment 
scores by ImmuScope-EL for SARS-CoV-2 spike protein epitope S486-505 (a) and 
S761-775 (b). The residues of the binding core within each peptide are labelled 
according to their positions. The interactions between the peptides and HLA-
DR1 are displayed by dashed lines. pLDDT, predicted local distance difference 
test; ipTM, interface-predicted template modelling score. c, Structural 
comparison of HLA-DR1-S486-505

Omicron (BA.1) aligned on the HLA-DR1-S486-505
Wuhan HU-1 

structure. The HLA-DR1 peptide-binding groove is depicted as a grey cartoon, 
whereas the S486-505

Omicron (BA.1) and S486-505
Wuhan HU-1 peptide are displayed as pink  

and lavender sticks, respectively. The mutant AAs are also highlighted.  
d, Structural comparison of HLA-DR1-S761-775

Omicron (BA.1) aligned on the HLA-DR1-
S761-775

Wuhan HU-1 structure in two registers. Left: a +1 register shift in asymmetric 
unit (ASU) copies 1 and 3. Right: the same register as seen in ASU copy 2 (ref. 52).  
e, Alignment scores for the binding core of HLA-DR1-S486-505

Wuhan HU-1 and HLA-
DR1-S486-505

Omicron (BA.1) predicted by ImmuScope-EL and the corresponding 
immunogenicity scores predicted by ImmuScope-IM. f, Alignment scores for  
the binding core of HLA-DR1-S761-775

Wuhan HU-1 and various binding positions of 
Omicron (BA.1) predicted by ImmuScope-EL. g, Immunogenicity scores of  
HLA-DR1-S761-775

Wuhan HU-1 and HLA-DR1-S761-775
Omicron (BA.1) predicted by ImmuScope-IM.
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Looking ahead, several strategic improvements will enhance 
ImmuScope’s capabilities and applications. First, integrating multidi-
mensional immune datasets encompassing cytokine profiles, prolifera-
tion measurements, activation markers and TCR repertoire information 
will enable more comprehensive epitope characterization. Second, 
advances in structural prediction algorithms like AlphaFold3, coupled 
with emerging high-resolution structural biology techniques, promise 
to dramatically expand the database of TCR-pMHC-II complexes58,59, 
facilitating the atomic-level modelling of immune recognition. Third, 
developing mutation-aware modelling will improve our ability to pre-
dict and optimize epitope immunogenicity. Finally, extending Immu-
Scope to model HLA-dependent immunogenicity across genetically 
diverse populations will be crucial for developing globally effective 
vaccines and personalized immunotherapies. By incorporating both 
CD4+ and CD8+ T cell response prediction capabilities, future versions 
of ImmuScope could become a unified platform for vaccine design, can-
cer immunotherapy development and infectious disease research60,61, 
ultimately bridging the gap between computational immunology and 
clinical practice.

Methods
Datasets
The statistics of the datasets used for training and validation for dif-
ferent tasks are shown in Supplementary Table 4. The following is a 
detailed dataset description.

MHC-II antigen presentation data. To train the antigen presentation 
model, we used the large-scale antigen presentation data collected 
in refs. 17,18,30,62, comprising three data types: BA, SA and MA EL 
datasets (Fig. 1b and Supplementary Fig. 9a,b). All data were filtered 
to remove possible contaminants and MHC class I-restricted peptides, 
retaining peptides of 12–21 amino acids (AAs) in length26. The EL data-
sets were then enriched by uniformly sampling five times of 12–21-AA 
random natural peptides as negative samples. The datasets were 
divided into five subsets for cross-validation using the common-motif 
method, ensuring that peptides sharing a subsequence of nine or more 
AAs were grouped into the same subset63. The final SA dataset contains 
246,590 positive and 2,448,316 negative samples, whereas the MA data-
set includes 432,255 positive and 4,467,755 negative samples, covering 
142 MHC-II molecules. Additionally, the BA dataset comprises 129,110 
data points across 80 class II molecules.

CD4+ epitope benchmark. The CD4+ epitope benchmark18, compiled 
by Nilsson et al. in 2023, was assembled following a specific proto-
col. Initially, positive CD4+ T cell epitopes ranging from 12 AAs to 21 
AAs, without post-translational modifications and with complete 
four-digit MHC-II typing, were selected from the Immune Epitope Data-
base (IEDB; https://www.iedb.org/)64. Only epitopes associated with 
well-documented source proteins were considered. Subsequently, the 
corresponding negative samples were generated based on the source 
protein sequences retrieved from the UniProt database (https://www. 
uniprot.org/)65. Each {epitope, allele, protein} triplet was then segre-
gated into a distinct test subset. Within each subset, using a sliding 
window of the same length as the epitope, overlapping peptides were 
generated from the source protein sequence and designated as nega-
tive samples, excluding the epitope itself. Furthermore, it was ensured 
that none of the samples in the test set had previously appeared in the 
MHC-II antigen presentation training data. Ultimately, the test set 
comprised 842 {epitope, allele, protein} triplets, encompassing 40 
HLA-DR, 13 HLA-DQ and 4 HLA-DP molecules.

Immunogenicity data. We curated immunogenicity assay data from 
IEDB64 and integrated it with the MHCBN66 dataset, following the meth-
odology described in DeepNeo37,38. This dataset contains records up to 
14 May 2024. Specifically, we selected the data of T cell reactivity based 

on IFN-γ secretion. Furthermore, we refined the dataset to include only 
entries with full MHC-II restriction and peptide lengths ranging from 
12 AAs to 21 AAs. Given the variable nature of pMHC-II immunogenicity 
experiments, we followed the method in ref. 37 to classify pMHC-II with 
contradictory results as binding pairs. Moreover, we identified proteins 
with sequence similarity below 0.5 in the RCSB Protein Data Bank67 and 
generated ten times as many negative samples by randomly splitting 
peptides of the same length as the positive samples. The strategy 
aligns with the approaches used in IEPAPI68 and MHCflurry 2.0 (ref. 69). 
Subsequently, we randomly divided the data into training/validation 
and test sets at an 8:2 ratio. Consequently, the training/validation set 
comprised 71,584 data points, and the test set included 17,897 data 
points for our immunogenicity analysis.

Simulated MA dataset. Due to the absence of precise labels in the 
MA data, we constructed a simulated MA dataset using the SA dataset, 
which has been divided into a fivefold cross-validation set, to evaluate 
the capability of the MIL module in detecting positive pMHC-II samples 
within bags. The process was as follows: we selected four out of the five 
folds as the training set. These data were then randomly shuffled and 
organized into bags, each containing ten samples. Subsequently, we 
randomly sampled negative instances to achieve a 1:3 ratio of positive 
to negative bags.

Melanoma neoantigen data. The melanoma neoantigen data were 
obtained from ref. 51, who identified and functionally characterized 13 
HLA class II-restricted neoantigens in two melanoma patients (Pt-C and 
Pt-D). The corresponding epitope information is available in the IEDB 
(reference IRI: http://www.iedb.org/reference/1042469). We included 
only neoantigens with reported TCR reactivity and quantitative avidity 
measurements. Each selected neoantigen was directly compared with 
its wild-type counterpart, enabling reliable immunogenicity assess-
ment based on EC50 values.

SARS-CoV-2 immunogenic epitope data. The SARS-CoV-2 immuno-
genic epitope data were curated from the IEDB database64 (accessed 2 
April 2025) and relevant primary literature (Supplementary Tables 4 
and 5). Data from IEDB were retrieved using the following query param-
eters: disease set to COVID-19, full MHC class II restriction, source 
limited to peer-reviewed journal articles and T cell reactivity meas-
ured by IFN-γ secretion. Additional epitopes were manually extracted 
from selected primary publications. The resulting dataset comprises 
immunogenic epitopes derived from SARS-CoV-2 structural proteins 
(S, E, M and N) and the non-structural protein nsp12. All epitopes were 
clustered using MMseqs2 (ref. 70) with a sequence identity threshold 
of 0.5. The resulting clusters were then split into training and test sets 
at a 6:4 ratio, yielding 6,181 and 3,763 samples, respectively. To improve 
model generalizability, the training set was augmented with a general 
immunogenicity dataset containing non-SARS-CoV-2-derived epitopes, 
resulting in a total of 95,237 training samples.

ImmuScope architecture
MA and SA data representation. In this study, our model processed 
two predominant forms of mass spectrometry immunopeptidom-
ics data: MA and SA data. Following the paradigm of MIL, we treated 
each MA sample as a ‘bag’ containing multiple instances, specifically 
pMHC-II pairs (Supplementary Fig. 9c). A positive bag suggests that the 
peptides are presented by at least one of the MHC molecules expressed 
in that sample. Conversely, a negative bag indicates that all pMHC-II 
pairs are negative instances. Similarly, for SA data, we defined each 
pMHC-II sample as either a positive bag with a single positive instance 
or a negative bag with a single negative instance. This consistent repre-
sentation of MA and SA data enabled our framework to simultaneously 
learn from both data types and make predictions, thereby facilitating 
its application across diverse immunopeptidomics datasets.

http://www.nature.com/natmachintell
https://www.iedb.org/
https://www.uniprot.org/
https://www.uniprot.org/
http://www.iedb.org/reference/1042469


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-01073-z

Attention-based MIL aggregator. In branch a of Fig. 1a, we employed 
an attention-based MIL pooling mechanism71,72 to aggregate instance 
features within each bag. This mechanism not only enhances interpret-
ability for predicting bag labels but also enables the identification 
and prioritization of the most critical instances crucial for the final 
prediction. Let Z = ℇ(X; θ) represent the embedding of pMHC-II instance 
obtained from the backbone of ImmuScope ℇ parameterized by θ. zk 
denotes the kth instance in the bag Z = {z1…zk}. We implemented the 
following gated attention aggregator:

attk =
exp{wT(tanh(VzT

k ) ⊙ sigm(UzT
k ))}

∑K
j=1 exp{wT(tanh(VzT

j ) ⊙ sigm(UzT
j ))}

,

where w, V and U denote the model parameters and ⊙ represents an 
element-wise multiplication. The function tanh(·) refers to the hyper-
bolic tangent activation function and sigm(·) denotes the sigmoid 
nonlinearity.

High-confidence positive pseudo-labels selection module. We 
introduced high-confidence positive pseudo-labels to improve the 
accuracy of antigen presentation prediction. The number of positive 
samples in MA data is approximately twice that in SA data, and allele 
coverage is 2.2 times larger. This difference is particularly evident at 
the HLA-DP and HLA-DQ loci, where MA data substantially supplements 
coverage gaps in SA data. In particular, these weakly annotated posi-
tive MA samples contain multiple pMHC-II pairs, with at least one pair 
exhibiting positive signals. Such characteristics pose challenges for 
directly incorporating MA data into model training. To address this, 
we have developed a high-confidence positive pseudo-label selection 
module, which self-iteratively incorporates pseudo-labels from MA 
data to refine our predictive model (Fig. 1c).

High-confidence sample selection is performed using the trained 
backbone of ImmuScope, with the training process detailed in the 
‘Antigen presentation prediction’ section. MA data are first input into 
the ImmuScope backbone, which incorporates Monte Carlo dropout73 
to assess variability and enhance reliability. An attention-based MIL 
aggregation module is then used to estimate the uncertainty distribu-
tion of the MA samples, enabling the identification of high-confidence 
positive samples. Specifically, we iteratively select high-confidence 
samples by controlling the confidence ratio (Top R%) based on the 
attention scores. Samples already showing high confidence within the 
antigen presentation prediction branch are excluded. The selected 
samples are then integrated into the SA data for model fine tuning. 
Throughout this iterative process, we progressively adjust confi-
dence thresholds to incorporate a broader range of positive MA sam-
ples, thereby improving model generalization. The optimal ratio of 
positive pseudo-labelled samples is determined based on validation 
performance.

Positive-anchor triplet loss. MHC-II molecules exhibit extensive 
diversity, exemplified by the human HLA-DR, HLA-DQ and HLA-DP 
loci, which collectively comprise 11,674 allelic variants according to the 
IPD-IMGT/HLA database74. Additionally, the peptides themselves show 
notable variability in sequence and length. The peptide-binding groove 
of MHC-II is highly specific for binding AAs in peptides75, determining 
which peptides can be bound and presented. Triplet loss76 enhances the 
model’s ability to perceive these subtle differences by minimizing the 
distance between similar samples (positive samples) and maximizing 
the distance between dissimilar samples (negative samples). This loss 
is particularly suitable for predicting pMHC-II BA and antigen presenta-
tion, as it improves learning on challenging-to-discriminate pMHC-II 
samples and facilitates the discovery of nuanced binding patterns 
between peptides and specific MHC-II molecules.

In the experimental setup, triplet loss was calculated using only 
positive samples as anchors. This strategy enabled the model to better 

distinguish crucial binding features within pMHC-II complexes. The 
positive-to-negative sample ratio in the antigen presentation dataset 
was set to 1:10. Using negative samples as anchors increased compu-
tational costs and might distract from the model’s primary goals by 
unnecessarily optimizing distances between negative samples. Such 
optimization failed to enhance discrimination and reduced the learning 
efficiency. To address these challenges and align with critical learning 
objectives, we have formulated the triplet loss for each mini-batch as 
follows:

ℒtriplet_loss (a,pos,neg) =
1
N

N
∑
i
max{d (ai,posi) − d (ai,negi) +margin,0},

where d(xi, yi) = ||xi – yi||p, we used Euclidean distance as the metric 
function, setting p = 2. In this context, i represents a mini-batch, N is 
the batch size and a exclusively denotes all the positive samples used 
as anchors; pos and neg indicate the positive and negative samples 
within the mini-batch, respectively; margin is a threshold defining the 
minimum distance that the negative sample must exceed beyond the 
positive sample from the anchor to avoid incurring a loss.

ImmuScope training process
ImmuScope backbone training process. The backbone of Immu-
Scope is a pretrained model for other downstream tasks. Initially, we 
loaded the SA and MA data, and then we computed the positive-anchor 
triplet loss for the embeddings of pMHC-II instances, denoted as 
ℒtriplet_loss. In branch a, the bag labels for SA and MA data were optimized 
using the binary cross-entropy loss function, represented as ℒMIL_SA and 
ℒMIL_MA, respectively. Concurrently, in branch b, the SA data were opti-
mized using the binary cross-entropy loss ℒinstance_SA. The composite 
loss function for the backbone is defined as

ℒImmuScope backbone = τ × ℒtriplet_loss + ℒMIL_MA + ℒMIL_SA + ℒinstance_SA,

where τ represents the weighting factor for the triplet loss, setting 
τ = 0.1. Throughout the training process, the parameters of the Immu-
Scope backbone network were refined by synergistically combining 
individual instance learning, aggregated label optimization and metric 
learning strategies. This integrative approach ensured a robust opti-
mization of model parameters, effectively capturing both micro- and 
macro-level data characteristics. The Adam optimizer with a learning 
rate of 1 × 10−3 was used to train the backbone of ImmuScope for up 
to 20 epochs, with the final model being selected based on the best 
performance on the validation set.

Antigen presentation prediction. On the basis of the backbone 
of ImmuScope, we gradually introduced high-quality positive 
pseudo-labels from MA data to construct an antigen presentation 
prediction model. In each epoch, we first obtained the predicted anti-
gen presentation probability on branch b, the attention score in the 
MIL aggregator and the corresponding bag score through forward 
calculations. To ensure prediction stability and accurately gauge model 
uncertainty, we employed an architecture with Monte Carlo dropout 
to perform ten forward passes and analysed both mean and variance 
of these predictions. Initially, we selected the top 8% of samples with 
high attention weights and whose variances ranked in the top 80% (from 
lowest to highest). These thresholds (8% and 80%) were determined 
through preliminary experiments and an examination of the distribu-
tion of attention scores, ensuring that we focused on high-confidence, 
relatively low-variance samples. We also excluded samples with pre-
dicted antigen presentation probabilities exceeding 0.95 and those 
whose variances ranked in the top 40% (from lowest to highest), as 
they were already reliably identified by the model.

As the iterations progressed and the model’s internal repre-
sentations became more stable, we gradually relaxed the threshold 
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on attention weights from the top 8% to 12%. This step—commonly 
employed in self-training approaches—aims to broaden the scope 
of positive pseudo-labelled samples, thereby enriching the training 
dataset with more diverse pMHC-II binding candidates and further 
enhancing the model’s learning capacity. At the same time, we utilized 
this expanded dataset, SA-extend (EL), for incremental fine tuning of 
the backbone model. Finally, we fine-tuned the ImmuScope backbone 
with the final SA-extend (EL) dataset over ten additional epochs using 
the Adam optimizer (learning rate = 3 × 10−5), yielding the optimized 
ImmuScope-EL model for antigen presentation prediction.

CD4+ T cell epitope prediction. Antigen presentation is a prerequisite 
for the CD4+ T cell immune response. In line with the methodology of 
NetMHCIIpan-4.3, our CD4+ T cell epitope prediction model, Immu-
Scope, similarly incorporated both BA and EL data. Specifically, the 
antigen presentation model ImmuScope-EL was fine-tuned using BA 
data, employing a learning rate of 2 × 10−5, and leveraging the Adam 
optimizer to minimize the mean squared error loss over 20 epochs. To 
balance the influence of BA and EL data on CD4+ T cell epitope predic-
tion, we set an 8:2 weighting ratio for BA and SA data in the validation 
set. This ratio was determined based on preliminary experiments and 
data correlation: although BA data provide precise BA information, 
SA data capture actual antigen presentation events in vivo. The final 
validation metrics were calculated as follows:

AUPRVal = 0.8 × AUPRBA + 0.2 × AUPRSA,

where AUPRBA and AUPRSA denote the AUPR values of the BA and SA 
subsets, respectively, within the validation set. Finally, we evaluated 
the performance of CD4+ T cell epitope prediction on the CD4+ epitope 
benchmark.

MHC-II epitope immunogenicity prediction. Immunogenicity is cru-
cial as it determines the efficacy and safety of vaccines and therapies by 
triggering immune responses. We refined ImmuScope-EL further with 
immunogenicity data to develop the ImmuScope-IM model, tailored 
to immunogenicity prediction. The ImmuScope-IM model was opti-
mized by an Adam optimizer with a learning rate of 1 × 10−3 and binary 
cross-entropy loss, for a maximum of 20 epochs. For the application 
of the ImmuScope-IM model in SARS-CoV-2 epitope discovery and 
dynamic escape mechanism studies, we excluded the epitope binding 
data pertaining to SARS-CoV-2 from our initial immunogenicity dataset 
to construct a dedicated SARS-CoV-2 immunogenicity benchmark 
dataset, ensuring unbiased benchmarking. This benchmark dataset 
was then used to train the ImmuScope-IM model for assessing the 
immunogenicity of SARS-CoV-2 epitopes.

All deep learning models were developed using PyTorch v. 1.12.1 
and trained on an NVIDIA GeForce RTX 4090 GPU. Details of the algo-
rithm and model hyperparameters are provided in Supplementary 
Tables 6 and 7, respectively. Computational efficiency and scalability 
are described in Supplementary Note 8.

Analysis of motif deconvolution
We employed the trained ImmuScope-EL model to perform motif 
deconvolution and obtain the binding peptide sequence set for differ-
ent MHC-II allomorphs. Specifically, a subset of MA data was fed into 
ImmuScope-EL, and the attention weights from the attention-based 
MIL aggregator, along with the antigen presentation probabilities 
from branch a and branch b, were obtained, respectively. To ensure 
high-quality deconvolution, we selected the antigen presentation 
peptides with an antigen presentation probability greater than 0.8 
and an attention weight exceeding the reciprocal of the number of 
MHC-II categories in the bag. We then employed Seq2Logo to visualize 
the motif logo of different MHC-II allomorphs based on the sequences 
of selected peptides.

Quantification of MHC-II binding specificity
We first calculated the antigen presentation score by inputting 100,000 
random human peptide sequences and the alleles to be assessed into 
ImmuScope-EL. Then, the samples with the top 1% of the predicted 
scores were selected for cluster analysis using GibbsCluster77, and the 
optimal number of clusters, that is, binding specificity, was determined 
based on the lowest average KLD. Finally, we evaluated the MHC bind-
ing specificity quantified by ImmuScope-EL by comparing the KLD 
with the PSFM matrix based on the peptidomics data. The prediction 
results of NetMHCIIpan were obtained by predicting the top 1% of 
random human peptides using the NetMHCIIpan-4.3 software pack-
age, whereas MixMHC2pred was obtained by predicting using the 
MixMHC2pred-2.0 web server.

Measuring the similarity of MHC binding motifs
To evaluate the similarity between sequence motifs generated by 
various algorithms and those obtained from peptidomics data, we 
first represented each set of peptide-binding cores with PSFMs. Each 
PSFM was then converted into a single vector by concatenating the 
frequency values at its nine positions, with each position containing 
20 values corresponding to the 20 standard AAs. Finally, we calculated 
the symmetric KLD18 for any two PSFMs, denoted as a and b, using the 
following formula:

KLDa,b =
N
∑
i
{[ai ∘ ln [

ai + ε
bi + ε

]] + [bi ∘ ln [
bi + ε
ai + ε ]]} ,

where ε is employed as an exceedingly small positive number, typically 
set at 1 × 10−10, to prevent division by zero.

Calculation of binding core alignment scores for epitopes
In our analysis of the melanoma neoepitope and SARS-CoV-2 epitope 
binding cores, we employed the ImmuScope-EL model to analyse the 
binding cores of various epitopes and to examine changes on muta-
tions. Initially, we used ImmuScope-EL to predict 100,000 random 
human peptides and selected the top 1% based on the highest binding 
scores to create a position-specific scoring matrix for specific alleles 
(like HLA-DRB1*01:01 in SARS-CoV-2 epitope analysis). Subsequently, 
we calculated the matching degree for each 9-mer window of the 
candidate peptides against the position-specific scoring matrix. The 
alignment score for each window was then computed to assess how 
well it matched the binding pattern defined by the position-specific 
scoring matrix.

Statistical analyses
Error bars depicted in the bar plots indicate 95% CIs, unless specified 
otherwise. Performance benchmarks such as AUC and AUPR were 
computed using the scikit-learn Python package (v. 1.3.0). UMAP 
analysis was conducted with the umap-learn Python package (v. 
0.5.3). The predicted binding peptide ligands were further clustered 
using the GibbsCluster tool (v. 2.0). Sequence motifs were gener-
ated and visualized using the Seq2Logo tool (v. 2.0). Additionally, the 
three-dimensional structures of pMHC-II complexes were visualized 
using PyMOL (v. 2.5.7).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used for training and testing the algorithm are available 
via Zenodo at https://doi.org/10.5281/zenodo.14184201 (ref. 78). The 
MHC-II antigen presentation data and CD4+ epitope benchmark are 
sourced from NetMHCIIpan-4.318 (https://services.healthtech.dtu.dk/ 
services/NetMHCIIpan-4.3/). Immunogenicity datasets are derived 
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from IEDB64 (https://www.iedb.org/). The motifs of MHC-II alleles are 
obtained from the MHC Motif Atlas Database47 (http://mhcmotifatlas. 
org/) and NetMHCIIpan-4.3. Melanoma neoepitope immunogenicity  
data are derived from original study51 (https://doi.org/10.1038/s41586- 
022-04682-5). The benchmark dataset for SARS-CoV-2 immunogenicity 
prediction is systematically curated from the IEDB and relevant primary 
literature (Supplementary Tables 4 and 5 provide details). The core 
dataset of SARS-CoV-2-derived CD4+ T cell epitopes, including those 
analysed for HLA-DR1- and HLA-DR4-restricted immune responses, 
along with the structural data of HLA class II-presented SARS-CoV-2 
epitopes and associated immune escape metadata, is obtained from 
the foundational study by Chen et al.52 (https://doi.org/10.1016/ 
j.celrep.2023.112827). To enable extended epitope mutation analy-
sis (Supplementary Information), we incorporated additional data-
sets from two key studies examining SARS-CoV-2 immune escape79,80 
(https://doi.org/10.1126/sciadv.abl5394 and https://doi.org/10.1038/ 
s41590-022-01351-7). All HLA class II sequence data are retrieved from  
the IPD-IMGT/HLA database74 (https://www.ebi.ac.uk/ipd/imgt/hla/),  
whereas SARS-CoV-2 variant sequence evolution data are derived from 
ViralZone81 (https://viralzone.expasy.org/). Source data are provided 
with this paper.

Code availability
The source code and model weights of ImmuScope are available via 
GitHub at https://github.com/shenlongchen/immuscope, Zenodo at 
https://doi.org/10.5281/zenodo.14184201 (ref. 78) and as a reproduc-
ible CodeOcean capsule (https://codeocean.com/capsule/4332973/
tree/v1 (ref. 82)).
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Extended Data Fig. 1 | CD4+ T cell epitope prediction by ImmuScope. a, Bar 
plots of AUCs at different HLA loci (HLA-DP, HLA-DQ and HLA-DR), the points 
represent the average AUC of the corresponding MHC molecule. b, Bar plot of 
AUCs on the CD4+ epitope benchmark. In a, b, the bars represent the mean AUCs 
by 1,000 bootstrap iterations, the error bars indicate the 95% CIs, and each data 

point represents the performance of the corresponding HLA loci. c, Comparison 
of AUC performance between ImmuScope and other methods on the CD4+ 
epitope benchmark across different peptide lengths. Shaded bands around the 
lines represent 95% CIs, estimated from 1,000 bootstrap iterations and scaled by 
a factor of 0.2 for visual clarity.
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Extended Data Fig. 2 | Ablation analysis of ImmuScope-EL modules. a, AUC0.1 
performance of SA, SA + MA-MIL, and ImmuScope-EL. The P values were 
calculated by the two-sided Wilcoxon signed rank test (n = 58): SA vs. SA + MA-
MIL (P = 1.3× 10−10) and SA + MA-MIL vs. ImmuScope-EL (P = 1.7× 10−8). Box 
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1.5×interquartile range; ****P < 0.0001. Each data point represents the 
performance of the corresponding MHC allele. b, AUPR performance of SA, 

SA + MA-MIL, and ImmuScope-EL, calculated per MHC-II allele, only including 
alleles with at least 25 positive samples and a minimum of 30 total samples. c, 
AUC0.1 performance of the ImmuScope-EL model for different MHC alleles. The 
bars represent the mean performance values by 1,000 bootstrap iterations, and 
the error bars indicate the 95% CIs. Each data point represents the performance 
of the corresponding MHC allele. d, UMAP visualization of instance embeddings 
from the SA and ImmuScope-EL models on the BoLA-DRB3 subset.
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Extended Data Fig. 3 | Motif deconvolution of ImmuScope on multi-allelic data. a, b, Motif deconvolution logo on Racle__RA957 (a) and Racle__3830_NJF_DQP (b) 
datasets. c, Motif deconvolution peptide counts on the heterozygous subsets.
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