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ABSTRACT
The perivascular space (PVS) is integral to glymphatic function, facilitating fluid exchange and waste clearance in the brain. 
Diffusion tensor imaging along the perivascular space (DTI- ALPS) has been proposed as a noninvasive marker of perivascular 
diffusion, yet its specificity remains unclear. ALPS measures assume radial symmetry in white matter (characterized by equal 
transverse diffusion eigenvalues, λ2 = λ3) and interpret deviations (i.e., radial asymmetry, where λ2 > λ3) as reflecting PVS con-
tributions. However, anatomical and microstructural confounds may influence these metrics. We systematically evaluated po-
tential biases in ALPS- derived measures using high- resolution, multishell diffusion MRI from the Human Connectome Project 
(HCP) and high- field imaging. Specifically, we examined (1) the prevalence of radial asymmetry across white matter, (2) the 
influence of crossing fibers on ALPS indices, (3) the impact of axonal undulations and dispersion, and (4) the spatial alignment 
of vasculature with white matter in ALPS- associated regions. Radial asymmetry is widespread across white matter and per-
sists even at high b- values, suggesting a dominant contribution from axonal geometry rather than faster PVS- specific diffusion. 
Crossing fibers significantly inflate ALPS indices, with greater radial asymmetry observed in regions with a greater prevalence 
of crossing fibers. Furthermore, anisotropic axonal dispersion and undulations introduce systematic asymmetry independent of 
perivascular diffusion. Finally, high- resolution vascular imaging reveals substantial heterogeneity in medullary vein orientation, 
challenging the assumption that PVS consistently aligns with the left–right axis in ALPS regions. ALPS indices are significantly 
influenced by white matter microstructure, including fiber crossings, undulations, and dispersion. These findings suggest that 
ALPS- derived metrics may not provide a direct measure of glymphatic function but rather reflect underlying axonal geometry. 
Interpretations of ALPS- derived metrics as biomarkers of glymphatic function must consider these anatomical complexities, 
and future studies should integrate advanced modeling approaches to disentangle perivascular contributions from white matter 
structure.
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1   |   Introduction

The perivascular space (PVS), also known as the Virchow–
Robin space, is a key anatomical structure facilitating fluid ex-
change between cerebrospinal fluid (CSF) and interstitial fluid 
along the brain's vascular pathways (Wardlaw et al. 2020). This 
fluid movement is integral to the glymphatic system, a recently 
characterized network implicated in the clearance of metabolic 
waste, including amyloid- beta and other neurotoxic solutes from 
the brain parenchyma (Iliff et  al.  2012). Disruptions in glym-
phatic function have been linked to neurodegenerative dis-
eases such as Alzheimer's and Parkinson's disease (Buccellato 
et al. 2022), highlighting the need for robust, non- invasive im-
aging methods to assess perivascular dynamics.

Diffusion tensor imaging along the perivascular space (DTI- 
ALPS) has recently emerged as a promising, noninvasive ap-
proach for probing glymphatic function (Taoka et al. 2017). First 
introduced by Taoka et al., the DTI- ALPS method utilizes dif-
fusion tensor imaging (DTI) to measure water diffusivity along 
the PVS, leveraging specific regions- of- interest (ROIs) adjacent 
to the lateral ventricles where white matter tracts and medul-
lary veins intersect at near- orthogonal angles. In principle, 
this unique geometry allows the isolation of diffusion signals 
attributed to perivascular flow, culminating in a single scalar 
measure—the ALPS- index—that aims to serve as an indirect 
marker for glymphatic function.

The appeal of the ALPS- index lies in its ease of application, re-
quiring only standard DTI acquisitions and minimal compu-
tational effort (Taoka et al. 2024). Because of this, it has been 
rapidly adopted across numerous studies with the aim to inves-
tigate glymphatic function in both health and disease (Taoka 
et al. 2024). For example, the ALPS- index has been correlated 
with disability and cognitive performance in Alzheimer's dis-
ease (Chang et al. 2023; Steward et al. 2021), Parkinson's disease 
(McKnight et al. 2021; Ma et al. 2021), and demyelinating dis-
eases (Carotenuto et al. 2022; Hagiwara et al. 2023), while also 
demonstrating sensitivity to aging and other neurophysiological 
changes (Steward et al. 2021; McKnight et al. 2021; Matsushita 
et al. 2024; Zhang et al. 2021). However, reflecting on its wide-
spread application and interpretation, Taoka et  al. themselves 
have recently emphasized that the ALPS- index directly indi-
cates “predominant Brownian motion of water molecules in the 
radial direction at the lateral ventricular body level, no more and 
no less,” (Taoka et al. 2024) and urge careful distinction between 
a change in the index and an assertion of “glymphatic dysfunc-
tion.” Echoing this need for careful interpretation, and despite 
its growing application, the specificity of the ALPS- index for 
perivascular diffusion remains unclear, as various microstruc-
tural and anatomical factors may contribute to the measured 
signal.

A key assumption of the ALPS- index is that diffusion within 
and around white matter tracts exhibits radial symmetry, spe-
cifically that the second and third eigenvalues of the diffu-
sion tensor (λ2 and λ3) are equal. Recent work by Wright et al. 
(Wright et  al.  2024) has demonstrated that radial asymmetry 
(λ2 > λ3) is not confined to ALPS- specific regions but is wide-
spread throughout the brain. This observation suggests that 
the ALPS- index may not solely reflect perivascular diffusion 

but also reflects axonal contributions (Wright et al. 2024). We 
first aim to reproduce and validate these findings, hypothesiz-
ing that radial asymmetry exists broadly throughout the white 
matter and persists at diffusion weightings that are more sen-
sitive to axonal contributions (i.e., high b- values), implicating 
neurite- related effects. At high b- values, diffusion- weighted im-
aging strongly attenuates signal from compartments with rapid 
and less- restricted diffusion, such as the extra- axonal space and 
PVS, isolating the contribution from the more restricted intra- 
axonal compartment. PVS typically occupies spaces on the order 
of 10–45 μm in height adjacent to vessels (Raicevic et al. 2023), 
substantially larger than the narrow calibers of axons (~1 μm), 
reinforcing the expectation that high b- value signal predomi-
nantly reflects axonal microstructure.

A potential confounding factor is the presence of crossing fibers, 
a well- documented challenge in diffusion MRI. White matter 
of the brain is often comprised of multiple fiber populations 
intersecting within a single voxel, an effect that occurs in any-
where from ~70% to 90% of all white matter voxels (Schilling 
et  al.  2022; Jeurissen et  al.  2013), complicating the interpre-
tation of any diffusion- derived metrics. Georgiopoulos et  al. 
(Georgiopoulos et  al.  2024) recently highlighted that crossing 
fibers significantly inflate the ALPS- index (i.e., increasing the 
ratio of λ2/λ3), suggesting a lack of specificity for perivascular 
diffusion and highlighting an axonal contribution to this index. 
Our second aim is to further investigate the effects of crossing 
fiber confounds on the ALPS- index, hypothesizing not only that 
this measure is influenced by crossing fibers, but that radial 
asymmetry exists even in voxels with single- fiber populations.

Another possible confounding factor is the presence of axonal 
undulations, a phenomenon characterized by wave- like devia-
tions along the course of axonal fibers. These undulations have 
been observed in histological preparations throughout var-
ious white matter regions (Budde and Annese  2013; Schilling 
et  al.  2018; Jeffery  1996; Lontis et  al.  2009), and are believed 
to serve a protective role, allowing axons to accommodate me-
chanical stress without sustaining damage (Sunderland and 
Bradley  1961). Undulations have been extensively studied in 
the diffusion MRI community (Lee, Papaioannou, et al. 2020; 
Brabec et  al.  2020; Nilsson et  al.  2013, 2012; Lee, Jespersen, 
et al. 2020). Several studies have compared the diffusion proper-
ties of straight versus undulating axons, finding that undulation 
can induce directional- dependent diffusivity even in single- fiber 
regions (Nilsson et  al.  2012). This phenomenon, where undu-
lations in one plane can increase diffusivity while leaving the 
orthogonal plane unaffected, can introduce radial asymmetry 
independent of perivascular diffusion, further confounding the 
interpretation of the ALPS- index. Thus, our third aim was to 
test the hypothesis that radial asymmetry persists in single- fiber 
regions, and can be attributed to axonal undulation effects.

Finally, the ALPS- index assumes that the vasculature (and 
hence the PVS) runs consistently in the left–right (x) direc-
tion of the brain and is orthogonal to the white matter tracts 
of the superior–inferior (z) projection pathways and the an-
terior–posterior (y) association pathways (Taoka et  al.  2017). 
Although medullary veins running in the left–right direction 
lateral to the ventricles have been consistently observed in sev-
eral studies, variability in vascular orientation has also been 
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reported (Bernier et al. 2018, 2020; Nonaka et al. 2003; Smirnov 
et al. 2021; Ruiz et al. 2009), challenging the robustness of these 
assumptions. Our fourth aim is to assess whether individual 
variability in vascular structure and geometry results in incon-
sistent alignment of vasculature along the left–right axis, and 
whether white matter tracts in ALPS- related regions are reliably 
orthogonal to vasculature, thereby testing key assumptions un-
derlying the ALPS methodology.

To systematically evaluate these confounds, we leveraged a 
high- resolution, high- quality diffusion imaging dataset to test 
each hypothesis. We first investigate the prevalence of radial 
asymmetry throughout the brain and ask whether this asym-
metry occurs with different diffusion weightings. Second, we 
investigate the effects of crossing fibers on radial asymme-
try (and consequently, the ALPS- index) and ask whether this 
phenomenon exists even within regions that do not contain 
crossing fibers. Third, we investigate the effects of axonal un-
dulation and dispersion on radial asymmetry measures and 
use multicompartment modeling to ask whether this explains 
asymmetry, again even in single fiber regions. Fourth, we use 
high- resolution, high- field imaging to make direct compari-
sons of vasculature and white matter orientation in the same 
subjects, asking whether ALPS- associated vasculature is in-
deed oriented right- to- left (RL) and perpendicular to white 
matter pathways, and where this assumption is (or is not) vio-
lated. Finally, given previous reports of ALPS- index sensitiv-
ity to aging, we assessed whether these confounding factors 
also exhibit age- related changes, which would further support 
an axonal contribution to the ALPS signal. Overall, this study 
aims to refine the interpretation of the ALPS- index as a bio-
marker of glymphatic function.

2   |   Methods

2.1   |   Prevalence of Radial Asymmetry

First, we examine the prevalence of radial asymmetry across 
the brain and its dependence on diffusion weighting. We do 
this using two open- source datasets, with the goal of measuring 
radial asymmetry in ALPS- specific ROIs as well as other ROIs 
throughout the cerebral white matter, and at multiple diffusion 
weightings.

2.1.1   |   Datasets

The datasets used in this study come from the Human 
Connectome Project (Van Essen et  al.  2012), which aims to 
map the structural connections and circuits of the brain and 
their relationships to behavior by acquiring high- quality mag-
netic resonance images. We used diffusion MRI data from the 
Human Connectome Project Young Adult (HCP- YA) and the 
Human Connectome Project Aging (HCP- A) study. The Young 
Adult cohort was composed of a subset of N = 105 participants 
aged 21–35 years. The Aging cohort was composed of a subset 
of N = 50 participants aged 35–90 years. The diffusion MRI ac-
quisitions were slightly different for each dataset and tailored 
towards the population under investigation. For the Aging co-
hort, a multishell diffusion scheme was used, with b- values of 

1500 and 3000 s/mm2, sampled with 93 and 92 directions, re-
spectively (24, b = 0). The in- plane resolution was 1.5 mm, with a 
slice thickness of 1.5 mm. For the Young Adult cohort, the mini-
mally preprocessed data (Glasser et al. 2013) from HCPs (Q1–Q4 
release, 2015) were acquired at Washington University in Saint 
Louis and the University of Minnesota (Van Essen et al. 2012) 
using a multishell diffusion scheme, with b- values of 1000, 2000, 
and 3000 s/mm2, sampled with 90 directions each (18, b = 0). 
The in- plane resolution was 1.25 mm, with a slice thickness of 
1.25 mm. For all diffusion data, susceptibility, motion, and eddy 
current corrections were performed using TOPUP and EDDY 
algorithms from the FSL (v6.0.7.9) package following the mini-
mally preprocessed HCP pipeline (Glasser et al. 2013). Structural 
images with T1- weighting for all cohorts were acquired with an 
MPRAGE sequence, with a resolution of 0.8 mm isotropic for the 
Aging cohort and a resolution of 0.7 mm isotropic for the Young 
Adult cohort.

2.1.2   |   Radial Asymmetry

For each subject, the diffusion tensor (Basser et  al.  1994; 
Pierpaoli et  al.  1996) was calculated voxel- wise (using an 
iterated weighted least- squares algorithm from MRtrix3 
(Tournier et al. 2019)), from which the primary (λ1), second-
ary (λ2), and tertiary (λ3) eigenvalues were derived. The tensor 
was derived for each diffusion weighting (b- value) separately. 
Following (Wright et  al.  2024), radial asymmetry was cal-
culated as the ratio of the secondary to tertiary eigenvalues 
(λ2/λ3) as a measure of asymmetry orthogonal to the dominant 
direction of diffusion.

2.1.3   |   Regions of Interest

The Johns Hopkins University (JHU) white matter atlas (Mori 
et al. 2009) was used to define 35 white matter ROIs (names 
and abbreviations given in the Appendix  A). These regions 
represented locations of major association, projection, and 
commissural pathways of the brain. In addition to these, we 
used four ALPS- specific regions designed for automated com-
putation of the ALPS index (Liu et al. 2024) manually delin-
eated on the JHU- ICBM- FA template (and available at https:// 
github. com/ gbari sano/ alps). These regions represent the pro-
jection and association fibers at the level of the lateral ven-
tricle body within the superior corona radiata (left and right 
SCR) and within the superior longitudinal fasciculus (left and 
right SLF) and were defined as spheres with 5 mm diameters. 
We note that these are subsets of the much larger JHU ROIs 
bearing the same name but intended to isolate the regions 
where vasculature runs left- to- right and is orthogonal to the 
projection and association fibers. Within each region we de-
rive the average asymmetry.

To further probe this asymmetry, we calculate the V2 
Coherence, which measures the alignment consistency of the 
second eigenvectors (V2s) within an ROI. This helps determine 
if the observed radial asymmetry is due to coherent underlying 
structures (e.g., specific axonal or vascular geometry, indicated 
by higher V2 Coherence) or arises primarily from noise (which 
would yield randomly oriented V2s and thus low V2 Coherence). 

https://github.com/gbarisano/alps
https://github.com/gbarisano/alps
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Methodologically, V2 Coherence is the fractional anisotropy of 
an orientation tensor constructed from the V2s. Specifically, V2s 
within the ROI are first normalized to unit vectors, and their 
outer products are then averaged to form the orientation ten-
sor. An FA value of this tensor approaching 1 indicates highly 
aligned V2s, reflecting a consistent secondary structural orien-
tation perpendicular to the primary eigenvector. Conversely, a 
value near 0 suggests highly dispersed or random V2 orienta-
tions, as would be expected if noise predominantly influenced 
their direction.

2.2   |   Crossing Fibers

Second, we investigated the influence of crossing fibers on 
ALPS- related measures. We performed a simulation to inves-
tigate crossing fiber confounds on radial asymmetry, and em-
pirically measured the relationship between features of crossing 
fibers and radial asymmetry.

2.2.1   |   Simulations

We simulated crossing fibers by generating two fiber popu-
lations crossing at a specific crossing angle, and with a spe-
cific crossing fraction, following (Daducci et  al.  2014). The 
crossing angle was defined as the angle between the two 
fiber populations (ranging from 0° to 90°), while the cross-
ing fraction was defined as the fraction of the secondary fiber 
population (ranging from 0 to 0.5). Simulations were per-
formed using a multitensor signal simulation (1 ≤ λ1 ≤ 2 mm2/s; 
0.1 ≤ λ2 = λ3 ≤ 0.6 mm2/s) for crossing angles from 0° to 90° in 
steps of 1°, and crossing fraction from 0 to 0.5 in steps of 0.01, 
with 1000 crossing fiber voxels simulated for every geomet-
ric configuration. Noise was added in quadrature (i.e., Rician 
noise) at a level matching that derived from HCP datasets 
(SNR~20–30), the diffusion tensor was calculated, from which 
radial asymmetry derived.

2.2.2   |   Single and Crossing Fibers

We derived equivalent voxel- wise measures of crossing 
angle and crossing fraction from HCP and HCPA data using 
MRtrix3 functions. This procedure included (1) estimating 
response functions using dwi2response dhollander algorithm 
(Dhollander and Connelly  2016) (2) performing multishell 
multitissue spherical deconvolution to estimate the fiber 
orientation distribution (FOD) using the dwi2fod msmt_csd 
(Dhollander and Connelly 2016) function, (3) deriving peaks 
of the FOD using sh2peaks function, and (4) calculating the 
number of peaks that have a crossing fraction > 0.05% of the 
maximum peak value using mrcalc + mrmath functions. 
From this, for each region of interest, we calculated the single 
fiber fraction (the fraction of voxels containing only a single 
fiber population), the crossing angle (the angle between the 
two maximum peaks, as in the simulated data), and the cross-
ing fraction (the total fraction of crossing fibers, as in the sim-
ulated data). Finally, we derived the asymmetry measure in 
each ROI (both JHU ROIs and the four ALPS- Specific ROIs) 
as described in Section 2.1.

2.3   |   Undulation

Axonal undulation describes the characteristic wave- like, 
nonlinear trajectories of axonal fibers, a feature observed his-
tologically that is thought to provide mechanical resilience to 
axons. As these geometric deviations can inherently alter local 
water diffusion properties and derived tensor metrics, our third 
aim was to assess the role of axonal undulations in introduc-
ing asymmetry. This again included simulations and empirical 
measurements of radial asymmetry obtained from biophysical 
modeling.

2.3.1   |   Simulations

Following Nilsson et  al.  (2012), we simulated axonal undu-
lations using a Monte Carlo framework in which axons were 
modeled as sinusoidal curves defined by three parameters: the 
axon diameter (d), the undulation wavelength (L), and the un-
dulation amplitude (A). Briefly, we ran simulations in which 
water molecules executed random walks within the confines 
of these undulating geometries, with reflective boundaries 
representing the axonal membranes. Specifically, we consid-
ered two scenarios: one mimicking microscale undulations 
with d = 1, L = 24, and A = 4, and another representing macro-
scale undulations with d = 1, L = 300, and A = 50. Simulations 
were run using the diffusion encoding protocol of the HCP 
data used in the current study. These settings allowed us to 
generate diffusion propagators and signal attenuation curves 
comparable to those measured in diffusion MR experiments. 
From these, we fit a diffusion tensor and calculated the asym-
metry index (λ2/λ3) both before and after noise was added to 
the signal.

2.3.2   |   Modeling Anisotropic Orientation Dispersion

Building on our simulation findings, we analyzed empirically 
acquired diffusion MRI data by applying a multicompartment 
(i.e., biophysical) model of tissue microstructure that explicitly 
represents the orientation distribution and dispersion of neur-
ites. Following Tariq et al. (Tariq et al. 2016), we used our data 
to fit the neurite orientation dispersion and density imaging 
(NODDI) model, which describes neurite orientations using one 
of two distributions: the Watson distribution, which assumes 
isotropic dispersion around a dominant orientation, and the 
Bingham distribution, which accounts for anisotropic disper-
sion by separately capturing the spread along the primary and 
secondary dispersion axes.

To determine which distribution best explained the ob-
served diffusion MRI signal, we performed a model com-
parison using the Bayesian Information Criterion (BIC). 
This approach allowed us to assess whether the anisotropic 
(Bingham, i.e., radially asymmetric) or isotropic (Watson, i.e., 
radially symmetric) formulation provided a more parsimoni-
ous explanation of the data, with lower BIC values indicating 
better model fit. Finally, for the Bingham–distribution model, 
we estimated the dispersion anisotropy (DAB) index—a met-
ric quantifying the degree of anisotropy in neurite orientation 
dispersion.
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It is important to note that while both the Bingham and Watson 
models were fit to all voxels, our primary analysis focused on 
single- fiber voxels. We hypothesized that radial asymmetry (i.e., 
dispersion anisotropy) exists even in the absence of crossing 
fiber populations.

2.4   |   Asymmetry and Age

Fourth, given prior reports linking ALPS- index to aging, we first 
confirmed radial asymmetry changes with age, then examined 
whether confounding factors exhibit age- related effects. If ob-
served, this would further suggest axonal contributions. For this, 
we simply fit a linear regression model using age as the predictor 
variable and feature (radial asymmetry, V2 Coherence, Crossing 
Angle, Single Fiber Fraction, Crossing Fraction, Dispersion 
Anisotropy) as the response variable. This was performed glob-
ally over the entire white matter, as well as for each ROI inde-
pendently (both JHU ROIs and the four ALPS- specific ROIs), 
where the linear correlation coefficient and effect sizes were de-
rived and only shown if statistically significant at p < 0.05 after 
false discovery rate correction.

2.5   |   Geometrical Configuration of Vasculature 
and White Matter

Finally, we perform a qualitative and quantitative evaluation of 
the orientation of vasculature throughout the white matter, and 
its relationship to white matter fiber orientation. This hypothe-
sis was tested using a separate, high- resolution dataset (acquired 
at Vanderbilt University Medical Center, and approved by the 
Vanderbilt Institutional Review Board—IRB #020623) that al-
lowed visualization, segmentation, and orientation derivation 
of both vasculature and white matter structures, allowing for 
a voxel- wise comparison in the same subjects (N = 4 healthy 
young adult subjects; two female, age range 24–32 years old).

2.5.1   |   Data Acquisition

High- resolution imaging data were collected using susceptibility- 
weighted imaging (SWI) for vascular visualization and 
diffusion- weighted imaging (DWI) for white matter fiber orien-
tation estimation. SWI was performed on a 7 T Philips Achieva 
MRI scanner using a multiecho 2D gradient- recalled echo se-
quence (0.2 × 0.2 resolution, 1 mm slice thickness, N = 5 aver-
ages). Phase images underwent high- pass filtering and a power 
transformation before being combined with magnitude images 
to enhance deoxyhemoglobin contrast. The resulting images 
were then super- resolved to a 0.2 mm isotropic resolution using 
the SMORE deep learning algorithm, followed by coregistration 
and averaging to optimize the signal- to- noise ratio. DWI was ac-
quired on a 3T Philips Ingenia CX scanner using a multishell 
acquisition with four b- values (b = 500, 1000, 2000, and 3000 s/
mm2, with 6, 15, 15, and 60 directions, respectively, and 11 b = 0 
volumes; TE = 101 ms, TR = 6066 ms, slice thickness = 1.87 mm, 
flip angle = 78°, in- plane resolution = 1.8 × 1.8 mm). Data pre-
processing included denoising (using both MPPCA (Veraart 
et al. 2016) and Patch2Self (Fadnavis et al. 2020)) and correction 
for susceptibility distortions, subject motion, and eddy current 

correction (Andersson et  al.  2003) using the PreQual prepro-
cessing pipeline (Cai et  al.  2021). Again, the diffusion tensor 
(Basser et al. 1994; Pierpaoli et al. 1996) was calculated voxel- 
wise (using an iterated weighted least- squares algorithm from 
MRtrix3 (Tournier et  al.  2019)), from which the primary (λ1), 
secondary (λ2), and tertiary (λ3) eigenvalues were derived.

2.5.2   |   Vasculature Orientation Estimation and White 
Matter Orientation Estimation

Vascular structures were extracted from high- resolution SWI 
using an adaptive non- local means filter, followed by a Frangi 
vesselness filter to identify tubular structures. This segmen-
tation provided voxel- wise vascular orientation estimates. To 
minimize partial volume contamination, white matter masks 
were applied, and segmented vasculature was downsampled to 
a 2 mm isotropic resolution for direct comparison with diffusion 
data. For white matter analysis, FODs were estimated using 
multishell, multitissue spherical deconvolution. Up to three 
fiber orientations per voxel were extracted, corresponding to 
dominant white matter pathways.

2.5.3   |   Orientation Comparison

We made three primary orientation comparisons. First, we com-
pared the angular difference between vasculature and V1, inves-
tigating the assumption that vasculature is orthogonal to WM 
in ALPS- ROIs. Second, we compared the angular difference 
between vasculature and V2, as V2 should align with vascula-
ture if it were the primary determinant of diffusivity orthogonal 
to WM pathways. Third, we compared the angular difference 
between vasculature and the RL orientation, investigating the 
assumption that the vasculature is oriented RL in ALPS- ROIs.

3   |   Results

3.1   |   There Is Widespread Radial Asymmetry in 
Diffusivity Across White Matter

Figure 1 shows the radial asymmetry index (defined as the ratio 
of the secondary to tertiary eigenvalues, 𝜆2/𝜆3) across a repre-
sentative HCP subject, for multiple sagittal, axial, and coronal 
slices (a similar example HCP- A subject is given as Figure S1). 
Radial asymmetry is prevalent throughout the entire brain, 
often greater than 1.5–2, meaning that the secondary eigenvalue 
is 1.5–2× greater than the tertiary eigenvalue. This asymmetry 
is observed throughout all b- values.

Figure  2 confirms quantitatively that all white matter regions 
exhibit radial asymmetry in the HCP dataset (similar results 
for HCP- A are shown in Figure  S2). Most regions exhibit av-
erage asymmetry values ~1.3–1.8 (Figure  2, top), including 
the ALPS- specific indices, all of which are greater values than 
those expected by signal noise alone. The secondary eigenvec-
tors are largely coherent throughout regions (Figure 2, middle), 
again suggesting some coherent tissue (axonal, vascular) struc-
ture rather than noise. Finally, these values are observed at all  
b- values (Figure  2, bottom), even high b- values where PVS 
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signals are expected to be absent (see Section 4.6 Perivascular 
Space Size and Shape and Diffusion Senstivity).

3.2   |   Most White Matter Regions Contain Crossing 
Fibers, Which Contribute to Radial Asymmetry

Figure 3 shows exemplar crossing fiber glyphs (Figure 3, top), 
for two crossing fibers at varying angles and varying fiber 
fractions, as well as the derived diffusion tensor ellipsoid, ei-
genvalues, and asymmetry index. Intuitively, a greater cross-
ing angle and greater crossing fraction lead to higher radial 
asymmetries. Our simulation experiments (Figure  3, top) 
confirm this, showing that orthogonal crossings and greater 
crossing fractions lead to radial asymmetry values frequently 
above 2. Here, the white line indicates the average asymmetry 
value observed in Figure 2 and suggests that most white mat-
ter contains crossing fibers, with not insignificant crossing 
fractions.

This is confirmed by extracting single fiber fraction and crossing 
angle across white matter regions (Figure 3, second row). Here, 
most regions (except for corpus callosum segments) have a very 
low single fiber fraction, with crossing angles generally between 
60° and 90°. Specifically within ALPS- related regions (Figure 3, 
third row), we observed that radial asymmetry increases as the 

single fiber fraction decreases, indicating greater asymmetry 
with more crossing fibers. Similarly, radial asymmetry also in-
creases with larger average crossing angles, suggesting that both 
the number of crossing fibers and the angles at which they cross 
significantly contribute to asymmetry. However, even limiting 
analysis to single fiber regions, we find that radial asymmetry 
still exists throughout white matter (Figure  3, bottom), which 
suggests that crossing fibers alone do not explain asymmetry. 
Similar results are observed in HCP- A dataset, provided in 
Supporting Information.

To further confirm that crossing fibers confound ALPS- related 
analysis, we show the ALPS- related ROIs in two example sub-
jects in Figure 4, with FODs overlaid and voxels colored by the 
number of fiber populations. Most voxels in these regions con-
tain crossing fibers (two or three fiber populations), with only 
a small minority unaffected by this effect. Visually, there is no 
region of this size that includes only single fiber voxels.

3.3   |   Most White Matter Regions Contain 
Anisotropic Dispersion and/or Undulation

Figure 5 shows example geometrical configurations that may 
cause axial asymmetry (Figure 5, top). This includes an un-
dulation of amplitude A and length L within the plane, or a 

FIGURE 1    |    Radial asymmetry is widespread throughout white matter. Sagittal, coronal, and axial slices of an example HCP subject show radial 
asymmetry at all diffusion weightings, and throughout white matter, with most regions exhibiting average asymmetry values ~1.3–1.8, with many 
voxels > 2.
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dispersion of axons within the plane, both leading to simi-
lar diffusivity patterns with V1 (up and down) greater than 
V2 (left–right) and both greater than V3 (through- plane). 
Our Monte Carlo simulations of a microscopic undula-
tions (A = 4 μm, L = 24 μm) and macroscopic undulations 
(A = 50 μm, L = 300 μm) confirm that both geometries can lead 
to asymmetries between 1.36 and 1.48 or 2.06 and 2.43, re-
spectively, depending on b- value. These values are in line with 
the asymmetry observed in our data.

Results from NODDI model fitting are shown for an example sub-
ject (Figure 5, second row), where the DAB and BIC are shown 
for sagittal, coronal, and axial slices. DAB is high throughout 
the entire white matter, frequently > 0.5, empirically. A positive 

BIC suggests a better model fit for a Bingham (radially asymme-
try) over a Watson (radially symmetric) distribution. Here, posi-
tive or near- equal BIC is observed throughout the white matter. 
Together, these confirm that planar dispersion or undulations 
exist (as well as crossing fibers).

Quantifying DAB in single fiber regions only (unaffected by 
crossing fibers) (Figure 5, third row), we see most regions have 
DAB ~0.3–0.5, including the ALPS- specific regions, which 
match our qualitative observations. Intuitively, regions that have 
higher DAB also exhibit higher radial asymmetry (Figure  5, 
third row). This trend holds across subjects (Figure  5, fourth 
row), where subjects that had higher DAB in ALPS regions also 
exhibited higher dispersion anisotropy.

FIGURE 2    |    Most white matter regions exhibit radial asymmetry (“λ2/λ3”). (A) Radial asymmetry (λ2/λ3) is greater than 1, and greater than noise 
(color bar) for all JHU white matter and ALPS- specific regions (top, b = 1000 data) (note that the four ALPS- specific regions are the rightmost regions 
in each plot to the right of the dashed vertical line). (B) The secondary eigenvector is coherent through these white matter regions (middle; V2 coher-
ence), suggesting this is not a noise- related effect. (C) Radial asymmetry remains at all b- values, where b- values of 1000, 2000, 3000 s/mm2 are shown 
from light to dark for each region (bottom).
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FIGURE 3    |    Most white matter regions contain crossing fibers, which contribute to radial asymmetry. (A) crossing fibers at different crossing 
angles and fiber fractions, resulting in radial asymmetry are visualized, as well as simulation results showing that increasing crossing angle and 
crossing fraction result in increased radial asymmetry. (B) Single fiber fraction and crossing angle are shown averaged in each white matter region. 
(C) Radial asymmetry is plotted against single fiber fraction, crossing angle, and crossing fraction for ALPS- specific ROIs, across subjects, confirm-
ing that crossing fibers significantly influence asymmetry measures. Statistically significant correlations are shown as solid lines and indicated with 
asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). (D) Axial asymmetry remains even in single fiber voxels within each region.
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Parallel results from the HCP- A datasets are provided in 
Supporting Information.

3.4   |   Radial Asymmetry Shows Age- Related 
Changes, and So Do Geometrical Features of Axons

We confirm previous trends of decreasing ALPS- indices with 
age, where we show that globally the radial asymmetry has neg-
ative age associations (Figure 6). With this, we also show that 
cross angle and DAB have negative age associations, the single 
fiber fraction has positive age associations. Similar trends are 
observed on a region- specific basis (Figure 6, bottom) where we 
see heterogeneous changes with age in our radial asymmetry as 
well as heterogeneous changes in geometrical features of white 
matter regions.

3.5   |   Investigating PVS and WM Geometrical 
Assumptions in ALPS- Related Regions

Figure 7 shows orientations for an example subject, highlighting 
the orientation of (1) vasculature (2) primary eigenvector (V1) 
(3) secondary eigenvector (V2), and (4) the RL orientation in the 
brain—shown in both axial and coronal planes. First, it is clear 
that our high- resolution SWI and subsequent processing allow 
highly accurate delineation and quantification of the large med-
ullary vein orientations, with overlaid vectors well following the 
vasculature (note zoomed in region is only to highlight accurate 
delineation of vasculature, and does not necessarily correspond 
to ALPS- related regions). Second, vasculature in ALPS- regions 
is often orthogonal or near- orthogonal to the primary eigenvec-
tor (assumed to align with the primary direction of white matter 
pathways), typically within 80°–90°. However, the secondary 

FIGURE 4    |    Crossing fibers are widespread throughout the white matter, and throughout ALPS- specific regions. For two example subjects, FODs 
are shown in coronal and axial slices, showing that many of these regions contain two or three fiber populations (i.e., are influenced by crossing 
fibers).
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eigenvector, which would be the primary driver of radial asym-
metry (i.e., if PVS was influencing asymmetry), does not nec-
essarily align with vasculature. Finally, while vasculature is 

indeed largely in a RL orientation in ALPS- regions, there is large 
heterogeneity voxel- by- voxel, with few regions of adequate size 
consistently < 10° from the RL orientation. This heterogeneity in 

FIGURE 5    |    Dispersion and undulation contribute to radial asymmetry. (A) example undulation and dispersion cartoons, highlighting within- 
plane orientation dispersion. Simulation results with two substrates show that undulations can contribute to radial asymmetry on par with that 
observed in empirical data. (B) Example sagittal, coronal, and axial slices showing the dispersion anisotropy (DAB) index (gray- scale) and the differ-
ence in BIC between Watson and Bingham distributions (red indicates preference for Bingham, blue indicates preference for Watson distribution). (C) 
DAB across all white matter regions; radial asymmetry plotted against DAB across all regions shows strong relationship between these two measures 
of asymmetry. (D) Similarly, radial asymmetry plotted against DAB across subjects shows strong relationships between these two measures in ALPS- 
specific ROIs, with a trend- line shown for regions with statistically significant associations (*p < 0.05, **p < 0.01, ***p < 0.001).



11 of 17

vasculature is observed in all subjects and is in agreement with 
the literature.

4   |   Discussion

In this work, we investigate possible features of axonal geom-
etry that influence the DTI- ALPS measures. Diffusivity along 
PVS (i.e., ALPS) has been proposed, and interpreted, as an in-
direct measure of glymphatic function. However, we show that 
it is potentially biased and confounded by alterations in white 
matter (axonal) structure, that is, geometrical features that are 
prevalent throughout the entire white matter, rather than di-
rect measures of neuro- fluid dynamics. Despite this, it is clear 
throughout the literature that this measure can be used to as-
sess differences in controls and cohorts and relates to clinical 
and behavioral disabilities. Thus, this study aims to refine and 
improve the interpretation of this index and suggests the use of 
direct markers of fiber architecture to complement measures of 
diffusivity to understand biological or physiological changes oc-
curring in pathology and disease.

4.1   |   There Is Widespread Radial Asymmetry in 
Diffusivity Across White Matter

We first find that radial asymmetry is widespread through-
out the brain and is not confined to ALPS- related indices that 
exhibit this unique orthogonality of vasculature and white 
matter. This asymmetry exists in multiple datasets, is spa-
tially coherent, and is not due to signal noise. Moreover, this 
asymmetry persists across a range of diffusion weightings, in-
cluding high b- values typically associated with increased sen-
sitivity to restricted diffusion within neurite- like structures, 
rather than the extracellular or CSF- related spaces (Novikov, 
Kiselev, et al. 2018). These results agree with recent work on 
radial asymmetry (Wright et al. 2024) and extend these results 
with additional datasets, additional regions, and additional 
diffusion weightings. Because radial asymmetry mirrors the 

effects that would occur to the ALPS- index due to assumed 
changes in PVS, together these results strongly suggest that 
the ALPS- index may not specifically reflect changes in PVS, 
but rather features of axonal geometry.

Importantly, the ALPS- index itself is fundamentally a mea-
sure of radial diffusivity asymmetry. This relationship is il-
lustrated in Figure 8, which depicts how the ALPS calculation 
leverages diffusivities orthogonal to dominant fiber orien-
tations measured within association and projection regions. 
Mathematically, this simplifies to a ratio of diffusion tensor ei-
genvalues (λ2/λ3), where λ2 reflects diffusivity aligned with the 
presumed perivascular orientation, and λ3 reflects diffusivity 
orthogonal to it. The strong correlation between λ2/λ3 and the 
ALPS- index (Figure 8, right) demonstrates that the index is an 
expression of local radial asymmetry (parallel results from the 
HCP- A datasets are provided in Supporting Information). As 
such, any structural feature that alters radial diffusion asym-
metry—fiber crossings, axonal undulations, dispersion—will 
also influence the ALPS- index. This mechanistic link serves 
as the central theme of this work: the ALPS- index is sensi-
tive not only to perivascular diffusivity, but also to a broader 
set of white matter microstructural and anatomical proper-
ties that modulate this asymmetry and drive changes in the 
ALPS- index.

4.2   |   Crossing Fibers Contribute to Radial 
Asymmetry

We next show that crossing fibers contribute to radial asym-
metry and thus would contribute to a change in ALPS- index. 
Simulations show that axonal geometric configurations known 
to exist within the human brain result in asymmetries that agree 
with those observed in our data. Moreover, we show (in agree-
ment with previous literature (Jeurissen et  al.  2013; Schilling 
et al. 2017)) that crossing fibers are widespread throughout the 
white matter, and specifically within regions used to derive DTI- 
ALPS indices. We confirm that crossing fibers (specifically the 

FIGURE 6    |    Both radial asymmetry and axon geometries show age- related axonal changes. (A) all measures are plotted against age, with sta-
tistically significant associations (*p < 0.05, **p < 0.01, ***p < 0.001) shown as a trend line (note no trend- line shown for non- statistically significant 
associations). While radial asymmetry changes with age (in agreement with ALPS- index decreases with age) so too do crossing angle, single fiber 
fractions, and dispersion anisotropy indices. (B) these changes with age vary across pathways, shown as the beta coefficient of the linear effects fit-
ting (with nonsignificant changes shown as a diagonal line).
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fraction of crossing fibers and angles that they cross) directly 
influence radial asymmetry, and thus directly influence any 
DTI- ALPS calculations.

Beyond this, we show that asymmetry still exists even in regions 
determined to contain only a single fiber population. While 
we know that isolating truly single fiber regions is challenging 
due to multiple fiber populations traversing the same locations 
and the same orientations (Schilling et  al.  2022; Maier- Hein 

et al. 2017), this suggests that there may be additional confound-
ing factors beyond just crossing fibers.

4.3   |   Dispersion and Undulation Contribute to 
Radial Asymmetry

Next, we find that undulation (a waviness pattern of axonal 
trajectories observed in histological preparations (Budde and 

FIGURE 7    |    Investigating PVS and WM geometrical assumptions in ALPS- related regions. For an example subject, we investigate the relationship 
between vascular orientation and that from the DTI derived primary eigenvector (V1), secondary eigenvector (V2), and the right- to- left (RL) orienta-
tion. For both an axial and coronal slice, we show vascular orientation (zoom, inset), and the angular difference between vascular and white matter 
orientations. Note zoomed in region is only to highlight accurate delineation of vasculature, and does not necessarily correspond to ALPS- related 
regions (SCR/SLF areas indicated by white arrowheads in bottom row). Overall, (1) vascular orientation in ALPS- associated regions are indeed near- 
orthogonal to WM pathways (V1), (2) but not always in alignment with the secondary eigenvector V2), (3) nor always aligned in the RL orientation.
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Annese  2013; Schilling et  al.  2018)) and dispersions (any geo-
metrical effect contributing to decreased coherence) contrib-
ute to radial asymmetry. In fact, our simulations of different 
undulation patterns, at different diffusion weightings, and 
with sequence parameters matching the datasets under inves-
tigation, show radial asymmetry that well matches what we 
observe in the human brain. In our real data, we find moder-
ate to anisotropic orientation dispersion of axons, supported by 
improved model fitting of the anisotropic (Bingham) over iso-
tropic (Watson) spherical distributions when fitting directly to 
diffusion data. The multicompartment strategy used to model 
the tissue geometry specifically attributes this dispersion to 
the neurite compartment; thus, again this radial asymmetry is 
confounded by a feature of axons rather than PVS, though this 
interpretation is contingent on the assumptions inherent to the 
NODDI model (Novikov, Fieremans, et al. 2018).

This anisotropic dispersion could be due to undulations, fan-
ning, or bending of fibers, and again is a widespread feature in 
the white matter of the brain. Intuitively, regions with higher 
modeled DAB have higher radial asymmetry, and individuals 
with higher DAB exhibit higher radial asymmetry in ALPS re-
gions. While again the radial asymmetry is confounded by a 
geometrical feature of white matter, this anisotropic orientation 
dispersion can serve as a useful marker of pathology, reflecting 
subtle changes in dispersion and coherence.

4.4   |   Age- Related Axonal Changes

Several studies using the DTI- ALPS method have investigated the 
association between age and the ALPS- index in both health and 
disease (Steward et  al.  2021; McKnight et  al.  2021; Matsushita 
et al. 2024; Zhang et al. 2021). In general, they find negative as-
sociations between ALPS- indices and aging, particularly for co-
horts > 40. In agreement with this, we find age- related changes 
in radial asymmetry (Wright et al. 2024). In parallel with this, 
we show that these confounding factors (crossing fibers, axonal 
dispersion) and their associated indices show similar trends. 
Interestingly, these trends are not the same across all pathways, 
with varying degrees of geometrical change depending on loca-
tion and pathway type (commissural, association, projection). 
In this study, we do not intend to interpret the biophysical aging 
mechanisms associated with potentially reduced crossing fibers 
(axonal degeneration) or decreased dispersion anisotropy, but 
use this demonstration to highlight that observed ALPS- index 
changes are again associated with geometrical changes in aging.

4.5   |   Orientation of PVS and WM

DTI- ALPS takes advantage of the unique tissue geometry 
adjacent to the lateral ventricles, where it is assumed that 
the vasculature runs left- to- right while pathways run both 

FIGURE 8    |    The ALPS- index is a measure of radial diffusivity asymmetry. Left: Schematic depiction of the anatomical configuration underlying 
the ALPS method. Medullary veins (gray cylinders) run predominantly in the right–left (x) direction, orthogonal to dominant fiber orientations of 
projection (blue, superior–inferior) and association (green, anterior–posterior) tracts. In these regions, diffusion tensor eigenvectors align such that 
λ2 corresponds to the x- direction (Dx), and λ3 reflects diffusivity orthogonal to both the fiber axis and perivascular direction (Dy in projection fibers, 
Dz in association fibers). The ALPS- index is computed as the mean of Dx across projection and association regions divided by the mean of Dy and 
Dz—effectively λ2/λ3. Right: Empirical relationship between radial asymmetry (λ2/λ3) and the ALPS- index across regions of interest (calculated us-
ing the automated methods described in Liu et al. 2024). A strong, statistically significant, positive association (r = 0.56 for HCP, r = 0.72 for HCP- A, 
Supporting Information) confirms that the ALPS- index is fundamentally a measure of radial asymmetry. Thus, any feature that alters radial asym-
metry (investigated throughout the study), influences the ALPS index.
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superior–inferior (projection pathways of the SCR) and ante-
rior–posterior (association pathways of the SLF). By measur-
ing the ratio of radial asymmetry in each pathway, in theory, 
DTI- ALPS isolates the left–right diffusivity attributed to PVS. 
We find that this arrangement, again in agreement with the 
literature, is indeed generally true—left–right orientation 
of vasculature, superior–inferior orientation of projection 
pathways, and anterior- to- posterior orientation of associa-
tion pathways. However, due to heterogeneity in both tissue 
types, there is no large region in which all of these anatom-
ical and diffusional assumptions—orthogonal vein and fiber 
orientation, single- fiber geometry, and consistent eigenvector 
alignment—hold true (within a reasonable angular error) and 
are free of crossing fibers. For example, while predominantly 
left–right throughout the entire SCR + SLF area, vasculature 
can vary by as much as ~30° from this orientation, depending 
on exact location, again decreasing the specificity of ALPS- 
indices to diffusivity attributed to vasculature. Further, if 
the main contributor to axial asymmetry was diffusion along 
PVS, then it is intuitive that the secondary eigenvector would 
also point along the vascular orientation, which in general 
is not true. These results highlight challenges with choosing 
regions of interest for ALPS- calculation and possible effects 
that contribute to decreased specificity (i.e., region placement 
resulting in nonleft–right oriented vasculature or nonorthog-
onal white matter).

4.6   |   Perivascular Space Size and Shape 
and Diffusion Sensitivity

These results lead us to ask what diffusion might be able to 
tell us about PVS. Recent quantifications in murine pial ar-
teries give us an idea of the size and shape of PVS (Raicevic 
et al. 2023). First, these spaces exhibit considerable variability, 
with cross sectional geometries not easily described by cylin-
drical nor ellipsoidal geometries, instead better characterized 
as a complex polynomial or spline functions surrounding a 
central cylindrical vessel, with the width/height of the PVS de-
caying as a function of distance from the vessel (see figure 10 
from Raicevic et  al.  2023). The PVS measured in (Raicevic 
et  al.  2023) was associated with vessels with radii ranging 
from 19 to 29 μm (25th–75th percentiles), and had spaces with 
heights ranging from 24 to 45 μm (25th to 75th percentiles) 
immediately adjacent to the vessels. Overall, these are much 
larger structures than the vessels themselves, and an order of 
magnitude larger than axons and axonal spacing—which re-
sult in low resistance and facilitation of fluid movement. This 
means, however, that moderate- to- high b- values (both typical 
DTI studies with b ~1000 s/mm2, and the current study reach-
ing b = 3000 s/mm2) will have significant signal attenuation in 
these spaces and not be highly specific to PVS. However, it 
should be noted that these measurements in the mouse model 
do not preclude smaller PVS that may not have been measured 
with their optical imaging.

The complexity and microscopic dimensions of PVS thus pres-
ent challenges for their specific detection and quantification 
using diffusion MRI. Indeed, Sepehrband et al. (Sepehrband 
et  al.  2019) demonstrated that even a small fractional con-
tribution from anisotropic perivascular fluid can markedly 

bias DTI metrics, artificially elevating MD and reducing FA, 
thereby confounding interpretations that traditionally attri-
bute such changes solely to tissue. Optimistically, this means 
that our typical sequences are indeed sensitive in some way 
to PVS. As proposed in (Sepehrband et al. 2019), incorporat-
ing multishell diffusion sequences (with low b- values) coupled 
with multicompartment modeling may be capable of explicitly 
distinguishing anisotropic fluid compartments from the sur-
rounding tissue—however, this depends on the diffusion and 
size/shape characteristics of the PVS. This would allow char-
acterization of distinct diffusion profiles for both parenchymal 
tissue and perivascular fluid (with higher, nearly free water, 
diffusivity). Such approaches are essential for disentangling 
true microstructural tissue alterations from geometrically in-
duced fluid compartment biases, thus improving specificity 
in interpreting diffusion MRI biomarkers in both clinical and 
research settings.

To further contextualize the sensitivity of diffusion MRI to peri-
vascular diffusion, and explore whether a genuine PVS signal 
could influence the asymmetry metrics used in ALPS, we per-
formed a simplified supplementary simulation incorporating an 
asymmetric PVS compartment with a volume fraction of 10% 
and diffusivities consistent with prior experimental estimates 
(Sepehrband et al. 2019). Simulated signal decay curves demon-
strate that at high b- values (e.g., b = 3000 s/mm2), the asymmet-
ric contribution from the PVS compartment is effectively nulled 
due to its rapid apparent diffusivity. At b = 1000 s/mm2—more 
typical of clinical DTI protocols—PVS signal remains detectable 
but induces only minimal changes in derived radial asymme-
try measures. These findings reinforce that the ALPS- index is 
largely insensitive to true perivascular diffusion effects under 
standard acquisition parameters. Even if no structural con-
founds were present (e.g., crossing fibers or axonal undulations), 
the ALPS- index itself would still exhibit limited sensitivity to 
PVS- specific diffusion. Supporting simulation details and quan-
titative model outputs are shown in Supporting Information 
Experiment 1. We do not include this within primary results, 
as our study is largely focused on potential confounds that may 
drive asymmetry (rather than the sensitivity of the diffusion sig-
nal itself), and we do not claim that this simulation captures the 
true diffusivity of each compartment (for which more validation 
is needed).

Notably, the DTI- ALPS index is only one of several methods 
to probe glymphatic function. Other techniques such as free 
water imaging may assess interstitial fluid volume (Kamagata 
et al. 2020; Huang et al. 2021), arterial spin labeling can track 
water transport into CSF (Joseph 2021; Ohene et al. 2019), and 
contrast- enhanced MRI (Benveniste et al. 2021; Lee et al. 2022) 
may directly visualize tracer movement through glymphatic 
pathways. While our findings highlight significant structural 
confounds, the ALPS index's reflection of white matter geom-
etry (i.e., measures of diffusion asymmetry) could still be valu-
able for investigating fluid dynamics along axonal pathways and 
for tracking changes in tissue architecture or microstructure. 
Understanding this anatomical basis of the ALPS index is es-
sential when comparing or combining it with these alternative 
methods that measure different aspects of glymphatic physi-
ology, such as fluid volume or clearance dynamics, in a multi-
modal assessment.
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4.7   |   Limitations

The current study has several limitations. First, we used only 
two cross- sectional datasets that are not typical of clinically 
acquired data available on most 1.5 or 3 T scanners. However, 
these results represent a “best case” scenario in terms of con-
founds and biases because of their high spatial resolution and 
limited partial volume effects (i.e., crossing fiber effects will 
become more prevalent with larger voxels). Second, we investi-
gated only well- known geometrical effects studied in the diffu-
sion community—crossing fibers and dispersion/undulations. 
Additional geometrical configurations that may introduce ra-
dial asymmetries, including larger scale fanning and branching 
(observable with asymmetry FODs), and it is also possible that 
sheet- like geometry, where fiber pathways cross on 2D (curved) 
surfaces observable in some brain regions may create anisotro-
pic structure on larger scales contributing to asymmetry (Tax 
et  al.  2016, 2017). Both are potentially interesting geometrical 
features that have been under- investigated.

5   |   Conclusion

This study demonstrates that DTI- ALPS measures are influ-
enced by widespread radial asymmetry arising from crossing 
fibers, axonal undulations, and dispersion in white matter. Our 
findings indicate that radial asymmetry and hence DTI- ALPS 
metrics are not exclusively reflective of perivascular diffusion 
but rather significantly confounded by underlying axonal geom-
etry. Interpretations of ALPS- derived metrics as biomarkers of 
glymphatic function must carefully consider these anatomical 
and microstructural complexities, and future studies should 
model this compartment with tailored sequences and modeling 
strategies.
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Appendix A

Names and abbreviations for JHU regions of interest: ACR- l: L anterior 
corona radiata; ACR- r: R anterior corona radiata; CC- b: body of corpus 
callosum; CC- g: corpus callosum genu; CC- s: corpus callosum sple-
nium; Cg- L: L cingulum (cingulate gyrus); Cg- R: R cingulum (cingulate 
gyrus); CP- l: L cerebral peduncle; CP- r: R cerebral peduncle; CST- l: L 
corticospinal tract; CST- r: R corticospinal tract; EC- l: L external cap-
sule; EC- r: R external capsule; IC- AL- l: L internal capsule anterior limb; 
IC- AL- r: R internal capsule anterior limb; IC- PL- l: L internal capsule 
posterior limb; IC- PL- r: R internal capsule posterior limb; IC- RP- l: L 
internal capsule retrolenticular part; IC- RP- r: R internal capsule retro-
lenticular part; ML- l: L medial lemniscus; ML- r: R medial lemniscus; 
PCR- l: L posterior corona radiata; PCR- r: R posterior corona radiata; 
PTR- l: L posterior thalamic + optic radiation; PTR- r: R posterior tha-
lamic + optic radiation; SCR- l: L superior corona radiata; SCR- r: R su-
perior corona radiata; SFOF- l: L superior fronto occipital fasciculus; 
SFOF- r: R superior fronto occipital fasciculus; SLR- l: L superior longitu-
dinal fasciculus; SLR- r: R superior longitudinal fasciculus; SS- l: L sagit-
tal stratum; SS- r: R sagittal stratum; UF- l: L uncinate fasciculus; UF- r: 
R uncinate fasciculus.
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