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 Abstract—The high penetration of distributed generators 

(DGs) deteriorates the voltage violations in active 

distribution networks (ADNs). Owing to the flexible 

adjustment capacity, the local power regulation provided 

by soft open point (SOP) presents a promising solution for 

eliminating voltage violations in ADNs. A data-driven local 

control method can fully excavate the potential logic from 

operational data without requiring precious network 

parameters. However, the training data may be insufficient 

in practical applications. In this paper, a self-optimizing 

local voltage control method for SOP is proposed to achieve 

adaptive control in label-poor conditions. First, a SOP local 

control model is constructed based on lift-dimension 

mapping linearization (LDML), which portrays the 

complex relationship between ADN states and SOP control 

strategies. Subsequently, a self-optimizing guidance 

mechanism is established to obtain the label data of SOP 

control strategy, which provides a large number of training 

samples for the local control model. Finally, the 

effectiveness of the proposed method is validated using a 

practical distribution network with a four-terminal SOP. 

Results demonstrate that efficient control strategies can be 

determined based on local state measurements. A rapid 

response to DG fluctuations can be achieved while 

enhancing the adaptability to variations in practical 

operations. 

Index Terms—active distribution networks (ADNs), soft open 

point (SOP), distributed generators (DGs), self-optimizing voltage 

control, lift-dimension mapping linearization (LDML). 

NOMENCLATURE 

Indices  

𝑖 Indices of measurements numbers, from 1 to 𝑁n 

𝑘 Indices of iteration numbers, from 1 to 𝑁k 

𝑙 Indices of lift dimensions at the SOP local 
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control model, from 1 to 𝑁L 

𝑚 Indices of update interval 

𝑛 Indices of control interval 

𝑡 Indices of time, from 1 to 𝑇 

Variable  

𝑨 Voltage fitting matrix 

𝑩 State-strategy linear mapping matrix 

𝑪 Lift-dimension basis matrix 

𝒄𝑙 The 𝑙th basis vector in the lift-dimension basis 

matrix 

𝑷𝑡
DG, 𝑸𝑡

DG Real-time active/reactive power injection by 

DG at period 𝑡 

𝑷𝑡
Load, 𝑸𝑡

Load Real-time active/reactive power injection by 

load at period 𝑡 

𝑷𝑡
Node, 𝑸𝑡

Node Real-time nodal active/reactive power injection 

at period 𝑡 

𝑷𝑡
SOP, 𝑸𝑡

SOP Real-time active/reactive power injection by 

SOP at period 𝑡 

𝑷𝑡
State, 𝑸𝑡

State Real-time operational states at period 𝑡 

𝑾,𝑽 Training dataset of voltage fitting component 

𝒗𝑡
hist Measured nodal voltage at period 𝑡 

𝒗𝑡
(𝑘)

 Estimated nodal voltage of the 𝑘th iteration at 

period 𝑡 

∆𝒗𝑡
(𝑘)

 Estimated nodal voltage variation of the 𝑘 th 

iteration at period 𝑡 

𝒘𝑡
hist Measured nodal power injection at period 𝑡 

𝒘𝑡
(𝑘)

 Estimated nodal power injection associated 

with optimized SOP control strategy of the 𝑘th 

iteration at period 𝑡 

𝒙𝑡 , 𝒚𝑡 Real-time input/output of the state-strategy 

linear mapping matrix at period 𝑡 

𝑿, 𝒀 Training dataset of the state-strategy linear 

mapping matrix 

𝒙 Operational state of ADN 

𝒙L Lift-dimension input variable 

𝒙𝑡
hist Historical operational state at period 𝑡 

𝒚 SOP control strategy 

𝒚𝑡
hist Label data of SOP control strategy associated 

with operational state at period 𝑡 

𝒚𝑡
(𝑘)

 Optimized SOP control strategy of the 𝑘 th 

iteration at period 𝑡 

∆𝒚𝑡
(𝑘)

 Strategy adjustment value of the 𝑘th iteration at 

period 𝑡 

𝝍 Lift-dimension augmented vector 
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𝚽̂𝑡
(𝑘)

 Pseudo partial derivative of the 𝑘th iteration at 

period 𝑡 

Parameter  

𝑁k Total number of iterations 

𝑁l Total number of lift dimensions at the SOP 

local control model 

𝑁n Total number of critical nodes 

𝑇 Total optimization horizon of local voltage 

control method 

𝑇c Control horizon of SOP local control model 

𝑇s Update horizon of voltage fitting matrix and 

state-strategy linear mapping matrix 

𝑣ref Voltage reference of critical nodes 

𝜂, 𝜇, 𝜌, 𝜆 Adjustment parameters of label data generation 

𝜀 Predefined tolerance in label data generation 

I. INTRODUCTION 

N recent years, distributed generators (DGs) have been 

increasingly integrated into active distribution networks 

(ADNs) [1], resulting in frequent voltage fluctuations and 

violations [2]. With the rapid development of power electronic 

technology, flexible devices represented by soft open points 

(SOPs) have been widely employed in the ADN [3]. Owing to 

the adjustable characteristics of power regulation capacity [4], 

SOP can effectively eliminate voltage violations in ADNs, 

which has become a viable solution for overcoming 

voltage-related issues. 

Based on the accurate network parameters and global 

information, centralized methods typically construct complex 

optimization problems to obtain the optimal voltage control 

performance [5]. The authors in [6] proposed a day-ahead 

optimal control method for SOP with a chance-constrained 

optimization framework. In [7], a robust mixed-integer convex 

model was constructed to realize an optimal control for 

integrated energy storage and SOP in the day-ahead stage. A 

centralized model predictive voltage control method was 

presented in [8] to regulate the node voltage within the targeted 

limit. Owing to the large computational and communication 

overhead, the centralized voltage control method is typically 

realized over a long timespan. This may not help in fully 

utilizing the rapid response capacity of SOP to address the 

real-time uncertainties caused by the high penetration of DGs. 

Local control presents a fast response to frequent state 

variations based only on local measurements when compared 

with centralized control [9]. Local control manages voltage 

regulation with fewer communication burdens and presents 

considerable potential for fast and flexible adjustment of SOP 

[10]. In [11], an improved hierarchical volt/var and volt/watt 

control method was proposed with a dual-balancing rule, 

determining the outputs of SOP and DGs using optimized 

droop curves. In [12], a real-time coordinated voltage control 

method was proposed with precise ADN parameters to 

determine the optimal operation of SOP and electric vehicles. 

The authors in [13] proposed a local voltage control method 

based on the lifted linear decision rule, which provides more 

flexible control strategies for handling frequent voltage 

fluctuations in ADNs. Local control methods based on accurate 

network parameters can achieve good voltage control 

performance. However, the difficulty in obtaining accurate 

parameters presents significant challenges for the practical 

application of physical-model-based control methods. 

Owing to the widespread deployment of smart measurement 

devices, large amounts of operational data can be obtained from 

ADNs [14], which serve as a foundation for data-driven control 

methods. Data-driven methods can directly utilize the 

operational data to represent and analyze the complex nonlinear 

relationship between the inputs and outputs [15]. Thus, a more 

efficient and intelligent operation control of SOP can be 

achieved without requiring accurate physical parameters [16]. 

There are two types of data-driven methods namely iteration- 

based and machine learning-based methods. Iteration-based 

methods depend on real-time measurement feedback to realize 

adaptive adjustments of the control strategies [17]. The authors 

in [18] presented a data-driven var-voltage sequential control 

method, which incrementally updated strategies along the 

operation trajectory until it approached a near-optimal 

condition. A decentralized gradient descent-based algorithm 

was proposed in [19] to achieve online optimal voltage 

feedback control. In [20], a real-time control framework with 

an iterative structure was proposed for SOP, effectively 

adapting to changes in the operational environment. However, 

the step-by-step control required for these methods inevitably 

involves iterative interactions with a practical ADN, which may 

cause continuous disturbances to normal operations. 

Conversely, machine-learning-based methods utilize 

historical data to train artificial neural networks, which can 

capture hidden operational features to simulate an actual ADN 

[21]. These methods can eliminate the need for real-time 

interaction with a practical ADN by using the artificial neural 

networks. An improved deep reinforcement learning algorithm 

with a projection layer was presented in [22], which addressed 

DG uncertainty and ensured the safe operation without voltage 

security violations. In [23], a voltage control framework was 

proposed by integrating the deep reinforcement learning 

method and the physics-informed representation network. A 

full-model-free adaptive graph deep deterministic policy 

gradient model was established in [24] for SOP voltage control, 

alleviating the need for accurate and timely network parameters. 

In [25], an edge intelligence-based control method was 

proposed for SOP with energy storage system, which can 

effectively enhance both the spatial and temporal flexibility in 

the ADN. However, the model training process depends on 

large amounts of historical data, which may be time-consuming. 

Furthermore, the model may not be adaptable to environmental 

variations, necessitating retraining to effectively accommodate 

new network conditions, such as changes in topology. 

Insufficient training data under such varying conditions may 

hinder the control performance of machine-learning-based 

methods, potentially leading to failure. 

In this paper, a self-optimizing local voltage control method 

based on lift-dimension mapping linearization (LDML) is 

proposed to realize the active voltage support of SOP under 

label-poor conditions. The main contributions of this paper are 

I 
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summarized as follows. 

1) A data-driven local voltage control model is constructed 

for SOP without requiring accurate network parameters. By 

using LDML, the mapping between the operational states and 

SOP control strategies is excavated to establish the local control 

model. Based on the local state measurements, the voltage 

control strategy of SOP is rapidly determined by the local 

control model, which can respond to DG fluctuations during 

real-time operation. 

2) A self-optimizing guidance mechanism is established to 

generate abundant label data for training the SOP local control 

model. By utilizing accumulated operational states, optimized 

SOP control strategies are derived, which then serve as label 

data for the control model. The self-optimizing training can be 

realized under label-poor conditions while mitigating the 

dependence on the historical label data. 

The remainder of this paper is organized as follows. In 

Section II, an LDML-based data-driven method is introduced to 

describe the state-strategy relationship and construct the local 

control model of SOP. Section III presents the design of a 

self-optimizing guidance mechanism to obtain the label data for 

the SOP control strategy. In Section IV, case studies are 

conducted on a pilot distribution network with a four-terminal 

SOP. Finally, Section V presents the conclusions. 

II. STATE-STRATEGY RELATIONSHIP DESCRIPTION BASED ON 

LIFT-DIMENSION MAPPING LINEARIZATION 

The relationship between the operational states and SOP 

strategies in an ADN is characterized by high complexity and 

nonlinearity. It may be time-consuming to solve complex 

optimization problems established based on accurate physical 

parameters, making it difficult to suppress voltage fluctuations 

in real time. In this section, a data-driven method for SOP is 

proposed based on LDML. The proposed method enables 

flexible SOP adjustment corresponding to the current states of 

the ADN, which can realize a fast voltage control. 

A. LDML-based local control model for SOP 

The operational state of the ADN provides the basis for 

determining the SOP control strategy, which exhibits a 

complex nonlinear relationship, as expressed in Eq. (1). 

𝒚 = 𝑓(𝒙) (1) 

The operational state 𝒙 is obtained from the sum of the DG 

outputs and load demands, as shown in (2). 

𝒙 = [
𝑷State

𝑸State] = [
𝑷DG + 𝑷Load

𝑸DG + 𝑸Load] (2) 

The control strategy 𝒚 comprises the active power transfer 

𝑷SOP and reactive power output 𝑸SOP of the SOP, as shown in 

Eq. (3). 

𝒚 = [𝑷SOP 𝑸SOP]T (3) 

Owing to the difficulty in fitting the complex nonlinear 

relationships in (1), a data-driven model is constructed for the 

local voltage control of SOP based on the Koopman operator 

[26]. The Koopman operator presents the concept of lift 

dimension mapping and provides a global linear representation 

of the nonlinearity. Specifically, a low-dimensional nonlinear 

relationship can be converted into a high-dimensional linear 

formulation by expanding the original nonlinear features. Thus, 

the dynamic and nonlinear characteristics of (1) can be captured 

using a Koopman-based linear model. The lift-dimension 

mapping linearization can be used to excavate the hidden logic 

between the operational states and SOP control strategies into 

the linear mapping matrix 𝑩. The equivalent linear model is 

expressed as follows. 

𝒚 = 𝑩𝒙L = 𝑩 [
𝒙

𝝍(𝒙)] (4) 

where 𝒙L  represents the lift-dimension augment, which 

includes the original state measurements 𝒙 and the introduced 

nonlinear features 𝝍(𝒙). 

B. Data-driven solution for SOP local control model 

The core of the proposed linear control model in (4) is the 

state-strategy linear mapping matrix 𝑩, which can be obtained 

by a data-driven approach. The training dataset 𝒁 is formulated 

by the input matrix 𝑿 and strategy matrix 𝒀. The mathematical 

structure of the training dataset can be described as follows. 

𝒁 = {𝑿, 𝒀} 

(5) 𝑿 = [𝒙1
hist ⋯ 𝒙𝑡

hist ⋯ 𝒙𝑚𝑇s
hist ] 

𝒀 = [𝒚1
hist ⋯ 𝒚𝑡

hist ⋯ 𝒚𝑚𝑇s
hist ] 

If the original inputs in (2) are lifted into an 

infinite-dimensional Hilbert state space, the non-linearity can 

be fully reconstructed by a linear model without any loss of 

accuracy. This method may be impractical due to overfitting, 

computational complexity, and algorithm adaptation. In fact, 

partial accuracy can be sacrificed for operational feasibility. 

Therefore, the Hilbert state space can be approximated in a 

finite-dimensional manner. This can be achieved by 

introducing a finite set of nonlinear features that are generated 

by an appropriately selected lift-dimension augmented function. 

In this section, the polyharmonic function is selected as the 

lift-dimension augmented function, as shown in (6). 

𝑓Lift(𝒙 − 𝒄) = ‖𝒙 − 𝒄‖2log‖𝒙 − 𝒄‖2 (6) 

When the dimensionality is increased by 𝑁l  dimensions, 

𝝍(𝒙) can be described as follows. 

𝝍(𝒙𝑡
hist) = [𝜓1(𝒙𝑡

hist) ⋯ 𝜓𝑙(𝒙𝑡
hist) ⋯ 𝜓𝑁l

(𝒙𝑡
hist)]

T
 

(7) 

𝜓𝑙(𝒙𝑡
hist) = 𝑓Lift(𝒙𝑡

hist − 𝒄𝑙) 

𝑪 =

[
 
 
 
 
𝒄1

⋮
𝒄𝑙

⋮
𝒄𝑁l]

 
 
 
 

=

[
 
 
 
 
𝑐1,1 𝑐1,2 ⋯ 𝑐1,2𝑁n

⋮ ⋮  ⋮
𝑐𝑙,1 𝑐𝑙,2 ⋯ 𝑐𝑙,2𝑁n

⋮ ⋮  ⋮
𝑐𝑁l,1

𝑐𝑁l,2
⋯ 𝑐𝑁l,2𝑁n]

 
 
 
 

 

where 𝒄𝑙  denotes the 𝑙 th basis vector related to 𝜓𝑙 , whose 

magnitude should remain consistent with the input 𝒙. 

After constructing the training dataset, the linear mapping 

matrix 𝑩  in (4) can be determined using the least-squares 

method, as shown in (8). This process is both time-efficient and 
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computationally lightweight, enabling rapid model training. 

𝑩 = 𝒀(𝑿L)T[𝑿L(𝑿L)T]† (8) 

where [·]† denotes the Moore-Penrose inverse of the matrix. 

Thus, the local voltage control model can be constructed in a 

data-driven manner. The linear representation offers a rapid 

formulation in determining the SOP control strategy. The lift 

dimension input 𝒙𝑡
L is first generated based on real-time state 

measurements, as shown in (9). The SOP control strategy 𝒚𝑡 

can then be obtained through a simple matrix calculation, 

making it particularly suitable for real-time voltage regulation. 

𝒚𝑡 = [
𝑷𝑡

SOP

𝑸𝑡
SOP] = 𝑩𝒙𝑡

L = 𝑩

[
 
 
 
 

𝑷𝑡
State

𝑸𝑡
State

𝝍(𝑷𝑡
State)

𝝍(𝑸𝑡
State)]

 
 
 
 

 

𝑡 = 𝑚𝑇s + 1,…, (𝑚+1)𝑇s 

(9) 

Note that: The model construction and the strategy 

formulation only rely on the measurements from critical nodes, 

which include the grid-connected nodes of the DGs and SOP, 

nodes with key loads, and nodes with three or more branches. 

In summary, the complex nonlinear relationship between the 

operational states and SOP control strategies can be extracted 

into a linear mapping matrix based on lift-dimension mapping 

linearization. Subsequently, a SOP local control model is 

constructed using the state-strategy mapping matrix, thereby 

satisfying the demand for real-time voltage regulation under 

weak network parameters.  

III. SELF-OPTIMIZING GUIDANCE MECHANISM FOR SOP 

LOCAL CONTROL STRATEGY 

The training of the SOP local control model depends on large 

amounts of high-quality data. However, the optimized SOP 

control strategies may not be available for practical operations, 

limiting the effectiveness of the proposed data-driven method. 

In this section, a self-optimizing guidance mechanism is 

presented to obtain the training label data. The optimal label 

data of the control strategy can be generated based on the 

accumulated operational states, thereby providing abundant 

label data for the SOP local control model. 

A. Self-optimizing guidance mechanism 

The proposed mechanism includes two parts: the 

self-optimizing generation of label data and dynamic fitting of 

voltages in the ADN, as shown in Fig. 1. 

 

 
Fig. 1.  Iterative generation of the self-optimizing SOP label data 

The self-optimizing guidance mechanism generates the label 

data in an iterative form. Considering the 𝑘th iteration as an 

example, the interactive process between the two parts can be 

described as follows: 

(a) In the voltage fitting component, the SOP control strategy 

𝒚𝑡
(𝑘−1)

, which is generated in the 𝑘 − 1 th iteration, is 

considered as the input. After 𝒚𝑡
(𝑘−1)

 is fed into this part, the 

voltage response 𝒗𝑡
(𝑘)

 can be obtained at the 𝑘th iteration. 

(b) The voltage information 𝒗𝑡
(𝑘)

 is transferred as the input 

for label data generation. The adjustment value of the SOP 

control strategy ∆𝒚𝑡
(𝑘)

 is obtained as the corresponding output 

in this step. 

(c) The input control strategy 𝒚𝑡
(𝑘−1)

 and adjustment value 

∆𝒚𝑡
(𝑘)

 are then added to obtain the control strategy of the 𝑘th 

iteration, 𝒚𝑡
(𝑘)

. 

1) Self-optimizing generation of label data  

In this subsection, a dynamic linearization framework of the 

ADN is established to achieve the self-optimizing generation of 

label data. The sensitivity relationship between the voltage 

control objective and SOP control strategy can be expressed by 

a pseudo partial derivative, which can be expressed as follows. 

∆𝒗𝑡
(𝑘+1)

= 𝚽̂𝑡
(𝑘)

∆𝒚𝑡
(𝑘) 

(10) ∆𝒗𝑡
(𝑘+1)

= 𝒗𝑡
(𝑘+1)

− 𝒗𝑡
(𝑘) 

∆𝒚𝑡
(𝑘)

= 𝒚𝑡
(𝑘)

− 𝒚𝑡
(𝑘−1) 

The criterion functions of the sensitivity and SOP control 

strategy are constructed as follows. 𝜇  and 𝜆  represent 

adjustable parameters with positive values, which are 

introduced to limit the variations of the pseudo partial 

derivative and the control strategy, respectively. 

𝐽 (𝚽̂𝑡
(𝑘)

)=‖𝒗𝑡
(𝑘)

− 𝒗𝑡
(𝑘−1)

− 𝚽̂𝑡
(𝑘)

∆𝒚𝑡
(𝑘−1)

‖
2

2
 

+𝜇 ‖𝚽̂𝑡
(𝑘)

− 𝚽̂𝑡
(𝑘−1)

‖
2

2

 

(11) 

𝐽(𝒚𝑡
(𝑘)

) = ‖𝒗ref − 𝒗𝑡
(𝑘+1)

‖
2

2
+ 𝜆 ‖𝒚𝑡

(𝑘)
− 𝒚𝑡

(𝑘−1)
‖

2

2
  (12) 

The first calculation term in (11) minimizes the tracking 

errors between the fitting and actual voltage, whereas the 

second term constrains the variation of the pseudo partial 

derivative to reduce the sensitivity of inaccurate or noisy data. 

As for the control strategy, the criterion function (12) balances 

the optimization of the voltage control objective and the 

smoothness of the control strategy. The minimization of the 

criterion functions yields the following iterative forms. 

𝚽̂𝑡
(𝑘)

= 𝚽̂𝑡
(𝑘−1)

+
𝜂∆𝒚𝑡

(𝑘−1)
(∆𝒗𝑡

(𝑘)
−𝚽̂𝑡

(𝑘−1)
∆𝒚𝑡

(𝑘−1)
)

𝜇+‖∆𝒚𝑡
(𝑘−1)

‖
2

2   (13) 

𝒚𝑡
(𝑘)

= 𝒚𝑡
(𝑘−1)

+
𝜌(𝚽̂𝑡

(𝑘)
)T(𝒗ref−𝒗𝑡

(𝑘)
)

𝜆+‖(𝚽̂𝑡
(𝑘)

)T‖
𝐹

2   (14) 

The computational core is to find the adjustment value of the 

pseudo partial derivative and the control strategy. Eqs. (13) and 

(14) can be rewritten into the following forms. 
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𝚽̂𝑡
(𝑁k)

= 𝚽̂𝑡
(0)

+ ∑
𝜂∆𝒚𝑡

(𝑘−1)
(∆𝒗𝑡

(𝑘)
−𝚽̂𝑡

(𝑘−1)
∆𝒚𝑡

(𝑘−1)
)

𝜇+‖∆𝒚𝑡
(𝑘−1)

‖
2

2
𝑁k
𝑘=1   (15) 

𝒚𝑡
(𝑁k)

= 𝒚𝑡
(0)

+ ∑
𝜌(𝚽̂𝑡

(𝑘)
)T(𝒗ref−𝒗𝑡

(𝑘)
)

𝜆+‖(𝚽̂𝑡
(𝑘)

)T‖
𝐹

2
𝑁k
𝑘=1   (16) 

To ensure the convergence of the proposed iterative solution, 

𝜂 ∈ (0,2]  and 𝜌 ∈ (0,1] . In each iteration, the sensitivity 

matrix is first updated using the optimized control strategy and 

corresponding voltage response, as shown in (15). Then, the 

adjustment of the SOP control strategy is determined based on 

the newest sensitivity matrix. 

The iterations are terminated when the voltage deviation 

between two consecutive iterations is lower than the predefined 

tolerance 𝜀 . In this paper, 𝜀  is set as 1 × 10−4 . The specific 

criterion is expressed as follows. 

‖𝒗𝑡
(𝑘+1)

− 𝒗𝑡
(𝑘)

‖
∞

< 𝜀 (17) 

𝒚𝑡
(𝑁k)

 denotes the expected label data for period 𝑡 . The 

operational state and label data constitute the input-output 

training sample of the LDML-based control model, as shown in 

(18). The training samples are periodically supplemented into 

the entire training dataset 𝒁 in (5). 

{
𝒙𝑡

hist = 𝒙𝑡
(𝑁k)

𝒚𝑡
hist = 𝒚𝑡

(𝑁k)
, 𝑡 = (𝑚−1)𝑇s, …,𝑚𝑇s (18) 

Remark 1: The effectiveness of the proposed dynamic 

linearization framework in (10) and iterative forms in (13) and 

(14) are proven in [27]. Therefore, the optimality of the SOP 

control strategy can be effectively ensured to realize the 

self-optimizing generation of the label data. 

2) Dynamic fitting of ADN voltage profile 

The optimized SOP control strategy should be executed in 

the ADN to obtain voltage feedback at each iteration, which 

may cause sustained disturbances. Additionally, the operational 

state is changed after multiple iterations, making it difficult to 

determine the timing correspondence between the operational 

state and label data. To address these issues, a data-driven 

voltage fitting component is further constructed to provide 

voltage profiles under different power injection scenarios. 

To obtain the voltage fitting component, a training set is built 

based on the accumulated operational measurements, as shown 

in (19). The nodal power injection of critical nodes is 

considered as the input 𝑾, and the voltage is obtained as the 

output 𝑽. The input comprises the DG outputs, load demands, 

and SOP control strategies. 

{
𝑾 = [𝒘1

hist ⋯ 𝒘𝑡
hist ⋯ 𝒘𝑚𝑇s

hist ]

𝑽 = [𝒗1
hist ⋯ 𝒗𝑡

hist ⋯ 𝒗𝑚𝑇s
hist ]

 

(19) 𝒘𝑡
hist = 𝒙𝑡

hist + 𝒚𝑡
hist = [𝑷𝑡

Node 𝑸𝑡
Node]T 

𝑷𝑡
Node = 𝑷𝑡

DG + 𝑷𝑡
Load + 𝑷𝑡

SOP 

𝑸𝑡
Node = 𝑸𝑡

DG+𝑸𝑡
Load + 𝑸𝑡

SOP 

Then, the voltage fitting component is established based on 

the power-voltage mapping linear matrix 𝑨 as follows. 

𝒗𝑡
(𝑘)

= 𝑨 [
𝒘𝑡

(𝑘)

𝝍(𝒘𝑡
(𝑘)

)
] = 𝑨 [

𝒙𝑡
(𝑘)

+ 𝒚𝑡
(𝑘−1)

𝝍(𝒙𝑡
(𝑘)

+ 𝒚𝑡
(𝑘−1)

)
] 

(20) 𝑨 = 𝑽(𝑾L)T[𝑾L(𝑾L)T]† 

𝑾L = [
𝒘1

hist ⋯ 𝒘𝑡
hist ⋯ 𝒘𝑚𝑇s

hist

𝝍(𝒘1
hist) ⋯ 𝝍(𝒘𝑡

hist) ⋯ 𝝍(𝒘𝑚𝑇s
hist)

] 

Data-driven voltage fitting can help in preventing real-time 

interaction with a practical ADN. The operational state is 

assumed to remain unchanged during the entire iteration at 

period 𝑡 , that is 𝒙𝑡
(1)

= 𝒙𝑡
(𝑁k)

= ⋯ = 𝒙𝑡
hist . The same inputs 

indicate that the self-optimizing guidance mechanism operates 

under the same source-load condition, which ensures a clear 

correspondence between the generated label data and the 

operational state. The inputs at different time points are 

temporally independent. Eq. (20) can be transformed into the 

following description. 

𝒗𝑡
(𝑘)

= 𝑨 [
𝒙𝑡

hist + 𝒚𝑡
(𝑘−1)

𝝍(𝒙𝑡
hist + 𝒚𝑡

(𝑘−1)
)
] (21) 

The voltage fitting component provides a voltage response to 

the optimized SOP control strategy, contributing to the 

adjustment of the strategy in the next iteration to achieve better 

voltage control performance. 

In summary, the optimal label data of the SOP control 

strategy is iteratively generated based on the proposed 

self-optimizing guidance mechanism. The operational states 

and corresponding label data constitute the training dataset, 

supporting the self-optimizing training of the SOP local control 

model under label-poor conditions. 

B. Implementation of the SOP local voltage control 

To enhance adaptability to the complex environments, the 

data-driven model for the local control of SOP is regularly 

retrained and updated at each update horizon within the edge 

computing device deployed in the ADN. The real-time 

measurements of DG outputs, load demands, and nodal 

voltages are taken as inputs, while the SOP control strategies 

are taken as outputs. Fig. 2 depicts a detailed implementation of 

the self-optimizing control of SOP. 

(a) The operational data of ADN are collected to build the 

training dataset for the voltage fitting component, where nodal 

power injections are considered as the inputs, and voltage 

measurements are obtained as the outputs. The voltage fitting 

component is then constructed based on the operational data 

collected from 0 to 𝑚𝑇s. 

When 𝑡 ∈ [0, 𝑇s] , no control strategy is implemented for 

SOP. The initial operational data of ADN are used to initialize 

the proposed SOP local control model. When 𝑡 ∈
[𝑚𝑇s, (𝑚 + 1)𝑇s], 𝑚 = 1,2,⋯ , (𝑇 − 𝑇s) 𝑇s⁄ , the local control 

model is retrained at period 𝑚𝑇s , which represents the 

beginning of the update horizon. Then, the SOP control strategy 

can be determined using the updated model. 

(b) Based on the self-optimizing guidance mechanism, the 
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label data of SOP control strategy are generated by utilizing 

operational states accumulated during the previous update 

horizon [(𝑚 − 1)𝑇s, 𝑚𝑇s]. The operational state of the ADN 

and corresponding control strategy comprise an input-output 

training sample for the SOP local control model. Training 

samples from (𝑚 − 1)𝑇s to 𝑚𝑇s are then added to the overall 

training dataset of the SOP local control model. 

(c) The state-strategy linear mapping matrix is trained based 

on the updated dataset, which includes data from 0 to 𝑚𝑇s . 

Subsequently, the linear matrix is used to reconstruct the SOP 

local control model. 

(d) After retraining the data-driven control model, the SOP 

control strategy is determined based on the real-time 

operational state of the ADN, thereby effectively addressing the 

voltage violation problem. 

(e) The operational data are collected to update the training 

dataset for the voltage fitting component. Each update horizon 

contains 𝑇s/𝑇c samples, which are processed as a data chunk 

rather than being fed individually into the voltage fitting 

component. 

Start

Set update counter m=1, control counter n=1

Topology changes?

End

Build the state-strategy training dataset and 

train the SOP local control model 

Determine the real-time control strategy of 

SOP and collect operational data

Construct the self-optimizing guidance 

mechanism to generate SOP control strategy

No

Yes

No

n > Ts/Tc?

Yes

m=m+1

n = n + 1, t = t + Tc

t>T?

Yes

Yes

Collect initial operational data of ADN

Self-optimizing 

training

Real-time 
control

Set t=0, overall optimization horizon T=24h, model 

update horizon Ts=5min, control horizon Tc=10s

n > (m+1)Ts/Tc ?

No

No

n = n + 1, t = t + Tc

Construct the voltage fitting component

 
Fig. 2.  Flowchart of the self-optimizing control of SOP 

(f) If the network topology changes, it is assumed that no 

historical data are available, representing a label-poor condition. 

Thus, the proposed algorithm is restarted to adapt to the new 

topology. Two counters are reset to 𝑚 = 1 and 𝑛 = 1. Steps 

(a)-(c) are then executed to retrain the SOP local control model. 

Conversely, if the topology remains unchanged, steps (d) and (e) 

are executed until the operation is completed during the 𝑚th 

update horizon. 

In the subsequent update horizons, steps (a)-(f) are repeated 

to support the self-optimizing update for the SOP local control 

model until the total optimization horizon 𝑇 is reached. 

Note that: In this paper, the control horizon 𝑇c and model 

update horizon 𝑇s  are set to 10 seconds and 5 minutes, 

respectively. The measurement sampling interval should be 

less than 10 seconds to ensure timely response, which can be 

realized by the supervisory control and data acquisition 

(SCADA) [28] or distribution-level phasor measurement unit 

(D-PMU) [29]. The control process can be completed within a 

few milliseconds, and the update process within a few seconds. 

Therefore, the control and update horizons are adjustable and 

flexible in practical applications. 

IV. CASE STUDIES AND ANALYSIS 

In this section, a pilot distribution network constructed in 

Tianjin, China is selected to verify the effectiveness of the 

proposed method. The numerical experiments were conducted 

on a computer with an Intel(R) Core(TM) i7-12700 CPU 

processor running at 2.10 GHz and 32 GB of RAM. 

A. Distribution networks with a four-terminal SOP 

Fig. 3 depicts the structure of a practical distribution network 

with a four-terminal SOP. The rated voltage level is 10.5 kV. 

The active and reactive power of the load are 10.788 MW and 

7.935 Mvar, respectively. The converters VSC1, VSC3, and 

VSC4 of the SOP are set to PQ control mode, enabling the 

regulation of active and reactive power flow on their connected 

feeders. The converter VSC2 operates in UdcQ control mode to 

stabilize the DC voltage [30]. 
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Fig. 3.  Structure of practical distribution networks 

13 groups of photovoltaics (PVs) are integrated into the 

system to consider the impact of the increasingly penetrating 

DGs. The active power of PVs reaches almost 60% of the peak 

load demand. Table I lists the detailed PV parameters. Fig. 4 

and Fig. 5 depict the operation curves of the DG and load with a 

10-second time interval. The capacity of each converter of the 

four-terminal SOP is set to 3.0 MVA. The minimum and 
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maximum limits of the voltage range are set to 0.95 p.u. and 

1.05 p.u., respectively. 
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Fig. 4.  Operation curve of the PV 
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Fig. 5.  Operation curve of the load 

TABLE I 

PARAMETERS OF PV INVERTER 

Location Capacity (kVA) Location Capacity (kVA) 

5 200 28 400 

8 200 31 400 

10 400 38 1100 

14 400 41 1100 

17 600 43 200 

19 400 47 400 

21 600   

B. Evaluation metrics 

The metrics used in the case study can be divided into two 

types: metrics for evaluating voltage control performance and 

metrics for assessing voltage fitting accuracy. 

To evaluate the effectiveness of voltage optimization, the 

voltage deviation index (VDI) and the average deviation index 

(ADI) are introduced, which can be defined as follows. 

VDI = ∑ ∑ |𝑉ref − 𝑉𝑖,𝑡|
𝑁n
𝑖=1

𝑇
𝑡=1   (22) 

ADI =
𝟏

𝑇×𝑁n
∑ ∑ |

𝑉𝑖,𝑡−𝑉ref

𝑉ref |
𝑁n
𝑖=1

𝑇
𝑡=1   (23) 

where 𝑉𝑖,𝑡 denotes the voltage magnitude of node 𝑖 at period 𝑡. 

𝑉ref denotes the reference voltage. 

To further validate the optimality of the proposed method, 

the optimal rate index (ORI) is introduced to quantify the 

deviation between the proposed method and the theoretically 

optimal centralized method. 

ORI = (1 − |
∆𝑉p−∆𝑉c

∆𝑉c−∆𝑉o
|) × 100%  (24) 

where ∆𝑉o, ∆𝑉p, and ∆𝑉c represent the voltage deviations of the 

initial operational state without any optimization, the proposed 

method, and the centralized optimal method, respectively. 

The mean absolute error (MAE) is introduced to evaluate the 

accuracy of the voltage fitting component, which can be 

defined as follows. 

MAE =
𝟏

𝑁F×𝑁n
∑ ∑ |𝑉̂𝑖,𝑓 − 𝑉𝑖,𝑓|

𝑁n
𝑖=1

𝑁F
𝑓=1   (25) 

where 𝑉̂𝑖,𝑓  and 𝑉𝑖,𝑓  denote the predicted and true voltages, 

respectively. 𝑁F denotes the total number of test datasets. 

C. Optimization results analysis 

1) Control effectiveness analysis 

Four scenarios are adopted to validate the effectiveness of 

the proposed data-driven local voltage control method for SOP. 

Scenario I: There is no control strategy conducted on SOP, 

which can obtain the initial operational data of the ADN. 

Scenario II: The SOP control strategies are determined using 

the proposed lift-dimension mapping linearization method. 

Scenario III: The SOP control strategies are regulated using a 

real-time centralized control method based on accurate network 

parameters, which can realize a theoretical optimization. 

Scenario IV: The SOP control strategies are optimized using 

the model-free adaptive control (MFAC)-based voltage control 

method [20]. 

The optimization results for the four scenarios are listed in 

Table II. 

TABLE II 

COMPARISON OF CONTROL PERFORMANCE OF THE FOUR SCENARIOS 

Scenario 
Minimum  

voltage (p.u.) 

Maximum  

voltage (p.u.) 
VDI (p.u.) ORI (%) 

I 0.9220 1.0629 3625.1 / 

II 0.9718 1.0440 1243.1 94.01 

III 0.9660 1.0477 1091.4 100.00 

IV 0.9524 1.0448 1507.3 83.59 

The effectiveness of the proposed method is validated 

through a comparison of Scenarios I and II. The voltage 

deviations in the test system are severe in Scenario I, as shown 

in Fig. 6. Voltage overlimit occurs in Region 1 with heavy load 

demands and Region 3 with high-penetration DGs. In the initial 

operational conditions, the minimum and maximum voltage 

profiles are 0.9220 p.u. and 1.0629 p.u., respectively. 
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Fig. 6.  Voltage control performance of Scenario I 

Fig. 7 depicts the voltage control performance of Scenario II. 

A data-driven voltage control model of SOP is established 

based on real-time operational measurements. The proposed 

LDML-based method can effectively manage the frequent 

voltage deviations by utilizing the flexible power adjustment 

capacity of SOP. The voltage deviation under Scenario II is 

reduced by 65.71% when compared with Scenario I. The 

voltage range is narrowed to [0.9718,1.0440] , which is 

maintained at a secure operational level. 
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Fig. 7.  Voltage control performance of Scenario II 

The optimality of the proposed method is verified through a 

comparison of Scenarios II and III. Fig. 8 shows the voltage 

control performance of Scenario III. Owing to the heavy 

computational and communication burden, the centralized 

physical model-based method may be infeasible in practical 

operations. Therefore, it is only considered as a theoretically 

optimal result. The proposed LDML-based method determines 

the real-time control strategy based solely on the local 

measurements, thereby eliminating the dependence on accurate 

network parameters. The optimal rate of Scenario II is 94.01% 

and achieves approximate global optimization. 
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Fig. 8.  Voltage control performance of Scenario III 

The superiority of the proposed method is demonstrated 

through a comparison of Scenarios II and IV. The proposed 

method shows a better voltage control effect than the 

MFAC-based method, achieving a 17.5% reduction in VDI and 

a 12.4% improvement in ORI. Fig. 9 shows the voltage control 

performance of Scenario IV. 
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Fig. 9.  Voltage control performance of Scenario IV 
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Fig. 10.  Comparison of voltage profiles in Scenarios II and IV 

As illustrated in Fig. 10, the maximum voltage of Scenario II 

and Scenario IV are generally close throughout the day, while 

significant differences are presented in the minimum voltage. 

When the DG outputs fluctuate dramatically during 8:00 to 

15:00, the proposed method can mitigate the voltage deviations 

more effectively, highlighting its enhanced adaptability and 

regulation capability under volatile operational conditions. 

2) Influence of the key measurements 

The proposed method can be applied under the partially 

monitored condition, where the SOP local control model only 

needs key measurements from critical nodes in the ADN. When 

full measurements are available, data from all nodes can be 

used to achieve more efficient control. The control effect is 

analyzed in Table III. 

TABLE III 

COMPARISON OF CONTROL EFFECT UNDER KEY MEASUREMENTS 

Scenario 
Minimum 

voltage (p.u.) 

Maximum 

voltage (p.u.) 
VDI (p.u.) ORI (%) 

II. Fully 

monitored 
0.9718 1.0402 1155.0 97.50 

II. Partially 
monitored 

0.9718 1.0440 1243.1 94.01 

Numerical results indicate that the decrease in voltage 

control effect is minimal when only key measurements from 

critical nodes are used, demonstrating that the proposed method 

remains effective under the partially monitored condition. 

3) Influence of the data availability 

To reduce reliance on historical data, a self-optimizing 

guidance mechanism is established to generate abundant 

training labels from accumulated operational states during 

real-time operations. When sufficient data are available, the 

proposed method directly utilizes these data to train the SOP 

local control model, eliminating the need for the mechanism. 

Table IV presents the control performance under different 

levels of data availability. 

TABLE IV 

COMPARISON OF CONTROL PERFORMANCE UNDER DIFFERENT DATA 

AVAILABILITY 

Scenario 
Minimum 

voltage (p.u.) 

Maximum 

voltage (p.u.) 
VDI (p.u.) ORI (%) 

II. Insufficient data 0.9718 1.0440 1243.1 94.01 

II. Sufficient data 0.9669 1.0399 1101.8 99.59 

It can be seen from the numerical experiments that the VDI is 

reduced by 11.37% under sufficient data conditions, indicating 

a notable mitigation of voltage deviations. An ORI of 99.59% 

further demonstrates that the proposed method can achieve 

near-global optimization. Under insufficient data conditions, 

the ORI reaches 94.01%, confirming its ability to rapidly adapt 

to complex operational environments and maintain reliable 

performance without relying on historical data. 

D. Update horizon analysis 

When the state-strategy training samples are insufficient, the 

proposed method generates the training label data using the 

self-optimizing mechanism. The fitting accuracy of the nodal 

voltages will affect the generated label data. The construction 

of the voltage fitting component depends on real-time power 
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injections and voltage measurements. Frequent updates can 

accelerate the adjustment of the data-driven model, thereby 

preventing prolonged dependence on the outdated model with 

error accumulation. Thus, the update horizon is an important 

factor that affects the fitting accuracy and efficiency. 

Table V lists the computational efficiency for the different 

update horizons. The convergence time represents the 

minimum time required to reach the expected fitting accuracy, 

where the desired value of MAE is set as 1 × 10−3. 

TABLE V 

COMPUTATIONAL EFFICIENCY UNDER DIFFERENT UPDATE HORIZONS 

Update horizon 

(min) 
Calculation time (s) Training time (s) 

Convergence  

time (min) 

1 5.60 × 10−5 0.4346 12 

5 4.59 × 10−5 1.3450 50 

10 4.40 × 10−5 2.6738 560 

15 5.13 × 10−5 6.8600 585 

Fig. 11 depicts the visual representation of this effect. The 

computation time is related to the scale of inputs, outputs, and 

lift dimensions, which are unaffected by the update horizon. 

Thus, when the update horizon changes, the computation time 

of the control strategy remains nearly constant. The training 

time grows significantly with a longer update horizon because 

the self-optimizing guidance mechanism needs to process more 

accumulated operational states of the previous update horizon. 
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Fig. 11.  Computational efficiency for different update horizons 

In this paper, the control and update horizons are set to 10 

seconds and 5 minutes, respectively. Numerical results indicate 

that the calculation time of the control strategy is 4.59 × 10−5 

seconds while the training time is 1.3450 seconds, both of 

which are shorter than the setting values. 

0 6 12 18 24

Time (h)

0 

2 

4 

6 

8 

10

M
A

E
 (

p
.u

.)

10
-3

 
Fig. 12.  Fitting error at the five-minute update horizon 

Fig. 12 depicts the MAE distribution of the 5-minute update 

horizon. Starting with the proposed data-driven method in the 

absence of training samples, the expected fitting accuracy can 

be achieved within an operation time of 50 minutes. The DG 

outputs fluctuate drastically from 8:00-13:00, resulting in 

increased voltage fitting errors. The voltage fitting component 

is regularly updated based on the accumulated operational data, 

thereby enabling rapid adaptation to dynamic environments. 

Therefore, the fitting accuracy returns to the desired level after 

10:30, rather than at the end of the DG fluctuations. 

The update horizon affects both the accuracy of the voltage 

fitting component and the training of the SOP local control 

model, thereby influencing the control performance of the 

proposed voltage control strategy. Table VI presents the 

optimization results under different update horizons. 

TABLE VI 

CONTROL PERFORMANCE UNDER DIFFERENT UPDATE HORIZONS 

Update horizon 

(min) 

Minimum voltage 

(p.u.) 

Maximum voltage 

(p.u.) 
VDI (p.u.) 

1 0.9720 1.0440 1236.2 

5 0.9718 1.0440 1243.1 

10 0.9518 1.0385 1548.4 

15 0.9307 1.0404 1673.2 

When the update horizon increases from 1 minute to 5 

minutes, the voltage control performance remains almost the 

same. However, further increasing the update horizon reduces 

the responsiveness to dynamic changes in the ADN, resulting in 

considerable voltage deviations. Especially, when the update 

horizon is extended to 15 minutes, the minimum voltage drops 

below 0.95 p.u.. 

E. Adaptability to parameter settings 

Scenarios II and IV both involve the selection of parameters 

𝜌, 𝜂, 𝜇, and 𝜆. Parameter settings will influence the voltage 

control performance of the strategy. Thus, different parameters 

are set to analyze the parameter sensitivity. The parameter 𝜌 is 

varied while the rest of parameters are kept constant, i.e., 𝜂 = 1, 

𝜇 = 1, and 𝜆 = 0.1. Table VII lists the optimization results. 

TABLE VII 

OPTIMIZATION RESULTS OF DIFFERENT PARAMETERS AT NODE 30 

Scenario 𝜌 
Minimum  

voltage (p.u.) 

Maximum  

voltage (p.u.) 
ADI (p.u.) 

I / 1.0009 1.0308 0.0276 

II 

0.1 0.9615 1.0300 0.0111 

0.5 0.9763 1.0300 0.0165 

1 0.9674 1.0300 0.0133 

IV 

0.1 0.9423 1.0299 0.0244 

0.5 0.9598 1.0299 0.0225 

1 0.9666 1.0299 0.0192 

When the parameter 𝜌 is set to 0.1, 0.5, and 1, the voltage 

deviations in Scenario II are reduced by 59.84%, 40.12%, and 

51.81%, respectively. Furthermore, the reductions in Scenario 

IV are 11.47%, 18.28%, and 30.48%, respectively. The voltage 

control performance of the proposed method is significantly 

better than that of the MFAC-based method. 

Fig. 13 and Fig. 14 show the control performance of 

Scenarios II and IV with different parameters, respectively. The 

minimum voltage in Scenario IV reduces to 0.9423 p.u. when 𝜌 

is set to 0.1, indicating that the MFAC-based method is 
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sensitive to the parameters. Since the parameter settings have a 

direct impact on the formulation of the SOP control strategy, 

inappropriate parameter choices may significantly degrade 

control performance and even lead to voltage violations. In 

contrast, Scenario II maintains the voltage within a desired 

range when the parameter 𝜌 varies within the predefined range 

(0,1]. The proposed method mitigates the impact of parameters 

through a dual-layer isolation involving both data generation 

and model construction, thereby maintaining reliable control 

performance under different parameters. 
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Fig. 13.  Control performance in Scenario II with different parameter 𝜌 
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Fig. 14.  Control performance in Scenario IV with different parameter 𝜌 

The MFAC-based method inevitably affects normal 

operations due to the real-time interaction and feedback from 

the practical ADN. An uncertainty in the initial value may 

cause sustained disturbances during the dynamic iteration 

processes. The proposed method makes real-time decisions of 

the SOP control strategies without iterations. The one-step 

determination helps in effectively preventing negative impacts 

on daily operations. 

F. Adaptability to DG fluctuations 

The physical model-based centralized optimization method 

is primarily employed in the day-ahead stage due to the huge 

computational and communication burden. The SOP control 

strategies are optimized based on the source-load forecasting 

information. However, the strong uncertainty in the DG outputs 

presents significant challenges for such approaches. Scenario V 

is introduced to validate the adaptability of the proposed 

LDML-based method to DG fluctuations. 

Scenario V: The SOP control strategies are regulated using a 

day-ahead centralized control method based on accurate 

network parameters [31]. 

Table VIII lists the overall control performance. The 

forecasting information over a long timescale varies 

significantly from the real-time fluctuations, which causes low 

matching of day-ahead strategies and deteriorates the control 

performance of Scenario V. 

TABLE VIII 

COMPARISON OF VOLTAGE CONTROL PERFORMANCE 

Scenario 
Minimum  

voltage (p.u.) 

Maximum  

voltage (p.u.) 
VDI (p.u.) 

II 0.9718 1.0440 1243.1 

V 0.9579 1.0483 1461.1 

Fig. 15 depicts a comparison of the voltage control deviation 

at each node of Scenarios II and V. Nodes 38 and 41 are 

integrated with large-capacity DG units, making them 

significantly affected by DG fluctuations. Thus, the voltage 

deviations at these nodes are more pronounced. 
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Fig. 15.  Comparison of voltage deviations of Scenarios II and V 

SOP control strategies in Scenario II are shown in Fig. 16 

and Fig. 17. In response to the significant variations in DG 

outputs during 8:00 to 13:00, the active power transmission and 

reactive power output of SOP fluctuate dramatically. The active 

power of SOP is negative for high PV outputs, indicating that 

the active power in Region 3 is transferred to other heavy-load 

regions. The positive transfer of the active power and local 

compensation of the reactive power improve the distributions 

of the nodal voltages under heavy-load conditions. The 

proposed method fully exploits the accurate and rapid power 

regulation characteristics of SOP. It can mitigate the voltage 

fluctuations caused by highly penetrating DGs through power 

sharing between different regions. 
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Fig. 16.  Active power transmission of SOP in Region 3 
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Fig. 17.  Reactive power output of SOP in Region 3 

Compared with centralized methods, the proposed method 

does not face computationally intensive optimization and 

convergence problems. The control process can be completed 

within a few milliseconds, meeting the real-time control 

requirements. In addition, the SOP local control model can be 
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retrained within a few seconds, supporting the frequent model 

updates and timely adaptation to frequent variations in the 

complex operational environments. 

G. Adaptability to network topology changes 

Topology reconfiguration modifies the network parameters 

and redistributes the power flow, causing a decline in the 

control effectiveness of the SOP strategy formulated under the 

original topology. Therefore, it is crucial to illustrate the 

adaptability of the proposed LDML-based method to varying 

network topologies. 

It is assumed that a local topological change occurs at 11:00. 

As shown in Fig. 18, the branches between nodes 3 and 10, 

nodes 25 and 33 are disconnected. The tie switches between 

nodes 10 and 45, as well as nodes 12 and 35, are closed. 
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Fig. 18.  Structure of distribution networks with topology reconfiguration 

When network topology changes, the physical model cannot 

be updated in time, which negatively affects the effectiveness 

of the physical model-based control strategies. In contrast, as an 

iterative-based data-driven method, the MFAC-based method 

can dynamically adjust the SOP control strategies based on 

real-time feedback received from the ADN, which can adapt to 

frequently changing topologies. Table IX lists the optimization 

results under topology changes. 

TABLE IX 

OPTIMIZATION RESULTS UNDER TOPOLOGY CHANGES 

Scenario 
Minimum  

voltage (p.u.) 

Maximum  

voltage (p.u.) 
VDI (p.u.) ADI (p.u.) 

II 0.9649 1.0591 472.8 0.0039 

IV 0.9463 1.0590 492.8 0.0041 

V 0.9623 1.0453 587.4 0.0048 

Numerical results demonstrate that the LDML-based method 

achieves superior voltage regulation performance. Although 

Scenario IV exhibits the VDI and ADI comparable to those of 

Scenario II, its minimum and maximum voltages exceed the 

desired operational range. Scenario V shows significantly 

higher VDI and ADI, suggesting that it fails to effectively adapt 

to the topology change due to the outdated physical model. 

When the network topology changes, the proposed method 

collects the initial operational data during the first update 

horizon, serving as the foundation for generating label data and 

retraining the SOP local control model. During this short 

transition period, no control strategy is applied, causing the 

voltage in Scenario II to temporarily exceed 1.05 p.u.. As a 

result, voltage deviations of Scenario II are relatively large at 

the beginning, as shown in Fig. 19 and Fig. 20. However, the 

voltage is quickly regulated back to an acceptable range once 

the updated SOP local control model is deployed. 
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Fig. 19.  Voltage deviation in Scenarios II and IV 
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Fig. 20.  Voltage deviation in Scenarios II and V 

Remark 2: Machine learning methods may require 

time-consuming training and struggle to adapt to changes in 

network topology, hindering the practicality of such methods. 

In contrast, the proposed LDML-based method continuously 

collects new operational data to enrich the training dataset and 

then updates the SOP local control model in a self-optimizing 

manner, enhancing the adaptability to topology changes and 

complex operational conditions. 

V. CONCLUSIONS 

In this paper, a self-optimizing local voltage control method 

for SOP is proposed to effectively mitigate the voltage 

violations caused by the high penetration of DGs. Leveraging a 

lift-dimension mapping linearization (LDML) framework, the 

proposed method formulates the linear mapping between the 

operational states and SOP control strategies, eliminating the 

need for accurate network parameters and improving feasibility 

for practical applications. Based on the linearized expression, 

the local control strategy of SOP can be derived within 

milliseconds, satisfying the real-time control requirements. 

Furthermore, a self-optimizing guidance mechanism is 

established to generate abundant label data from accumulated 

operational data, which supports efficient model training and 

reduces reliance on historical data. Simulation results validate 

that the proposed method fully exploits the flexible adjustment 

capacity of SOP to enhance the voltage control performance in 

ADNs while achieving approximate global optimization. 

Compared to conventional methods, the self-optimizing 

training enables rapid adaptation to complex operational 

environments and ensures reliable performance under 

label-poor conditions. 

The future research of this paper can be carried out in the 

following directions. First, the proposed method updates the 

local control model in a fixed horizon, which cannot adaptively 
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adjust the update horizon according to voltage control 

performance. An event-triggered update mechanism can be 

designed to realize more flexible and efficient control of SOP. 

Second, the proposed method relies heavily on high-precision 

measurements. Addressing the measurement noise and bad data 

remains a key challenge for future research. Furthermore, other 

control devices in an ADN, such as on-load tap changers, 

capacitor banks, and energy storage systems, can be further 

developed. The coordination of multiple control devices should 

be investigated to fully utilize the available resources. 
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