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Abstract

Background: Cognitive training offers a potential approach for the prevention of cognitive decline in later life. Repetition of targeted
exercises may improve, or at least preserve, both specific domain and general cognitive abilities by strengthening neural connections
and promoting neuroprotective processes within brain networks. Importantly, middle-aged adults have been omitted from the cognitive
training literature. In this experiment, we investigated short-term training (1 session) on a perceptual-cognitive-motor task in middle-
aged adults. Furthermore, we examined the functional and structural neural correlates of this training. Methods: Twenty-one healthy
middle-aged adults between the age of 40 and 50 years underwent one scanning session during which they learned and performed the
perceptual-cognitive-motor task. We compared performance and functional imaging on the Early and Late Learning phases of the task.
We used diffusion Magnetic Resonance Imaging (MRI) to examine baseline microstructural variation in the brain in relation to training
outcome. The diffusion indices included fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI), and orientation
dispersion index (ODI). Results: We found a significant improvement in performance following training on the task. The improvement
correlated with gaming experience, but not with impulsivity. There were also significant training-induced changes in functional activity
in cerebellar, cortical and subcortical brain regions. Furthermore, significant correlations were found between the diffusion indices of
FA, MD, and ODI and training outcome. Conclusions: These results suggest fast reorganisation of functional activity in the middle-aged

brain, and that individual variation in brain microstructure correlates with fast visuo-motor task performance gains.
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1. Introduction

The development and use of complex motor skills de-
creases with age not only for biomechanical and neuromus-
cular reasons, but also due to a decline in cognitive func-
tioning [1-6]. In addition, the aging process is associated
with widespread changes in the brain, and these changes
contribute to deficits in motor and cognitive functioning [ 7—
13]. Most motor skill learning studies investigating age-
related changes compare older adults’ performances with
that of younger adults, but do not include middle-aged par-
ticipants [14]. This is a significant omission given that
the few life-span studies that have been conducted indi-
cate that the reduction in motor plasticity occurs not par-
ticularly in older age, but in middle-age (after a peak in
youth and younger adulthood) [14—17]. Studies looking at
the acquisition of a complex motor skill showed that perfor-
mance decrements start early in middle-age (3045 years)
[14,15,17]. For example, Janacsek et al. (2012) [17] in-
vestigated motor sequence learning across the life span, be-

tween 485 years of age, and found that in terms of reaction
time and accuracy, age groups between 9 and 44 years of
age showed similar degrees of sequence learning, and this
was significantly higher than the youngest (4—8) and the two
oldest (45-59 and 60-85) groups. Since it appears that mo-
tor skill learning ability starts to decline in middle-age, this
would be an excellent age group for targeting training in-
terventions.

The brain regions involved in motor skill learning dif-
fer depending on whether it is the early or late phase of
training, and on the nature of the cognitive processes re-
quired [13,18,19]. Doyon et al. (2002) [20] proposed a
model for characterising the complex pattern of brain acti-
vation underlying motor skill training. Two loop circuits,
a cortico-striatal and a cortico-cerebellar system, are both
recruited and operate in parallel during the fast learning
stage. Early in the learning phase, the following structures
are recruited: the striatum, cerebellum, motor cortical re-
gions, as well as prefrontal and parietal areas. Similarly,
in a model proposed by Hikosaka et al. (2002) [21], two
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loop circuits are recruited which specialise in learning spa-
tial and motor features of sequences independently. Learn-
ing spatial coordinates is supported by a frontoparietal-
associative striatum-cerebellar circuit, while learning motor
coordinates is supported by an M1 (primary motor cortex)-
sensorimotor striatum-cerebellar circuit. The coordinate
transformation between the spatial and motor sequences de-
pends on the supplementary motor area (SMA), pre-SMA,
and premotor cortices. Importantly, it is argued that learn-
ing spatial coordinates is usually explicit and faster as it may
be accompanied by increased attention or working mem-
ory, putatively involving prefrontal and parietal cortical re-
gions [22]. By contrast, motor coordinates are usually pro-
cessed implicitly and require minimum attention, therefore
they are slowly acquired during learning.

Diffusion imaging studies show that inter-individual
variation in white-matter microstructure, as measured by
fractional anisotropy (FA), correlates with behavioural per-
formance [23,24]. In this experiment we looked for corre-
lations of diffusion indices with task improvement, and did
not quantify any structural changes before and after train-
ing. Other studies have shown that structural changes can
occur following long-term training (days or weeks) of a
new motor skill [25,26], as well as within short timescales
[27,28]. Invasive microscopy procedures in animal mod-
els have detected regional structural changes, such as den-
dritic spine formation and oligodendrogenesis, after short-
term motor skill training within 1-2.5 hours [29,30]. Such
short-term effects have been more difficult to detect so far
by non-invasive techniques such as diffusion MRI. How-
ever, Sagi et al. (2012) [27] showed that this is indeed pos-
sible using diffusion tensor imaging (DTI). They scanned
participants before and after a spatial navigation task based
on a computer car race game. Microstructural changes in
grey matter were significant after only 2 hours of training.
Although widely used, DTI indices are average measure-
ments across a voxel from multiple different compartments,
including both intracellular and extracellular spaces [31].
Hence, a change in these measurements cannot be attributed
to specific changes in tissue microstructure [32-35]. Neu-
rite orientation dispersion and density imaging (NODDI)
is a diffusion MRI model that is able to differentiate be-
tween three different microstructural compartments: intra-
neurite, extraneurite, and cerebrospinal fluid (CSF) [33,36].
NODDI indices therefore offer less ambiguous microstruc-
tural interpretations. Indeed, NODDI has been used with
success to investigate age-associated changes to white mat-
ter [31], and cortical grey matter [37].

The aim of our experiment was to investigate the func-
tional and structural correlates of short-term training in
healthy middle-aged adults (4050 years old). Participants
in this study trained on a novel and complex perceptual-
cognitive-motor (PCM) task (multiple object avoidance
(MOA) task [38]). This task requires motor as well as cog-
nitive processes (including decision making, working mem-

ory, attention, and pattern recognition). We chose the PCM
task because it is multi-domain, a form of training particu-
larly effective in improving cognitive function [39—42]. We
used functional Magnetic Resonance Imaging (fMRI) to in-
vestigate changes in activation over 1 session (31 minutes
of training, consisting of 160 trials). In addition, we sought
to link the performance gains following training with under-
lying structure. We used both DTT and NODDI to analyse
microstructural inter-individual variation in grey and white
matter in relation to training outcome.

We expected to find significant training gains in per-
formance; a positive correlation of performance gains with
prior gaming experience; a negative correlation of perfor-
mance gains with impulsivity; increased activation in cog-
nitive and motor networks in the later stage of training; dif-
ferences in activity for successful vs. unsuccessful trials;
and a correlation of individual microstructural differences
in grey and white matter with task performance.

2. Methods
2.1 Participants

We recruited 22 right-handed participants, 11 females,
aged 40-50 years old (mean (M)=44.67, SD = 3.23) from
staff and students of the Universities of Brighton and Sus-
sex and the local community. All participants had normal or
corrected-to-normal vision, and no history of psychiatric or
neurological illness, or drug or alcohol abuse. One partici-
pant was excluded due to low task-engagement during the
session, leaving 21 participants. Participants gave written
informed consent before taking part in the experiment. The
study conforms to the World Medical Association Declara-
tion of Helsinki and ethical approval was obtained from the
Brighton and Sussex Medical School Research Governance
and Ethics Committee (12/101/SIG/SIG-03).

2.2 Procedure

Participants received instructions for the PCM task
prior to the scanning session. They used a fibre-optic MRI-
compatible mouse (FOM-2B-10B, NAtA technologies, Co-
quitlam, British Columbia, Canada) to control the white
cursor on the screen, such that it reached the red target
whilst avoiding the green objects (Fig. 1). They were un-
aware of either the gain relationship of the white cursor
movement or the amount of different movement patterns of
the green objects. Participants first habituated to the scan-
ner and MRI-compatible mouse by completing 8 PCM tri-
als. They then completed 80 PCM trials (Early Learning
phase) whilst undergoing fMRI scanning, followed by 72
PCM trials during a Middle Practice phase whilst undergo-
ing structural and diffusion scanning, and finally they com-
pleted 80 more PCM trials (Late Learning phase) whilst
undergoing fMRI scanning. All participants completed a
short questionnaire, asking how often they played computer
games, and classified as 0 for never, 1 for rarely, 2 for oc-
casionally, 3 for frequently, and 4 for often. They also
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Fig. 1. Task. On each trial the participants had to move the cursor (white circle on the screen) from one bottom corner of the computer

screen to a red circle target located in the diagonal top corner of the screen. Participants had to move the white cursor whilst avoiding

the green moving objects (n = 20 circles).

completed the Barratt Impulsiveness Scale (BIS-11), a 30
item self-report measure for the assessment of impulsive-
ness [43,44].

2.3 Perceptual-Cognitive-Motor Task (PCM)

The task goal was to move the cursor from one cor-
ner of the computer screen to a red circle target in the di-
agonal corner of the screen (Fig. 1). To achieve the task
goal, participants had to move the white cursor to the red
target whilst avoiding green objects (n = 20 circles) mov-
ing around the screen on pseudo-randomised linear trajec-
tories. If the white cursor touched one of the green objects,
the trial was unsuccessful. If the white cursor reached the
red target, the trial was successful. The MRI-compatible
computer mouse was held by the participant in their right
hand and controlled the cursor location on the computer
screen. When the task started, the white cursor first ap-
peared in either the bottom left or bottom right of the screen.
The starting positions of the white cursor changed pseudo-
randomly from trial-to-trial, but with an equal number of
these two possible starting positions across the experiment.
There were four different movement patterns for the green
objects that each began with the same starting positions. A
total of eight movement patterns across the two starting po-
sitions were created by mirroring the original four move-
ment patterns relative to either of the two starting positions
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of the white cursor in an attempt to have equal task diffi-
culty on each starting position.

2.4 MRI

Each session included: a Blood Oxygen Level Depen-
dent (BOLD) fMRI run 1 (15 min) (Early Learning phase,
PCM task), structural T1-weighted volume (6 min) (Middle
Practice phase, PCM task), multiband diffusion-weighted
scan optimised for NODDI (9 min) (Middle Practice phase,
PCM task), and BOLD fMRI run 2 (15 min) (Late Learn-
ing phase, PCM task). Total scanning time per session was
about 45 minutes.

The images were acquired using a Siemens 1.5T
Avanto scanner (Siemens, Erlangen, Bavaria, Germany)
with a maximum gradient strength of 44 mT/m, and a 32-
channel head coil.

The PCM task was presented on an in-bore rear pro-
jection screen, at a viewing distance of approximately 45
cm, subtending 5° of visual angle. Stimuli were delivered
using Cogent2000 v1.32 running under MATLAB R2015a
(The MathWorks, Inc., Natick, MA, USA). Time-course
series of the two fMRI runs were acquired using a T2*-
weighted echo planar imaging (EPI) sequence, obtaining
354 volumes during each of the PCM task. Each volume
consisted of 34 axial slices oriented 30° to the anterior com-
missure — posterior commissure (AC—PC) line and cover-
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ing the whole brain. Slices were acquired bottom—up in
the sequential mode (repetition time (TR) = 2520 ms, echo
time (TE) = 43 ms, flip angle = 90°, matrix size = 64 X
64, FOV =192 x 192 mm, slice thickness = 3 mm with a
20% gap, resulting in 3 mm isotropic voxels). A whole-
brain, high-resolution T1-weighted 3-D structural image
was obtained using a magnetisation-prepared rapid acqui-
sition with gradient-echo (MPRAGE) sequence, consisting
of 192 contiguous axial slices (TR = 2730 ms, TE = 3.57
ms, flip angle = 7°, matrix =256 x 256, field of view =256
X 256 mm, 1.0 mm isotropic voxels).

Diffusion-weighted data were acquired with single-
shot, twice-refocused pulse gradient spin-echo echo planar
imaging (EPI) (Tuch et al., 2003 [45]) with the following
parameters: TE =95 ms, TR =4036 ms, field of view (FoV)
=240 x 240 mm?, acquisition matrix size = 96 x 96, num-
ber of slices = 60, slice thickness = 2.5 mm. Two diffu-
sion shells were used, b = 800 and 2000 s/mm? with 30 and
60 non-collinear directions, respectively. The images in-
cluded a total of 9 images with no diffusion weighting (b =
0). Further images with b = 0 were acquired in the opposite
phase encoding direction in order to estimate and correct
for susceptibility induced distortions. The Multiband (MB)
sequence, developed by the University of Minnesota Cen-
ter for Magnetic Resonance Research (Minneapolis, MN,
USA), was used to acquire diffusion data quickly, using a
MB acceleration factor of 2 [46].

3. Data Analysis
3.1 Behavioural Data

We used the normalised learning index (LI) to assess
individual learning progress for each participant.

Late learning score — Early learning score
Late learning score + Early learning score

We used the Statistical Package for the Social Sciences
(SPSS IBM V.22, IBM Corp., Armonk, NY, USA) for anal-
yses of behavioural data. We conducted tests of assump-
tions to ensure the chosen statistical analyses were appro-
priate for our data. To exclude a potential effect of partic-
ipant sex, age, or education on task performance, we ran
tests to determine if there were any relationships between
the demographic data and the performance scores. Tests of
assumptions for the point-biserial correlation of sex x nor-
malised LI scores indicated no outliers. A Shapiro-Wilk test
showed that LI scores were normally distributed both for fe-
males, W(11) = 0.961, p = 0.785, and for males, W(10) =
0.965, p=0.836. Levene’s test found that the assumption of
homogeneity of variance for female and male LI scores was
met, F(1,19) =0.424, p = 0.523. The point-biserial correla-
tion demonstrated that there was no significant relationship
between sex and training outcome, rpb =—0.049, p = 0.834.

Tests of assumptions for the Pearson’s correlation of
age x LI scores indicated no outliers for age and no outliers
for LI scores. A Shapiro-Wilk test showed that age was nor-
mally distributed, W(21) = 0.925, p =0.112, as were the LI
scores, W(21) = 0.976, p = 0.863. The Pearson’s correla-
tion demonstrated that there was no significant relationship
between age and training outcome, r = 0.184, p = 0.424.

Tests of assumptions for the Pearson’s correlation of
education x LI scores indicated no outliers for education.
A Shapiro-Wilk test showed that education is normally dis-
tributed, W(21) = 0.909, p = 0.052. The Pearson’s correla-
tion demonstrated that there was no significant relationship
between education and training outcome, r = —0.007, p =
0.975. As there were no significant relationships found be-
tween the demographics and training outcome, these vari-
ables were not used as covariates in any further analyses.

To assess performance, we used the number of suc-
cessful trials in the Early and Late Learning phases as the
dependent variable. We applied a paired samples ¢-test on
the successful trials on the PCM task comparing Early and
Late Learning performance. Statistical significance was set
at p < 0.05 (two-tailed). Cohen’s d was used as an effect
size measure [47].

3.2 Imaging Data

We used SPM12 (Wellcome Trust Centre for Neu-
roimaging, UCL, London, UK; https://www.fil.ion.ucl.ac
.uk/spm/) running under MATLAB R2015a for data pre-
processing and statistical analyses of the fMRI data. Pre-
processing of functional images was carried out for each
run separately, including slice time correction to the mid-
dle slice in time, spatial realignment to the first image, and
unwarping. The T1-weighted structural image was coreg-
istered to the mean functional image and subsequently seg-
mented to obtain normalisation parameters based on the
standard Montreal Neurological Institute (MNI) template.
The segmentation parameters were used to transform each
participant’s functional images and the bias-corrected struc-
tural image into MNI space. Voxel sizes of the func-
tional and structural images were retained during normal-
isation, and the normalised functional images were spa-
tially smoothed using an 8-mm FWHM (full width at half-
maximum) Gaussian kernel.

Statistical analyses were performed using the general
linear model. At the single subject analysis, fMRI run 1
(Early Learning) and fMRI run 2 (Late Learning) were en-
tered as separate sessions into the model. For fMRI run 1
there were two conditions: EarlyLearning Successful trials
and EarlyLearning Unsuccessful trials, and for fMRI run
2 the conditions were: LateLearning Successful trials and
LateLearningUnsuccessful trials, resulting in 4 regressors
of interest.

Results of the single-subject analyses were taken to
second level to examine activation differences following
training with a whole-brain analysis. The subject-specific
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Fig. 2. Comparison of behavioural performance during the first 80 trials (Early Learning), and the last 80 trials (Late Learning)

in a box and whisker plot. The median number of successful trials for the two phases of the task were 25 and 37 respectively. The black

dot represents an outlier value of 71.

beta images of Early Learning and Late Learning, Suc-
cessful and Unsuccessful trials were entered into a 2 x 2
repeated measures ANOVA using the full factorial design
specification in SPM12. Phase of testing (Early Learning,
Late Learning) and Trial Performance (Successful, Unsuc-
cessful) were entered as within-subjects factors. All main
and interaction effects derived from the ANOVA are re-
ported at a statistical significance of p < 0.05 after false
discovery rate (FDR) correction for multiple comparisons
at the cluster level, clusters formed using p < 0.001.

The diffusion weighted data were analysed using tools
from the FMRIB Software Library (FSL, version 5.0.7, Ox-
ford, UK). Data were corrected for eddy-current induced
distortions and involuntary motion using FSL’s topup tool
and Eddy command [48]. Mean diffusivity (MD) and frac-
tional anisotropy (FA) were estimated by least square fit-
ting of the data with the tensor model using the FSL tool
dtifit. Next the NODDI fitting algorithm implemented in
Matlab and distributed by the developers of NODDI [33]
(http://www.nitrc.org/projects/noddi_toolbox) was used to
yield neurite density index (NDI), orientation dispersion in-
dex (ODI), and isotropic diffusion maps. All the diffusion
indices maps were normalised to the MNI space using the
Advanced Normalization Tools (ANTs, version 2.1.0; http:
//stnava.github.io/ANTs). Images were spatially smoothed
using a 5 mm FWHM Gaussian kernel. To quantify the re-
lationship between performance and brain microstructure,

&% IMR Press

we ran correlations between the PCM normalised LI scores
and the DTI indices of FA and MD, and the NODDI indices
of NDI and ODI. A statistical significance threshold of p <
0.05 FDR-corrected at the cluster level was used, after clus-
ters were formed with an uncorrected p < 0.001.

3.3 ROI Analyses

Regions of interest (ROIs) were selected based on the
models for motor skill learning by Hikosaka et al. (2002)
[21] and Ungerleider et al. (2002) [49]. These models
include the striatum, cerebellum, premotor cortex, SMA,
preSMA, M1, anterior cingulate, as well as prefrontal and
parietal areas. In addition, we included the hippocampus as
increases in activity have been demonstrated in this region
for both the early and later stages of motor training (Schen-
dan et al., 2003 [50]; Albouy et al., 2008 [51]; Fernandez-
Seara et al., 2009 [52]; Gheysen et al., 2010 [53]; King
et al., 2013 [13]). And finally, the parahippocampal cortex
was included as it is highly engaged during visuospatial pro-
cessing (van Strien ef al., 2009 [54]; Aminoff et al., 2013
[55]; Hohenfeld et al., 2020 [56]), a key aspect of the PCM
task. We specified 14 anatomical ROIs bilaterally: striatum
(including caudate and putamen), cerebellum, hippocam-
pus, parahippocampus, SMA, preSMA, M1, premotor cor-
tex, anterior cingulate, dorsal Prefrontal Cortex (dPFC), or-
bital PFC (oPFC), and inferior parietal cortex. The pre-
cuneus and vPFC were selected to serve as control regions.
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Table 1. Whole-brain analysis: regions showing a main effect of testing phase (Early, Late) obtained from a 2 x 2 (Testing
Phase, Trial Performance) ANOVA.

MNI coordinates

Brain region —  F-value Cluster size (voxels) p-value FDR-corrected
X y z

Cerebellar vermis (10) 3 46 -34 43.09 251 0.003

Left pons -3 -19 22 26.69

Right thalamus 6 22 -1 20.56

Right pons 3 28 37 15.34

Right subthalamic nucleuss 9  -13  -10 12.43

Left cerebellum (Crus 2) -3 -85 22 45.77 132 0.047

Right cerebellum (Crus 1) 6 -85 -19 38.90
Right lingual gyrus 21 94 -7 27.58
Right cerebellum (Crus2) 6 -85 25 17.20

Areas within a cluster shown in descending order of F-value. A statistical significance threshold of p < 0.05

FDR-correction at the cluster level was used, after clusters were formed with an uncorrected p < 0.001. p values

are reported at the cluster level. The MNI coordinates refer to the peak F-value. Local maxima that are more than

8 mm apart are shown for each cluster. MNI, Montreal Neurological Institute; FDR, false discovery rate.

We did not expect to see a change in activity in these ar-
eas as they show increased activation during later stages of
motor skill learning (Doyon, 1997 [57]; Sakai et al., 1998
[58]; Ungerleider et al., 2002 [49]; Doyon et al., 2003 [59];
Lehéricy et al., 2005 [60]; King et al., 2013 [13]). All ROI
masks were from the WFU PickAtlas v2.4 (Maldjan ef al.,
2003 [61]; http://www.nitrc.org/projects/wfu_pickatlas/).

4. Results
4.1 Behavioural Performance

We found no relationship between the participant sex,
age or education on task performance. As there were no
significant relationships found between the demographics
and training outcome, these variables were not used as co-
variates in any further analyses.

Tests of assumptions for the paired samples #-test com-
paring Early and Late Learning scores indicated no outliers.
A Shapiro-Wilk test showed that the distribution of the dif-
ferences was normal, W(21) = 0.970, p = 0.743. The dif-
ference of successful trials during the Late Learning phase
(last 80 trials) (M =37.00; SD = 14.59) to those in the Early
Learning phase (first 80 trials) (M =24.71; SD = 13.96) was
statistically significant, t(20) = 7.52, p < 0.001 (Fig. 2).
This corresponds to a large positive effect, Cohen’s d =
0.88.

We ran a multiple regression for the LI, as well as the
Early and Late Learning phase scores for each individual,
with the level of the reported computer game experience of
each participant, and their BIS-11 impulsivity scores (the
total score, as well as the 3 Second-order Factors: Atten-
tional, Motor and Non-Planning) (Mean BIS-11 score 64.5,
range 50-93). Level of computer game experience as a pre-
dictor of accuracy (% successful trials) for the Late Learn-
ing phase was the only significant and positive correlation,
p=0.003.

4.2 Imaging Results
4.2.1 Whole Brain fMRI, Effect of Learning Phase

We first tested whether performing more accurately in
the Late Learning phase was associated with activations in
particular brain areas. We performed a 2 x 2 repeated mea-
sures ANOVA with Testing Phase (Early, Late Learning)
and Trial Performance (Successful, Unsuccessful) as fac-
tors. We found a significant main effect of testing phase,
but no main effect of performance or interaction between
testing phase and performance.

The main effect of testing phase was observed in ar-
eas across two clusters (Table 1). The first cluster extended
to 251 voxels and included the cerebellar vermis, the pons,
the right (R) thalamus, and the R subthalamic nucleus. The
second cluster extended to 132 voxels, and included the
cerebellum (R Crus 1, Crus 2 bilaterally), and the R lingual

gyrus.

We examined the differences in testing phase more
closely using the contrasts Early > Late Learning and Late
> Early Learning. We found a significant effect for the two
contrasts. Specifically, there was greater activity bilaterally
in the cerebellum and in the R lingual gyrus in the Early
compared to the Late Learning phase (Table 2). In the Late
relative to the Early Learning phase, there was increased
activation bilaterally in the cerebellum and pons, R thala-
mus, R subthalamic nucleus (STN), R precuneus, R mid
cingulate cortex, R SMA, and left (L) paracentral lobule
(Table 2).

4.2.2 ROI Analyses

We computed separate 2 X 2 repeated measures
ANOVAs for each ROI with testing phase (Early, Late)
and Trial Performance (successful, unsuccessful) as within-
subject factors. None of the ROl ANOVAs survived the
FDR correction for multiple comparisons. Using an ex-
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Table 2. Whole-brain analysis: brain regions with increased activity in the Early compared to the Late Learning phase (Early

> Late Learning).

MNI coordinates

Brain region

Cluster size (voxels) p-value FDR-corrected

X y z t-value
Early > Late Learning
Left cerebellum (Crus 2) -3 85 22 6.77 159 0.014
Right cerebellum (Crus 1) 6 -8 -19 6.24
Right lingual gyrus 21 94 7 5.25
Right cerebellum (Crus 2) 6 -85 25 4.15
Late > Early Learning
Cerebellar vermis (10) 3 46 -34 6.56 317 0.002
Left pons -3 =19 22 5.17
Right thalamus 6 22 -l 4.53
Right pons 3 28 37 3.92
Right subthalamic nucleus 9 -13  -10 3.53
Right precuneus 12 43 53 5.10 185 0.019
Right mid cingulate cortex 9 -1 41 4.56
Right SMA 22 65 4.05
Left paracentral lobule -3 -16 68 4.04

Followed by brain regions with increased activity in the Late relative to the Early Learning phase (Late > Early

Learning). The results are shown using a statistical significance of p < 0.05 after FDR-correction at the cluster

level, clusters formed using p < 0.001. p values are reported at the cluster level. The MNI coordinates refer to the

peak t-value. Local maxima that are more than 8 mm apart are shown for each cluster. SMA, supplementary motor

area.

ploratory uncorrected threshold of p < 0.005 and k = 5
voxels, we observed a main effect of testing phase in the
cerebellum and other brain areas (Table 3). There was no
main effect of performance and no interaction between test-
ing phase and performance in any of the ROIs.

To further explore the differences in testing phase, we
used an uncorrected threshold of p < 0.005 and k = 5 vox-
els with the contrasts Early Learning > Late Learning and
Late Learning > Early Learning in each ROI. There was
increased activity during Early Learning bilaterally in the
cerebellum, L parahippocampal gyrus, and L hippocampus
(Fig. 3A). There was increased activity during Late Learn-
ing bilaterally in the cerebellum; in striatum (including L
caudate and bilaterally in putamen); bilaterally in M1, pre-
motor cortex, SMA, and preSMA; bilaterally in anterior
cingulate cortex; bilaterally in superior parietal cortex, L
inferior parietal cortex, R angular gyrus, R supramarginal
gyrus, bilaterally in precuneus, and postcentral gyrus; bi-
laterally in cuneus, calcarine sulcus, R lingual gyrus, and
R middle occipital gyrus; bilaterally in fusiform gyrus; in
R insula; in R dPFC, R vPFC, and bilaterally in oPFC
(Fig. 3B).

Finally, we calculated the correlations of the LI and the
percent change in betas in the ROIs that showed a signifi-
cant effect for the contrasts Early > Late and Late > Early
Learning phase, to identify potential neural substrates that
facilitated rapid motor skill learning. We found significant
positive correlations bilaterally in the putamen, » =0.493, p
= 0.023; and anterior cingulate cortex, » = 0.524, p = 0.015.
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4.3 Diffusion Data: Whole-Brain Analyses

We then looked for correlations between the LI and the
diffusion MRI indices. We applied a statistical significance
threshold of p < 0.05 FDR-correction at the cluster level,
after clusters were formed with an uncorrected p < 0.001
for all analyses. We found a negative correlation of the LI
and FA in the SMA; a negative correlation of the LI and MD
in the cerebellum and middle temporal gyrus; and a positive
correlation of LI with ODI in the SMA (Table 4).

5. Discussion

In this experiment we examined the neural correlates
of a novel and complex skill acquisition task that com-
bined perceptual, motor and cognitive processes in healthy
middle-aged adults (40-50 years old). There was a signifi-
cant improvement in performance following training. This
performance improvement could not be attributed to the
participant demographics, including their age, sex and edu-
cation. At a neurophysiological level, there was increased
engagement of both cortical and subcortical areas within
a relatively short time, supporting improved task perfor-
mance. And finally, we found significant associations be-
tween brain microstructure and training outcome.

5.1 Behavioural Performance

The number of successful trials increased significantly
from the Early to the Late Learning phase of the PCM task,
and the effect size was large and positive. The participants
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Fig. 3. Activation maps of the exploratory ROI analysis for the PCM task. Colour scale indicates z-scores, ranging from 0 to 6.
(A) Increased activity during Early Learning (a) bilaterally in cerebellum, (b) left parahippocampal gyrus and hippocampus. A statistical
significance of p < 0.005 (uncorrected) with an extent threshold of 5 voxels was used. (B) Increased activity during Late Learning
bilaterally in (a) cerebellum; (b) striatum; (c) M1, premotor cortex, SMA, and preSMA; (d) anterior cingulate cortex; (e) superior parietal
cortex, left inferior parietal cortex, right angular gyrus, right supramarginal gyrus, bilaterally in precuneus, postcentral gyrus (not shown),
cuneus, calcarine sulcus (not shown), right lingual gyrus (not shown), right middle occipital gyrus, and bilaterally in fusiform gyrus (not
shown); (f) in right insula (not shown), right vPFC, bilateral oPFC, and right dPFC (not shown). Statistical significance was set at p
< 0.005 (uncorrected), k = 5 voxels. ROI, regions of interest; PCM, perceptual-cognitive-motor; PFC, prefrontal cortex; dPFC, dorsal
PFC; oPFC, orbital PFC; vPFC, ventral PFC.

g &% IMR Press


https://www.imrpress.com

Table 3. Exploratory ROI analysis: brain regions with a significant main effect of testing phase for the PCM task.

MNI coordinates

Brain region F-value  Cluster size (voxels) p-value uncorrected
X y z
Cerebellum ROI mask
Left cerebellum (Crus 2) -6 -85 22 39.97 79 0.033
Right cerebellum (Crus 1) 21 88 -28 24.22
Right cerebellum (Crus 2) 6 -85 28 14.87
Right cerebellum (VI) 15 -8 -19 13.77
Cerebellar vermis (10) 3 46 34 43.09 65 0.050
Left cerebellum (Crus 2) -21 88 31 12.56 11 0.400
Left cerebellum (IV-V) -6 55 4 12.88 7 0.508
Striatum ROI mask
Left putamen -18 8 5 21.24 45 0.096
Left caudate -15 14 5 15.07 11 0.400
Right putamen 27 -7 8 12.35 9 0.449
M1 ROI mask
Left precentral gyrus -48 4 44 17.25 10 0.424
Right precentral gyrus 42 -13 41 11.58 10 0.424
Left postcentral gyrus =57 -16 35 13.20 9 0.449
Left postcentral gyrus -39 25 56 11.05 5 0.582
Premotor cortex ROI mask
Right posterior-medial frontal 9 -13 53 16.87 55 0.069
Right superior frontal gyrus 24 -1 59 24.08 32 0.155
Left paracentral lobule -3 -16 65 13.95 17 0.294
Left posterior-medial frontal -3 -10 65 13.00
Left precentral gyrus -48 4 44 17.25 12 0.379
Right posterior-medial frontal 6 2 56 11.86 10 0.424
Right precentral gyrus 42 -1 41 10.82 7 0.508
SMA ROI mask
Right posterior-medial frontal 9 -13 53 16.87 103 0.017
Left posterior-medial frontal -3 13 65 14.66
Right posterior-medial frontal 6 5 59 12.67 31 0.161
Left posterior-medial frontal —12 8 59 15.94 20 0.256
Right posterior-medial frontal 6 23 53 15.46 18 0.281
preSMA ROI mask
Right precentral gyrus 48 8 41 18.03 14 0.341
Left posterior-medial frontal 3 23 53 13.02 13 0.359

Right posterior-medial frontal 6 17 47 11.17
Anterior cingulate ROI mask

Left anterior cingulate cortex -12 41 -1 22.92 23 0.224

Right anterior cingulate cortex 9 38 -1 11.22 8 0.477
Parahippocampal ROI mask

Right lingual gyrus 27 =52 7 20.59 19 0.268

Right fusiform gyrus 30 58 10 11.48

Left hippocampus =21 =25 -13 20.39 12 0.379

Left parahippocampal gyrus -15 34 7 11.19

Left fusiform gyrus =33 -13 31 15.67 9 0.449
Hippocampus ROI mask

Left hippocampus 21 22 -13 2431 27 0.189
Inferior parietal ROI mask

Right supramarginal gyrus 63 43 35 20.40 22 0.234

Right angular gyrus 33 55 44 20.03 21 0.245

Left inferior parietal cortex -30 52 47 21.48 16 0.309
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Table 3. Continued.

MNI coordinates

Brain region F-value  Cluster size (voxels) p-value uncorrected
X y z
Precuneus ROI mask
Right precuneus 12 70 44 20.99 68 0.046
Right cuneus 15 =79 41 11.14
Left precuneus -12 49 53 22.76 34 0.143
Left inferior parietal cortex 27 52 44 17.55 24 0.214
Left superior parietal cortex 24 -61 47 9.70
Right calcarine sulcus 3 -64 17 11.61 22 0.234
Left calcarine sulcus -3 =70 17 11.34
Right precuneus 12 43 53 25.97 20 0.256
Right superior parietal cortex 27 —-61 50 17.04 13 0.359
dPFC ROI mask
Right precentral gyrus 48 5 38 18.38 26 0.195
Left posterior-medial frontal 3 23 53 13.02 13 0.359
Right posterior-medial frontal 6 17 47 11.17
vPFC ROI mask
Right precentral gyrus 60 8 20 18.53 13 0.359
Right IFG (p. Opercularis) 57 11 17 16.73
Right IFG (p. Orbitalis) 39 20 -16 14.62 7 0.508
Right insula lobe 33 26 2 10.79 5 0.582
oPFC ROI mask
Right superior frontal gyrus 24 62 2 17.40 14 0.341
Right middle frontal gyrus 33 53 2 9.07

Organised by ROI mask used for the analysis. A statistical significance threshold of p < 0.005 (uncorrected) with an

extent threshold of 5 voxels was used. p values are reported at the cluster level. The MNI coordinates refer to the peak

F-value. Local maxima that are more than 8 mm apart are shown for each cluster. IFG, inferior frontal gyrus.

completed 160 trials within 31 minutes of training before
the Late Learning phase. The fact that a relatively short
training duration and a relatively low number of trials re-
sulted in large performance improvement is in line with
several studies showing significant task improvements fol-
lowing training, e.g., [6,40,62—68]. This improved perfor-
mance in middle-aged adults is in agreement with findings
in young adults, showing that practice with the PCM task
led to better performance compared to controls that received
no training [38].

The PCM scores for our participants were low, and
there was still much room for improvement. The mean per-
centage of successful trials significantly increased from the
Early Learning (M = 30.88%) to the Late Learning (M =
46.25%). By comparison, in the study by Bennett et al.
(2018) [38], performance improved significantly in the post
test for the practice group (M = 55%) compared to the con-
trol group that received no training (M = 20%) within 31
minutes of practice. One explanation for the lower train-
ing gains in our experiment could be that middle-aged par-
ticipants are less able to learn the task than young adults.
However, direct comparisons of the middle-aged adults
and young adults of these different studies are difficult be-
cause the Bennett et al. (2018) [38] study was behavioural,
whereas the present study was carried out in an MRI scan-
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ner. Conceivably the task is more difficult in the scanner as
participants have to habituate to the scanner environment,
in addition to completing the task while lying down, with
a head coil mounted around the face, visualising the com-
puter screen through a mirror system, and manipulating an
unfamiliar mouse apparatus without being able to see one’s
hand.

It is likely that 31 minutes of training was not enough
time for the middle-aged participants to achieve expertise at
this complex task. Changes in motor skill performance are
known to evolve slowly, requiring many repetitions over
several training sessions [18,49,69]. The acquisition of mo-
tor skills follows distinct stages, including an early, fast
learning stage, in which considerable improvement in per-
formance can be seen within a single training session, and a
later, slow learning stage, in which further gains can be ob-
served across several training sessions [18,49,70,71]. With
extended practice, the skilled behaviour becomes resistant
to both interference and the passage of time, and can be
readily retrieved at reasonable performance levels despite
long periods without practice [18,49,72]. While it is clear
that the middle-aged participants demonstrated significant
performance improvements in the early fast learning stage,
longer term training would be needed to see if further gains
could be observed.
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Table 4. Whole-brain analysis: brain regions with significant correlations between DTI/NODDI indices and the Learning Index

(L).

MNI coordinates

Brain region t-value  Cluster size (voxels) p-value FDR-corrected
X y z
FA negative correlation with LI
Right SMA (WM) 18 20 58 5.28 35 0.002
Right SMA (WM and GM) 12 20 60 4.83
MD negative correlation with LI
Left cerebellum (IV-V) (GM) -20 48 -22 5.30 95 <0.001
Left cerebellum (VI) (GM) 22 54 20 5.19
Left middle temporal gyrus (GM) —48 54 14 5.61 33 0.038
Right cerebellum (VI) (GM) 24 -72 -18 4.65 29 0.049
ODI positive correlation with LI
Right SMA (WM) 16 22 58 5.25 22 0.014

A statistical significance threshold of p < 0.05 FDR-correction at the cluster level was used, after clusters were formed with

an uncorrected p < 0.001. p values are reported at the cluster level. The MNI coordinates refer to the peak z-value. Local

maxima that are more than 8 mm apart are shown for each cluster. WM, white matter; GM, grey matter.

Moreover, we tested whether impulsivity and com-
puter game experience could predict the performance im-
provement for each individual. Impulsivity is associated
with specific measures of dysfunction of inhibitory control,
ranging from disinhibited comments to risk-taking and ag-
gression in clinical and non-clinical populations, e.g., [73—
75]. Although we expected that participants with lower
impulsivity scores might improve their performance more
during the learning phase, possibly by exercising more in-
hibitory control and suppressing inappropriate motor re-
sponses or decisions, there was no significant association
of the BIS-11 scores, or their components, with task perfor-
mance. It is likely that sophisticated kinematic measures
of movements were needed to reveal differences associ-
ated with impulsivity scores, e.g., [73,74], rather than dif-
ference scores that capture overall performance accuracy
and improvement. Computer game experience was asso-
ciated with improved performance at the PCM task, which
can be classified as near transfer to another type of com-
puter game within the scanner environment. This result is
in agreement with research that shows significant transfer
benefits of computer gaming in the training of real-world
skills, such as surgery and flight performance [76].

5.2 fMRI
5.2.1 Whole Brain Analyses

We found a significant main effect of testing phase:
bilaterally in the cerebellum and pons, in the R thalamus, R
STN, and R lingual gyrus. Specifically, there was greater
activity bilaterally in the cerebellum (crus I and II), and in
the lingual gyrus during Early Learning. This means there
was a decrease in the activity of those areas in Late Learn-
ing, which may indicate a fast switch to more efficient pro-
cessing in early visual areas [77], and in areas of the cere-
bellum that are connected with the dorsolateral prefrontal
area 46 [78]. The activation of the unimodal (visual) lin-
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gual gyrus (middle occipitotemporal area) is congruent with
findings that show its activation enhanced when visual and
tactile information are combined to strengthen the represen-
tation of the visual stimulus [79], suggesting back projec-
tions from multimodal convergence areas can feedback and
modulate representations in a primary modality [80].

Conversely, we observed increased activity in Late
Learning in the cerebellum (vermis X), pons, thalamus,
STN, precuneus, midcingulate cortex, SMA and paracen-
tral lobule. Vermis X is part of the flocculonodular lobe,
which is involved in visual tracking and oculomotor con-
trol [81]. The STN regulates function related to the basal
ganglia, which includes motor, as well as cognitive and mo-
tivational processes [82]. Precuneus is central in integrated
tasks that include visuo-spatial imagery, episodic memory
retrieval and operations such as first-person perspective tak-
ing and experience of agency [83], which were important in
the PCM task. Midcingulate cortex is crucial in execution
of extended behaviours, by encoding distributed, dynamic
representations of action sequences [84], which were a main
feature of the PCM task. Finally, the SMA has arole in self-
initiated movements [85]. The significant activation and
engagement of these areas within a short time corresponds
to those proposed by Doyon J ef al. (2002) [20] for motor
skill learning.

We did not observe a significant main effect of per-
formance or interaction between testing phase and perfor-
mance. This is likely because this is an early learning stage,
and the neural signatures for successful and unsuccessful
trials are not differentiated enough to be detected reliably.

5.2.2 ROIs

Successful trial completion required working mem-
ory for navigating effectively to the target, anticipa-
tion/prediction of obstacle trajectories, and monitoring allo-
centric spatial relationships between objects, in addition to
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motor aspects, such as fine motor control, and adaptation to
kinematics of self-referent motion and to cursor movement.
Furthermore, the task goal could be achieved in multiple
ways by executing cursor trajectories from a range of poten-
tial options. As expected, there was increased engagement
of both cognitive and motor networks with just 31 minutes
of training (160 trials).

Using an exploratory uncorrected threshold of p <
0.005 and k = 5 voxels, we observed increased activity
in Late Learning in a number of areas, in line with stud-
ies showing increased activation in single-session train-
ing, before the task is well-practiced, e.g., [86—89]. We
expected increased activity in the striatum, cerebellum,
SMA, preSMA, M1, premotor cortex, anterior cingulate
cortex (ACC), dPFC, and inferior parietal cortex. Activ-
ity in this network has been interpreted as representing the
enhanced demand for error correction (cerebellar cortex)
and planning (premotor cortex) during early learning [90].
These results for middle-aged adults are in line with find-
ings in young adults showing that the early fast learning
phase of motor skill acquisition elicits widespread activa-
tion in subcortical (basal ganglia, cerebellum, hippocam-
pus), as well as cortical areas (SMA, preSMA, M1, premo-
tor cortex, ACC, inferior parietal regions, and dPFC), e.g.,
[13,18,49,58,90-94].

The Doyon J et al. (2002) [20] model proposes that
there are two loop circuits, a cortico-striatal and a cortico-
cerebellar system, which are both recruited during the early
learning stage of motor skill training regardless of the type
of motor task.

However, in the later stage, after several sessions of
training, the cortico-striatal and cortico-cerebellar systems
contribute differentially to different types of motor tasks.
For example, for motor sequence training the cerebellum
becomes no longer essential, and the long-lasting retention
of the skill will now involve representational changes (re-
flected through increased activity) in the striatum and its
associated motor cortical regions, including the parietal and
motor-related structures [18]. By contrast, a reverse pattern
of plasticity is proposed for motor adaptation (learning to
adapt to environmental perturbations): the striatum is no
longer necessary for the execution and retention of the ac-
quired skill; increased activity in regions representing this
skill will now be present in the cerebellum, parietal cor-
tex and motor-related cortical regions [18]. Thus, both the
cortico-striatal and cortico-cerebellar loops are recruited in
the early stage of motor skill training, while the later stage
of motor sequence learning recruits the cortico-striatal sys-
tem, whereas motor adaptation skills recruit the cortico-
cerebellar system. Both the cortico-striatal and cortico-
cerebellar systems were recruited in middle-aged adults.
Indeed, our findings corroborate the regions suggested to
be recruited in the early learning phase of the model—we
found increased activity in the striatum, cerebellum, mo-
tor cortical regions (e.g., premotor cortex, SMA, pre-SMA,
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ACC), as well as prefrontal and parietal areas. However,
in the present experiment we did not assess motor skill ac-
quisition over the entire course of learning, and thus cannot
assess the late training stage in order to fully examine this
model.

In a similar model proposed by Hikosaka et al. (2002)
[21], learning spatial coordinates during motor skill train-
ing is supported by a frontoparietal-associative striatum-
cerebellar circuit, while learning motor coordinates is sup-
ported by an M1-sensorimotor striatum-cerebellar circuit.
The Hikosaka et al. [21] model postulates that the regions
engaged in the early stage of motor skill training are asso-
ciative and involved in the fast learning of spatial coordi-
nates, whereas in the late stage sensorimotor areas engage
in the slower learning of motor coordinates. In line with
this model, we found increased activity in frontoparietal-
associative striatum-cerebellar regions (i.e., dPFC, inferior
parietal cortex, ACC, caudate, rostrodorsal regions of the
putamen, and regions in the cerebellum) indicating that this
circuit was recruited to learn spatial coordinates in the PCM
task.

Because of the exploratory nature of the ROI analyses,
we do not focus on individual region activations, and only
discuss the significant correlation of the LI with increased
activity of the putamen and anterior cingulate with training
improvement.

This finding is in line with studies showing that the
rostrodorsal (associative) regions of the putamen are in-
volved early in the learning process and are critical for ac-
quiring a new motor skill, by extracting action value repre-
sentations [60,95,96]. By contrast, activity in the caudoven-
tral (sensorimotor) areas of the putamen increases as a func-
tion of practice, suggesting that this region is involved in the
execution of well-learned motor skills [13,60,95]. Lehéricy
et al. (2005) [60] demonstrated that performance was posi-
tively correlated with signal changes in areas activated dur-
ing early learning, including the associative putamen. Con-
versely reaction time was negatively correlated with signal
changes in areas activated during late learning stages, in-
cluding the sensorimotor putamen. In addition, Jueptner et
al. (1997) [95] showed that the shift of activation from the
associative to the sensorimotor territories of the putamen
was already completed after 50 min of training. These re-
sults indicate that motor representations shift rapidly from
the associative to the sensorimotor territories of the puta-
men during early learning. Notably, we found increased
activation in both rostrodorsal and caudoventral areas of the
putamen, providing support for the notion that motor rep-
resentations shift from the associative to the sensorimotor
territories of the putamen during early learning.

A central role of the putamen in motor skill learning
is the processing of reward prediction error signals, the dis-
crepancy between the reward and its prediction. These sig-
nals originate from midbrain neurons that provide the basal
ganglia with dopaminergic inputs, e.g., [21,97-101]. Re-
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ward error signals attach a positive value to actions and ob-
jects accurately predicting positive outcomes in the early
stage of learning, which shapes adaptive behaviour, e.g.,
[21,96,99]. Reinforcement Learning (RL) provides a useful
framework for the learning of action and object values, and
their consequences in terms of punishments and rewards
in a given environment. A large body of experiments has
mapped the RL mechanisms on fronto-striatal brain areas,
modulated by midbrain dopaminergic inputs, and in associ-
ation with the amygdala and the thalamus [96]. A study that
tracked the dynamic representation of action values during
learning [102], found that both the value of actions chosen
based on previous outcomes, as well as those based on im-
mediately available perceptual information, are represented
in the dorsal striatum (caudate nucleus and putamen). This
would be relevant for the PCM task, as both memorised suc-
cessful action choices and immediately available visual in-
formation for action selection would be crucial for navigat-
ing each trial.

Putamen activation also increases in non-motor tasks
involving a reward prediction error [103,104]. Sommer and
Pollmann (2016) [104] investigated if the occurrence of a
target in a visual search display would elicit an increase of
activation if the target’s location is predicted by a previ-
ously learnt spatial context. They demonstrated an intrin-
sic prediction error signal in the putamen in memory-driven
visual search. Similarly, in the PCM task a successful trial
would result in a positive intrinsic reward for a particular
pattern and for the trajectory taken to the target, whereas
an unsuccessful trial would generate a prediction error sig-
nal because at the early stage of learning, the possibility of
reward is still very uncertain. Overall, the increased activ-
ity in the putamen most likely reflected a reward prediction
error signal during task learning. The increased activity in
the putamen, indicating greater processing of reward pre-
diction error signals, correlated with improved behavioural
performance.

As with the putamen activation, the significant posi-
tive correlation of activity in the ACC and task improve-
ment most likely reflects a neural prediction error signal.
The ACC plays a central role in error detection and per-
formance monitoring, and several studies have reported ac-
tivity in response to negative feedback [105-109], for an
overview see [110]. The ACC activity contributes to a sig-
nal that has been termed feedback-related negativity (FN)
or error-related negativity (ERN), indicating violations of
expected outcomes. Similarly to midbrain dopamine neu-
rons, the FN differentiates unpredicted rewards from unpre-
dicted non-rewards [111], and has been reported in human
EEG studies, e.g. [112], as well as in single unit recordings
in the rodent ACC [113].

The PCM task required evaluation of the trial out-
comes based on whether a choice of actions led to a success-
ful trajectory to the target. The increased activity in both the
putamen and ACC was significantly correlated with a bet-
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ter training outcome. Both regions process reward predic-
tion error signals. ACC is primarily responsible for strategy
selection, e.g., whether to approach the target from a par-
ticular direction, while the prefrontal and dorsal striatum
circuits are responsible for the execution of the required ac-
tions [111]. Therefore, our results provide evidence that ex-
tracting action values at a high, strategic level in the ACC,
and a more specific way in terms of action execution in the
putamen, are critical steps in the early stage of task learning
to optimise action selection and maximise performance.

5.3 Diffusion Data

Diffusion indices can be used to indirectly localise
microstructural variation that might be indicative of learn-
ing outcome. Indeed, we found significant relationships
between MD, FA, ODI, and the Learning Index. Our re-
sults show that inter-individual variation in brain struc-
ture was associated with extent of learning in middle-aged
adults. This is in line with studies using diffusion MRI
in young adults to demonstrate relationships between tis-
sue microstructure and performance on cognitive and motor
tasks [23,27,28,114—117]. For example, Johansen-Berg et
al. (2007) [24] used DTI to show that variation in white
matter integrity, indexed by FA, in the corpus callosum
is significantly associated with variation in performance
of a bimanual coordination task, supporting the idea that
variation in brain structure reflects inter-individual differ-
ences in skilled performance. Our results are also in line
with diffusion imaging studies in older adults investigat-
ing associations between brain microstructure and perfor-
mance in cognitive and motor domains [12,37]. For exam-
ple, Bennett et al. (2011) [12] found that caudate-dPFC
and hippocampus-dPFC tract integrity were significantly
related to motor skill learning in healthy older adults (aged
63-72 years). Specifically, for both tracts, higher integrity,
indexed by FA, was associated with greater motor sequence
learning. Our results provide strong evidence of a relation-
ship between brain microstructure and learning outcome,
such that pre-existing inter-individual differences in brain
structure could determine variations in skill learning.

DTI and NODDI Indices

We correlated the diffusion indices with the Learning
Index, and we hypothesised that parameters indicating grey
matter complexity and white matter integrity would be as-
sociated with better performance gains. We found a sig-
nificant negative correlation between the training outcome
and MD in the grey matter of the left middle temporal gyrus
(specifically in human mid-temporal area: hMT+/V5) and
bilaterally in the cerebellum (left Lobules IV, V, VI, right
lobule VI); a significant negative correlation of the train-
ing outcome and FA in the grey and white matter of right
SMA; and a significant positive correlation of the training
outcome and ODI in the white matter of right SMA.
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The area hMT+/V5 is especially critical for the per-
ception of visual motion, e.g., [118], and therefore central
for improving performance at the PCM task. Lobules IV
and V are in the anterior lobe of the cerebellum, and process
sensorimotor information, e.g., [119]. Therefore, our result
is consistent with the contralateral connections between the
cortical and cerebellar hemispheres for right-handed partic-
ipants. Lobule VI is in the posterior lobe of the cerebellum
and, additionally to sensorimotor processing, it has asso-
ciation area projections, including with temporal, parietal
and prefrontal areas. Moreover it processes cognitive infor-
mation, and shows bilateral activations in working memory
tasks [119]. Consequently, the bilateral lobule VI involve-
ment in our experiment is consistent with the cognitive de-
mands of the PCM task. Furthermore, the ipsilateral SMA
FA and ODI indices correlation with the training outcome
is consistent with the SMA ipsilateral connectivity with the
primary motor (M1) hand area. Functionally, stimulation
of SMA can lead to LTP-like or LTD-like effects in M1,
providing a potential physiological mechanism for neuro-
plasticity [120,121].

MD can indicate tissue density, e.g., [27,28,32,122,
123]. Lower levels of MD correspond to lower water dif-
fusion rates, resulting from greater tissue density, i.e., a
greater density of axons or dendrites, which restricts the
overall rate of diffusion. Accordingly, we expected lower
MD to be associated with greater improvement in PCM per-
formance and indeed, this was the case in the grey mat-
ter of left hMT+/VS5 and bilaterally in cerebellum. This is
in agreement with other DTI studies that demonstrated an
association between reduced MD in grey and white mat-
ter and greater task improvement [27,28]. For example,
Sagi et al. (2012) [27] examined grey matter microstruc-
ture in participants performing a spatial navigation task.
They showed significant negative correlations between im-
provement rate on task performance and MD reduction in
the left hippocampus and right parahippocampus. Using the
same task, Hofstetter et al. (2013) [28] investigated white
matter microstructure and found that improvement on the
task correlated with reductions in MD in the fornix. How-
ever, although diffusion metrics are sensitive markers for
subtle microstructural tissue organisation, they are not spe-
cific and are difficult to attribute to particular biological
processes [124]. So, although we have established a clear
relationship between lower MD and better training outcome
on the PCM task, we can only speculate as to the cellular
mechanisms underlying the variation in structure that sup-
ports better learning on this task.

FA refers to the orientation of water diffusion, inde-
pendent of rate, and is a measure of fibre organisation and
integrity [12,27,32,122,123,125]. Higher FA values indi-
cate that the diffusion of water molecules is restricted in
the direction along axons, that fibres are more coherent and
aligned, reflecting higher tissue integrity. Lower FA val-
ues indicate diffusion in the perpendicular direction. Sev-
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eral previous studies have shown that higher FA is associ-
ated with improved behavioural performance on visuospa-
tial and cognitive tasks [24,114,116,126,127]. However,
there are also reports of correlations of lower FA values
with task performance. For example, Hofstetter and col-
leagues (2013) [28] showed that reductions in FA values in
the fornix were correlated with improvement on a spatial
learning and memory task. Tuch ef al. (2005) [23] demon-
strated that slower reaction times on a visuospatial task, i.e.,
worse task performance, were significantly correlated with
higher FA in white matter of the right optic radiation, right
posterior thalamus, right medial precuneus, and left supe-
rior temporal sulcus.

FA is a complex measure that is influenced by myeli-
nation, axon diameter, axon density [128], as well as by
path geometry and the presence of crossing fibre pathways
[24,34,129]. In areas with intravoxel fibre crossings, higher
FA of an individual fibre population can result in a lower
overall FA [23,45,130,131]. The SMA contains a large
number of connections, including short association or U
fibres that connect neighbouring gyri, e.g., from the pre-
SMA to the SMA and from the SMA to M1, e.g., [132].
The strong relationship between lower FA in both grey and
white matter of the SMA and better training outcome on
the PCM task that we demonstrated may be at least partly
explained by this anatomical feature.

Using NODDI, we found a significant positive cor-
relation of training outcome with ODI in the white matter
of the right SMA. This was in contrast to our prediction of
lower ODI values in the white matter, which would indicate
less dispersion of water molecules and thus tracts that are
more compact, parallel, directional and aligned [33], result-
ing in faster signal transmission [23].

The fact that the last two correlations of the FA and
ODI indices are found in the ipsilateral SMA can be inter-
preted as additional recruitment during a time window of
intense motor learning, planning and plasticity, potentially
sharing similarities with longer reorganisation periods re-
quiring recruitment of the SMA in both hemispheres, e.g.,
[133—135]. Furthermore, NODDI provides a way of inter-
preting changes in FA, i.e., to decouple the effects of axonal
density (higher density would increase FA) and orientation
dispersion (higher dispersion would decrease FA). The cor-
relations with FA and ODI were overlapping in the SMA—
within which we saw lower FA and higher ODI correlated
with better training outcomes. Therefore, the ODI results
confirm that the associations with FA reflected primarily an
effect of orientation dispersion. The fact that the correlation
is in the opposite direction could be due to the specific struc-
ture of SMA, and the fact that it contains many connections
with multiple directions.

6. Limitations

One of the limitations of our study is that it does not
provide data on how the activated regions interact with one
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another and how information is transferred from one circuit
to another during the course of motor training, for example,
from the associative to the sensorimotor circuit, i.e., trans-
formation from spatial to motor coordinates [21]. Func-
tional and effective connectivity approaches could be used
to assess connections between regions of a network, as well
as between networks.

The question regarding the detailed underlying biolog-
ical mechanisms of the observed relationships between the
diffusion indices and training outcome in the PCM task can-
not be addressed in this study. Histology offers the possibil-
ity to validate diffusion indices and to shed light on the cel-
lular events that underlie the measures obtained in human
neuroimaging studies of motor skill training, e.g., [127].
An animal study with a similar PCM protocol that corre-
lates diffusion indices with histological measures such as
the number of synaptic vesicles, number of dendritic spines
and astrocytic processes would provide further information
on the mechanisms underlying better training outcomes. In-
deed, evidence suggests that in both grey and white matter,
there is a strong link between neurite morphology deter-
mined from diffusion MRI and independent measures de-
rived from histology [27,28,33,127].

We have demonstrated specific associations between
diffusion indices and training outcome in a small sample
of 21 healthy middle-aged adults, suggesting that inter-
individual variation in brain structure influences variation
in skill learning. However, as this is a correlation study, we
cannot confirm a causal role of brain structure on differ-
ences in skill learning behaviour. Additionally, given the
main effect of session reported, all the suggested condition
differences in the exploratory ROI analyses could indicate
that they may be confounded by scanning time.

Finally, our experiment had a short timescale, and fu-
ture research should use a longitudinal design to investigate
the relationship of motor training with functional and struc-
tural brain changes and performance. There is emerging
evidence that changes in diffusion indices can also occur in
response to short-term training [27,28,136]. For example,
Marins and colleagues (2019) [136] trained healthy individ-
uals to reinforce brain patterns related to motor execution
while performing a motor imagery task. After just one hour
of training, participants showed increased FA in the sen-
sorimotor segment of corpus callosum. Therefore, it may
also be possible to design a pre- and post-training study of
structural brain changes with short-term training.

7. Conclusion

Our findings show that even with short-term prac-
tice, middle-aged adults show significant plasticity in cog-
nitive and motor abilities as evidenced by the training gains
made on the task. We provide novel evidence for training-
induced increased engagement of both cognitive and motor
networks within a short time window, supporting improved
performance on the task. We demonstrate that experience-
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related activity reorganisation begins to develop within cor-
tical and subcortical regions as training progresses. Some of
the functional changes, specifically in the putamen and the
anterior cingulate, are associated with better training out-
come, suggesting these areas might underlie learning of the
task. Thus, targeting these areas in training could be partic-
ularly beneficial in improving task learning. Finally, for the
first time in middle-aged brains, we show a significant asso-
ciation between brain microstructure and training outcome,
indicating that inter-individual variation in brain structure
is associated with learning rate.
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