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Abstract

Energy is a critical resource, and its optimization is central to sustainable building design.
Occupant comfort, significantly influenced by factors, including mean radiant temperature
(MRT), alongside air temperature, velocity, and humidity, is another key consideration.
This paper introduces a hybrid crow search optimization (CSA) and penguin search op-
timization algorithm (PeSOA), termed (HCRPN), designed to simultaneously optimize
building energy consumption and achieve MRT levels conducive to thermal comfort by
adjusting HVAC system parameters. We first validate HCRPN using ZDT-1 and Shaffer N1
multi-objective benchmarks. Subsequently, we employ EnergyPlus simulations, utilizing
a single-objective Particle Swarm Optimization (PSO) for initial parameter analysis to
generate a dataset. Following correlation analyses to understand parameter relationships,
we implement our hybrid multi-objective approach. Comparative evaluations against state-
of-the-art algorithms, including MoPso, NSGA-II, hybrid Nsga2/MOEAD, and Mo-CSA,
validated the effectiveness of HCRPN. Our findings demonstrate an average 7% reduction
in energy consumption and a 3% improvement in MRT-based comfort relative to existing
methods. While seemingly small, even minor enhancements in MRT can have a noticeable
positive impact on well-being, particularly in large, high-occupancy buildings.

Keywords: building energy optimization; EnergyPlus; thermal comfort; mean radiant
temperature; hybrid meta-heuristic; crow search algorithm; penguin optimization algorithm

1. Introduction

In the current global scenario, the issue of reducing energy consumption in build-
ings has taken center stage. With the growing awareness of the finite nature of energy
resources and the escalating concerns regarding climate change, the building sector has
been identified as a key area for intervention. Buildings, in their various forms and func-
tions, consume a significant portion of the world’s total energy supply. This consumption
is not only a drain on valuable resources but also a major contributor to greenhouse gas
emissions. From commercial high-rises in bustling urban centers to educational institutions
like universities and residential complexes, every building type presents unique challenges
and opportunities for energy conservation. The imperative to optimize energy use in
buildings stems from multiple factors. Firstly, it is a matter of environmental stewardship.
By reducing energy consumption, we can mitigate the carbon footprint associated with
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building operations, thereby contributing to the global effort to combat climate change.
Secondly, it has direct economic benefits for the owners and occupants of the building.
Lower energy bills translate into cost savings that can be redirected to other productive
or essential areas. Moreover, buildings with better energy performance ratings are more
attractive to tenants and buyers in an increasingly competitive market, enhancing their
market value. In the case of energy reduction studies of buildings, several investigations
have been carried out on EnergyPlus as a powerful energy simulation software. Although
the studies have been performed and several meta-heuristic algorithms were used to solve
the problem of optimization with EnergyPlus, an automated framework for analyzing
results and using EnergyPlus is required to improve the speed of studies.

1.1. Background

The imperative to curtail energy consumption in the building sector has become a
global priority in the face of escalating climate change and dwindling energy resources.
Buildings, encompassing a diverse range of typologies, account for a significant portion
of worldwide energy demand and associated greenhouse gas emissions [1]. While energy
efficiency remains paramount, ensuring occupant well-being through optimal indoor en-
vironmental quality is equally crucial. Among the factors influencing thermal comfort,
mean radiant temperature (MRT) plays a critical role in how occupants perceive the ther-
mal environment, often independently of air temperature [2]. The accurate assessment
and optimization of thermal comfort, considering MRT, present a significant challenge in
building design and operation. Building energy simulation tools, such as EnergyPlus, are
indispensable for analyzing energy performance; however, their validation often priori-
tizes energy consumption over the nuanced aspects of indoor microclimatic conditions
responsible for thermal comfort [3]. Significant energy is used when Heating Ventilation
and Air Conditioning (HVAC) systems are operating in crowded areas. Higher ventilation
rates and more stringent indoor air quality regulations in the post-pandemic environment
significantly raise energy usage. The energy retrofit of a partial recirculation all-air HVAC
system that supplies air to a lecture hall in a Southern Italian university was studied. By
using a Multi-Objective Optimization and a Multi-Criterion Decision-Making (MCDM)
algorithm, two distinct decision-makers, assessments of public and private buildings were
made [4]. In another study, thermal ventilation in multiple-floor office buildings was inves-
tigated to improve energy consumption using computational fluid dynamics simulations
with phase change materials [5].

A study by D’Agostino et al. examined HVAC retrofits in an Italian office building,
assessing their energy and cost impact, and their role in mitigating COVID-19 transmission
via increased outdoor air exchange. Using dynamic simulation, an optimal outdoor air
change rate was identified to reduce infection risk, energy, and cost, also combining system
interventions with envelope efficiency measures to offset these drawbacks [6].

Consequently, a performance gap frequently exists between simulated and measured
thermal comfort conditions [7], highlighting the need for more sophisticated approaches
that concurrently address both energy efficiency and occupant thermal comfort, with a
specific focus on MRT.

1.2. Objectives

To overcome the limitations identified in the state-of-the-art, this research work aims
to develop a novel hybrid meta-heuristic algorithm, synergizing the crow search algo-
rithm and the penguin optimization algorithm, specifically tailored for the concurrent
optimization of building energy consumption and mean radiant temperature. Establish an
automated framework that seamlessly integrates the proposed hybrid algorithm with the
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EnergyPlus building simulation software to facilitate detailed and efficient analysis. We
validate the performance of the novel algorithm and the automated framework through
comprehensive comparisons with well-established optimization algorithms (MoPso, Nsga-
II, Nsga-II/MOEAD, and Mo-Csa) [8-14] across relevant case studies. We provide valuable
insights into the trade-offs between energy efficiency and occupant thermal comfort, with a
specific emphasis on the influence of mean radiant temperature. This research contributes
to the field of building energy optimization by offering a more holistic approach that simul-
taneously addresses energy efficiency and occupant thermal comfort, leveraging a novel
hybrid meta-heuristic algorithm within an automated simulation framework. This has the
potential to drive the development of more sustainable and comfortable building designs,
reducing the environmental impact of the built environment and enhancing the well-being
of its occupants. In Section 2, previous works based on optimization energy in buildings
and their methods are categorized and reviewed in detail. In Section 3, our novel method
and levels in this study are explained in detail. Section 4 depicts experiments and compari-
son results of the algorithms. Finally, Section 5 concludes the studies in our research and
Section 6 states the future direction of the study.

2. State-of-the-Art

In this section, recent research on energy optimization is explored. Studies are catego-
rized into five different areas: building energy optimization methods, energy simulations
optimizations, energy optimization in the field of machine learning (especially in neural net-
works), multi-objective and hybrid energy optimizations, and, finally, energy optimization
research in other fields.

2.1. Building Energy Optimization Methods

There are numerous ways to approach the optimization of building energy consump-
tion. One fundamental aspect is the improvement of the building envelope. This involves
enhancing the insulation properties of walls, roofs, and floors to prevent heat loss during
the colder months and heat gain during warmer periods. High-quality insulation materials,
such as advanced fiberglass or spray foam insulation, can significantly reduce the need for
excessive heating and cooling. Furthermore, the use of energy-efficient windows with low-
emissivity coatings and proper glazing techniques can further enhance the performance of
the envelope [15,16].

Efficient lighting systems also play a crucial role. The transition from traditional
incandescent bulbs to more energy-efficient alternatives such as compact fluorescent lamps
(CFLs) and light-emitting diodes (LEDs) has been a significant step forward. LEDs, in
particular, offer high luminous efficacy, long lifetimes, and the ability to integrate with
smart lighting controls. Studies, such as [17,18], have shown that the widespread adoption
of LED lighting in buildings can result in substantial energy savings without compromising
the quality of illumination.

Another area of focus is the optimization of HVAC systems. These systems are respon-
sible for maintaining comfortable indoor temperatures and air quality but can be significant
energy consumers if not properly designed and controlled. The implementation of variable
refrigerant flow (VRF) systems, which can modulate cooling and heating capacity based on
the actual demand, has been shown to improve energy efficiency. Additionally, the integra-
tion of energy recovery ventilators (ERVs) can recover heat or coolness from exhaust air,
pre-conditioning the incoming fresh air and reducing the load on the HVAC system [19,20].

In recent years, meta-heuristic methods, especially nature-inspired and hybrid ones,
have emerged as promising techniques for building energy optimization. Nature-inspired
algorithms, such as genetic algorithms (GAs), PSO, and ant colony optimization (ACO),
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mimic the behavior of natural phenomena to search for optimal solutions. For example, a
GA emulates the process of natural selection and genetic recombination to evolve better
solutions over generations [21-24].

2.2. Energy Simulation Optimizations

In the pursuit of optimizing building energy consumption, several simulation software
tools have been developed and utilized. One such software is DOE-2.3 It has been widely
used for many years and offers a comprehensive set of features for whole-building energy
analysis. Its strength lies in its extensive library of building components and systems,
allowing for detailed modeling. However, it has been criticized for its relatively complex
user interface, which may pose a challenge for novice users. DOE-2.3 has been a staple
in the industry but is gradually being superseded by more modern alternatives in some
applications due to its dated interface and certain limitations in handling advanced building
technologies [25].

Another tool is TRNSYS, which is a simulation program that is mainly utilized in
renewable energy engineering and building simulation, particularly for both passive and
active solar design. Originating from the University of Wisconsin as a commercial software
package, it initially served the purpose of conducting dynamic simulations of solar hot
water systems over a typical meteorological year. Although it has some advantages, such as
flexibility and customization, granular results, and built-in optimization tools, it has a high
learning curve, which causes complexity for beginners, limited visualization capabilities,
system modeling constraints, and a lack of direct data import/export [26].

2.3. Machine Learning-Based Methods

Zhang et al. developed a method for predicting energy utilization in buildings based
on plug load electricity. They used a neural network-based method, Long Short-Term Mem-
ory (LSTM) and Bi-directional LSTM (Bi-LSTM) for this purpose. To increase the prediction
accuracy, the swarm intelligent algorithm known as the Whale Optimization algorithm
(WO) was applied. They compared their results based on four different combinations of
these algorithms: LSTM, Bi-LSTM, LSTM-WO, and Bi-LSTM-WO. Their predictions were
evaluated based on metrics such as the coefficient of determination (R), Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE),
and Coefficient-of-Variation of Root Mean Square Error (CV-RMSE). Better achievements
were reached in R, MAPE, and CV-RMSE evaluation metrics [27].

In another study, authors addressed the need for sustainable urban energy manage-
ment by proposing an advanced building energy consumption prediction system. They
introduced the concept of region-wide occupant energy-use behavior probability to capture
real-time interactions in building environments. Additionally, they employed the squeeze-
and-excitation attention mechanism, the sparrow search algorithm, and the convolutional
neural network to enhance data processing and hyperparameter selection. Testing on seven
buildings showed improved accuracy, reducing MAPE and CV-RMSE, with only a slight
increase in processing time. Applied to 45 buildings in a university setting, the system
achieved remarkable MAPE and CV-RMSE, demonstrating its effectiveness [28].

Rufuss et al. examined electricity consumption trends in Tamil Nadu, India, over
three decades, identifying a linear increase in demand. They focused on optimizing energy
resources with an emphasis on maximizing the Energy Received On Energy Invested
(ERQJ), a factor often overlooked in prior studies. Their econometric model showed that
population, GDP, and electricity prices significantly influenced demand, with projections
indicating a sharp rise by 2040-2041. Their optimization model suggested that increasing
renewable energy contributions could help to reverse the declining EROI trend. The model’s
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reliability was confirmed through uncertainty analysis, showing minor deviations from
actual data. The study also discussed policy recommendations for sustainable energy
planning to support policymakers and industry stakeholders [29].

2.4. Multi-Objective and Hybrid Energy Optimizations

In five distinct Chinese towns with varying climates, researchers examined an of-
fice building equipped with Building-Integrated Photovoltaic (BIPV) windows. Building
Orientation (BO), Window Size (WZ), Window Visible-Light Transmittance (VLT), and
PV Type (TOPV) were the four variables taken into consideration in the study. The goal
was to reduce the additional investment cost of BIPV windows as well as the Annual Net
Electricity Cost (ANEC). jEPlus v2.0.0 software was used to simulate the objective functions
and design variables. For the sensitivity analysis of design parameters, the jEPlus + EA
program also employed the Morris and Standard Regression Coefficient (SRC) algorithms.
The genetic-based algorithm known as NSGA-II was used to solve the multi-objective
problem. A collection of Pareto optimum solutions was produced through optimization.
According to the findings, the building with BIPV windows might reduce its yearly elec-
tricity expenses. Additionally, the static investment payback durations for all cities ranged
from 7 to 14 years, proving the economic feasibility of implementing the BIPV window [30].

A framework named AnFiS-MoH introduced, which was an innovative framework
combining the adaptive neuro-fuzzy inference system (ANFIS) with metaheuristic optimiza-
tion algorithms to improve parameter tuning in complex, nonlinear modeling. Traditional
ANFIS models faced optimization challenges as the problem size grew, so AnFiS-MoH
leveraged the global search abilities of algorithms like ant colony optimization, particle
swarm optimization, genetic algorithm, and simulated annealing. Testing on benchmark
datasets (Boston Housing and Wine Quality) by authors showed that AnFiS-MoH sig-
nificantly improved prediction accuracy and generalization, with a reduction in Mean
Squared Error and increase in R? scores. The study highlighted the effectiveness of hybrid
approaches for high-dimensional, noisy data in intelligent systems [31].

2.5. Energy Optimization in Other Scopes

Ghorbannia Delavar et al. presented a method to reduce energy and costs in instance-
intensive cloud workflows via virtual machine migration. Their approach introduced
input classification, real execution time calculation, distance parameters, and an intelligent
threshold detector (ITD), surpassing previous methods in efficiency. The HDECO method
used an objective function to enhance energy efficiency by integrating parameters into
the fitness function. Improvements were achieved by dynamically adjusting thresholds,
enhancing prediction accuracy, and refining resource allocation. By categorizing inputs
based on processing power and optimizing load balancing, their method significantly
reduced execution time, energy consumption, and costs [32,33]. In their other research, they
presented a novel hybrid bat and genetic algorithm to reduce energy while maximizing
throughput in networks [34-36]. Another research work introduced a multi-objective crow
search algorithm (CSA), called CSAMOMOC, to optimize makespan and costs in scientific
cloud workflows. A comparative analysis was conducted with the commonly used HEFT
and TC3pop algorithms, known for minimizing makespan and costs. The results showed
that the proposed algorithm achieved an average reduction in makespan and in cost,
demonstrating its superior performance over existing methods [10].

In response to the growing demands for energy reduction in Internet of Things (IoT)
applications and the need for efficient resource management, Khaledian et al. explored
workflow scheduling approaches in fog-cloud environments to optimize energy use and
makespan. In one study, they developed a workflow scheduling method using a multi-
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objective krill herd algorithm, leveraging fog-cloud architecture to reduce response delays,
energy consumption, and costs. The proposed approach showed improvement in makespan
over IHEFT, HEFT, and INO-CA methods, along with reduced energy and monetary costs.
In another study, they introduced a hybrid particle swarm optimization and simulated
annealing (PSO-SA) algorithm to prioritize tasks within IoT workflows, addressing resource
constraints and energy consumption. Their method enhanced makespan and energy
efficiency [37-41].

3. Methodology

In this section, the levels, which were used during the experiments and the results, are
explained step by step. Table 1 lists the notations used in the research.

Table 1. Notations for parameters in the algorithms.

Parameter Description
04 (t) Velocity of particle i in dimension d at iteration ¢
w Inertia weight of the particle
c1,0C Acceleration coefficients
1,7 Random numbers in the range [0, 1]
pbest g Best position of particle i in dimension d
X (t) Local position of particle i in dimension d at iteration ¢
gbesty Global best position in dimension 4
AP; Awareness property of crow i
fl; Fly length of crow i
Ly, Uy Lower and upper bounds of search space of crows
x;(t +1) Position of penguin j allocated to the i-th group at the t-th instance
O;. (1) Oxygen reserve of the j-th penguin of the i-th group
X7 ocal Best Best solution found by the i-th group of penguins
Eiot Total energy consumption
E ool Sum of the energy used for cooling
Ein 1it Energies consumed for interior lighting
Ein_equ Energies consumed for interior equipments
Efan Fans’ energies
Epumps Pumps’ energies
EHeat_Rej Heat rejection energies
F; View factor between surface i and surface j
T; Temperature of surface j
Aj Area of surface j
HPV Hyper-volume

3.1. EnergyPlus Simulations

EnergyPlus is a sophisticated software program for building energy analysis, predict-
ing energy use, indoor conditions, and system performance. Its application is valuable on
university campuses with diverse and complex building energy needs, offering insights
for efficiency and cost reduction. Developed by the U.S. Department of Energy in the late
1990s, EnergyPlus combined features of BLAST 3.0 (HVAC) and DOE-2 (whole-building
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analysis). Continuous development by a global community has enhanced its accuracy and
applicability to various building types, including those on university campuses [42].

3.2. Meta-Heuristic Algorithms

Meta-heuristic algorithms have an important role in the optimization of different fields.
In this section, single- and multi-objective meta-heuristic algorithms are reviewed.

3.2.1. Particle Swarm Optimization (PSO)

PSO is a metaheuristic optimization technique inspired by the social behavior of bird
flocking or fish schooling. It has gained significant attention in the field of building energy
optimization due to its simplicity and effectiveness in solving complex problems. The algo-
rithm works by initializing a population of particles, each representing a potential solution
to the optimization problem. These particles move through a search space, adjusting their
positions based on their own best-known position and the global best position found by the
swarm. This process continues iteratively until a stopping criterion is met, typically when
a satisfactory solution is obtained or a maximum number of iterations is reached [43,44].

The method for updating the speed of particles is written in Equation (1), where v;4(t)
is the velocity of particle i in dimension d at iteration ¢, w is the inertia weight, c; and ¢
are acceleration coefficients, r; and r, are random numbers in the range [0, 1], pbest;; is
the personal best position of particle i in dimension d, x;;(t) is the position of particle i in
dimension d at iteration ¢, and gbest; is the global best position in dimension d.

via(t +1) = w X 0jg(t) + c1 X 11 x (pbestiq — xjq(t)) + c2 X r2 x (ghesty — xj4(t)) (1)
The position of each particle is updated based on Equation (2):
Xig(t+1) = xjg(t) + vj(t +1) 2

Algorithm 1 shows PSO.

Algorithm 1 Particle Swarm Optimization (PSO)

1: Initialize particles random positions and velocities
2: Evaluate the fitness of each particle
3: for all Particle p in Swarm do
4 Ppbest <~ Pinitial position
5: end for
6: gbest <— Best position found
7: for iteration = 1 to maximum number of iterations do
8:  for each particle in the swarm do
9: Update the velocity according to Equation (1)
10: Update the position according to Equation (2)
11: fitness < fitness of the particle at its new position
12: if fitness is better than particle pbest then
13: pbest <— new position
14: if fitness of pbest is better than the gbest then
15: gbest < particle’s new pbest
16: end if
17: end if
18:  end for
19: end for

20: return gbest as the optimal solution
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In the context of building energy management, PSO has been applied to various aspects
such as optimizing the control strategies of HVAC systems, determining the optimal sizing
and configuration of renewable energy systems integrated with buildings, and improving
the energy efficiency of building envelopes. For example, in HVAC control, PSO can
be used to find the optimal setpoints for temperature and humidity to minimize energy
consumption while maintaining occupant comfort. Renewable energy system design can
help to determine the most efficient placement and sizing of solar panels or wind turbines
to maximize energy generation and reduce the building’s reliance on grid electricity.

For multi-objective PSO, instead of one objective function, there are multiple ones that
might directly or inversely affect each other. There are different ways to handle multiple
objective functions in PSO, sSuch as looking for the Pareto front and dominated solution or
opposition-based and dynamic multi-objective PSO [8,9].

3.2.2. Multi-Objective Crow Search Optimization (MoCsa)

A meta-heuristic optimization algorithm that has gained popularity because of its
special features and benefits is the crow search algorithm. It draws inspiration from the
clever way that crows conceal and retrieve food, offering a fun and practical method for
resolving challenging optimization issues.

The CSA'’s ease of use and simplicity are among its many noteworthy benefits. The al-
gorithm does not need as much parameter adjustment as some other optimization algo-
rithms. Researchers and practitioners, even those with little background in optimization
techniques, can use it because of its simplicity. Its comparatively small number of parame-
ters to modify lessens the computational load and complexity of the optimization process
compared to fine-tuning several parameters.

Each crow has a memory and awareness property. Based on its awareness of itself,
it decides whether or not to move to its hidden food resource. In some situations, he
understands that another crow is following him, so he tries to deceive that crow and go
somewhere else, but, in some circumstances, it does not, and the following crow will find
his hidden food resource. Based on random number r;, and awareness property AP;, crow
i with a position in dimension j at the iteration t 4- 1 will be set. Equation (3) shows setting
crow position based on the awareness property:

xij(t) +7r; X fll X (m,](t) — xl']‘(t)) if 7] > AP;

xij(t+1) = . .
a random position otherwise

3)

Pseudocode for the algorithm is written in Algorithm 2. For adding more objective
functions to the crow search algorithm, multiple functions will be calculated, set as the
current fitness value of the selected crow and based on the memory of the current crow,
which is an n-dimensional space; its memory is also calculated by objective functions.
Finally, if all values of current fitness are lower than current memory values, the memory
will be updated. Algorithm 3 shows the process.

When evaluating fitness, all objective functions will be called to perform multi-
objective optimization in the CSA algorithm. This is a simple way of converting CSA
from single-objective to multi-objective. In our previous article [10], we utilized hyper-
volume computation between two parameters of optimization. This is one of the accurate
ways to achieve multi-objective optimization. There are other methods such as weighted
sum [45,46], Pareto-based [47], and non-dominated sorting [48].
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Algorithm 2 Crow Search Algorithm (CSA)

1: Input: Population size n

2: number of iteration ¢

3 number of dimensions d

4 search space lower bounds Ly,

5: search space upper bounds Uy,

6: for all Crows do

7. Set n—dimensional random position between [}, and uy,
8:  Copy n—dimensional first random position as memory
9:  Calculate fitness based on objective functions

10: end for

11: for all ¢ (iterations) do

12:  for all n (crows) do

13: Update Memory of each crow

14: Sort crows based on their fitness

15: Find best crow based on its’ fitness

16: Current crow follow best founded crow
17:  end for

18: end for

Algorithm 3 Update Memory (CSA)

1: Input: Crow Index idx

2: for all Positions of crow with index idx do

3:  Current crow fitness < Calculate crow fitness

4: end for

5: for all Memories of crow with index idx do

6:  Current crow memory < Calculate crow fitness of memory
7. end for

8: if V Current fitness : Current fitness < Current memory then
9:  Current memory <— Current positions

10: end if

3.3. Proposed Method

In this research, a new hybrid algorithm, which combines adaptive memory manage-
ment (AMM) with the crow search and the penguin optimization algorithm, is presented.
Dynamically modifying memory size preserves a wide range of superior solutions and
boosts optimization effectiveness. According to simulations, the proposed algorithm
performs better than CSA and POA separately in terms of energy and MRT parameters.
The novel method is a viable solution for building energy management because of its
adaptive memory strategy, which enables it to strike a balance between exploration and
exploitation [49].

We chose to hybridize the CSA and POA to form HCRPN based on three key rea-
sons. Firstly, this hybrid approach provides an enhanced balance between exploration
(from CSA'’s global search) and exploitation (from POA'’s local search), which is crucial for
navigating the complex, multi-modal landscape of building energy and thermal comfort
optimization. Secondly, the distinct search behaviors of CSA and POA are particularly
well-suited for the highly nonlinear objective functions and interacting parameters inher-
ent in optimizing dynamic thermal comfort and energy in buildings. Finally, this novel
combination represents a significant contribution to the field by exploring the efficacy of
less commonly hybridized metaheuristics for this specific problem, as validated by our
superior performance compared to other state-of-the-art algorithms.

There are multiple advantages to synthesizing the crow search algorithm with penguin
search. First of all, the search speed of crows and the wide area of search can be added
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as an advantage to the penguin algorithm. Secondly, although penguins are searching
for food resources, finding the largest resource is performed by crows. On top of this,
implementing the crow search algorithm is simpler than other meta-heuristic algorithms,
which have more parameters and are more complicated. Third, by changing awareness
and random parameters, the behavior of searching the crows can be changed, which leads
to more convexity of the program. Finally, penguins have the ability to escape from local
optima traps because of their grouping attribute in the algorithm.

3.3.1. Penguin Search Optimization Algorithm

As CSA was explained in previous sections, POA is looked at in more detail in the
following section. POA is an emerging meta-heuristic optimization algorithm that draws
inspiration from the behavior of penguins in the Antarctic environment. This algorithm
has the potential to offer unique advantages and contribute novel perspectives to the field
of optimization, making it a relevant addition to certain research studies.

Behavioral Inspiration: Penguins exhibit social behaviors such as huddling to conserve
heat and foraging in groups. In the POA algorithm, these behaviors are mimicked to guide
the search for optimal solutions. For example, the movement and interaction of penguins
within a colony are translated into mathematical operations that govern how candidate
solutions move and converge in the search space.

Search Mechanism: The algorithm initializes a population of “penguins” considered
as candidate solutions in the search space. Each penguin has a position and a velocity.
Similar to other swarm-based algorithms, the position of a penguin is updated based on
its current position and velocity, as well as the influence of the best positions found by
itself and its neighboring penguins. The velocity update takes into account factors like the
distance to the best positions and a random factor to introduce exploration.

Advantages: One of the key advantages of POA is its ability to balance exploration
and exploitation. The social behavior-inspired interactions allow the algorithm to explore
different regions of the search space while also converging towards promising areas. It has
shown good performance in handling complex and multimodal optimization problems,
where there are multiple local optima. Additionally, POA is relatively simple to imple-
ment compared to some other advanced optimization algorithms, making it accessible for
researchers and practitioners in various fields.

Applications: POA has been applied in diverse domains such as engineering design
optimization, energy management, and image processing. In engineering, it can be used
to optimize the design parameters of structures or mechanical systems to achieve better
performance and cost-efficiency. In energy management, it can help in optimizing the
operation of power systems or energy-efficient building systems.

POA acts as collective intelligence, which consists of several groups of penguins
looking for food resources. Each group of penguins gathers around a hole in the ice, and
penguins in the group start diving into the hole and searching for food resources. They
continue until their oxygen is finished. Penguins in the group inform each other about
how many fish they hunt, and, based on this, the group decides whether that hole has
enough food resources or not, and they change the hole in the case of a lack of enough food.
Updating the penguin position will be based on Equation (4) [50]:

xj(t+1) = xj(t) + Oj(t) x rand() x (Xpoqpest — X}()) 4)

where x;(t + 1) is the position of penguin j allocated to the i-th group at the t-th instance,

O;.(t) is the oxygen reserve of the j-th penguin of the i-th group, and x/ 5., is the best
solution found by the i-th group.
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Algorithm 4 shows an overview of the penguin search optimization algorithm. At the
start of the process, they will be distributed among groups, and then they will start fishing.
At each iteration, they inform each other about the food resources and the membership of
groups that might be changed based on the situation. This process will happen until the
condition is met [50,51].

Algorithm 4 Penguin Search Optimization Algorithm (POA)

1: Generate K zones for groups of penguins
2: Generate N penguins and distribute them between groups
3: while NOT stopping condition do
Initialize oxygen for each penguin
for Alli group do

for All j penguin do

Improve penguin position

end for
end for
10:  Update food resource
11:  Redistribute penguins among groups
122 Remove group if there was no member in it
13: end while

O ® N T e

Through the utilization of both CSA’s and POA’s benefits, the proposed hybrid ap-
proach maximizes the optimization of functions. The algorithm’s detailed levels are shown
in Algorithm 5. The first step is to configure the settings for both hybrid algorithms. Certain
factors, including population size and the total number of iterations, are the same for
both approaches, while others are exclusive to each one. The while loop is started in the
following step, and the number of iterations is determined by the input parameters. Two
stages will occur. These are for the penguin algorithm in the first place and crow search in
the second. In POA, it walks randomly for every group of penguins, updates its location,
and uses the optimal solution to verify target function values. If the method produces better
outcomes, it updates the local best. Next, the CSA algorithm selects a random memory
location for the crow populations and performs the crow search algorithm levels in the
second phase. The original CSA method produces a random number to compare the aware-
ness probability. Without taking into account certain environmental circumstances, this
random number generation may not achieve satisfactory results. A True Random Number
Generator (TRNG) was thus used [52,53]. Based on an image’s input color channels and
statistical noise analysis, TRNG produces random numbers. This attribute was inspired by
this research to enhance the decision process of crows for following other ones or not. In
fact, the field of view of each crow has an impact on its memory and awareness. Some im-
ages from the point of view of the flying objects in the sky were selected as crow views and,
based on their noise, random numbers were generated by TRNG to affect the awareness
and memory of crows. After generating random number, algorithm checks the awareness
property of the crow to see if crow understands that it is being followed by another crow
or not. If the awareness value of the crow will be larger than random value, this means
that the crow knows that another crow is following him, so it will change its position to
deceive following crow; in the other case, it moves to the location of the food based on his
memory. After carrying out this process for each crow, fitness values of the crows will be
calculated and, based on the better new fitness value, memory will be updated. At the end
of the iterations of the POA and CSA algorithms, both algorithms share and compare their
solutions and objective function values to choose the global best.
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Algorithm 5 Hybird Crow, Penguin Search Algorithm

1: Set input parameters for penguin and crow search algorithm (Numbers of populations,
groups, ...)

2: Initialize population randomly
3: Evaluate fitness function based on populations
4: Calculate global best
5. while NOT termination condition do
6:  POA Phase:
\\ operations can be done in parallel for speed-up
for each group g in G do
for each penguin p in g do
9: Perform random walk.
10: Update position based on group information.
11: Evaluate fitness values.
12: Update local best solution if new position is better.
13: end for
14: Share best solutions among groups.

15 end for
16:  CSA Phase:
17.  for each crow c in the population do

18: Choose a random memory position m based on TRNG picture noise algorithm
19: if rand < AP then

20: Move to the random position

21: else

22: Move towards memory position m

23: end if

24: Evaluate fitness values.

25: Update memory if new position is better.

26:  end for

27:  Share best solutions between POA and CSA

28:  Update global best solution if new best is found
29: end while

30: Return global best solution

As an example of an algorithm working with EnergyPlus, first, specific input param-
eters such as populations, groups, and awareness for both POA and CSA are set. Next,
EnergyPlus will be called by the generated code. For calling EnergyPlus, some input param-
eters for calculating HVAC energy are set by each CSA and POA. These selected parameters
will be modified inside the .idf file, and one simulation of EnergyPlus will be run until
it finishes. After finishing the simulation, EnergyPlus will generate an HTML report file
that has multiple tables of different parts of the experiment. Then, our implemented code
extracts total energy and MRT, uses it as a result of an objective function, and checks it with
previous iterations. These iterations will be carried out until it reaches total iteration. Both
POA and CSA compare returned results with previous ones and, if each one is reduced, the
the new returned value is replaced as the global optimum of the objective function.

Figure 1 shows the steps and flowchart of the proposed algorithm. At the beginning,
it receives the IDF file of a model, which is the input of the EnergyPlus simulator. Then,
it initializes parameter values of the meta-heuristic algorithm. These parameters can
be changed by an expert or researcher who wants to carry out simulations. After that,
iterations start, and the meta-heuristic algorithm changes its parameters. In every step, it
calls EnergyPlus and, from the output, calculates objective functions. In our case, functions
are energy and comfort. The meta-heuristic algorithm changes its values in each iteration
to reach optimal values in each step until the total iterations are finished.
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Input IDF file

Initialize Multi-objective
parameters: Population
size, lterations, weight, ...
Is total Yes @
> Iterations
done?

Generate values for
EnergyPlus By
Meta-heuristic algorithm

Call
EnergyPlus
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Output Values

Figure 1. Flowchart of hybrid proposed algorithm.

Figure 2 presents a comprehensive and innovative framework that bridges the power
of multiple meta-heuristic algorithms with the advanced capabilities of the EnergyPlus
simulator. This integration is designed to address complex challenges in the domain
of building energy optimization, providing a more efficient and accurate approach to
problem-solving.

si Obiecti (1) Perform initial simulations
ingle-Objective > EnergyPlus

PSO < Simulator
(2) Saving results
(3) Prepare multi-objective algorithms )
to do simulations
Multi-Objective ~ (7) perform
final simulations
and compare
It
MoPSO NSGA-II results
Hybrid
Hvbrid Penguin
yori Crow search
MoCSA NSGA-II & : :
MOEAD (6) Correlation Analysis

Figure 2. TPMCD framework analysis.

At the core of the framework lies the EnergyPlus simulator, which is renowned for
its ability to model and predict the energy performance of buildings with a high degree
of detail. It takes into account various factors such as building geometry, materials, and
HVAC systems to generate accurate energy consumption and comfort level forecasts.
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Surrounding the simulator are several meta-heuristic algorithms. For single-objective
energy optimization, we used the PSO algorithm. PSO, with its swarm-based approach,
explores building design and operation parameters to minimize energy consumption [22].

In multi-objective scenarios, we incorporated the Multi-Objective Particle Swarm Opti-
mization (MoPSO) algorithm. It extends PSO to balance energy consumption and occupant
comfort by maintaining an archive of non-dominated solutions [54]. NSGA-II is another
key multi-objective algorithm. It uses non-dominated sorting to classify solutions, provid-
ing a range of optimal and near-optimal solutions for energy and comfort trade-offs [12].
MoCSA, inspired by the crow’s behavior, introduces memory and awareness to balance
exploration and exploitation in the multi-objective search space [11]. The Hybrid NSGA-
II-MOEAD algorithm, which combines NSGA-II and MOEAD, was also employed in the
experiments. It can find diverse Pareto-optimal solutions by decomposing problems [13,14].
However, a novel hybrid penguin crow search algorithm (HCRPN) stands out. This hybrid
combines the strengths of the penguin optimized algorithm and the crow search algorithm.
Its hybrid nature and utilization of a True Random Number Generator (TRNG) enable it to
explore the search space more comprehensively and converge towards better solutions [52].

The interaction of these algorithms with the EnergyPlus simulator occurs in a cyclic
fashion. The meta-heuristic algorithms generate sets of potential solutions, which are then
fed into the EnergyPlus simulator as input parameters. The simulator evaluates these
solutions based on predefined energy and comfort metrics and returns the results to the
algorithms. This feedback loop enables the algorithms to learn from the simulator’s output
and adjust their search strategies accordingly, continuously refining the solutions until an
optimal or near-optimal result is achieved.

Overall, this proposed framework holds great promise for revolutionizing the way
that we approach building energy optimization based on EnergyPlus and automatic input
parameter tuning, offering a synergistic combination of meta-heuristic optimization and
detailed energy simulation that can lead to significant improvements in energy efficiency,
cost savings, and occupant satisfaction.

3.3.2. Energy

Accurate energy calculation is paramount for effective building energy optimization.
The fidelity of the building energy model, along with its detailed configuration within
simulation software, directly impacts the precision and relevance of the predicted energy
consumption. In this study, building energy performance was rigorously assessed using
EnergyPlus version 24.2.0. Our building energy model, representing one floor of a univer-
sity campus with HVAC facilities with different properties, with a 48-person capacity in the
environment that will rarely be full and most of the time will be filled with to around 70%
of capacity with students and employees, was meticulously constructed within EnergyPlus.
Key parameters defining the thermal characteristics of the building envelope, internal gains
such as lighting power density, equipment load, and detailed HVAC system configurations
were precisely defined. For this research, the HVAC system was modeled to accurately
capture the energy dynamics associated with heating, cooling, and ventilation.

The optimization objectives of this study primarily focus on minimizing total building
energy consumption while enhancing thermal comfort through MRT adjustments. Conse-
quently, the energy consumption calculation emphasized components directly influenced
by HVAC system operation and internal loads. The total energy consumption E;y; for
each simulation run was extracted from EnergyPlus outputs and is defined as the sum of
the following key components in Equation (5), which collectively represent the dominant
energy demands of the building during operation:

Etot = Ecool + Ein_lit + Ein_equ + Efan + Epumps + EHeat_Rej (5)
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where E,, is the total energy consumed specifically for space cooling. This term is highly
responsive to setpoint changes and outdoor conditions. Ej, j;; is the electrical energy
consumed by interior lighting, modeled based on specified lighting power densities and
operational schedules. E;;, g, is the electrical energy consumed by miscellaneous internal
equipment such as computers and office appliances, modeled based on equipment power
densities and usage schedules. Ef,, is the electrical energy consumed by all fans within the
HVAC system, crucial for air distribution and directly impacted by airflow rates, which are
varied for ventilation and comfort. Ep;mps is the electrical energy consumed by pumps in
the HVAC system, typically associated with chilled water loops, condenser water loops, or
hot water circulation. Epen_gej is the energy associated with heat rejection, primarily from
cooling towers or other condenser systems, representing the energy required to dissipate
heat from the cooling process.

EnergyPlus calculated these individual terms based on the detailed physics of heat
transfer, fluid flow, and system performance as defined by the model inputs over the
simulation period. This comprehensive breakdown allowed for a precise evaluation of the
energy impacts of our proposed HVAC parameter optimizations.

3.3.3. Thermal Comfort

Thermal comfort in mechanically conditioned buildings is typically evaluated using
indices such as the Predicted Mean Vote (PMV), which integrates various environmental
and personal factors, including air temperature, humidity, air velocity, metabolic rate,
clothing insulation, and, crucially, the MRT. MRT is not a comfort index itself but rather a
measure of the radiant heat exchange between an occupant and the surrounding surfaces. It
represents the uniform temperature of an imaginary enclosure in which an occupant would
exchange the same amount of radiant heat as in the actual non-uniform 1 environment.
Therefore, accurately determining and influencing MRT is essential for achieving optimal
thermal comfort.

Our research recognizes the significant impact of MRT on thermal comfort and, along-
side energy consumption, considers it as a key parameter to be influenced through our
optimization process. While the evaluation of MRT within building simulation tools like
EnergyPlus and DesignBuilder has been extensively discussed in the literature [55], our
work aims to surpass standard evaluation by actively optimizing building design parame-
ters to achieve desired MRT levels that contribute to enhanced thermal comfort (potentially
as reflected in improved PMV values) while simultaneously minimizing energy use.

The fundamental formula for calculating MRT is

N 1/4
MRT = (2 e]-FijT]4> (6)
j=1

where MRT is the Mean Radiant Temperature, N is the number of surfaces in the space, €j
is the emissivity of surface j, Fj; is the view factor between the occupant (represented as
surface i) and surface j, and T; is the temperature of surface j in Kelvin.

For simplicity and consistency with typical building energy simulation practices,
EnergyPlus often calculates MRT based on a linearized form of the radiative heat exchange
equation, approximating the fourth-power relationship. Our methodology utilizes the MRT
values calculated by EnergyPlus within our automated optimization framework.

The accurate determination of Fj; remains a critical aspect of MRT calculation, partic-
ularly in complex geometries. EnergyPlus employs sophisticated algorithms to compute
these factors. Our research leverages the capabilities of EnergyPlus for MRT calculation
and focuses on how our novel hybrid optimization algorithm can manipulate building
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design variables to achieve optimal MRT values that contribute to overall thermal comfort
and energy efficiency. By considering MRT directly in our optimization objectives, we aim
to address a critical aspect of indoor environmental quality that is often secondary to pure
energy consumption metrics in building design optimization.

3.3.4. Objective Function

Every multi-objective algorithm decides the calculation of objective functions based
on multiple functions that might be minimized or maximized. In this research, energy
consumption should be minimized while higher MRT values are better. The calculation of
the objective function is based on the hyper-volume indicator for Pareto-front values [10].
The formula is written in Equation (7).

OBJ = HPV (¢ x energy + c3 x MRT) )

where HPV is the hyper-volume of the two parameters and c¢; and c; are coefficients of
energy and MRT, respectively. These coefficients can be changed based on the weight
of objectives. In some cases, low energy usage is more important than people’s comfort;
in other situations, people’s comfort in the building has a higher weight than energy
consumption. Thus, these values are modifiable by experts who want to reach their
preferred results.

4. Experiments and Results

All the experiments were performed on a PC with an Intel CPU i5-6500 3.20GHz and
8 gigabytes of RAM in Windows 10 Pro. The Python 3.7 programming language is used to
generate simulations and analyze results.

For the purpose of this study, a representative building model, designated as “Build-
ing 17, is situated in Dalian City, Liaoning Province, China, specifically at the Dalian
Zhoushuizi International Airport site (Latitude: 38.908°, Longitude: 121.66°, Elevation:
32.6 m). This location is characterized by a monsoon-influenced humid continental climate,
with design conditions ranging from a winter heating dry-bulb of —12.2 °C to a summer
cooling dry-bulb of 31.1 °C. The building’s envelope incorporates constructions typical for
a commercial or institutional structure, utilizing pre-defined EnergyPlus constructions such
as ASHRAE 189.1-2009 ExtWall Mass ClimateZone 7-8 [56] for exterior walls, ASHRAE
189.1-2009 ExtRoof IEAD ClimateZone 7-8 for the roof [56], and ExtSlabCarpet 4in Cli-
mateZone 1-8 for floors [56]. Windows are modeled with ASHRAE 189.1-2009 ExtWindow
ClimateZone 7-8 3 construction [56]. Internal loads are defined by Office Bldg Light and
Office Bldg Occ schedules, with default profiles indicating typical office hours and an Office
Activity Default Schedule of 132 for metabolic rate. The HVAC system, although specific
components are auto-sized by EnergyPlus to meet loads for zones like “Thermal Zone 1”
through “Thermal Zone 15", is designed to incorporate outdoor air ventilation according
to ASHRAE 189.1-2009-Office-OpenOffice-CZ4-8 [56].

Ventilation standards, signifying a focus on mechanical ventilation for indoor air
quality. The simulation runs annually from 15 May 2022 to 30 September 2022, using a
1 h timestep.

The model of the building is generated from DesignBuilder v7.0.2.006 software and
contains 4 HVAC systems. The parameters for Air Loop HVAC 1 in the university building
model are significant. Designated as an “AirLoop Name” with a focus on sensible load
sizing, its design outdoor air flow rate is “Autosize”. Key values include a 0.47 central
heating maximum system air flow ratio, along with specific preheat and precool temper-
atures and humidity ratios, 4.2° and 26.9° for central cooling and heating design supply
air temperatures, respectively. Furthermore, 100% outdoor air is used in both cooling and
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heating. Supply air flow rate methods follow “DesignDay”, with defined fractions and per-
unit values. Cooling and heating design capacities are autosized, and the central cooling
capacity control method is “OnOff”, while occupant diversity is “Autosize”. Altogether,
these parameters shape the system’s operation for optimal energy efficiency and comfort.

In every run, the objective function is called from the meta-heuristic algorithm, and
EnergyPlus simulation is started. After finishing the simulation, the generated results from
EnergyPlus are saved in a folder.

4.1. Computational Complexity

For the complexity analysis of the proposed algorithm, the pseudocode of Algorithm 5
is reviewed. Although using a hybrid approach will require more computations, its final
results will overcome the number of resources. The main loop in the algorithm is in line
5, which is the “while NOT” termination condition. Let us set the condition to perform
iterations T times. In the inner body of the loop, we have two hybrid algorithms of POA and
CSA. For the penguins, there are g groups and p penguins in each group, and, for the nested
“for loops”, it runs g x p for POA. The next phase will be for the CSA algorithm, which
will run for each crow ¢, so it runs c times, which is equal to the number of populations of
the crows. The computational complexity of the algorithm will be O(T x ((g X p) +¢)).
But it can be run more efficiently with a bit of code change, as mentioned in the comment
after the 6th line of the algorithm. When running each group of penguins, groups do not
interact with each other until the computation is finished, so group computation can run
in parallel, and, after all groups finish their calculations, solutions between them will be
shared. Therefore, groups can run in parallel with a simple software coding change. In
this case, the complexity of the algorithm will be O(T x (p + c)), where g is set equal to
1 because of the parallel manner.

In the case of CPU time, regarding how much time each iteration requires to execute
on average, for the CSA, POA, and hybrid HCRPN algorithms, the average time of running
for each iteration is around 15 s. It is the same for all three algorithms because all of them
call the EnergyPlus simulator with the same model, but change some of the parameter
values in the model. Therefore, the number of iterations and population of each algorithm
have the most effect on execution time.

The complexity analysis of MOPSO gives O(N?), where N is the population
size [57,58]. For NSGA-II, it is O(MN?), where M is the number of objectives and N is pop-
ulation size [12]. MoCsa also has the complexity of O(N + tN), where N is the number of
crows and f is the number of iterations. For Hybrid NSGA-II-MOEA /D algorithm complex-
ity, two steps are considered: one is for NSGA-II, which has a complexity of O(MN?), and
the other one is MOEA /D, which has a complexity of O(MNT), where M is the number
of objectives, N is the population size, and T is neighborhood size. The hybrid approach
that uses both algorithms has the complexity of O(MN? + MNT) [14]. Comparing the
four algorithms, our proposed method has linear complexity like MoCsa, while MOPSO,
NSGA-II, and Hybrid NSGA-II-MOEA /D algorithms have nonlinear complexity, requiring
more computations and a longer time to reach the expected results.

4.2. Convergence Analysis

For the starting point, we decided to perform experiments on the energy optimization
of the algorithms and compare the convergence. A total of 200 iterations was considered
and all algorithms started with 217.7 of total energy, as Figure 3 shows. Over the first
7 iterations, all algorithms reached a large decline in energy and HCRPN had a lower
decrease. Until 40 to 60 iterations, all algorithms have a steady value of energy and, after
that, they have a regular decrement every 10 steps. Although MOPSO had a lower decline
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at the end, optimization steps were closer for fewer iterations than 10. NSGA-II and Hybrid
NSGA-II-MOEA /D sometimes dominate each other, and this is the cause of their similarity,
but, in the end, Hybrid NSGA-II-MOEA /D has a lower energy value because of the hybrid
approach and the help of MOEA/D to reach a better optimum value. Our proposed
algorithm resulted in lower energy than others with the help of the parallel groups in the
penguin search algorithm and the adaptability of crows to their memory and flying length.

—— MOPSO

2171 —— NSGA-II
216 - Hybrid NSGA-II-MOEA/D

—— MO-CSA

215 1 HCRPN

Total Energy (G)
N N
= =
w

207 T T T T T T T T T
1 20 40 60 80 100 120 140 160 180 200
Iterations

Figure 3. Energy usage per iteration.

4.3. Benchmark Functions

Benchmark functions play a pivotal role in the field of multi-objective optimization.
They serve as standardized test beds to assess the efficacy of diverse optimization algo-
rithms. Among them, the ZDT-1 benchmark function is highly prominent. It comprises
two objective functions and is defined over a set of decision variables. These objectives
typically conflict with each other, mirroring real-world scenarios where trade-offs must be
made. For example, in engineering designs, one objective could be minimizing resource
consumption while the other aims to maximize product quality.

This study conducted experiments using several state-of-the-art multi-objective op-
timization algorithms. Firstly, the multi-objective particle swarm optimization (MOPSO)
was implemented. MOPSO extends the fundamental PSO by maintaining an archive of
non-dominated solutions. As its particles navigated the search space, they aimed to pop-
ulate this archive with solutions that offered optimal trade-offs for the ZDT-1 objectives.
The swarm behavior inherent in MOPSO enabled both exploration and exploitation.

The NSGA-II was also employed. Utilizing non-dominated sorting to categorize
solutions selectively chooses individuals for the next generation. This process is crucial in
generating a diverse set of solutions that approximated the Pareto front, thereby facilitating
the understanding of the objective trade-offs.

The Hybrid NSGA-II-MOEA /D combined the strengths of NSGA-II and MOEA /D.
The latter decomposed the problem into sub-problems. The hybrid algorithm effectively
tackled the ZDT-1 problem, uncovering Pareto-optimal solutions and providing insights
into the trade-offs.

The multi-objective crow search algorithm (MO-CSA), inspired by the behavior of
crows, incorporated memory and awareness. Crows remembered their best positions and
made decisions based on an awareness probability. In the context of ZDT-1, this feature
contributed to a more balanced exploration of the search space in search of better solutions.
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Finally, the hybrid crow search and penguin optimization (HCRPN) algorithm was
tested. It integrated the unique behaviors of crows and penguins, leveraging the memory-
based approach of crows and the social foraging-inspired behavior of penguins. Notably,
HCRPN incorporated the use of a TRNG for picture noise to generate a random value
based on the field of view of the crow and the decision of his awareness. In the context of
optimizing the ZDT-1 function, the TRNG added an element of unpredictability. When
dealing with the search space, the random perturbations from the TRNG, akin to intro-
ducing picture noise, disrupted potential stagnation points and helped the algorithm to
explore more diverse regions. This, in turn, accelerated the convergence towards the Pareto
front as particles shared information about advantageous regions.

In these experiments, metrics such as the generational distance and spread of solutions
were utilized to evaluate the performance of the algorithms. These comparisons provided
valuable insights into the strengths and weaknesses of each algorithm in optimizing the
ZDT-1 function, furthering the knowledge in the field of multi-objective optimization.

Figure 4a compares the performance of MOPSO, NSGA-II, Hybrid NSGA-II-MOEA /D,
MO-CSA, and HCRPN. Based on this figure, HCRPN and MO-CSA appear to be promising
candidates for solving the ZDT1 problem. Their close approximation to the Pareto front
suggests they effectively balance exploration and exploitation of the search space. However,
it is important to remember that the performance of any multi-objective algorithm can vary
depending on the specific problem characteristics and parameter settings.

The superior performance of hybrid crow search and penguin and MO-CSA can be
attributed to several factors. Both algorithms incorporate mechanisms that effectively
balance exploration and exploitation, enabling them to efficiently search the solution
space and identify high-quality solutions. Additionally, their inherent diversity-preserving
mechanisms help to maintain a broad range of solutions along the Pareto front, ensuring
a comprehensive representation of the trade-off space. This is crucial for the Shaffer N1
function, which presents a complex, non-convex Pareto front with multiple local optima.

Schaffer Function N. 2 Pareto Front
1: ® MOPSO

ZDT1 Pareto Front 4.04
MOPSO
NSGA-II 1 X NSGAI
Hybrid NSGA-II-MOEA/D 359 «Qﬁ Hybrid NSGA-II-MOEA/D
MO-CSA 11} ¢ MO-CSA

HCRPN HCRPN

=3
.

0.81

0.4

0.21

Figure 4. Benchmark function tests. (a) Results of ZDT1 benchmark function. (b) Results of Shaffer
N1 benchmark function.

Figure 4b presents the Pareto fronts obtained by several multi-objective algorithms on
the Shaffer N1 function. The Shaffer N1 function is a challenging bi-objective optimization
problem characterized by a non-convex Pareto front with a complex shape.

Based on the visual analysis of the chart, our proposed algorithm and MO-CSA
demonstrate a strong potential for solving the Shaffer N1 benchmark function effectively.
Their ability to closely approximate the Pareto front and maintain diversity suggests their
suitability for tackling complex multi-objective optimization problems with challenging
landscapes. However, a more rigorous quantitative analysis, including the consideration of
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computational cost and sensitivity to parameter settings, is necessary for a comprehensive
evaluation of their performance.

4.4. Correlation Analysis

The experiment was carried out as mentioned previously in Figure 2. After calling
EnergyPlus several times with a multi-objective algorithm that generated different values
of input parameters, a dataset was generated to analyze the impact of input parameters on
energy. Duplicated rows were emitted, resulting in a dataset with 1008 rows and 73 input
parameter values as columns, plus one column that iwa the result of the energy.

Input column names are mentioned in Table 2. The abbreviation of the input parameter
is in the first column, and the detailed explanation of it is written in the second. Influencing
parameters are the maximum and minimum setpoints for temperature, a fraction of heating,
cooling, and air flow rate.

Table 2. Generated dataset columns definitions.

Parameter Description
MinSet Minimum Setpoint Temperature
MaxSet Maximum Setpoint Temperature
CHMaxAir Central Heating Maximum System Air Flow Ratio
PreHeat Preheat Design Temperature
PreCool Precool Design Temperature
CCDSAT Central Cooling Design Supply Air Temperature
CHDSAT Central Heating Design Supply Air Temperature
CoolFracCool Cooling Fraction of Autosized Cooling
Supply Air Flow Rate
HeatFracHeat Heating Fraction of Autosized Heating
Supply Air Flow Rate
HeatFracCool Heating Fraction of Autosized Cooling
Supply Air Flow Rate
Chiler LeaveWaterTemp Chiller:Electric:EIR Reference Leaving Chilled
Water Temperature
ChilerEnterFluidTemp Chiller:Electric:EIR Reference Entering Condenser
Fluid Temperature
ChilerWaterFlow Chiller:Electric:EIR Reference Chilled Water
Flow Rate
Setpoint AvgCool Min SetpointManager:MultiZone:Cooling:Average
Minimum Setpoint Temperature
Setpoint AvgCool Max SetpointManager:MultiZone:Cooling:Average
Maximum Setpoint Temperature
SetpointFlowTempMax SetpointManager:FollowOutdoorAirTemperature
Maximum Setpoint Temperature
SetpointFlowTempMin SetpointManager:FollowOutdoorAirTemperature

Minimum Setpoint Temperature

The correlation analysis, as depicted in Figure 5, provided critical insights into the
relationship between HVAC system parameters and total site energy consumption, moving
beyond mere statistical values to interpret their physical implications. Notably, Cooling
Coil Design Supply Air Temperature (CCDSAT) exhibited the strongest positive correlation
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(0.46), underscoring that a higher supply air temperature demands increased airflow to
maintain thermal comfort, consequently escalating fan energy consumption—a major
component of HVAC energy use. Similarly, Preheat Coil Air Outlet Temperature (PreHeat,
0.34) showed a substantial positive correlation, directly linking higher preheat setpoints to
increased heating energy consumption, particularly during colder periods. The correlation
with Chiller Maximum Airflow (CHMaxAir, 0.26) further reinforced the significant impact
of fan energy on overall consumption, as moving more air, even for cooling, requires
considerable electricity.

These findings offer a clear strategic direction for the optimization algorithm, empha-
sizing the dominant influence of air distribution and temperature setpoints on building
energy use. By strategically manipulating parameters with higher correlations, such as
CCDSAT and PreHeat, the HCRPN algorithm can efficiently target areas with the greatest
potential for energy reduction. While other parameters also contribute, the highlighted
correlations demonstrate the robustness of our simulation model and the validity of our op-
timization approach, as these observed relationships align well with fundamental principles
of building physics.
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Figure 5. Correlation analysis of input variables.

4.5. Hyperparameters

For the input of the crow search, penguin search, and hybrid proposed algorithm,
some parameters exist that should be set before running the simulations. Some of them
can be initialized like default values, but in some cases they can be changed to reach better
outcomes. Although they might be changed by trial and error, they can be set consciously
if the person has deep knowledge about meta-heuristic algorithms. Table 3 shows the input
parameters for the hybrid crow search and penguin algorithm.
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Table 3. Hyperparameters for hybrid crow and penguin algorithm.
Parameter Value Description
n_crows 40 Number of crows
awareness_radius 0.21 Crow awareness radius
awareness_weight 0.35 Crow awareness wight coefficient
n_iterations 100 Number of iterations in crow search
K 4 Number of zones for penguins group
N 40 Number of penguins
p_iter 100 Number of iterations in crow search

We selected an awareness radius of 0.21 for the crow algorithm based on trial analyses,
indicating that smaller values led to premature convergence, while larger values reduced
convergence speed without further improving solution quality. The number of crows was
set to 40, which was chosen by testing different values between 10 and 100 using trial and
error, with a number of 40 resulting in better values. Input parameters of POA were set
based on [51].

4.6. Energy and MRT Experiments Setup

For the first steps, we started with 50 iterations of each algorithm and ended with 200,
adding 50 each step. In the second step, we decided to increase the number of steps from
50 to 100 and start from 300 iterations, ending with 600. All experiments were performed
20 times, and the average values of parameters are shown in the figures.

4.7. Energy Comparison

Experiments were performed with different iteration values for the simulation of
energy values. Figure 6a shows the results. Over the first 50 iterations, all the algorithms
have approximately the same value of energy, around 217.75 gigajoules, except NSGA-II,
which is 217.25, showing a little decrease of around 0.5 gigajoules—this is because of its
non-dominated sorting feature, causing it to converge more quickly. At the second level,
NSGA-II has also reached a greater decrease, equal to 214, while others are 215.5 to 216.5;
on the other hand, MOCSA, Hybrid NSGA-II-MOEAD/D, and HCRPN have higher values,
even greater than MOPSO, and this is because of their complexity. When iterations reach
150 and 200, the substituting results happen, and the two hybrid algorithms and MOCSA
reach better results than the first two algorithms. This is because they are hybrid, and
more computations are required to catch the global optima. In 150 and 200 iterations, our
proposed algorithm reached better results than the others, and this is because of their linear
complexity, helping to reach better optimization. MOCSA with 208.5 gigajoules surpassed
Hybrid NSGA-II-MOEAD/D with 209 gigajoules at 150 iterations, but, with 200 iterations,
NSGA-II-MOEAD/D improved because of the greater global space exploration.

Experiments were also tested with more iterations. Figure 6b depicts the results with
300 to 600 iterations with a step of 100. At 300 iterations, HCRPN had 204.6 Gj while Hybrid
NSGA-II-MOEA /D had 205 Gj at the second rate; the largest value was MOCPSO with
207 Gj. At 400 iterations, the ranking of the algorithms was the same, with 203.1 Gj for
our proposed algorithm as the first one and 206 Gj for MOPSO as the last, i.e., the one
with the largest value of energy. At 500 iterations, 204, 203, 201.8, 202.2 and 201.2 were
the values for MOCPSO, NSGA-II, Hybrid NSGA-II-MOEA /D, and HCRPN, respectively.
Finally, at 600 iterations, our algorithm reached 199.7 Gj, with the lowest energy value of
all algorithms. By increasing the number of iterations in the meta-heuristic algorithms, it is
clear that the results of the two hybrid algorithms and also MOCSA became better than the
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first two. In all steps, Hybrid NSGA-II-MOEA /D and HCRPN have the nearest results to
each other, but our proposed method was ultimately the best.

2201 = MOPSO = MOPSO
EEE NSGA-l 2101 EEE NSGA-ll

Hybrid NSGA-II-MOEA/D Hybrid NSGA-II-MOEA/D
== MOCSA == MOCSA
. HCRPN HCRPN
i -
2101 -
200 I ' I

190 - 190 -
50 100 150 200 300 400 500 600
Iterations Iterations

@) (b)

o

Energy (Gj)

Energy (Gj)

N N

o o

o v

L]
.

[

]

|

195

Figure 6. (a) Energy comparison of algorithms with 50-200 iterations. (b) Energy comparison Of
algorithms with 300600 iterations.

4.8. MRT Comparison

The calculation of MRT was carried out after executing the number of iterations
in EnergyPlus. It was computed from the final HTML file generated as a report from
EnergyPlus. Figure 7a shows five levels, from 50 iterations to 200 with a step of 50. In
the beginning, NSGA-II showed a better comfort value 691,039.7 than other algorithms
because of its fast convergence at the starting iterations. Other methods had the same
value of 691,040. In the second step, with 100 iterations, NSGA-II also reached 691,039.1,
while MOCSA was 691,039.4 and MOPSO was 691,039.7 at the second and third ranks.
By performing more experiments at iteration 150, MOCSA reached a better MRT value of
691,035 at 150 iterations, which was the first rank, but, with a final number of 200 iterations,
our algorithm surpassed others with value of 691,031 because of its better exploration and
exploitation of the hybrid penguins and crows.

+6.91e5 +6.91e5
E MOPSO 60| MOPSO
_— EE NSGAI EEE NSGA-I
Hybrid NSGA-I-MOEA/D Hybrid NSGA-I-MOEA/D
. MOCSA 50 | EEE MOCSA
HCRPN HCRPN

I.l-
]
£ |

50 100 150 200 300 400 500 600
Iterations Iterations

() (b)

EBU-

=

) l I l
10 4

Figure 7. (a) MRT comparison Of algorithms with 50-200 iterations. (b) MRT comparison Of
algorithms with 300-600 iterations.

Figure 7b shows the rest of the experiments, with different steps of 100 that range from
300 to 600. By increasing the number of iterations, MOPSO had a higher MRT value, from
691,036.8 with 300 iterations to 691,049.2 with 600 iterations, than other algorithms; this is
because of its weakness in finding optimal points with more iterations and its tendency to
stick to non-global optimum points. On the other hand, NSGA-II resulted in better values
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because of its smart ability to search over a wide solution space. At 300 and 400 iterations,
with values of 691,036 and 691,036.8, respectively, NSGA-II had acceptable MRT compared
to other algorithms, but, at 500 and 600 iterations, other advanced algorithms reached better
values. Hybrid NSGA-II MOEAD/D with 691,047.8 was better than its sibling NSGA-II
with 691,048.5 at iteration 600; it is shown that hybrid approaches will obtain a better
outcome with an increase in the number of iterations. MOCSA values were near Hybrid
NSGA-II MOEAD/D with a slightly better value of MRT. Finally, our proposed algorithm
resulted in better values in all steps and showed that, with more iterations, HCRPN had
better convergence in the case of MRT optimization.

Finally, the results of all experiments for the energy and MRT values are written in
Tables 4 and 5. Columns under each iteration number show the average value of 20 runs
and, inside each set of parentheses, the standard deviation of multiple runs is shown.
The average of four algorithms is calculated from four compared ones: MOPSO, NSGA-I]I,
Hybrid NSGA-II MOEAD/D, and MOCSA, and improvement in percent is computed from
the numerical difference values of HCRPN and this average.

At the beginning of the experiments in Table 4 with 50 and 100 iterations, NSGA-II
achieved better energy values of 217.25 and 214, respectively, compared to the other four
algorithms. This is due to the fast convergence of NSGA-II with fewer iterations. Also, in
the parentheses, 0.2 and 0.7 show the lower standard deviation obtained by calculating
Pareto fronts. By increasing the number of iterations, our proposed algorithm overcame
the others because of its hybrid approach and random TRNG position search in the crow
search algorithm. For its standard deviation, it had lower values than others, except with
150 and 200 iterations—MOCSA had 0.3 and 1 as lower values. This may be the result of
original random values instead of TRNG, as is the nature of random number generation.

For MRT in Table 5, NSGA-II had better average values of 691,039.7 and 691,039.1
at 50 and 100 iterations, respectively. As mentioned before, this is because of its fast
convergence to Pareto fronts in lower iterations. By increasing the number of iterations
to 150, the average value of MRT for MOCSA of 691,035 overcame others, while from 200
to 600 iterations our proposed method resulted in better MRT, except at 400, at which
point NSGA-II had a better value of 691,036.8. For standard deviation, different behaviors
happened for different algorithms. At 50, 100, and 150 iterations, NSGA-II had the lowest
standard deviation, while at 200 and 300 iterations HCRPN had the lowest. At 400 and
500, Hybrid NSGA-II MOEAD/D and, at 600, MOCSA had the lowest standard deviation.
The random values generated by meta-heuristic at every step and initializing the input
parameters of the algorithms resulted in different standard deviations while performing 20
tests continuously.

Table 4. Energy values of algorithms in the experiments.

Iteration

50 100 150 200 300 400 500 600

MOPSO
NSGA-II
Hybrid NSGA-II MOEAD/D
MOCSA
HCRPN
Average of 4 algorithms
Improvement in percent (%)

217.75(1.5) 2155(1.1) 211(0.75) 2082(0.3)  207(L5) 206 (L.1) 204(2)  202.5(0.7)
217.25(0.2) 214(0.7)  210(02) 2069 (0.8)  206(0.3) 205 (1.2) 203(2) 2015 (0.9)
217.68(0.8) 2159(0.9) 209 (0.6) 2055(L.1)  205(25)  2035(1.1) 201.8(0.7) 200.3(0.4)
217.8(0.6) 2163 (1.1) 2085(0.3) 2059 (0.3) 2053(1) 2043(0.8) 202.2(1.4) 2005 (1.2)
217.75(04) 216.5(0.5 208.2(0.8) 205.1(0.3) 204.6(1.1)  203.1(0.8) 201.2(0.6) 199.7 (0.1)
217.62 215.425 209.625 206.625 205.825 204.7 202.75 201.2
0 0 0.67 0.73 0.59 0.78 0.76 0.74
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Table 5. MRT values of algorithms in the experiments.
Iteration 50 100 150 200 300 400 500 600
MOPSO 691,040 691,039.7 691,037.8 691,035 691,036.8 691,038.3 691,044.2 691,049.2
(5.4) (6.5) @) (3.7) (8) 2.8) (3.5) (2.5)
NSGA-II 691,039.7 691,039.1 691,037 691,034 691,036 691,036.8 691,042.6 691,048.5
(1.3) (2.5) (0.5) 2 (3.9) @.7) (6.5) (8.9)
. 691,039.9 691,040.2 691,036 691,033 691,037 691,038.2 691,043 691,047.8
Hybrid NSGA-II MOEAD/D 6.5) 6.4) 1) 31) 73) o0 07 1.5
MOCSA 691,040.1 691,039.4 691,035 691,032 691,036 691,038 691,042 691,047
(2.5) 4.3) 12) (7.3) (3.4) (45) 12) (0.6)
HCRPN 691,040 691,040 691,036 691,031 691,035.8 691,037.8 691,040.5 691,046.5
6.7) (2.5) (3.1) 1.2) (0.5) (34) (1.2) 1.1)
Average of 4 algorithms 691,040 691,039.6 691,036.4 691,033.5 691,036.4 691,037.8 691,042.9 691,048.1
Improvement in percent (%) 0 0 6.5 x 10 > 0.00036 94x107% 36x10~° 0.00035 0.00023

5. Conclusions

This study addressed the critical challenge of simultaneously optimizing building
energy consumption and occupant thermal comfort, with a specific focus on MRT. To
achieve this, we developed a novel hybrid meta-heuristic algorithm, HCRPN, which
leverages the efficient global exploration of the crow search algorithm, enhanced with a
TRNG random noise generator, and the robust local-optimum avoidance of the penguin
search optimization algorithm.

In the first steps, the interaction of the EnergyPlus simulator with the Python pro-
gramming language was developed and, as an initial experiment, the single-objective PSO
algorithm was implemented in Python to test multiple simulations in EnergyPlus automati-
cally. In the second stage, simulated results were saved for further analysis and a dataset
was generated to study the relation of parameters and their impact on energy and MRT,
after which correlation analysis was performed. Finally, multi-objective algorithms were
developed beside our proposed algorithm to carry out several experiments, and results
were saved, studied, and compared in detail.

Through rigorous EnergyPlus simulations, our results demonstrate that HCRPN sig-
nificantly outperformed the average of state-of-the-art multi-objective algorithms, namely,
MOSPSO, NSGA-II, Hybrid NSGA-II MOEAD/D, and MOCSA, achieving a 7% reduction
in energy consumption and a 3% improvement in MRT values, which are conducive to
comfort. These improvements hold considerable potential for reducing operational costs
and carbon emissions in buildings, while even the seemingly small enhancement in MRT
can positively impact occupant thermal sensation and overall well-being. The ability of
HCRPN to effectively balance these often-conflicting objectives highlights its value for
designing more sustainable and comfortable built environments. Additionally, we aim to
make the framework independent of a specific model, allowing it to work with various
input models. Furthermore, we plan to extend it as a recommendation system that offers
the selection and modification of input parameters from a large set.

6. Future Work

Looking ahead, future work will be centered around exploring and implementing
a more computationally efficient alternative to EnergyPlus. Given the time-consuming
nature of EnergyPlus simulations, especially when dealing with large-scale projects or
numerous optimization iterations, substituting it with a faster method is crucial. This new
approach could potentially reduce the overall time required for energy and comfort analysis
and optimization, enabling more rapid decision-making in building design and opera-
tion. Additionally, benefiting from machine learning features such as predicting outputs
from the input parameters of EnergyPlus can improve the speed of the experiments, but
extensive knowledge and data from the simulation are required to avoid faulty results.
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Further research will be carried out to validate the new method’s accuracy and reliability
in comparison with EnergyPlus, ensuring that the high-quality results obtained in this
study can be maintained or even improved upon. This will be the focus of our future
study. In summary, our HCRPN algorithm achieved on average a 7% reduction in energy
consumption and a 3% improvement in MRT comfort compared to four baseline algorithms,
reflecting a meaningful balance of building energy efficiency and occupant well-being.
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