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Ambulance services have a duty of care to the clinicaloutcomes of the population they serve, and
therefore aim to maximise the chances of survival and improve patient outcomes following a medical
emergency. Despite this, although the ambulance-allocation’problem has been widely studied, it has pre-
dominantly focused on minimising response times or maximising coverage alone, and not explicitly for
considering patient outcomes. In this paper.we propose a modelling approach to consider where to best
allocate different types of emergency response vehicles in order to maximise patient outcomes within a
heterogeneous population. To achieve:thisywe develop a metaheuristic algorithm for finding better fleet
allocations which is used in conjunetion withja discrete-event simulation model of ambulance services
with heterogeneous vehicles. A.major contribution of this metaheuristic is the numerical solution of a
system of equations to approximate the’utilisation of vehicles. Traditionally this utilisation is proble-
matic as it is both an input and an output of the allocation of vehicles. Our approach is informed by,
and tested on, real-world data from Jakarta, Indonesia. Using our developed models, decision makers
are better able to understand ambulance fleet capacity needs and allocations, and their impact on patient
outcomes.
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2 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIQS

1. Introduction and Background

Time-critical conditions (TCCs) are a substantial cause of fityrtaorldwide, responsible
for an estimated 54% of all deathSréser et a).2020. Emergency medical services (EMS)
play a pivotal role in responding to TCCs and saving patients fitevthreatening medical
conditions. Most EMS research, especially planning to memtasing ambulance demands,
tends to be focussed on high-income countries including, fomple, Australia Lowthian
et al, 2011, Germany Veser et al.2020, and USA Birmingham et al.2027). In contrast,
many low and middle-income countries (LMICs) lack an organistbEBystem, with most
ambulances used purely for patient transport and not as an emgrgare vehicle{uryanto
et al, 2017. However, the burden of deaths due to TCCs is much greater in ENHEN in
high-income countries, the difference being around threefolth(ig et al.2016). For traffic
accidents, strokes and heart attacks, rapid access to appedpetiment is especially vital.

The application of our research is focused on Indonesia, sugployten award for Global
Challenges Research Funds (GCRF). In Indonesia, an LMICjthereceasviery little prior
work on developing an EMS strategy, driven by a lack of financi$tment and human capi-
tal (Pusponegord003 Suryanto et a).2017, Yusvirazi et al, 2018. Related research by the
authors Brice et al, 2022 has highlighted particular challenges in'Indonesia as adéalsin-
gle coordinated EMS, the ability or willingness to pay for-arbaitance, a large geographical
area, and areas of severe traffic congestion especially in Jatkezrzapital.

When our research programme commenced in October 2019, ambuangces in
Jakarta were provided by many disparate; mostly private provitiatscharge patients for
their use. We initially partnered with Ambulans 118, a non-goreent charitable ambulance
service established in 2005 by the Indonesian Surgeons As®otithat currently operates in
five cities across Indonesia: Jakarta, Palembang, Yogyakantab&ya and Makasser. Unlike
private providers, Ambulans 118 suggests that a donation ig fiaadise of its EMS vehicles,
but otherwise provides free emergency medical care, it is alslingan paramedic training
across the country.

The overarching goal of-our research was to work with the Indonés@mmernment, the
different ambulanceproviders; and hospitals, to help them fetemaergency demand and
make critical decisionson'the best types, capacities angrgpbical allocations of emergency
vehicles withina potentially co-ordinated EMS system, stgrtiith Jakarta. To facilitate this,
in collaboration with- Ambulans 118 we organised workshopsaikadta in February 2020,
which were attended by over 170 people including doctors, sup@ramedics, academics,
and officials from the Indonesian Ministry of Health. This papersents some aspects of the
overall research programme, specifically focusing on the devedopof a simulation model
and'allocation metaheuristic for maximising patient survival

Fundamental to the project and the research described in thés pas an initial study
that'we carried out in order to better understand patient neetitharbarriers to use of ambu-
lances in Indonesia. Throughout the month of December 202@ingertook comprehensive
surveys in Emergency Departments (EDs) across Jakarta andhaabttee first known study
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ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATINS 3

in to EMS demand within the countr(ice et al, 2022). Our study showed that the utilisa-
tion of ambulances by patients attending EDs is very low ancbatern. The low utilisation
is contributed by patients’ lack of awareness of availabledarize services, patients’ disi-
nclination to use ambulances due to high costs, and long mesgames. All of these barriers
impact on patient outcomes, especially for those with lifeatering conditions. For example;
more trauma patients took a car-share ride (20%) or motorcycle (20éqth the ED than-an
ambulance (just 10%), while only 14% of critical cardiovascylatients used an ambulance
compared to 67% travelling to hospital by private car or a careshide.

The first contribution of this paper is an extension the workiofght et al. (2042xto
consider both heterogeneous patients and heterogeneosstlest a maximal survival obje-
ctive is formulated, from vehicle allocations and utilisationbich are themselves found by
numerically solving a relationship on the vehicles’ share efdemand. This.is then used in a
metaheuristic to find improved allocations that aim to max@piatientsurvivalzSecondly, we
develop a comprehensive sequential discrete event EMS gionuthat models and evaluates
heterogeneous fleet allocations of emergency vehicles ligingi a novel approach in which
transit jobs, rather than patients, are framed as the queueingreess’. Our methodology uti-
lises two discrete event simulations of the same system thatia sequentially and together
combine to form the logic of a single simulation of a heterogesdleet; and key performance
indicators (KPIs) are calculated by making use of survival fumstid hirdly, we demonstrate
the use and impact of our modelling framework applied to curredt@oposed ambulance
allocations in the city of Jakarta, thus supporting GovernAmrel decision making with an
overall goal to improve the lives of those living in"LMICs. Thisables decision support
and managerial insights in Indonesia, although the developegklling framework could be
readily applied to other locations.

There are several managerial~implications for EMS providers andrgoent agencies
in Jakarta and Indonesia, respectively. ‘The findings emph#sisamportance of adopting
a dynamic and data-driven“approach to resource allocation. Thgsian of a heterogene-
ous fleet, such as Rapid, Response Vehicles (RRVs) alongsidiianal ambulances, has
been shown to significantlysimprove response times and padienival rates, particularly
in densely populated,urban areas. Managers are advised to imtbsse diverse fleets and
adopt flexible allocation, strategies that account for tempeaahtions in demand, such as
the daily influx of commuters and the differing population déasiacross neighbourhoods.
The researchunderscores the necessity of enhancing datdioalj@actices to support infor-
med decision-making, with the development of user-friendlysies support tools to assist in
visualisingidata’and predicting outcomes.

The paper is structured as follows: Sectibgives an overview of the literature on model-

ling ambulance allocations. Secti@rdescribes the current ambulance service behaviour and

sets out the mathematical notation used throughout the p&petion4 describes an optimi-
sation model, including the survival objective, utilisaticonsiderations, and a metaheuristic
algorithm to find better fleet allocations. Secttoutlines the logic of the sequential discrete
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4 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIQS

event simulation models for heterogeneous fleets. Se6tigves a case study, describing the
current emergency service situation in Jakarta and applyingptimisation and simulation
results. Sectioff discusses the findings and contributions of the paper.

2. Literature Review

There is arich literature on operational research applied to EMSitotand related allocation
problems. Literature reviews that include these topicsfaneghieri et al. (2017, Bélanger
et al. (2019, Farahani et al(2019, Li et al. (2011), Liu et al. (2021), Mukhopadhyay-et al.
(2022, Reuter-Oppermann and ViR017) and Wang et al.(2021). Ambulance allocation
problems such as that concerned in this paper can be categasisgaieparednesproblem
(Mukhopadhyay et al2022).

Emergency medical services can be evaluated using differeiorpance.measures with
coverage and response time being the predominant mettatsy and Mayorga2010. How-
ever, missing a response time target by just one second, for@&aweuld be considered as
a ‘failure’ in many models with no appreciation at all of the impan patient survival or
outcome fcLay and Mayorga2010. This seems somewhaturestrictive and short-sighted,
which is why we focus on survival as a metric and compare ‘and comagers using that
metric with our approach. Here we consider some closely relapdrp, providing a summary
of each and comparing and contrasting them with our modellingsalution approach.

Amorim et al.(2019 propose an integrated strategic and tactical planning apiprehich
features an optimisation model and a local search heuristidlmas€&aussian Processes. Their
methodology is applied to the city of Porto/while reporting omf@enance metrics such as
survival. Our approach is different because we use a discrete-givemation framework to
evaluate results from a population based. heuristic to deterrhimenamber of ambulances
required in each station.

Boutilier and Char§2022 develop an integrated location-queueing model that incotpsra
existing EMS response times/in a drone network. They use a p-map@oach and an Erlang
loss model. Although.survival is'not their main optimisatimiterion, they report how many
patients would survive using their approach.

Erkut et al.(2008 can be considered the first modelling approach that considees de
ying survival prebabilities during response time. The ratiorigJebecause survival can be
thought of as*a more robust and generic objective for EMS performareesurement than
coverage or average response time. In an application of a reclavilyjoped Maximal Survi-
val Location Problem model (MSLP), the authors use data from Edmo@anada and show
that maximising survival is superior to other objectives imickl outcome for cardiac arrest
patients.

McCormack and Coatg2015 focus on the optimisation of EMS vehicle fleet allocation
and base station location through the use of a genetic algo(i®A) with an integrated EMS
simulation model. Their objective is maximization of theecall expected survival probability
across patient classes. Applications of the model were urdertasing real call data from
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the London Ambulance Service. The difference between theirefting approach and our
is that we have a different survival function, focus on a differentris¢ic optimisation and
evaluate our approach with data from a developing country, awe higher traffic volume
and congestion in our data.

Bélanger et al(2020 combine optimisation and simulation to find both ambuldocati-
ons and dispatch policies. Here, binary integer programminggd to minimise total response
time, where ambulance availability, or utilisation is untumo In this work this is overcome
by iteratively feeding the solution of the optimisation prograeninto a simulation-to find
the availability parameters, until convergence. Our work diffas we solve for ambulance
utilisation explicitly.

Toro-Diaz et al.(2013 2015 build optimisation models for both the allocation and the
dispatch, or preference, rules for EMS services. They utilise ypercube queueing model
for ambulance availability with a integer programming and rhetaistic-algorithms. In parti-
cular, they consider a number of different objectives inalgdinean respense times, expected
coverage Daskin 1983, and the Gini index on individual response_times as measures of
fairness in the system.

Knight et al.(2012) provide a supporting extension of the MSLP that allows it tapplied
more generally to real-world EMS systems, acknowledgingthiréifit patients have varying
levels of expected survival probabilities. The Maximum ExpdcSurvival Location Model
for Heterogeneous Patients, MESLMHP, allows multiple claggeatient groups to be defi-
ned, where previously only cardiac arrest patients formed part oblifectives for primary
response. In reality any emergency patient has a necessity ifivrasswndance, and a timely
response to any incident type may impact on clinical outcons®ime way. It is for this reason
MESLMHP is designed to be genericienough'to accommodate anperuof patient groups,
with each class weighted dependent upen the relative urgefttye incident. More than just
a contribution to the models demand input, these patientsnafeded in the optimisation
when maximising total population survival probability. Ouonk directly extends this work,
to include heterogeneous, vehicle fleets, while developingferent fixed-point numerical
solution to the problem,of approximating vehicle utilisagon

3. Problem Statement & Notation
We first present some notation. We have the following sets:

o2 is the set of pick-up locations, indexed py

« o/ is the set of ambulance locations, indexedaby
o % is the set of hospitals, indexed by

. X isthe set of medical specialities, indexedkyy
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6 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIQS

to incorporate heterogeneous fleets the set of specialitids partitioned into two sets#a,
those patients that can be seen by secondary vehicleszgnithose patients who are seen by
primary vehicles only.

An allocation is given by the tupIéZa,Za), whereZ, is the number of primary vehicles

allocated to ambulance locati@ and Z, is the number of secondary vehicles allocated<to

ambulance location. Also let:

« Apk be the rate at which patients of speciaktynake calls from pick-up locatiop,

« s(t) be the survival function function associated with patientgeicsalityk;

« T be the average utilisation of primary vehicles stationed attlona;

« bpabe the expected travel time from ambulance locagiompick-up locatiofp; and letBpa
be a random variable representing the time it takes for an amhautardrive this distance;

» Cpybe arandom variable representing the travel time from pick-up lmcatio hospitaly;

« Dyabe arandom variable representing the travel time from hospitehmbulance location
a

. Fpabe arandom variable representing the travel time from pick-up fmeatio ambulance
locationa;

« Gy be a random variable representing the time thesambulance spétidpatients of
specialityk at the pick-up location;

« J be a random variable representing the timeythe ambulance speatidpatients of
specialityk at the hospital,

. Obearandom variable representing the'time the ambulance spefuddlireg, re-stocking,
and resting between transit jobs;

« Qpky be the probability that a patient of specialkyfrom pick-up locationp is taken to
hospitaly. Note that having .4 0pky < 1 is possible, that is a patient may not go to any
hospital, in which case the ambulance returns to their ambaelktation.

To incorporate heterogeneous, vehicles, let d@sdenote the average utilisation of secon-
dary vehicles stationed atlocatianandbpa, Bpa, Cpy, Dya, andFpa denote the corresponding
travel times for secondary vehicles.

Patients will callan ambulance from one of the pick-up locaipr 7. If all ambulances
are busy, then that callwill be abandoned and it is assumeadhbagatient will find their
own way to the hospital through private or public transportatiinich is an appropriate and
justified assumption-for the case of Jakaaice et al, 2022. Otherwise, a central control
centre will dispatch the closest available primary vehicleatTehicle will travel from its
location tosthe-patientBp,), spend some time on the scene treating the pat(egt ¢ravel
to the hospital €py), spend some time handing over the patient at the hosgital tfavel
back to.its original locationyyz), then spend time refilling and refuellin@®). There is also
a-probability that the patient does not need a hospital, antlesgehicle will travel from the
pick-up location back to it's original vehicle locatioRd). These routes are shown visually
in Figurel. Note that these routes cannot be interrupted, that is, an amt®imust return to

Gz0z AInr 2z uo 1senb Aq /810618/.Z01edp/uBWwBWI/SE0L 0 | /I0P/3|o1E-80UBAPE/UBLIEWI/WOD dNO-oIWSpeoR//:sdny wolj papeojumaq



ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIQS 7
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Fic. 1. Ambulance routes for a given transit job.

it's station for refilling before it is available to respond to arestcall, to ensure it is cleaned,
and fully stocked for it's next call. Note also thBp, andFp, need notnecessarily be equal,
as travel times need not necessarily be symmetrical, this d@utthe . to a number of reasons,
such as non-symmetric road networks, and differences indrivencygen each leg of the
journey.

Therefore the total time an ambulance is busy wilTggygiven by Equatior if a hospital
is required, and service timiak given by Equatior? if no hospital is required.

Tpak - Bpa+ Gk + Fpa+ e (2)

There are two types of vehi¢le: primary vehicles, typically alabces, that must be dispa-
tched to all patients; and secondary vehicles, typicallydapsponse motorcycles, that can
travel faster than primary‘vehicles, and are dispatched to satiengs to respond to an emer-
gency faster than thesprimary vehicle. Secondary vehiclesataramsport patients, but are
used in conjunction with.primary vehicles to reduce responsestinkrom a resource cost
perspective, one“primary. vehicle costs the same to purchaseoand s three secondary
vehicles.

4. OptimisingAllocations for Maximal Survival

Here'we outline a method of finding vehicle allocations thakimée the expected survival

of patients. The problem is, for a given set of vehicle locatithat is ambulance stations), a
given total number of primary vehicles, and a given total nundfesecondary vehicles, how

many vehicles of each type should be stationed at eachdocatimaximise expected survival
across all patients.
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Success Probability

~<

0.0 25 5.0 75 10.0 125 15.0 17.5 20.0
Response Time (minutes)

FiG. 2. Survival functiors(t), estimated byalenzuela et a2000 compared withs, (t) with a hard cut-off ol =8,
represented as a step function.

4.1. Survival Functions

A key concept here is the survival curve of a patient. In realitjpes@mergency incidents do
not result in a substantive deterioration of a patients statastame;however, in all situati-
ons, there is a reasonable cut-off beyond which a patient'simatleixpect to have to wait for
care, and mixture of theoretical survival functions and step fanstcan be utilised. Survi-
val probabilities for critical incidents, calculated from a thetccal monotonically decaying
survival function reported in the literaturgglenzuela et .al 2000 are used to demonstrate an
attainable level of success from a response.. Oneparticulavalicurves(t) of Equation3,
represents survival until hospital discharge following cardiaest; its origins are explained
in detail byKnight et al.(2012), and gives the,probability of survival if seen within a time
in the form of a logistic function. Figur@shows the difference between using this survival
curve and a hard cut-off of 8 minutes. However, hard cut-off curikesHEquation4, with a
cut-off of L can still be used.to represent meeting artificially selectegktar for example for
transportation jobs.

s(t) = (1 Jreo.26+o‘139)’l 3)
1 ifo<t<L
SL(t):{o ift>L *)

Finding, allocations that maximise survival can result in @dliions with different beh-
aviours_to’ those found by minimising response times or maxngisioverage. Coverage
maximisation models are often easier to solve, and easiemboncmicate, but may not take
into consideration severity or intensity of demagakut et al, 2008. This results in a minority
of’patients, particularly those more isolated, being over-sedyithat is, having more relative
resources allocated to their needs that the majority, at thenmepof the majority. Minimising
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average response times on the other hand treats all patiemtéyequt may have the uninten-

ded outcome of disregarding some more further out patients wheperrse times would be

larger that others regardless of the allocation. It would ssieyard the severity or type of the
patient. Allocations based on maximising survival are sintidethose that minimise response
time, overcoming the issue of over-servicing outlying pasietitough it is still possible to dis:

regard them completely. It has an advantage over minimisingnsgptimes as it can acceunt
for patient severity. Having survival as functions of responses has the effect of weighting

gains in response times by how valuable those gains are toempati

4.2. Maximal Expected Survival Location Model with HeterogerseBatientsiand
Heterogeneous Fleet

Here we propose a Maximal Expected Survival Location Model Wigherogeneous Patients
and Heterogeneous Fleet (MESLMHPHF). It is an extension of th& MEHP model given

in Knight et al.(2012), which did not consider heterogeneous fleets=This is a mddeiroi-

val that can be used as an objective function for optimisatigoraghms. It is a weighted
expected survival function as the objective function whichsiders heterogeneous patients
(different specialities) and heterogeneous fleets (both primariches, EAs, and secondary
vehicles, RRVs), and is constructed by appropriately summiesgtsurvival curves, described
in Sectiord.1, across the population, multiplying by ambulance avaiighivthere appropriate.
The full MESLMHPHF optimisation model is.given in APPENDEX and its components are
described fully here. The MESLMHPHF is given by Equatton

0(ZaZa) = > Wi pWkpa + > Wk/\pkl'Pkpa> ®)

pe? aed/ (keJ(A ke s

wherewy is a weightassociated with patient speciality thpEor this study we assung = 1

for all k, which allowsithe interpretation cg(ZmZa) as the expected number of patients
surviving per time unit. Nowdy,, can be interpreted as the probability of a patieat._7z at
pick-up locationp being seen by a primary vehicle from locatiaand surviving; whilqukpa
would be/the probability of patients of specialkye #a at pick-up locationp being seen by
any vehicle from locatiom and surviving. Equatiod is the weighted sum over the expected
survival probabilities of all patient specialities, all patt pick-up locations, and all ambulance
stations. These survival probabilities are given by Equattossd 7 respectively.

Wiepa = sk (Bpa) (1 - 752) [ iZaboae) (6)

ace/
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10 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIAS

q\Jkpa: Sk (Bpa) (1— féa) I_l fézgﬁpaa) rQ(’ZaRpaa)

acd

5 (bpa) (1 o) [ 7o o) e (1 Foea)) @)

aco/

HereRpaa, andBpa e, define an ordering of the ambulance locations, they arebinary vari
ables indicating the preference of sending a vehicle from onmistad another; that'is,the
dispatch rule. Here we use the closest or fastest vehicl@,58 indicates if a vehicle.of the
same type can reaghquicker froma; thanay, defined in EquatioB, while Rpa,a, indicates
if a primary vehicle ag; can reactp quicker than a secondary vehicleaat defined in Equ-
ation9. In order for these to define an ordering it is assumed that'no-twneti@mbulance
locations are exactly equidistant from a pickup location. Imiequation8.and9, < are used
rather than<; in Equation8 will be equivalent, as we assume notwo ‘ambulance locations
are equidistant; while in Equatid® in the case of a primary,and\secondary vehicle having
equal travel times, then the primary vehicle will have prioritgt8ithat here these parameters
are defined using travel times, but can be generalisedto actmuany type of preference,
including for example proximity, importance, or efficiency.

0 f a; = ay
Bpalaz =X if bpal < bpa2 (8)
0 “otherwise.
1 if bpg, <D
R _ pay = Mpap 9
1% {0 otherwise. ©)

Equation6 is the probability-of a patient surviving (their survival funat)o multiplied by
the availability of primary vehicles at that ambulance statimultiplied by the unavailability
of vehicles at closeristations: Equatidrextends this to two vehicles types, the first part of
the sum repeating,the logic for the faster secondary vehictesthe second part of the sum
adapting that fogicfer_primary vehicles, who will only be cobtrie the patient’s survival if
all faster secondary.vehicles are also busy. These interpmesadire given as annotations to
the equations in APPENDIA.

Note that in/Equations and7, the survival functions used(t), are the same whether a
primary ora secondary vehicle arrives first. This may be unrealistiere primary vehicles
may be _better equipped than secondary vehicles to deal witle smnergencies. One option
to_overcome this would be to have distinct survival functionsdach vehicle type, however
there may be some interactions between the survival probathilitgtions that would not be
captured, for example when a primary vehicle arrives after a secpudhicle, there may still
be a better chance of survival that the secondary vehicle dhig would be an interesting
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avenue of further research. For this work, survival functions vélthee same for all vehicles,
representing the probability of surviving given time to be seearty emergency vehicle. Note
also that the survival functions are functionsog, the expected travel time betwepranda,
and do not consider the variability in the travel times. Thill laé discussed further alongside
results in Sectio.4.

A key consideration is the vehicle utilisatiorg and7g,; discussed in the next subsection.

4.3. Utilisation Considerations

The models above assume that the utilisations of each eetyipk at each vehicle*location
is known, which is a potentially restrictive assumption. Theslisationsr, and 7. depend
on the demand to statiom which itself depends on the vehicle allocations: One nttibfo
overcoming this, used iKnight et al.(2012), is to consider utilisation as the ratio of demand
and service rates, shown in Equatiditsand11. Here we Iet% and% be theaverage job times

of primary and secondary vehicles, th)mandﬁa represent the share of the demand seen by
primary and secondary vehicles from vehicle locaprespectively:

o= (10)

=g =[5

o= (11)
Note that here we assume that average job‘times are not dependéetvehicle location

a, although this may be unrealistic] given that the travel betwlecations are a key part of

a vehicle’s job time Bpa, Dya, Fpa). However, as discussed in Sectignthere are a number

of other components to an ambulance job including time an(&it), hospital handover time

(J), and vehicle refill time®). Forthe case of Jakarta, we justify the assumption of job times

not being location dependent by /considering the proportiom@mabulance job’s time that is

location dependenpdefinedin Equatioi2,

BpatDya if hospital required,

p=4{ " 12)
BpatFpa : :
T if no hospital required,

then,using,the simulation described in Sectipnve consider the distribution @ across all
simulated jobs under the current situation and allocatioakarta, shown in Figurg. We see
for primary vehicle jobs on average 24% of a job time is locatigmethelent, while it is 36.5%
for secondary vehicles. Considering location-dependent seraies would be an interesting
further research question, potentially improving the modeldgomance by incorporating
travel times into the MESLMHPHF. However, given that in theeaf Jakarta the preferences
Bpaya, aNdRpa,a, are themselves defined by travel times (Equati®asd9), this might not
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Primary Vehicles Secondary Vehicles
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Fic. 3. Distribution of the proportion of an ambulance job consitication dependent components; for primary
and secondary vehicles.

have a strong impact on the resultsrady-nethavemuchaffectfor this study, as-the model

already gives preference to the locations with the shortest setivies:

The demand experienced by vehicles at each locatianes would indeed be location
specific, and would depend on the number and utilisationeoféhicles at every other location.
This is addressed in the next subsection.

4.4. Numerical approximation of utilisation

For primary vehicles, which operate independently. of secondehycles, the relationship
between demand experienced at each locafignand the allocations and utilisations of all
other locations, is given by EquatidiB. For‘secondary vehicles, the relationship between
demand experienced at each locatibdy),and the-allocations and utilisations of all other loca-
tions, is given by Equatiof4. Note that this'also depends on the utilisations of the primary

vehicles, .
Aa Zy A (ZaBpaa)
- . 1_<) ) () (13)
pez@ke% \ < H aDgf H

~ N\ Za ~ (ZaBpaa)
~ )\a (Za Rpaa) )\Cf
A= Aok [ 1- [ = = 14
pez,@ke,z)a\ P (“) ale_lwm (”) e

We propose finding the true vehicle utilisations by first solvigguation13 for the Ag;
determining the’primary vehicle utilisations with Equatitih then using these to solve Equa-
tion/14 for the A5; and determining the secondary vehicle utilisations withdfigm11. These
can be solved numerically. In ourimplementation this is sbiveing the MINPACK hybrd and
hybrj.algorithms by using Scipyksol ve function (Virtanen et al.2020. These algorithms
are efficient methods for finding zeros of systems of non-lineaatons. They are based on
the Powell hybrid methodowell 1970. It should be noted that in this section we assume that
all Api are static and not time-dependant, which is an assumptiomttate used throughout
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the optimisation methodology, however in the simulationo&a account for time-dependent
demand.
Now note that, in Equatioh3, we have that

230l

and SOy e 7 Aa < 3 pe# Y ke.x Apk, Meaning that there is lost demand. This corresponds to the
patients who are abandoned, or take private or public transparhospital instead ‘efwaiting
for an ambulance. Similarly, in Equatidd, we have that

~ N\ Za ~ (ZaBpaa)

A a aa A
s 3 (1 (a) M e )<f’> <1
peZ ke H acd H

and sozae,qﬂ\a < Y pez YkeanApk- This lost demand represents both abandoned calls, but
also calls where secondary vehicles are not deployed as a prirahigies could reach them
first.

4.5. Metaheuristic Optimisation

In order to maximise the MESLMHPHF objective function presernite8Section4.2, we use
an evolutionary algorithm. A population of possible’soluias created and ranked according
to the objective, then for each generation of the/metaheuegtioportion of the best perfor-
ming solutions is kept, and are mutated to complete the ptipalfor the next generation. To
encourage exploration, the number'of times each solutioniatedibegins high and gradually
decreases throughout the run of the simulation. The metahieuaises five hyper-parameters:
N the population sizex the number of solutions to retain to the next generatmgithe ini-
tial mutation rateg the cooling-rate; antl the number of generations. The metaheuristic is
described in Algorithnd.,

Mutations consist,of.one of four possible changes: randoméyngh the location of one
primary vehicle,s«randomly change the location of one secondahycie; randomly remove
one primary vehicle.and add secondary vehicles to three randdmbeao locations (as one
primary vehicle costs the equivalent to three secondary vehj@dad randomly remove three
secondary vehicles and add a primary vehicle to a randomly cHosation. If it is required
that exactwehicle numbers need to be retained, then only fortfitstmutations need be
chosen.

The_source code for the optimisation metaheuristic, includihg evaluation of
the MESLMHPHF objective function and the solution method fbe tutilisation con-
siderations, is available aKnight and Palmer(2023 and development took place
at” https://github.com/drvinceknight/HeterogeneousAmbciditeetAllocations Numerical
results are discussed in Sectiin
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14 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIAS

Algorithm 1 Evolutionary Algorithm used to find better allocations.

1: Create a population df random allocationsZy, Z)
2: fori< OtoH do
3 Rank the population by decreasing expected survival accotdigguationb
Keep the togx solutions
m <« [mp —min(mp,i x )]
for j«+~ 0toN—«k do
Randomly choose and copy a solution from the population
Mutate that copy of the solutiom times
Place mutated copy in a separate population
10: end for
11: Combine populations;
12: end for
13: Rank the population according to Equatigin
14: Output the top ranking solution.

© ©o N Ok

5. Simulating Allocations

Discrete event simulation (DES) is a commondnethodology tiaia us to investigate given
scenarios under uncertainty. It is a common methodology for tiogeemergency medical
services, with a review given iAboueljinane et al(2013. Here it will be used to quantify
the effectiveness of given ambulance”allocations by measgarirange of key performance
indicators (KPIs), such as the averageiresponse time, the pere@italgandoned calls, veh-
icle utilisations, and expected survival based on responsesti The simulation is built using

the Ciw library Palmer et al.2019, and the model logic is described below. Its central ideas

include modelling transit jobs as customers, rather than ttiers themselves, and simulating
primary and secondary vehicles as two simulations sequemntiath the output of the former
being the input of the1atter. Separating out primary and sesgnekhicle logic simplifies the
model logic, allows for.modular simulations that can be rursaiation, and so easier to adapt
and to maintain:

5.1. Simulating Primary Vehicles

For primary vehicles the logic to simulate is as follows: Pddanake a call from one of a
number ofpick-up locations and await an ambulance to pickntbe and take them to an
appropriate hospital. Ambulances are stationed at a numbeniofilance locations; when a
patient makes a call, all free ambulances from any location dtetheir expected time to
reach that patient, and the ambulance with the smallest teghéime to the patient is called
out. The ambulance drives from its current ambulance locatidretpatient’s pick-up location,
then if a hospital is required, from the patient’s pick-up locatio the hospital, and then from
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the nearest hospital back to their original ambulance logatfa hospital is not required, the
ambulance returns to their original ambulance location.

Rather than considering patients as customers in a queuehleesiguation is re-framed to
model transit jobs as customers, with the ambulances as sef&$s similar to the approach
of Kergosien et al(2015, whereas ambulances are now simple servers, their stationscee no
in a queueing network, with a routing decision representing tiieudance preference.

Transit jobs can be categorised into classes corresponding fmdk-up locations” and
speciality.7”. Jobs of clasgp,k) € &2 x ¢ arrive with rateA,. Servers can be categorised
into classes corresponding to the ambulance locatignService times are server-dependent,
that is the service time of a transit job of type, k), being served by a server of clegswill
have service tim@p,y if a hospital is required andlk if no hospital is required. These were
given by Equationd and 2 respectively, in SectioB. That is Tpaky and Tpzk is the overall
time the ambulance spends dealing with that transit job andasailablestesreceive any more
transit jobs.

From a patient’s point of view their service only lagig+ Cpy + J, (0r Gi if no hospital is
required), and their waiting time By, plus the time waiting for.an ambulance to be dispatched.
However in our case, if there are no free ambulances at the,timallpfitcis assumed that
patients find their own care or transport, and so the call"is.ab@dl Therefore, the time
waiting for dispatch is always zero.

Furthermore, all service times are time dependent; and calddtata travel distances and
approximate hourly traffic levels, described.in Secton

5.2. Travel Time Calculations

Travel times within a city such as Jakarta are not constant thimutghe day due to the vari-
ability in traffic, and it is necessary to capture these in modeésmergency medical services
(Schmid and DoerngR010. Here, each day is split into a set of periodg, indexed byh.
Within each period traffic levels‘are-modelled as piecewisalifienctions similar taHorn
(2000, and are here considered constant but differing from period to pefiadfic levels
influence the speed ofithe ambulance through a delay fdgtassociated with each period.
Therefore, the expected spe8dat which an ambulance travels during pertod given by
Equationl5,

S =sd (15)

wheresis'some’ given baseline speed. The relationship between tavelled and distance
covered is piece-wise linear with slofg in periodh. Therefore, travel times are calculated
usingithis-relationship.

As an example, consider the scenario where for the first pero(D,4) we haveS; = 1;
for t € (4,8) we haveS, = 1, for t € (8,12) we haveSs = 2, and fort € (12,16) we have
Si{= 1. Consider that the vehicle must travel 11 units. If the vehidgins its journey at=0,
then the expected travel time would be 11 time units, shownigarg 4a. However if the
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(a) Beginning at 7 = 0, a travel time of 11. (b) Beginning at 1 = 3, a travel time of 10.

Fic. 4. Example of calculating travel times for two different stagttimes.

vehicle begins its journey at tinte= 3 then the expected travel time.is 10time units, shown in

Figure4b.

This is the method used to calculate the expected valu@HICpy, Dya andFpa. Fur-
thermore it is assumed that travel times for each segment of the (wom vehicle location
to patient, from patient to hospital, and from hospital back Heevehicle’s location) follow
a Triangular distribution around the calculated expected lttane, between 75% and 125%
of the value. A Triangular distribution is a useful distributimnuse when not much is known
about the travel times except some basic summary statiftimsiifson 2014, in this case a
likely range of values.

5.3. Time-dependent Demand

Additionally, it is assumed that calls arrive according to asBon distribution, with rateky,
and that these rates are time dependent. Each day is split imt6-foour periods, the morning,
afternoon, evening and.night, and each specilépd pick-up locatiornp will have a different
call arrival rate for each'of these periods.

For some locationstand specialities the number of obserdéisirmmht be very low, and
so theA i rate would.be very low. This can cause synchronicity issues whgpling arrivals
(Pidd, 2004);where, artificially long inter-arrival times can be introducedhat beginning of
one time/period due to the low arrival rate in the previous time petio order to overcome
this here, rather than sample inter-arrival times iteratively frenE&ponential distribution,
an entire schedule of arrival dates are sampled at the beginhitihge gimulation run, first
by.sampling the number of arrivals required in each time period frd?oiason distribution,
and then by sampling specific dates within that time periodgiaiUniform distribution. This
mechanism, and alternative to thinnirge(vis and Shedlerl979, was implemented in the
Ciw software in version v2.3.3The Ciw library developers2022, and described in the
documentation herduttps://ciw.readthedocs.io/en/latest/Guides/tiependent.html

Gz0z AInr 2z uo 1senb Aq /810618/.Z01edp/uBWwBWI/SE0L 0 | /I0P/3|o1E-80UBAPE/UBLIEWI/WOD dNO-oIWSpeoR//:sdny wolj papeojumaq


https://ciw.readthedocs.io/en/latest/Guides/time_dependent.html

ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIQS 17

5.4. Simulating Secondary Vehicles

Secondary non-transit vehicles, can in general travel fasterghenary transport vehicles,
and so can be dispatched at the same time as a primary vehidledatit the patient earlier,
reducing the response time for that patient and so increasiimgstin@ival probability. They
are only dispatched for patients of speciakty .7, and if the closest secondary vehicle ean
reach them before the closest primary vehicle. Here secondaryleglaice simulated,in a
second discrete event simulation, run sequentially, butlsiting the exact same time period
and events as the first simulation. This is similar to segakhyibrid simulation methodology.
(Brailsford et al, 2019 Morgan et al. 2017, however in this case the two combinedicom-
ponents are both DES, and are combined to simplify the logic cii eamponent,.maintain
modularity and so ease model reusability and future adaptations

This is possible as there are no synchronicity issues betweetwth components. Pri-
mary vehicles operate independently of secondary vehiclasjghthe way primary vehicles
respond to a patient is unaffected by the presence or lack ofamdeary vehicle. Therefore,
primary vehicle logic is not compromised by simulating primariie&es;in isolation. Secon-
dary vehicles are impacted by the behaviour of primary vehitkes; must remain with the
patient until the primary vehicle arrives, and so must be.siradlafter the simulation of pri-
mary vehicles, taking as inputs the exact list of events thatised. That is, the logic of the
secondary vehicles is determined by observing thesactionsmobpyivehicles and reacting to
them. Simulation results are combined for each individuabpatito determine their response
time caused by either primary or secondaryvehicles:

Secondary vehicles are chosen in thefsame way as primary vehiglesoosing out of the
currently free vehicles the one with the smallest expected tinpatient. Their service times
are reactionary to what occurred withythe primary vehicle. The oeci® send a primary
vehicle or not depends on the jpreviously estimated travel fon¢he primary vehicle, not
the actual travel time experienced by that primary vehicle: #@sadary vehicle is estimated
to reach there first, they will be dispatched. léaaz be the time it takes for the secondary
vehicle to travel from itsfocationy to the patient pick-up locatiop; Bps, is the time is took
for the primary vehicle'to getifrom its locatian to the patient pick-up locatiop; Gy is the
time the primary vehicle*spent with the patient; aﬁgz is the time it takes to return to the
secondary vehicle’s locatica from the patient pick-up locatiop. Note thatBpa, andGy are
exact values obtained-from the initial simulation of the primeeticles, whileBya, andFpa,
are random variables to sample in the subsequent simulatiovelrmes are calculated as
described in Sectiob.2, replacing the primary vehicle delay factak, with a delay factor
for secondary-vehiclesl,. This accounts for secondary vehicles travelling faster anctirep
to traffic differently to primary vehicles, similar to the methoskd inHenderson and Mason
(2004 to-differentiate the travel times of ambulances with and wittftashing lights.

Exact synchronicity considerations are shown in Fidure

.’ whenever the secondary vehicle reaches the patient before tharprhas left, vehicle,
they remain with the patient until the primary vehicle leaves;
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Fic. 5. Visualising secondary vehicle (SV) logic reacting to phienary vehicle’s (PV) actions.

. if secondary vehicle arrives after the primary vehicle has left; thi# immediately return
to their stations as they are not needed at the scene;

. if the expected time for the secondary vehicle to reach the miatieceeds the‘expected
time for the primary vehicle to reach the patient then the seagnaicle.is:not deployed,
and so that transit job would be abandoned in the secondaryationu(although still seen
by a primary vehicle in the initial simulation). We assume thetandary vehicles must
still reach the pickup locations, due to potential difficetiin communication en-route.
Consider a situation when a secondary vehicle arrives andttenpdoes not require tran-
sportation to a hospital, with better en-route communicatidswould mean the primary
vehicle turns around, however without en-route communicatioicinis assumed here, the
primary vehicle must still reach the patient pick-up. location.

Therefore job service times for secondaty vehicf%k, are given by:

-i:pak - max(épaz, Bpal + Gk) + praz (16)

5.5. Combined Model

Combining the logic presented in Sectidnd and5.4in a sequential manner, with the output
of one determining the input’of the other, gives the overallusition logic for simulating
both primary and secendary.vehicle types. It is used to quantifieffectiveness of a given
aIIocation(Z&Za) foralllac ./, by recording several useful KPIs. In this work, the KPIs
of interest are: the average primary vehicle utilisation, theame secondary vehicle utili-
sation, the mean response time, the percentage of abanddise(thet is a measure of the
primary vehicle unavailability), and the expected overall stalviSurvival is modelled using
a combination of survival function curves and hard cut-offs, ante&cribed in Sectioa. L
Verification of a model is ensuring that the conceptual modéhiglemented correctly
and without error, while validation of a model ensures that tbeceptual model accura-
tely represents the real system to be modelledb{nson 2014. Verifying the simulation
code, alongside verifying the optimisation and MESLMHPHFeahiye function code, is done
through automated code testingaimer and Tian2023 Perciva) 2014). This includes unit
testing to ensure that each sub-component works are requiress bad and error free; end
to end testing, ensuring that the components interact togath@tended; and extreme value
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W e

Fic. 6. Map of Jakarta's Municipalities.

testing ensuring that changes in input parameters result inbdeasd expected changes in
output results and behaviours. The testing suites are inclinddte open code repositories
provided.

The source code for the combined simulation, is availablRaaner and Tuso(2023 and
development took place https://github.com/MarkTuson/ambulansienulation

6. The Case of Jakarta

Jakarta, the capital of Indonesia, has,a population of 10.komi{Badan Pusat Statistik Pro-
vinsi DKI Jakarta 2023 residing within 664 krA. The city is divided into five municipalities
and one district, each of whichiis\divided into sub districtd,an turn, neighbourhoods. There
are in total 42 sub districts‘and’261 neighbourhoods within faathJakarta (excluding the
Thousand Islands regency in'the nortBpflan Pusat Statistik Provinsi DKI Jakar2820; a
map is given in Figuré.

As described,in'Sectioh there are many challenges to calling for an ambulance in Jakarta
as captured-irBrice et al.(2022. Based on this work the regional government of Jakarta
invested in a new fleet of coordinated ambulances accessiblbersingle emergency number
119. Thisiwork; in collaboration with Ambulans 118 and the 1I¥fefgency Ambulance
Service, finds potential fleet allocations using the optitiosa methods given in Sectioh
and evaluates these allocations’ effectiveness using tinglaiion described in Sectidn

As of October 2022, the 119 service in Jakarta ran a fleet of 81 priEraergency Ambu-
lances (EAs) and 13 secondary motorbike Rapid Response Ve(iRIR/s), distributed across
67 ambulance stations throughout the city. Figusimmarise the allocations vehicle locati-
ons. Working with our ambulance partners, after careful consider#te following patient
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Fic. 7. Map of current Emergency Ambulance (EA) and Rapid Responisielég RRV) locations and allocations to
ambulance bases across Jakarta.

‘specialities’ k € .#") were agreed based on clinical need (although other categari#d c
readily be adopted and included as necessary):

« Al - High priority emergency patients“critical patients who require immediate life-
saving assistance with a target ambulanceresponse time iwfas. In our data set there
were 168 identified calls that met this criterion. Askinight et al.(2012), equation 8) is
here used to measure survival of these patients.

. A2 - Other emergency patients: urgent patients that require assistance with a target
response time of 15 minutes. In our data set there were 23,784t s type.

« B - Non-emergency patients: patients that still benefit from an ambulance response but
non-critical with a targetresponse time of 60 minutes. There ®&fe25 calls of this type
in the data set.

Secondary vehicles,can be called to patients of specialityadd A2, therefore’Za =
{Al,A2} and g, =+{B}. The number of calls from each of these specialities varies by ne
ghbourhood;"as shown in Figuge It can be seen that many calls are highly concentrated in
a handful of neighbourhoods rather than spread throughout thdrcithis work, we appro-
ximate pick-up locations by the geographic centroid of eachef61 neighbourhoods, each
representing an ambulance pick-up that that occurred withimeighbourhood.

Firstly,in Section6.1 we use the MESLMHPHF objective function of expected survival,
and the simulation, to find KPIs that to compare the performancgmptoposed grid allocati-
ons to the currently used allocation. An additional KPI is alalzulated, the expected survival
of’Al patients, found by taking Equatiérand summing ovek= Al only. Then in SectioB.2
we outline four possible future demand scenarios, and in Se6tiwwe use the optimisation
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Fic. 8. Number of calls received by speciality and neighbourhood.

model to find and compare improved allocations for the current murabvehicles. Finally
in Section6.5 we investigate the number of vehicles required to meet the ddraeross the
given scenarios.

All models are parameterised using demand data that coverslatig?dghbourhoods from
1 January to 31 December 2019, before the COVID-19 pandemic. Date2d@0-2021 was
naturally heavily skewed by the pandemic, with significatdhwer.-demand, and so was not
considered as representative of a typical period for forecastingefueeds, hence the decision
to use the available 2019 demand. APPENDIXrovides further details on the parameteri-
sation of the model, including how travel time estimates weyioed. Verification of the
models were discussed in Sectidrb, we validated,based on expert opinion from our colla-
borators, Ambulans 118 and the 119 Emergency Ambulance Sémdedarta, where several
workshops have been carried out inAndonesja where the model \aasdshnd discussed.
This expertise was vital in giving a basic validation of thedwmlp with collaborators approving
model results parametrised from their provided data and expelibopin

6.1. Evaluating ‘Grid’ Proposals

Discussions with senior staff at 119 identified that they wsedously considering a re-
configuration their ambulance allocations into a grid structplacing an ambulance station at
regular intervalsthroughout the city and uniformly distributihg vehicles that they felt would
ensure equitable coverage. Two possible grid allocations weirg lzonsidered: one placing
an EA every“3km across the city (giving a total of 70 vehicles), andther placing three
EAs every 5km across the city (giving a total of 72 vehicles). Fégushow these proposed
allocations:

Running the simulation and MESLMHPHF objective function apected survival for
both the current and the two proposed grid allocations gives sudtseshown in Tablé. The
simulation was run over half a year, with a month warm up timer dive replications. The
variability over the replications is very small, and we haveduded 90% conficence intervals
around the mean response times to demonstrate this. We obsatvthehwo proposed grid
allocations perform much worse than the current allocation asuneédy mean response

Gz0z AInr 2z uo 1senb Aq /810618/.Z01edp/uBWwBWI/SE0L 0 | /I0P/3|o1E-80UBAPE/UBLIEWI/WOD dNO-oIWSpeoR//:sdny wolj papeojumaq



22 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIAS
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Fic. 9. Proposed grid.allocations.

Allocation /Baseline” Grid 3km Grid 5km

Number of EAs 81 70 71
Number of RRVs 13 0 0

Ambulance Utilisation~ 30.99% 36.58% 35.79%
RRV Utilisation 22.47% - -

) . 17.69 22.29 24.05
Mean Response Time (mlns)(i 0.07) (£006) (0.03)

StDev'Response Time (mins) 6.98 8.02 7.94
MESLMHPHF Objective 98.34%  87.95%  85.64%
MESEMHPHF Al Objective  26.05%  13.64%  12.23%
Percent Abandoned 0.00% 0.52% 0.93%

TaBLE 1 Calculated KPIs for the current and proposed grid
allocations.

time, survival, and percentage of calls abandoned. This isagd as vehicle numbers are
lower under the new proposals, as well as the allocations $otg®n coverage rather than
response times or survival.
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Reason % of emergency respondents

Used Ambulance 13.0

Too expensive 5.2

Not available 13.1

Would take too long 16.5

Not necessary 15.7

Not aware of service 33.1
Other 35

TABLE 2 Barriers to use of an ambulance service in
Jakarta, fromBrice et al.(2022.

6.2. Demand Scenarios

Similarly to many other cities worldwide, ambulance service¥akarta anticipate that demand
for services will grow in future years, not least because, there-is amawordinated service
accessible via a single common number ‘119’ to call. This Bhbelp raise awareness and
visibility of an ambulance service. In the case ofJakarta, itdytancreased use of 119 and
therefore increased demand would be a desired outcome and is jwelyastipported by the
Indonesian Government.

In other cities with more detailed data,collection, statatimmodels can be used to predict
future spacial demand across a city, adlinoletta et al.(2022. In the case of Jakarta, col-
lected call data is not detailed enaugh;, but we do considardiferent demand scenarios,
developed by considering the result of our cross-sectionay sitigatients attending EDs in
Jakarta Brice et al, 20229. As part of the survey, randomly selected patients arriving dt eac
emergency department were asked-whether they had used araagttd attend, and reasons
for not using an ambulanceFor'those patients who were casegoby the medical staff as
emergency and for whom therefore an ambulance might have seesgstbille option, the
responses are given in/Talile

The survey.confirmed three major barriers to use, namely: the sirvisibility (33.1%
of respondents were“tnaware of the service), the service’s rdjaliiB.1% of respondents
reported that there ' was no ambulance available and 16.5% ofndspis believed it would
take too long), and the service’s cost (5.2% of respondentsaiigtchs a deterrent). Therefore,
four,demand-scenarios were considered, corresponding to addressim of these barriers in
turn;

«.D13: representing the current situation where approximately 13% efgamcy patients
(specialities A1 and A2) do use an ambulance.

" D19: representing the situation where visibility is addressed. Heedlistribute the 33.1%
of the respondents who were unaware of the service proportionetlyeen using the
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Parameter Value Used Explanation

u TEEETED Average primary vehicle service rate {f).

fi 3560 Average secondary vehicle service rate thr

N 100 Population size.

K 20 Number of solutions to keep per generation.

Mo 6 Initial number of mutations.

c 0.1 Cooling rate, rate at which number of mutations decreases.
H 200 Number of generations.

TABLE 3 Hyper-parameters used in the optimisation for all experitaen

ambulance and amongst the remaining issues. Using thisydwtgy-we would expect
19.4% of emergency patients to now use an ambulance:

. D34: representing the situation where reliability and wisibilitye saddressed. Using
the same methodology we would expect 34.8%_ 0f emergencegmatio now use an
ambulance.

. D45: representing the situation where cost,~reliability"and vigjbare all addressed.
Using the same methodology we would expect 45.4% of emeygeaitents to now use
an ambulance.

Guided by our findings iBrice et alx(2022, recent changes mean that the 119 services
is now free to use for Jakarta residents, sopcCertainly the highesarmtk D45) scenario is
plausible in the near future. After-discussions with our partniérgas agreed that for each
of the scenarios we should assume that’non-emergency demawia(gp B) remains unch-
anged. Therefore, in each scenario, we multiply the call demanéach municipality A px
by 13% =1, 13% = 1.46, 3% 22,62, and13 = 3.46 respectively, for alk € #a, p € 2.
Note that for some piek-up locations Ay is very small, possibly zero, which is realistic in
scenarioD13, as thatis,what1s observed, but may result in artificially lowndad in those

locations when using the multiplication method to scale emand.

6.3. Improving the Current Allocation

Applying the optimisation metaheuristic from Sectiémo the current allocation re-allocates
the 81 EAs and 13 RRVs. We do this for each of the four scenariasitled in Sectior6.2
The hyper-parameters used for this optimisation algorithm througthis study are given in
Table3, which include approximations for the average service timesiofgry and secondary
vehicles derived from the initial simulation model. APPENDIDXshows some initial explo-
rations on the hyper-parameter choices, giving confidencehibathosen parameters, with a
large enough number of iteratioh are sufficient to find allocations that perform well.
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MESLMHPHF MESLMHPHF A1  Observed Observed A1  Primary Secondary Mean Response Response Time

Demand Allocation Abandoned

Objective function Objective function  Survival Survival Utilisation Utilisation Time (mins)  StDev (mins)
b13 Current 98.34% 26.05% (i7()7.285302)/; & il..:ig‘fj:)ﬂ’ 30.99% 22.47% &]6706;? 6.98 0.00%
Improved 99.10% 30.99% (ii)?é:ée"/‘:)/; @ 3'32202))/0 31.06% 18.29% &]6701? 7.04 0.00%
b1 Current 97.74% 25.17% (170?5%102/; @ 01v56.;102;)/c 38.11% 32.24% &%)80‘;? 7.73 0.44%
Improved 99.64% 29.85% (1%955680;)/; @ S’é’s;? 38.12% 27.39% &]68055 7.70 0.46%
s Current 95.78% 22.75% (i%‘.‘iiz/‘:)/;) & 012'153/0?’ 54.07% 52.28% &%20?3 11.56 3.44%
Improved 99.61% 29.59% (i%‘.‘ﬁjz; @ é’é’g‘z})ﬁ’ 54.16% 49.07% &%20];; 11.86 3.79%
ods Current 92.88% 20.67% (igézli/z/; & 3.13'183:)/0 61.79% 60.89% &%3023 12.92 9.69%
Improved 99.54% 29.36% (i%%%%;:; @ 01,12-;120)/0 61.62% 56.80% &%3017? 12.51 9.27%

TaBLE 4 Calculated KPIs for the current and improved allocations.enthe four possible
demand scenarios.

Table4 compares the MESLMHPHF objective function value and simoitatierived KPIs
between the current and the optimised allocations, for eacladescenario, along with 90%
confidence intervals over the trials. It can be seen that, axtegeas demand increases then
utilisation of primary and secondary vehicles increase, as mhigsuance service is busier.
Similarly, mean response time increases.with.demand, thisei$adthe vehicles being busier,
and therefore less chance that the most optimally placed eeisicispatched. This is con-
firmed by the percentage of calls_abandoned increasing with msnmgnowing ambulance
unavailability.

The value of the MESLMHRHF objective function and the obsemsuatival, as given by
the simulation model, do notmatch. Sectd discusses this in more detail.

As desired, the optimisation, heuristic has indeed improvedatloeation as measured
by the MESLMHPHE.objective-function. In particular Al patiertse benefiting from the
improved allocationsias measured by the MESLMHPHF objectiwetfan, though not by the
simulation. Why-the simulation might not capture this is hyesised in Sectiold.4. This
measured improvement is due to these patients being moreigensismall fluctuations in
response time;,due. to their survival function Equatior\lso, using a better allocation does
increase fthe survival, and that the drop in survival due to derrardases is not as severe
when-using an/improved allocation in comparison to the currdatation, although more
numerical evidence would be helpful here. This improved robgstmet only validates the
heuristic but also highlights the research contribution ofiBret.3 as an approach to handle
the recursive relationship between an allocati@md the utilisation rates.

It is worth noting that for the simulation based KPIs (mean resptinses and percent
abandoned), there is not much difference between the currentlyaliseation and the better
allocation, showing that these KPIs may not be good approiomabf survival.
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6.4. Comparing Expected & Simulated Survival Measures

In Table4 it can be seen that there is a large discrepancy between thetedsirvival, both
overall and of Al patients, computed using the MESLMHPHF dbed in Sectiom.2 and
calculated using the simulation. This is a consequenceef/#niability in response times,
which is explicitly modelled by the simulation but not caggd by the MESLMHPHF. As seen
in the table, the standard deviations of the response timeslateely large in comparison to
the mean response times, and so this effect would be substzariéa

The discrepancies are exacerbated by the use of cut-off survivetida curvesfor moest
of the patients: consider a survival function with cut-bffwith response time<below the

patient’s chance of survival is 0, and abdvéhe patient’'s chance of survival is guaranteed.

The optimisation will find a solution aiming to push the exjgecresponse time abote and
once this is reached, possibly with an expected response srmvaasL itself, it will not
attempt to push the expected response time above this, dkhitmé no effect on the expected
survival. However considering variability of mean responsestina considerable proportion
of the response times will lie below the expected value, andassibly-belowL, resulting
in worse survival probabilities, as observed in Tabl& herefore the distributions chosen to
model travel times can have a large impact on the survival megsin this case the naive
Triangular distribution.

Therefore we present two separate models toomeasure overall supatrabf which have
drawbacks in terms of capturing the stochasticity of the sysWenpresent both as a holistic
view of the system, and suggest the true outcomes lie somewiigetveen the two measures.
As the heuristic improves the outcomes.in oné-measure and ddwsman the other, we anti-
cipate that this procedure will improve-patient outcomes. Tdads to a number of avenues of
future work to improve this and overcome this effect. Variabilitylcbbe explicitly modelled
within the MESLMHPHF, such that it is not'only maximisiegpectedurvival, but considers
some percentiles of guaranteed survival. Another avenue vib@uid use the simulation expli-
citly in the optimisation process, incorporating the simwalatinto the objective function and
using simulation-optimisation techniques to improve runteffeciency.

Due to the naive chaoice of travel time distributions, inclgddifficulties in being able to
validate such a model.and:the choices made, we consider lbaIM ESLMHPHF objective
from now on.

6.5. Finding Better Allocations for Any Resource Level

The metaheuristic algorithm described in Sectidfinds allocation of ambulances across the
67. current ambulance stations for a given number of primary anshdacy vehicles. Infor-
mation supplied by one of the ambulance operators suggesiethtterms of total running
costs one EA (primary vehicle) was approximately equivalenttee RRVs (secondary veh-
icles), and so we consider three RRVs to be one resource; thateisparce level of 60 could
represent 60 primary and 0 secondary vehicles, or 59 primary anchBday vehicles, or 58
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primary and 6 secondary vehicles, and so on. For a given resowsienre run the optimisa-
tion algorithm allowing for one primary to be swapped for three sdaoy vehicles, and vice
versa, and we report KPIs for the best performing, in terms of maxinmaibsl, combinations,
as well as for the case when the number of secondary vehiclegisdi zero. We call these
the multiple vehicle type and single vehicle type scenarios.

Figuresl0a-15b display the obtained KPIs for each of these allocations. @enéie inte-
rvals over the replications were too small to display on thesplibtcan immediately be seen
that increasing the resource level has a positive effect on dB,K#ith vehicle utilisations,
mean response times, and percentage abandoned decreasingeridsurvival increasing.
Similarly, as expected increasing the demand of emergenty/tes a negative impact on all
KPIs.

Scenario: Single Vehicle Scenario: Multiple Vehicles
Demand Scenario Demand Scenario
— D13 D19 D34 —— D45 — D13 D19 D34 —— D45

100 100.0
g % 2
8 9 § oo8
<) )
[T 85 [T
: £ oo/
T 80 I
5 =
@ » 99.4
L w
= 70 =

60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 99'260 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
Resource Level Resource Level

(a) Single vehicle type scenario. (b) Multiple vehicle type scenario.

Fic. 10. MESLMHPHF objective expected survival results. (Note fhigures10a and10b do not have the same
y-axis scale in order to keep the data pointsisible.)

It is particularly interesting to compare the scenario in whiclglgirvehicle types (only
emergency ambulances) were allocated against the scenaie wiultiple vehicle types (both
emergency-ambulances and rapid response vehicles) weretatlo€ar equivalent resource
levels, introducing secondary vehicles increases ambuldilisation, and so decreases avai-
lability, resulting in an increase in abandoned calls. Howgwmroducing secondary vehicles
also results in a decrease in the mean response time, and arlargase in the expected
survival, especially those of speciality Al. In fact, it candeen from Figuré 1b that when
using. multiple vehicle types the survival of Al patients etats as the resource level incre-
ases, indicating that the system has reached an upper bouth@ sarvival of A1 patients.
This is corroborated by considering the survival function of Aligras given in Equatios,
where even if all patients were seen immediately a survival %3vould be expected, and
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Scenario: Single Vehicle Scenario: Multiple Vehicles
Demand Scenario Demand Scenario
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(a) Single vehicle type scenario. (b) Multiple vehicletypesscenario.

Fic. 11. Expected survival of Al patients results.

Scenario: Single Vehicle Scenario: Multiple Vehicles
Demand Scenario Demand Scenario

— D13 D19 D34 —— D45 — D13 D19 D34 —— D45

=
o
o
-
o
o

80

60\
40\
20

060 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 060 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

Resource Level Resource Level

©
o

ﬁ

s
Gz0z AInr 2z uo 1senb Aq /810618/.Z01edp/uBWwBWI/SE0L 0 | /I0P/3|o1E-80UBAPE/UBLIEWI/WOD dNO-oIWSpeoR//:sdny wolj papeojumaq

N
o

Ambulance Utilisation (%)
(2]
o

Ambulance Utilisation (%)

(a) Single vehicle typeiscenario. (b) Multiple vehicle type scenario.

Fig. 12. Ambulance utilisation results.

so accountingfor even.a minimum travel time to the patientdaeiwed plateau value of 32%
could not be“improved upon by adding more resource level.

An interesting phenomenon occurs when looking at Figute Here it seems that, when
using'multiple vehicles, mean response time decreases andéncaeases, which is counter-

intuitive. This is however due to a peculiar interplay betwdemand and vehicle behaviours:

as.stated.in Sectiod2only demand for emergency patients are increased (speci#tiasd
A2),"which are also the patients that can be seen by secondagfesgtand so would have a
lower response time than non-emergency patients (specigliffiis, demand scenari»s
receives a larger proportion emergency patients than scabaBicand so a larger proportion
of patients with lower response times due to being seen byngecy vehicles; bringing the
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Scenario: Multiple Vehicles
Demand Scenario
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Fic. 13. RRYV utilisation results.
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(a) Single vehicle type scenario. (b) Multiple vehicle type scenario.

Fi1G. 14. Mean response time results.

overall mean response/time-down. This does not mean howeueertfergency patients in
scenaridD45 hayesdlowernresponse times than those in scerai®

It is also noticeable-that the increases or decreases in théasiomderived KPIs are not
necessarily"monotonic with increases in resource level. Thdsiésto the derived allocations
being based on the MESLMHPHF score only, which is a measurereizaly while the simu-
lation‘derived KPIs are indirect measures of performance. Agasnthy indicate that these
indirect measures of performance, such as mean response timasemtpge within target,
are not good indicators of survival.

Crucially, the plots show that the allocations produced byojhtemisation algorithm per-
form better than the current allocation for the same demand androestevels. The current
levels include 81 EAs and 13 RRVS, so a resource level of 85.88 multiple vehicles. Com-
paring the derived allocations for this level in Figufg-15b to the results given in Tablg
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Scenario: Single Vehicle Scenario: Multiple Vehicles
Demand Scenario Demand Scenario
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(a) Single vehicle type scenario. (b) Multiple vehicletypesscenario.

FiG. 15. Percent of abandoned calls results:

the derived allocations give lower ambulance and RRVutitiss, lower mean response times,
and a higher percentage of patients seen within target.

7. Discussion & Conclusions

This paper has described the development of EMS demand ardittamodels and their
application to the city of Jakarta, Indonesia. To our knowtedbis is the first such study of
analysing emergency ambulance-services in Jakarta, and tkehas directly assisted and
guided providers and the government to ‘make investment daesifo a coordinated and free
to use EMS.

Firstly, we have considered patient survival and outcomesmitlileveloped MESLMH-
PHF model. By consideringigeospatial travel times and acoayifior the varying needs of
different patient types through categorising patients by sfigcand through using different
survival function=profiles, an expected overall survival was giv€his was used within a
optimisation processes, with an evolutionary metaheuristidind vehicle fleet allocations
that maximised expected survival. This expected survivaltfanextends previous work in
Knight et/al.(2012 to include more than one vehicle type. A particular novelfiehveas nume-
rically’solving implicit utilisation relationships, equatis13and14, to calculate the expected
survival, as an alternative to busy fractions and hypercube rmodel

Secondly, a discrete event simulation model has been usedlizaée existing and poten-
tial heterogeneous vehicle ambulance feet allocations instefrkey performance measures,
such as response times, survival, and vehicle utilisatiors.rateis takes into consideration
geospatial demand and travel, and temporal variation in deraaddraffic levels. A novel
feature of our approach is that the model comprises of sequaittialations, feeding data
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directly from one into the other in order to simulate primary andadary vehicles separa-
tely while maintaining synchronicity, with the overall aim fducing the complexity of the
simulation logic and maintaining modularity.

Both models investigate ambulance service activity in thee @ heterogeneous patients
and heterogeneous fleets. Heterogeneous patient groupsearagige with distinct demand
profiles, priorities, and survival functions. Heterogeneous gleencern different types-of
vehicles, in our case emergency ambulances (EAs) which rdspavery patient, and Rapid
Response Vehicles (RRVs) which can be utilised to reach patiaster, despite being unable
to transport patients themselves.

Using a combination of models has permitted an approach thmatajsture performance
measures or take into account factors that each model inimole&n not., For example, the
maximum expected survival model is a lot more appropriate for ut@nian optimisation
process as the runtimes are a far more reasonable than the ssmu@ui-the-other hand, the
simulation allows for greater complexity such as temporal deimand‘is able to capture a
greater range of KPIs. Crucially, using mixed methodology swscthis.allowed for indepen-
dent evaluation of the output of one using the other; but asights from an initial run of the
simulation gave helped parametrise and justify assumptiotieadptimisation.

Combinations of models allow for robust conclusions te.be drabout the system, by
considering the specific attributes of each modelling appro&tdre, the MESLMHPHF
is quick to run, but can fail to capture stochasticity, while gimulation is parametrised
using expert opinions that can effect its robustness. Takinly into account offers a better
approximation and more insight.

A key feature of both models, and-their novelty, is the constitareof heterogeneous
fleets. In a highly populated area_sti¢ch as Jakarta (around 16,@@ation per km), the
inclusion of RRVs such as paramedics on.motorbikes is very irapgrgiven RRVs can access
areas that cannot easily or quickly be accessed by ambuld®esslts from both the optimisa-
tion and simulation research-showed/that the RRVs can helpaserthe overall survival and
reduce the response times, especially crucial when resporaliiig threatening events such
as cardiac arrest$iplmén et'al, 2020.

In building the models, some assumptions or relaxations wedeieesimplify the model,
and future work should'investigate the effects of these, for el@thp assumption that service
times are not’location. dependent is unrealistic, but relaxed. Heurther developments of
the model-could censider explicitly modelling service ratesg the travel time matrices.
Another limitation identified was the lack of consideratiohvariability in travel times in
the optimisation model, which cased some discrepancieslestthe simulated and expected
survivals. One method to overcome this could be to incorporaiahility directly into the
MESLMHPHF objective, for example using percentiles instehdwerages, or to optimise
using. the simulation as an objective. However in both apgresica good estimate of travel
time distributions would be needed, with better validatidnother direction of future work
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is to find exact methods of solving the MESLMHPHF instead ofirg) on a metaheuristic
algorithm.

The results of our research also suggest that allocation sgatemy not be intuitive to
ambulance service managers, further emphasising the value afdellng approach. For
example, senior managers suggested the use of a grid allodatimaximise geographic
coverage, with ambulances equally spread across the citywdsishown to be sub-optimal
because neighbourhoods have different population densitiesteracteristics. For example,
the number of daily commuters in Jakarta is considerably higmduay time due-to work
and educationBadan Pusat Statistik Provinsi DKI Jakarg®01). Municipalities where-tra-
ding, educational institutions, and offices are concentnaigglbecome more populated during
day time. The model has quantified the deterioration in resptim&s and patient outcomes
should a fixed grid system be implemented, leading to 119 to thisgconsideration.

The ambulance posts in Jakarta depend on the service providesedambulances pro-
vided by the government are in various locations including gawent buildings as well as
community clinics and sub-district hospitals. In our case, weducurrent ambulance posts
as the locations for allocating the resources. As demands, foulantes may change from
time to time, future work could evaluate different, and perhap@yt, ambulance posts that
depend on changing demand volumes in neighbourhoods by fithe day.

The data used for ambulance demand covered one year from 1 Jaounbecember
2019, prior the COVID-19 pandemic. Recent studies related taulambe demand indicate
that the pandemic has severely impacted on the utilisati@M®, for examples in call volu-
mes Gan et al.2021) and in specific medical eonditions such as trauszbgl et al, 2021,
and possibly still continue to affect demand. Ambulance mglens, such as 118 and 119, may
use our modelling tools to incorporate,future demand data andaleste resource needs. To
aid this, we are currently working-on interfacing the simulatiod aptimisation into a single
easy to use decision support tool with,a dashboard (data \dsugli

Studies have shown that-the,quality in pre-hospital data ctidle varies considerably in
Indonesialooper et al.2019.We encountered similar challenges and have suggested to 119
and the Indonesian Gevernment that they should continue te dtriimprove the coverage
and quality of datacaellection: Future work could explore in magpth unmet demand that is
not recorded in the ED or.in the ambulance data.

Indonesia ‘isya‘vast'country with an uneven population density \arying quality of
available healthcare resources. The models have been parseeteith data from a high
population, high density urban area which is also relativelyl vesourced with healthcare
facilities compared to other regions in the country. Ambulaseevices in rural areas of
Indanesia may not have the same quality in management andisatjan compared to the
capital, Jakarta. We intend to conduct future studies to apyelyleveloped models to analyse
ambulance demand and allocations in different areas of Indmriasluding in rural regions.

In conclusion, the developed models have demonstrated a appebach in modelling
ambulance allocations that incorporate multiple vehicleetypnd health conditions, whilst
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also capturing patient survival. Our work has already informeantgcisions on the design of
a free to use and coordinated EMS system for Jakarta. Ongoindpardkion will continue to
assist ambulance providers and the Indonesian Government iidipgpevidence-based deci-
sion making for the benefit of patients and the population segye, including the exploration
of the roll-out of 119 beyond Jakarta to other regions of Indonesia
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A. Annotated Objective Function

Number of patients of a Number of patients of a
speciality in K4 surviving speciality in Kp surviving

Expected number of patients .
surviving, given allocations Z, Weights
and Z,

Probability of surviving

Probability of patient speciality k at Probability of that a primary vehicle is not b
location p being seen by a primary
vehicle from station a and survivng

Probability all closer primary vehi

1 |
q’kpa = Sk (bpa) (1 - ﬂ-aza) H Wgzzaﬁpm‘)
acA

Probability of surviving

ilityyof that condary vehicle is not busy

7

Probability all cl d. hicl b
Probability of patient speciality k at robability all closer secondary vehicles are busy

location p being seen by a vehicle
from station a and survivng

Probability all closer primary vehicles are busy

ag
Za (ZaBpaa) (Za(1=Rpaa))
1—my ) H PP To
acA
Probability all closer secondary vehicles are busy

g(ZmZa) —ZZ Z W Ak Wrpa + Z Wk ApkVkpa G
pEP acA \kEK keKp %

Probability all closer primary vehicles are busy

Probability of that a primary vehicle is not busy

Probability of surviving

%
C)O
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B. Full MESLMHPHF Optimisation Model

Decision variablesZ,, Z,, Maximise:

0(Za,Za) = Wi ok Pk pa+ WiA g Wi )
( ) pezﬁaezd (keZ)ﬁA P b kez){fg P i

where

Wipa = Sk (Bpa) (1 - 75°) |-|d ri\Zafpaz)

and

l:pkpa: Sk (Bpa) (1_ fga) I—l ﬁ;gzaﬁpaa) TQ(XZngaa)

acad

+Sk(bpa) (1— Téa) |—| ngaBpua) qu({za(l_Rpaa))

aco

subject to

where.Z is the resource level.

C. Model Parameters

Call arrival rates\ are derivedfrom 2019 demand data split by municipality and sfiggi

and time of day. Probabilitiesyky are similarly derived from the 2019 data of transit journeys.

All traffic-free travel times are found using Google Maps API, whitegidependent traffic
delays are found from the TomTom website and given in Tabte
The other maodels are parameterised in the following way:

. From a sample of*calls the time at siB was found to follow a lognormal distribution
with parametergr'= —0.6219 ando = 0.8048. For the case of Jakarta this was modelled

h 0000-0500 0500-1500 1500-1800 1800-0000

dn 0.98 0.66 0.59 0.77
dn 1.96 0.91 0.83 1.16

TaBLE C.5 Primary and secondary delay factors.
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identically for all specialitiek. Comparison between the lognormal fit and the sampled
times are given in Figur€.1

« From discussions with staff at the ambulance service in Jakidrgatime at hospitaly
was modelled as a Uniform distribution between 40 and 60 minfatethe emergency
specialities Al and A2, and between 20 and 30 minutes for naergancy speciality B.

« From discussions with staff at the ambulance service in Jgkbhgaefill time® is taken-to
be 60 minutes for an emergency ambulance, and 15 minutes foR¥n R

D. Exploration of Optimisation Hyperparameters

FigureD.2 shows the performance of the evolutionary metaheuristic algofithder different
values of the hyperparametes k, mp, andc.

E. Improved Allocationsfor Current Vehicle Numbers

FigureskE.3 E.4, E.5andE.6 show the improved allocations for 81 primary and 13 secondary
vehicles under demand scenariog3, D19, D34, andD45 respectively.

Sampled time on site
—— Lognormal fit

0.5 1

Fic. C.1. Comparison between the sampled time on site and the loghfittrma

‘ (T T
0 15 20 25 3.0 35 4.0
Time on Site (hrs)

0.0
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K=20,mo=6,c=1 N=60,mo=6,c=15

Value of the best found solution

1830,

) 4w Y W
Iterations (H) Iterations (H)

N=60,k=20,c=5 N=60,k=20,my=6

1846 1846

1844 184.4

1842 1842

Value of the best found solution
Value of the best found solution

1840
1838
1836 1836
1834 e Mo =1 1834
1832 1832

1 1
8.0, 830,

0 2 ) a0 EY 60 70 10 2 Y a0
Iterations (H) Iterations (H)

Fic. D.2. Comparison between optimisation performance for low, nmediand high-values oN, k, my, andc.
Optimisation is run on demand scenali@9, for a resource level of 75¢

50 60 70

EA Allocation RRV Allocation

WL s ”“i
|

NG}
®
®
@

Egf’i®o*® ©

£ |

Fic. E.3. Improved allocation of 81 EAs and 13 RRVs, under sceriati
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EA Allocation RRV Allocation

Fic. E.4. Improved allocation of 81 EAs and 13 RRVs, under sceriati

-
EA Allocation RRV Allocation 4

Fic. E.5. Improved allocatio ot,81 EAs and 13 RRVs, under sceri2Bit

EA Allocation RRV Allocation

Fic. E.6. Improved allocation of 81 EAs and 13 RRVSs, under sceriadin
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