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Ambulance services have a duty of care to the clinical outcomes of the population they serve, and
therefore aim to maximise the chances of survival and improve patient outcomes following a medical
emergency. Despite this, although the ambulance allocation problem has been widely studied, it has pre-
dominantly focused on minimising response times or maximising coverage alone, and not explicitly for
considering patient outcomes. In this paper we propose a modelling approach to consider where to best
allocate different types of emergency response vehicles in order to maximise patient outcomes within a
heterogeneous population. To achieve this, we develop a metaheuristic algorithm for finding better fleet
allocations which is used in conjunction with a discrete-event simulation model of ambulance services
with heterogeneous vehicles. A major contribution of this metaheuristic is the numerical solution of a
system of equations to approximate the utilisation of vehicles. Traditionally this utilisation is proble-
matic as it is both an input and an output of the allocation of vehicles. Our approach is informed by,
and tested on, real-world data from Jakarta, Indonesia. Using our developed models, decision makers
are better able to understand ambulance fleet capacity needs and allocations, and their impact on patient
outcomes.

Keywords:Ambulance Planning; Emergency Medical Services; Simulation; Health Care; Optimisation;
Mathematical Modelling

© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article
distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,
and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/advance-article/doi/10.1093/im

am
an/dpaf027/8190187 by guest on 22 July 2025

https://doi.org/10.1093/imaman/dpaf027
email:palmergi1@cardiff.ac.uk


U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

2 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

1. Introduction and Background

Time-critical conditions (TCCs) are a substantial cause of mortality worldwide, responsible
for an estimated 54% of all deaths (Fraser et al., 2020). Emergency medical services (EMS)
play a pivotal role in responding to TCCs and saving patients fromlife-threatening medical
conditions. Most EMS research, especially planning to meet increasing ambulance demands,
tends to be focussed on high-income countries including, for example, Australia (Lowthian
et al., 2011), Germany (Veser et al., 2020), and USA (Birmingham et al., 2021). In contrast,
many low and middle-income countries (LMICs) lack an organised EMS system, with most
ambulances used purely for patient transport and not as an emergency care vehicle (Suryanto
et al., 2017). However, the burden of deaths due to TCCs is much greater in LMICs than in
high-income countries, the difference being around threefold (Chang et al., 2016). For traffic
accidents, strokes and heart attacks, rapid access to appropriate treatment is especially vital.

The application of our research is focused on Indonesia, supported by an award for Global
Challenges Research Funds (GCRF). In Indonesia, an LMIC, there has been very little prior
work on developing an EMS strategy, driven by a lack of financial investment and human capi-
tal (Pusponegoro, 2003, Suryanto et al., 2017, Yusvirazi et al., 2018). Related research by the
authors (Brice et al., 2022) has highlighted particular challenges in Indonesia as a lackof a sin-
gle coordinated EMS, the ability or willingness to pay for an ambulance, a large geographical
area, and areas of severe traffic congestion especially in Jakarta, the capital.

When our research programme commenced in October 2019, ambulance services in
Jakarta were provided by many disparate, mostly private providers that charge patients for
their use. We initially partnered with Ambulans 118, a non-government charitable ambulance
service established in 2005 by the Indonesian Surgeons Association, that currently operates in
five cities across Indonesia: Jakarta, Palembang, Yogyakarta, Surabaya and Makasser. Unlike
private providers, Ambulans 118 suggests that a donation is made for use of its EMS vehicles,
but otherwise provides free emergency medical care, it is also leading on paramedic training
across the country.

The overarching goal of our research was to work with the IndonesianGovernment, the
different ambulance providers, and hospitals, to help them forecast emergency demand and
make critical decisions on the best types, capacities and geographical allocations of emergency
vehicles within a potentially co-ordinated EMS system, starting with Jakarta. To facilitate this,
in collaboration with Ambulans 118 we organised workshops in Jakarta in February 2020,
which were attended by over 170 people including doctors, nurses, paramedics, academics,
and officials from the Indonesian Ministry of Health. This paper presents some aspects of the
overall research programme, specifically focusing on the development of a simulation model
and allocation metaheuristic for maximising patient survival.

Fundamental to the project and the research described in this paper was an initial study
that we carried out in order to better understand patient needs and the barriers to use of ambu-
lances in Indonesia. Throughout the month of December 2020, weundertook comprehensive
surveys in Emergency Departments (EDs) across Jakarta and published the first known study
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ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS 3

in to EMS demand within the country (Brice et al., 2022). Our study showed that the utilisa-
tion of ambulances by patients attending EDs is very low and ofconcern. The low utilisation
is contributed by patients’ lack of awareness of available ambulance services, patients’ disi-
nclination to use ambulances due to high costs, and long response times. All of these barriers
impact on patient outcomes, especially for those with life-threatening conditions. For example,
more trauma patients took a car-share ride (20%) or motorcycle (20%) to reach the ED than an
ambulance (just 10%), while only 14% of critical cardiovascularpatients used an ambulance
compared to 67% travelling to hospital by private car or a car-share ride.

The first contribution of this paper is an extension the work ofKnight et al. (2012) to
consider both heterogeneous patients and heterogeneous fleets. Here a maximal survival obje-
ctive is formulated, from vehicle allocations and utilisations, which are themselves found by
numerically solving a relationship on the vehicles’ share of the demand. This is then used in a
metaheuristic to find improved allocations that aim to maximise patient survival. Secondly, we
develop a comprehensive sequential discrete event EMS simulation that models and evaluates
heterogeneous fleet allocations of emergency vehicles by utilising a novel approach in which
transit jobs, rather than patients, are framed as the queueing ‘customers’. Our methodology uti-
lises two discrete event simulations of the same system that are run sequentially and together
combine to form the logic of a single simulation of a heterogeneous fleet; and key performance
indicators (KPIs) are calculated by making use of survival functions. Thirdly, we demonstrate
the use and impact of our modelling framework applied to current and proposed ambulance
allocations in the city of Jakarta, thus supporting Government-level decision making with an
overall goal to improve the lives of those living in LMICs. This enables decision support
and managerial insights in Indonesia, although the developedmodelling framework could be
readily applied to other locations.

There are several managerial implications for EMS providers and government agencies
in Jakarta and Indonesia, respectively. The findings emphasisethe importance of adopting
a dynamic and data-driven approach to resource allocation. The inclusion of a heterogene-
ous fleet, such as Rapid Response Vehicles (RRVs) alongside traditional ambulances, has
been shown to significantly improve response times and patientsurvival rates, particularly
in densely populated urban areas. Managers are advised to investin these diverse fleets and
adopt flexible allocation strategies that account for temporalvariations in demand, such as
the daily influx of commuters and the differing population densities across neighbourhoods.
The research underscores the necessity of enhancing data collection practices to support infor-
med decision-making, with the development of user-friendly decision support tools to assist in
visualising data and predicting outcomes.

The paper is structured as follows: Section2 gives an overview of the literature on model-
ling ambulance allocations. Section3 describes the current ambulance service behaviour and
sets out the mathematical notation used throughout the paper. Section4 describes an optimi-
sation model, including the survival objective, utilisation considerations, and a metaheuristic
algorithm to find better fleet allocations. Section5 outlines the logic of the sequential discrete

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/advance-article/doi/10.1093/im

am
an/dpaf027/8190187 by guest on 22 July 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

4 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

event simulation models for heterogeneous fleets. Section6 gives a case study, describing the
current emergency service situation in Jakarta and applying theoptimisation and simulation
results. Section7 discusses the findings and contributions of the paper.

2. Literature Review

There is a rich literature on operational research applied to EMS location and related allocation
problems. Literature reviews that include these topics areAringhieri et al.(2017), Bélanger
et al. (2019), Farahani et al.(2019), Li et al. (2011), Liu et al. (2021), Mukhopadhyay et al.
(2022), Reuter-Oppermann and Vile(2017) and Wang et al.(2021). Ambulance allocation
problems such as that concerned in this paper can be categorisedas apreparednessproblem
(Mukhopadhyay et al., 2022).

Emergency medical services can be evaluated using different performance measures with
coverage and response time being the predominant metrics (McLay and Mayorga, 2010). How-
ever, missing a response time target by just one second, for example, would be considered as
a ‘failure’ in many models with no appreciation at all of the impact on patient survival or
outcome (McLay and Mayorga, 2010). This seems somewhat restrictive and short-sighted,
which is why we focus on survival as a metric and compare and contrast papers using that
metric with our approach. Here we consider some closely related papers, providing a summary
of each and comparing and contrasting them with our modelling and solution approach.

Amorim et al.(2019) propose an integrated strategic and tactical planning approach which
features an optimisation model and a local search heuristic based on Gaussian Processes. Their
methodology is applied to the city of Porto while reporting on performance metrics such as
survival. Our approach is different because we use a discrete-event simulation framework to
evaluate results from a population based heuristic to determine the number of ambulances
required in each station.

Boutilier and Chan(2022) develop an integrated location-queueing model that incorporates
existing EMS response times in a drone network. They use a p-median approach and an Erlang
loss model. Although survival is not their main optimisationcriterion, they report how many
patients would survive using their approach.

Erkut et al.(2008) can be considered the first modelling approach that considers deca-
ying survival probabilities during response time. The rationaleis, because survival can be
thought of as a more robust and generic objective for EMS performancemeasurement than
coverage or average response time. In an application of a recentlydeveloped Maximal Survi-
val Location Problem model (MSLP), the authors use data from Edmonton, Canada and show
that maximising survival is superior to other objectives in clinical outcome for cardiac arrest
patients.

McCormack and Coates(2015) focus on the optimisation of EMS vehicle fleet allocation
and base station location through the use of a genetic algorithm (GA) with an integrated EMS
simulation model. Their objective is maximization of the overall expected survival probability
across patient classes. Applications of the model were undertaken using real call data from
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ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS 5

the London Ambulance Service. The difference between their modelling approach and our
is that we have a different survival function, focus on a different heuristic optimisation and
evaluate our approach with data from a developing country, and have higher traffic volume
and congestion in our data.

Bélanger et al.(2020) combine optimisation and simulation to find both ambulancelocati-
ons and dispatch policies. Here, binary integer programming is used to minimise total response
time, where ambulance availability, or utilisation is unknown. In this work this is overcome
by iteratively feeding the solution of the optimisation programme into a simulation to find
the availability parameters, until convergence. Our work differs as we solve for ambulance
utilisation explicitly.

Toro-D́ıaz et al.(2013, 2015) build optimisation models for both the allocation and the
dispatch, or preference, rules for EMS services. They utilise the hypercube queueing model
for ambulance availability with a integer programming and metaheuristic algorithms. In parti-
cular, they consider a number of different objectives including mean response times, expected
coverage (Daskin, 1983), and the Gini index on individual response times as measures of
fairness in the system.

Knight et al.(2012) provide a supporting extension of the MSLP that allows it to beapplied
more generally to real-world EMS systems, acknowledging that different patients have varying
levels of expected survival probabilities. The Maximum Expected Survival Location Model
for Heterogeneous Patients, MESLMHP, allows multiple classes of patient groups to be defi-
ned, where previously only cardiac arrest patients formed part of theobjectives for primary
response. In reality any emergency patient has a necessity for swift attendance, and a timely
response to any incident type may impact on clinical outcome in some way. It is for this reason
MESLMHP is designed to be generic enough to accommodate any number of patient groups,
with each class weighted dependent upon the relative urgencyof the incident. More than just
a contribution to the models demand input, these patients are included in the optimisation
when maximising total population survival probability. Our work directly extends this work,
to include heterogeneous vehicle fleets, while developing a different fixed-point numerical
solution to the problem of approximating vehicle utilisations.

3. Problem Statement & Notation

We first present some notation. We have the following sets:

• P is the set of pick-up locations, indexed byp;
• A is the set of ambulance locations, indexed bya;
• Y is the set of hospitals, indexed byy;
• K is the set of medical specialities, indexed byk;
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6 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

to incorporate heterogeneous fleets the set of specialitiesK is partitioned into two sets,KA,
those patients that can be seen by secondary vehicles, andKB, those patients who are seen by
primary vehicles only.

An allocation is given by the tuple
(

Za, Z̃a
)

, whereZa is the number of primary vehicles
allocated to ambulance locationa; and Z̃a is the number of secondary vehicles allocated to
ambulance locationa. Also let:

• λpk be the rate at which patients of specialityk make calls from pick-up locationp;
• sk(t) be the survival function function associated with patients of specialityk;
• πa be the average utilisation of primary vehicles stationed at locationa;
• bpa be the expected travel time from ambulance locationa to pick-up locationp; and letBpa

be a random variable representing the time it takes for an ambulance to drive this distance;
• Cpy be a random variable representing the travel time from pick-up location p to hospitaly;
• Dya be a random variable representing the travel time from hospitaly to ambulance location

a;
• Fpa be a random variable representing the travel time from pick-up location p to ambulance

locationa;
• Gk be a random variable representing the time the ambulance spends with patients of

specialityk at the pick-up location;
• Jk be a random variable representing the time the ambulance spends with patients of

specialityk at the hospital;
• Θ be a random variable representing the time the ambulance spends re-fuelling, re-stocking,

and resting between transit jobs;
• qpky be the probability that a patient of specialityk from pick-up locationp is taken to

hospitaly. Note that having∑y∈Y qpky< 1 is possible, that is a patient may not go to any
hospital, in which case the ambulance returns to their ambulance location.

To incorporate heterogeneous vehicles, let alsoπ̃a denote the average utilisation of secon-
dary vehicles stationed at locationa; andb̃pa, B̃pa, C̃py, D̃ya, andF̃pa denote the corresponding
travel times for secondary vehicles.

Patients will call an ambulance from one of the pick-up locations p∈P. If all ambulances
are busy, then that call will be abandoned and it is assumed that the patient will find their
own way to the hospital through private or public transportation, which is an appropriate and
justified assumption for the case of Jakarta (Brice et al., 2022). Otherwise, a central control
centre will dispatch the closest available primary vehicle. That vehicle will travel from its
location to the patient (Bpa), spend some time on the scene treating the patient (Gk), travel
to the hospital (Cpy), spend some time handing over the patient at the hospital (Jk), travel
back to its original location (Dya), then spend time refilling and refuelling (Θ). There is also
a probability that the patient does not need a hospital, and sothe vehicle will travel from the
pick-up location back to it’s original vehicle location (Fpa). These routes are shown visually
in Figure1. Note that these routes cannot be interrupted, that is, an ambulance must return to
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Fig. 1. Ambulance routes for a given transit job.

it’s station for refilling before it is available to respond to another call, to ensure it is cleaned,
and fully stocked for it’s next call. Note also thatBpa andFpa need not necessarily be equal,
as travel times need not necessarily be symmetrical, this couldbe due to a number of reasons,
such as non-symmetric road networks, and differences in driver urgency on each leg of the
journey.

Therefore the total time an ambulance is busy will beTpakygiven by Equation1 if a hospital
is required, and service timeTpak given by Equation2 if no hospital is required.

Tpaky= Bpa+Gk+Cpy+Jk+Dya+Θ (1)

Tpak= Bpa+Gk+Fpa+Θ (2)

There are two types of vehicle: primary vehicles, typically ambulances, that must be dispa-
tched to all patients; and secondary vehicles, typically rapid response motorcycles, that can
travel faster than primary vehicles, and are dispatched to some patients to respond to an emer-
gency faster than the primary vehicle. Secondary vehicles cannot transport patients, but are
used in conjunction with primary vehicles to reduce response times. From a resource cost
perspective, one primary vehicle costs the same to purchase and to run as three secondary
vehicles.

4. Optimising Allocations for Maximal Survival

Here we outline a method of finding vehicle allocations that maximise the expected survival
of patients. The problem is, for a given set of vehicle locations (that is ambulance stations), a
given total number of primary vehicles, and a given total number of secondary vehicles, how
many vehicles of each type should be stationed at each location to maximise expected survival
across all patients.
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8 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

Fig. 2. Survival functions(t), estimated byValenzuela et al.(2000) compared withsL(t) with a hard cut-off ofL = 8,
represented as a step function.

4.1. Survival Functions

A key concept here is the survival curve of a patient. In reality, some emergency incidents do
not result in a substantive deterioration of a patients status over time; however, in all situati-
ons, there is a reasonable cut-off beyond which a patient shouldnot expect to have to wait for
care, and mixture of theoretical survival functions and step functions can be utilised. Survi-
val probabilities for critical incidents, calculated from a theoretical monotonically decaying
survival function reported in the literature (Valenzuela et al., 2000) are used to demonstrate an
attainable level of success from a response. One particular survival curves(t) of Equation3,
represents survival until hospital discharge following cardiacarrest; its origins are explained
in detail byKnight et al.(2012), and gives the probability of survival if seen within a timet
in the form of a logistic function. Figure2 shows the difference between using this survival
curve and a hard cut-off of 8 minutes. However, hard cut-off curves like Equation4, with a
cut-off of L can still be used to represent meeting artificially selected targets, for example for
transportation jobs.

s(t) =
(

1+e0.26+0.139t
)−1

(3)

sL(t) =

{

1 if 0≤ t ≤ L

0 if t > L
(4)

Finding allocations that maximise survival can result in allocations with different beh-
aviours to those found by minimising response times or maximising coverage. Coverage
maximisation models are often easier to solve, and easier to communicate, but may not take
into consideration severity or intensity of demand (Erkut et al., 2008). This results in a minority
of patients, particularly those more isolated, being over-serviced, that is, having more relative
resources allocated to their needs that the majority, at the expense of the majority. Minimising
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average response times on the other hand treats all patients equally, but may have the uninten-
ded outcome of disregarding some more further out patients whose response times would be
larger that others regardless of the allocation. It would still disregard the severity or type of the
patient. Allocations based on maximising survival are similar to those that minimise response
time, overcoming the issue of over-servicing outlying patients, though it is still possible to dis-
regard them completely. It has an advantage over minimising response times as it can account
for patient severity. Having survival as functions of response times has the effect of weighting
gains in response times by how valuable those gains are to a patient.

4.2. Maximal Expected Survival Location Model with Heterogeneous Patients and
Heterogeneous Fleet

Here we propose a Maximal Expected Survival Location Model withHeterogeneous Patients
and Heterogeneous Fleet (MESLMHPHF). It is an extension of the MESLMHP model given
in Knight et al.(2012), which did not consider heterogeneous fleets. This is a model of survi-
val that can be used as an objective function for optimisation algorithms. It is a weighted
expected survival function as the objective function which considers heterogeneous patients
(different specialities) and heterogeneous fleets (both primary vehicles, EAs, and secondary
vehicles, RRVs), and is constructed by appropriately summing these survival curves, described
in Section4.1, across the population, multiplying by ambulance availability where appropriate.
The full MESLMHPHF optimisation model is given in APPENDIXB, and its components are
described fully here. The MESLMHPHF is given by Equation5.

g
(

Za, Z̃a
)

= ∑
p∈P

∑
a∈A

(

∑
k∈KA

wkλpkΨ̂kpa+ ∑
k∈KB

wkλpkΨkpa

)

(5)

wherewk is a weight associated with patient speciality typek. For this study we assumewk = 1
for all k, which allows the interpretation ofg

(

Za, Z̃a
)

as the expected number of patients
surviving per time unit. NowΨkpa can be interpreted as the probability of a patientk∈KB at
pick-up locationp being seen by a primary vehicle from locationa and surviving; whileΨ̂kpa

would be the probability of patients of specialityk ∈KA at pick-up locationp being seen by
any vehicle from locationa and surviving. Equation5 is the weighted sum over the expected
survival probabilities of all patient specialities, all patient pick-up locations, and all ambulance
stations. These survival probabilities are given by Equations6 and7 respectively.

Ψkpa= sk (bpa)
(

1−πZa
a

)

∏
α∈A

π(Zα βpαa)
α (6)
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10 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

Ψ̂kpa= sk
(

b̃pa
)

(

1− π̃ Z̃a
a

)

∏
α∈A

π̃(Z̃α βpαa)
α π(Zα Rpαa)

α

+sk (bpa)
(

1−πZa
a

)

∏
α∈A

π(Zα βpαa)
α π̃(Z̃α(1−Rpaα))

α (7)

HereRpa1a2 andβpa1a2 define an ordering of the ambulance locations, they are binary vari-
ables indicating the preference of sending a vehicle from one station to another, that is the
dispatch rule. Here we use the closest or fastest vehicle, soβpa1a2 indicates if a vehicle of the
same type can reachp quicker froma1 thana2, defined in Equation8, while Rpa1a2 indicates
if a primary vehicle ata1 can reachp quicker than a secondary vehicle ata2, defined in Equ-
ation9. In order for these to define an ordering it is assumed that no two distinct ambulance
locations are exactly equidistant from a pickup location. In both Equation8 and9,≤ are used
rather than<; in Equation8 will be equivalent, as we assume no two ambulance locations
are equidistant; while in Equation9, in the case of a primary and secondary vehicle having
equal travel times, then the primary vehicle will have priority. Note that here these parameters
are defined using travel times, but can be generalised to accountfor any type of preference,
including for example proximity, importance, or efficiency.

βpa1a2 =











0 if a1 = a2

1 if bpa1 ≤ bpa2

0 otherwise.

(8)

Rpa1a2 =

{

1 if bpa1 ≤ b̃pa2

0 otherwise.
(9)

Equation6 is the probability of a patient surviving (their survival function), multiplied by
the availability of primary vehicles at that ambulance station, multiplied by the unavailability
of vehicles at closer stations. Equation7 extends this to two vehicles types, the first part of
the sum repeating the logic for the faster secondary vehicles, and the second part of the sum
adapting that logic for primary vehicles, who will only be contribute the patient’s survival if
all faster secondary vehicles are also busy. These interpretations are given as annotations to
the equations in APPENDIXA.

Note that in Equations6 and7, the survival functions used,sk(t), are the same whether a
primary or a secondary vehicle arrives first. This may be unrealistic, where primary vehicles
may be better equipped than secondary vehicles to deal with some emergencies. One option
to overcome this would be to have distinct survival functions foreach vehicle type, however
there may be some interactions between the survival probabilityfunctions that would not be
captured, for example when a primary vehicle arrives after a secondary vehicle, there may still
be a better chance of survival that the secondary vehicle only.This would be an interesting
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avenue of further research. For this work, survival functions will be the same for all vehicles,
representing the probability of surviving given time to be seen by any emergency vehicle. Note
also that the survival functions are functions ofbpa, the expected travel time betweenp anda,
and do not consider the variability in the travel times. This will be discussed further alongside
results in Section6.4.

A key consideration is the vehicle utilisationsπa andπ̃a; discussed in the next subsection.

4.3. Utilisation Considerations

The models above assume that the utilisations of each vehicle type at each vehicle location
is known, which is a potentially restrictive assumption. These utilisationsπa and π̃a depend
on the demand to stationa, which itself depends on the vehicle allocations. One method of
overcoming this, used inKnight et al.(2012), is to consider utilisation as the ratio of demand
and service rates, shown in Equations10and11. Here we let1µ and 1

µ̃ be the average job times

of primary and secondary vehicles, thenλa andλ̃a represent the share of the demand seen by
primary and secondary vehicles from vehicle locationa, respectively.

πa =
λa

µ
(10)

π̃a =
λ̃a

µ̃
(11)

Note that here we assume that average job times are not dependenton the vehicle location
a, although this may be unrealistic, given that the travel between locations are a key part of
a vehicle’s job time (Bpa, Dya, Fpa). However, as discussed in Section3, there are a number
of other components to an ambulance job including time on site (Gk), hospital handover time
(Jk), and vehicle refill time (Θ). For the case of Jakarta, we justify the assumption of job times
not being location dependent by considering the proportion of an ambulance job’s time that is
location dependent,ρ, defined in Equation12,

ρ =







Bpa+Dya
Tpaky

if hospital required,

Bpa+Fpa
Tpak

if no hospital required,
(12)

then, using the simulation described in Section5, we consider the distribution ofρ across all
simulated jobs under the current situation and allocation in Jakarta, shown in Figure3. We see
for primary vehicle jobs on average 24% of a job time is location dependent, while it is 36.5%
for secondary vehicles. Considering location-dependent service rates would be an interesting
further research question, potentially improving the model’s performance by incorporating
travel times into the MESLMHPHF. However, given that in the case of Jakarta the preferences
βpa1a2 andRpa1a2 are themselves defined by travel times (Equations8 and9), this might not
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12 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

Fig. 3. Distribution of the proportion of an ambulance job consists of location dependent components, for primary
and secondary vehicles.

have a strong impact on the results ofmaynot havemuchaffect for this study, as the model
already gives preference to the locations with the shortest service times.

The demand experienced by vehicles at each locationa ∈ A would indeed be location
specific, and would depend on the number and utilisation of the vehicles at every other location.
This is addressed in the next subsection.

4.4. Numerical approximation of utilisation

For primary vehicles, which operate independently of secondaryvehicles, the relationship
between demand experienced at each location,λa, and the allocations and utilisations of all
other locations, is given by Equation13. For secondary vehicles, the relationship between
demand experienced at each location,λ̃a, and the allocations and utilisations of all other loca-
tions, is given by Equation14. Note that this also depends on the utilisations of the primary
vehicles,πa.

λa = ∑
p∈P

∑
k∈K

λpk

(

1−

(

λa

µ

)Za
)

∏
α∈A

(

λα
µ

)(Zα βpαa)
(13)

λ̃a = ∑
p∈P

∑
k∈KA

λpk



1−

(

λ̃a

µ̃

)Z̃a


 ∏
α∈A

π(Zα Rpαa)
α

(

λ̃α
µ̃

)(Z̃α βpαa)

(14)

We propose finding the true vehicle utilisations by first solvingEquation13 for the λa;
determining the primary vehicle utilisations with Equation10; then using these to solve Equa-
tion 14 for theλ̃a; and determining the secondary vehicle utilisations with Equation11. These
can be solved numerically. In our implementation this is solved using the MINPACK hybrd and
hybrj algorithms by using Scipy’sfsolve function (Virtanen et al., 2020). These algorithms
are efficient methods for finding zeros of systems of non-linear equations. They are based on
the Powell hybrid method (Powell, 1970). It should be noted that in this section we assume that
all λpk are static and not time-dependant, which is an assumption thatwill be used throughout
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ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS 13

the optimisation methodology, however in the simulation wecan account for time-dependent
demand.

Now note that, in Equation13, we have that

∑
p∈P

∑
k∈K

(

1−

(

λa

µ

)Za
)

∏
α∈A

(

λα
µ

)(Zα βpαa)
< 1,

and so∑a∈A λa < ∑p∈P ∑k∈K λpk, meaning that there is lost demand. This corresponds to the
patients who are abandoned, or take private or public transport to a hospital instead of waiting
for an ambulance. Similarly, in Equation14, we have that

∑
p∈P

∑
k∈KA



1−

(

λ̃a

µ̃

)Z̃a


 ∏
α∈A

π(Zα Rpαa)
α

(

λ̃α
µ̃

)(Z̃α βpαa)

< 1,

and so∑a∈A λ̃a < ∑p∈P ∑k∈KA
λpk. This lost demand represents both abandoned calls, but

also calls where secondary vehicles are not deployed as a primary vehicle could reach them
first.

4.5. Metaheuristic Optimisation

In order to maximise the MESLMHPHF objective function presentedin Section4.2, we use
an evolutionary algorithm. A population of possible solutions is created and ranked according
to the objective, then for each generation of the metaheuristica proportion of the best perfor-
ming solutions is kept, and are mutated to complete the population for the next generation. To
encourage exploration, the number of times each solution is mutated begins high and gradually
decreases throughout the run of the simulation. The metaheuristic takes five hyper-parameters:
N the population size,κ the number of solutions to retain to the next generation,m0 the ini-
tial mutation rate;c the cooling rate; andH the number of generations. The metaheuristic is
described in Algorithm1.

Mutations consist of one of four possible changes: randomly change the location of one
primary vehicle; randomly change the location of one secondary vehicle; randomly remove
one primary vehicle and add secondary vehicles to three randomly chosen locations (as one
primary vehicle costs the equivalent to three secondary vehicles); and randomly remove three
secondary vehicles and add a primary vehicle to a randomly chosenlocation. If it is required
that exact vehicle numbers need to be retained, then only for firsttwo mutations need be
chosen.

The source code for the optimisation metaheuristic, includingthe evaluation of
the MESLMHPHF objective function and the solution method for the utilisation con-
siderations, is available atKnight and Palmer(2023) and development took place
at https://github.com/drvinceknight/HeterogeneousAmbulanceFleetAllocations. Numerical
results are discussed in Section6.
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14 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

Algorithm 1 Evolutionary Algorithm used to find better allocations.

1: Create a population ofN random allocations (Za, Z̃a)
2: for i← 0 to H do
3: Rank the population by decreasing expected survival accordingto Equation5
4: Keep the topκ solutions
5: m← ⌈m0−min(m0, i×c)⌉
6: for j ← 0 to N−κ do
7: Randomly choose and copy a solution from the population
8: Mutate that copy of the solutionm times
9: Place mutated copy in a separate population

10: end for
11: Combine populations;
12: end for
13: Rank the population according to Equation5;
14: Output the top ranking solution.

5. Simulating Allocations

Discrete event simulation (DES) is a common methodology that allows us to investigate given
scenarios under uncertainty. It is a common methodology for modelling emergency medical
services, with a review given inAboueljinane et al.(2013). Here it will be used to quantify
the effectiveness of given ambulance allocations by measuring a range of key performance
indicators (KPIs), such as the average response time, the percentage of abandoned calls, veh-
icle utilisations, and expected survival based on response times. The simulation is built using
the Ciw library (Palmer et al., 2019), and the model logic is described below. Its central ideas
include modelling transit jobs as customers, rather than the patients themselves, and simulating
primary and secondary vehicles as two simulations sequentially, with the output of the former
being the input of the latter. Separating out primary and secondary vehicle logic simplifies the
model logic, allows for modular simulations that can be run in isolation, and so easier to adapt
and to maintain.

5.1. Simulating Primary Vehicles

For primary vehicles the logic to simulate is as follows: Patients make a call from one of a
number of pick-up locations and await an ambulance to pick them up and take them to an
appropriate hospital. Ambulances are stationed at a number of ambulance locations; when a
patient makes a call, all free ambulances from any location calculate their expected time to
reach that patient, and the ambulance with the smallest expected time to the patient is called
out. The ambulance drives from its current ambulance location to the patient’s pick-up location,
then if a hospital is required, from the patient’s pick-up location to the hospital, and then from
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the nearest hospital back to their original ambulance location. If a hospital is not required, the
ambulance returns to their original ambulance location.

Rather than considering patients as customers in a queue, here the situation is re-framed to
model transit jobs as customers, with the ambulances as servers.This is similar to the approach
of Kergosien et al.(2015), whereas ambulances are now simple servers, their stations are nodes
in a queueing network, with a routing decision representing the ambulance preference.

Transit jobs can be categorised into classes corresponding to the pick-up locationsP and
specialityK . Jobs of class(p,k) ∈P×K arrive with rateλpk. Servers can be categorised
into classes corresponding to the ambulance locationsA . Service times are server-dependent,
that is the service time of a transit job of type(p,k), being served by a server of classa, will
have service timeTpaky if a hospital is required andTpak if no hospital is required. These were
given by Equations1 and2 respectively, in Section3. That isTpaky andTpak is the overall
time the ambulance spends dealing with that transit job and isunavailable to receive any more
transit jobs.

From a patient’s point of view their service only lastsGk+Cpy+Jk, (or Gk if no hospital is
required), and their waiting time isBpa plus the time waiting for an ambulance to be dispatched.
However in our case, if there are no free ambulances at the time of call, it is assumed that
patients find their own care or transport, and so the call is abandoned. Therefore, the time
waiting for dispatch is always zero.

Furthermore, all service times are time dependent, and calculated from travel distances and
approximate hourly traffic levels, described in Section5.2.

5.2. Travel Time Calculations

Travel times within a city such as Jakarta are not constant throughout the day due to the vari-
ability in traffic, and it is necessary to capture these in modelsof emergency medical services
(Schmid and Doerner, 2010). Here, each day is split into a set of periods,H indexed byh.
Within each period traffic levels are modelled as piecewise linear functions similar toHorn
(2000), and are here considered constant but differing from period to period.Traffic levels
influence the speed of the ambulance through a delay factordh associated with each period.
Therefore, the expected speedSh at which an ambulance travels during periodh is given by
Equation15,

Sh = sdh (15)

wheres is some given baseline speed. The relationship between time travelled and distance
covered is piece-wise linear with slopeSh in periodh. Therefore, travel times are calculated
using this relationship.

As an example, consider the scenario where for the first periodt ∈ (0,4) we haveS1 = 1;
for t ∈ (4,8) we haveS2 = 1

4, for t ∈ (8,12) we haveS3 = 2, and fort ∈ (12,16) we have
S4 = 1. Consider that the vehicle must travel 11 units. If the vehicle begins its journey att = 0,
then the expected travel time would be 11 time units, shown in Figure 4a. However if the
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16 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

Fig. 4. Example of calculating travel times for two different starting times.

vehicle begins its journey at timet = 3 then the expected travel time is 10 time units, shown in
Figure4b.

This is the method used to calculate the expected values ofBpa, Cpy, Dya andFpa. Fur-
thermore it is assumed that travel times for each segment of the route (from vehicle location
to patient, from patient to hospital, and from hospital back the the vehicle’s location) follow
a Triangular distribution around the calculated expected travel time, between 75% and 125%
of the value. A Triangular distribution is a useful distributionto use when not much is known
about the travel times except some basic summary statistics (Robinson, 2014), in this case a
likely range of values.

5.3. Time-dependent Demand

Additionally, it is assumed that calls arrive according to a Poisson distribution, with ratesλpk,
and that these rates are time dependent. Each day is split into four 6-hour periods, the morning,
afternoon, evening and night, and each specialityk and pick-up locationp will have a different
call arrival rate for each of these periods.

For some locations and specialities the number of observed calls might be very low, and
so theλpk rate would be very low. This can cause synchronicity issues whensampling arrivals
(Pidd, 2004), where artificially long inter-arrival times can be introduced at the beginning of
one time period due to the low arrival rate in the previous time period. In order to overcome
this here, rather than sample inter-arrival times iteratively from an Exponential distribution,
an entire schedule of arrival dates are sampled at the beginning of the simulation run, first
by sampling the number of arrivals required in each time period from aPoisson distribution,
and then by sampling specific dates within that time period using a Uniform distribution. This
mechanism, and alternative to thinning (Lewis and Shedler, 1979), was implemented in the
Ciw software in version v2.3.3 (The Ciw library developers., 2022), and described in the
documentation here:https://ciw.readthedocs.io/en/latest/Guides/timedependent.html.
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5.4. Simulating Secondary Vehicles

Secondary non-transit vehicles, can in general travel faster than primary transport vehicles,
and so can be dispatched at the same time as a primary vehicle butreach the patient earlier,
reducing the response time for that patient and so increasing their survival probability. They
are only dispatched for patients of specialityk∈KA, and if the closest secondary vehicle can
reach them before the closest primary vehicle. Here secondary vehicles are simulated in a
second discrete event simulation, run sequentially, but simulating the exact same time period
and events as the first simulation. This is similar to sequential hybrid simulation methodology
(Brailsford et al., 2019, Morgan et al., 2017), however in this case the two combined com-
ponents are both DES, and are combined to simplify the logic of each component, maintain
modularity and so ease model reusability and future adaptations.

This is possible as there are no synchronicity issues between the two components. Pri-
mary vehicles operate independently of secondary vehicles, that is, the way primary vehicles
respond to a patient is unaffected by the presence or lack of a secondary vehicle. Therefore,
primary vehicle logic is not compromised by simulating primary vehicles in isolation. Secon-
dary vehicles are impacted by the behaviour of primary vehicles,they must remain with the
patient until the primary vehicle arrives, and so must be simulated after the simulation of pri-
mary vehicles, taking as inputs the exact list of events that occurred. That is, the logic of the
secondary vehicles is determined by observing the actions of primary vehicles and reacting to
them. Simulation results are combined for each individual patient, to determine their response
time caused by either primary or secondary vehicles.

Secondary vehicles are chosen in the same way as primary vehicles, by choosing out of the
currently free vehicles the one with the smallest expected time to patient. Their service times
are reactionary to what occurred with the primary vehicle. The decision to send a primary
vehicle or not depends on the previously estimated travel timefor the primary vehicle, not
the actual travel time experienced by that primary vehicle: if a secondary vehicle is estimated
to reach there first, they will be dispatched. LetB̃pa2 be the time it takes for the secondary
vehicle to travel from its locationa2 to the patient pick-up locationp; Bpa1 is the time is took
for the primary vehicle to get from its locationa1 to the patient pick-up locationp; Gk is the
time the primary vehicle spent with the patient; andF̃pa2 is the time it takes to return to the
secondary vehicle’s locationa2 from the patient pick-up locationp. Note thatBpa1 andGk are
exact values obtained from the initial simulation of the primaryvehicles, whileB̃pa2 andF̃pa2

are random variables to sample in the subsequent simulation. Travel times are calculated as
described in Section5.2, replacing the primary vehicle delay factor,dh, with a delay factor
for secondary vehicles,̃dh. This accounts for secondary vehicles travelling faster and reacting
to traffic differently to primary vehicles, similar to the method used inHenderson and Mason
(2004) to differentiate the travel times of ambulances with and without flashing lights.

Exact synchronicity considerations are shown in Figure5:

• whenever the secondary vehicle reaches the patient before the primary has left, vehicle,
they remain with the patient until the primary vehicle leaves;
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18 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

Fig. 5. Visualising secondary vehicle (SV) logic reacting to theprimary vehicle’s (PV) actions.

• if secondary vehicle arrives after the primary vehicle has left, they will immediately return
to their stations as they are not needed at the scene;

• if the expected time for the secondary vehicle to reach the patient exceeds the expected
time for the primary vehicle to reach the patient then the secondary vehicle is not deployed,
and so that transit job would be abandoned in the secondary simulation (although still seen
by a primary vehicle in the initial simulation). We assume that secondary vehicles must
still reach the pickup locations, due to potential difficulties in communication en-route.
Consider a situation when a secondary vehicle arrives and the patient does not require tran-
sportation to a hospital, with better en-route communication this would mean the primary
vehicle turns around, however without en-route communication which is assumed here, the
primary vehicle must still reach the patient pick-up location.

Therefore job service times for secondary vehicles,T̃pak, are given by:

T̃pak= max
(

B̃pa2,Bpa1 +Gk
)

+ F̃pa2 (16)

5.5. Combined Model

Combining the logic presented in Sections5.1and5.4 in a sequential manner, with the output
of one determining the input of the other, gives the overall simulation logic for simulating
both primary and secondary vehicle types. It is used to quantify the effectiveness of a given
allocation(Za, Z̃a) for all a ∈ A , by recording several useful KPIs. In this work, the KPIs
of interest are: the average primary vehicle utilisation, the average secondary vehicle utili-
sation, the mean response time, the percentage of abandoned calls (that is a measure of the
primary vehicle unavailability), and the expected overall survival. Survival is modelled using
a combination of survival function curves and hard cut-offs, and isdescribed in Section4.1.

Verification of a model is ensuring that the conceptual model isimplemented correctly
and without error, while validation of a model ensures that the conceptual model accura-
tely represents the real system to be modelled (Robinson, 2014). Verifying the simulation
code, alongside verifying the optimisation and MESLMHPHF objective function code, is done
through automated code testing (Palmer and Tian, 2023, Percival, 2014). This includes unit
testing to ensure that each sub-component works are requires, and is bug and error free; end
to end testing, ensuring that the components interact together as intended; and extreme value
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Fig. 6. Map of Jakarta’s Municipalities.

testing ensuring that changes in input parameters result in sensible and expected changes in
output results and behaviours. The testing suites are includedin the open code repositories
provided.

The source code for the combined simulation, is available atPalmer and Tuson(2023) and
development took place athttps://github.com/MarkTuson/ambulancesimulation.

6. The Case of Jakarta

Jakarta, the capital of Indonesia, has a population of 10.5 million (Badan Pusat Statistik Pro-
vinsi DKI Jakarta, 2023) residing within 664 km2. The city is divided into five municipalities
and one district, each of which is divided into sub districts and, in turn, neighbourhoods. There
are in total 42 sub districts and 261 neighbourhoods within mainland Jakarta (excluding the
Thousand Islands regency in the north) (Badan Pusat Statistik Provinsi DKI Jakarta, 2020); a
map is given in Figure6.

As described in Section1, there are many challenges to calling for an ambulance in Jakarta,
as captured inBrice et al.(2022). Based on this work the regional government of Jakarta
invested in a new fleet of coordinated ambulances accessible via the single emergency number
119. This work, in collaboration with Ambulans 118 and the 119 Emergency Ambulance
Service, finds potential fleet allocations using the optimisations methods given in Section4,
and evaluates these allocations’ effectiveness using the simulation described in Section5.

As of October 2022, the 119 service in Jakarta ran a fleet of 81 primary Emergency Ambu-
lances (EAs) and 13 secondary motorbike Rapid Response Vehicles (RRVs), distributed across
67 ambulance stations throughout the city. Figure7 summarise the allocations vehicle locati-
ons. Working with our ambulance partners, after careful consideration the following patient
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Fig. 7. Map of current Emergency Ambulance (EA) and Rapid Response Vehicle (RRV) locations and allocations to
ambulance bases across Jakarta.

‘specialities’ (k ∈ K ) were agreed based on clinical need (although other categories could
readily be adopted and included as necessary):

• A1 - High priority emergency patients: critical patients who require immediate life-
saving assistance with a target ambulance response time of 8 minutes. In our data set there
were 168 identified calls that met this criterion. As inKnight et al.(2012), equation (3) is
here used to measure survival of these patients.

• A2 - Other emergency patients: urgent patients that require assistance with a target
response time of 15 minutes. In our data set there were 23,784 calls of this type.

• B - Non-emergency patients: patients that still benefit from an ambulance response but
non-critical with a target response time of 60 minutes. There were31,725 calls of this type
in the data set.

Secondary vehicles can be called to patients of speciality A1and A2, thereforeKA =
{A1,A2} andKB = {B}. The number of calls from each of these specialities varies by nei-
ghbourhood, as shown in Figure8. It can be seen that many calls are highly concentrated in
a handful of neighbourhoods rather than spread throughout the city. In this work, we appro-
ximate pick-up locations by the geographic centroid of each of the 261 neighbourhoods, each
representing an ambulance pick-up that that occurred within thatneighbourhood.

Firstly, in Section6.1 we use the MESLMHPHF objective function of expected survival,
and the simulation, to find KPIs that to compare the performance of two proposed grid allocati-
ons to the currently used allocation. An additional KPI is alsocalculated, the expected survival
of A1 patients, found by taking Equation5 and summing overk=A1 only. Then in Section6.2
we outline four possible future demand scenarios, and in Section6.3we use the optimisation
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Fig. 8. Number of calls received by speciality and neighbourhood.

model to find and compare improved allocations for the current number of vehicles. Finally
in Section6.5 we investigate the number of vehicles required to meet the demand across the
given scenarios.

All models are parameterised using demand data that covers all 261 neighbourhoods from
1 January to 31 December 2019, before the COVID-19 pandemic. Data from 2020-2021 was
naturally heavily skewed by the pandemic, with significantlylower demand, and so was not
considered as representative of a typical period for forecasting future needs, hence the decision
to use the available 2019 demand. APPENDIXC provides further details on the parameteri-
sation of the model, including how travel time estimates were obtained. Verification of the
models were discussed in Section5.5, we validated based on expert opinion from our colla-
borators, Ambulans 118 and the 119 Emergency Ambulance Servicein Jakarta, where several
workshops have been carried out in Indonesia where the model was shared and discussed.
This expertise was vital in giving a basic validation of the model, with collaborators approving
model results parametrised from their provided data and expert opinion.

6.1. Evaluating ‘Grid’ Proposals

Discussions with senior staff at 119 identified that they wereseriously considering a re-
configuration their ambulance allocations into a grid structure, placing an ambulance station at
regular intervals throughout the city and uniformly distributingthe vehicles that they felt would
ensure equitable coverage. Two possible grid allocations were being considered: one placing
an EA every 3km across the city (giving a total of 70 vehicles), andanother placing three
EAs every 5km across the city (giving a total of 72 vehicles). Figure 9 show these proposed
allocations.

Running the simulation and MESLMHPHF objective function of expected survival for
both the current and the two proposed grid allocations gives the results shown in Table1. The
simulation was run over half a year, with a month warm up time, over five replications. The
variability over the replications is very small, and we have included 90% conficence intervals
around the mean response times to demonstrate this. We observe that the two proposed grid
allocations perform much worse than the current allocation as measured by mean response
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Fig. 9. Proposed grid allocations.

Allocation Baseline Grid 3km Grid 5km

Number of EAs 81 70 71
Number of RRVs 13 0 0

Ambulance Utilisation 30.99% 36.58% 35.79%
RRV Utilisation 22.47% - -

Mean Response Time (mins)
17.69 22.29 24.05

(± 0.07) (± 0.06) (± 0.03)

StDev Response Time (mins) 6.98 8.02 7.94
MESLMHPHF Objective 98.34% 87.95% 85.64%

MESLMHPHF A1 Objective 26.05% 13.64% 12.23%
Percent Abandoned 0.00% 0.52% 0.93%

Table 1 Calculated KPIs for the current and proposed grid
allocations.

time, survival, and percentage of calls abandoned. This is expected as vehicle numbers are
lower under the new proposals, as well as the allocations focussing on coverage rather than
response times or survival.
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Reason % of emergency respondents

Used Ambulance 13.0
Too expensive 5.2
Not available 13.1

Would take too long 16.5
Not necessary 15.7

Not aware of service 33.1
Other 3.5

Table 2 Barriers to use of an ambulance service in
Jakarta, fromBrice et al.(2022).

6.2. Demand Scenarios

Similarly to many other cities worldwide, ambulance services in Jakarta anticipate that demand
for services will grow in future years, not least because there is nowa coordinated service
accessible via a single common number ‘119’ to call. This should help raise awareness and
visibility of an ambulance service. In the case of Jakarta, certainly increased use of 119 and
therefore increased demand would be a desired outcome and is pro-actively supported by the
Indonesian Government.

In other cities with more detailed data collection, statistical models can be used to predict
future spacial demand across a city, as inNicoletta et al.(2022). In the case of Jakarta, col-
lected call data is not detailed enough, but we do consider four different demand scenarios,
developed by considering the result of our cross-sectional study of patients attending EDs in
Jakarta (Brice et al., 2022). As part of the survey, randomly selected patients arriving at each
emergency department were asked whether they had used an ambulance to attend, and reasons
for not using an ambulance. For those patients who were categorised by the medical staff as
emergency and for whom therefore an ambulance might have seemed asensible option, the
responses are given in Table2.

The survey confirmed three major barriers to use, namely: the service’s visibility (33.1%
of respondents were unaware of the service), the service’s reliability (13.1% of respondents
reported that there was no ambulance available and 16.5% of respondents believed it would
take too long), and the service’s cost (5.2% of respondents citedcost as a deterrent). Therefore,
four demand scenarios were considered, corresponding to addressing each of these barriers in
turn:

• D13: representing the current situation where approximately 13% of emergency patients
(specialities A1 and A2) do use an ambulance.

• D19: representing the situation where visibility is addressed. Here, we distribute the 33.1%
of the respondents who were unaware of the service proportionally between using the
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Parameter Value Used Explanation

µ 1
3.886×60 Average primary vehicle service rate (hr−1).

µ̃ 1
1.038×60 Average secondary vehicle service rate (hr−1).

N 100 Population size.
κ 20 Number of solutions to keep per generation.
m0 6 Initial number of mutations.
c 0.1 Cooling rate, rate at which number of mutations decreases.
H 200 Number of generations.

Table 3 Hyper-parameters used in the optimisation for all experiments.

ambulance and amongst the remaining issues. Using this methodology we would expect
19.4% of emergency patients to now use an ambulance.

• D34: representing the situation where reliability and visibility are addressed. Using
the same methodology we would expect 34.8% of emergency patients to now use an
ambulance.

• D45: representing the situation where cost, reliability and visibility are all addressed.
Using the same methodology we would expect 45.4% of emergency patients to now use
an ambulance.

Guided by our findings inBrice et al.(2022), recent changes mean that the 119 services
is now free to use for Jakarta residents, so certainly the highest demand (D45) scenario is
plausible in the near future. After discussions with our partners, it was agreed that for each
of the scenarios we should assume that non-emergency demand (speciality B) remains unch-
anged. Therefore, in each scenario, we multiply the call demand for each municipality,λpk

by 13%
13% = 1, 19%

13% = 1.46, 34%
13% = 2.62, and45%

13% = 3.46 respectively, for allk ∈KA, p ∈P.
Note that for some pick-up locationsp, λpk is very small, possibly zero, which is realistic in
scenarioD13, as that is what is observed, but may result in artificially low demand in those
locations when using the multiplication method to scale up demand.

6.3. Improving the Current Allocation

Applying the optimisation metaheuristic from Section4 to the current allocation re-allocates
the 81 EAs and 13 RRVs. We do this for each of the four scenarios described in Section6.2.
The hyper-parameters used for this optimisation algorithm throughout this study are given in
Table3, which include approximations for the average service times of primary and secondary
vehicles derived from the initial simulation model. APPENDIXD shows some initial explo-
rations on the hyper-parameter choices, giving confidence thatthe chosen parameters, with a
large enough number of iterationsN, are sufficient to find allocations that perform well.
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Demand Allocation
MESLMHPHF

Objective function
MESLMHPHF A1
Objective function

Observed
Survival

Observed A1
Survival

Primary
Utilisation

Secondary
Utilisation

Mean Response
Time (mins)

Response Time
StDev (mins)

Abandoned

D13
Current 98.34% 26.05%

77.83% 17.80%
30.99% 22.47%

17.69
6.98 0.00%

(± 0.25%) (± 1.68%) (± 0.07)

Improved 99.10% 30.99%
77.16% 16.22%

31.06% 18.29%
17.86

7.04 0.00%
(± 0.28%) (± 0.42%) (± 0.05)

D19
Current 97.74% 25.17%

70.01% 15.42%
38.11% 32.24%

18.48
7.73 0.44%

(± 0.50%) (± 0.65%) (± 0.03)

Improved 99.64% 29.85%
69.58% 14.35%

38.12% 27.39%
18.52

7.70 0.46%
(± 0.56%) (± 0.69%) (± 0.05)

D34
Current 95.78% 22.75%

54.37% 12.53%
54.07% 52.28%

22.21
11.56 3.44%

(± 0.14%) (± 0.31%) (± 0.03)

Improved 99.61% 29.59%
54.84% 12.53%

54.16% 49.07%
22.13

11.86 3.79%
(± 0.31%) (± 0.56%) (± 0.05)

D45
Current 92.88% 20.67%

47.22% 11.86%
61.79% 60.89%

23.99
12.92 9.69%

(± 0.21%) (± 0.31%) (± 0.04)

Improved 99.54% 29.36%
48.32% 11.66%

61.62% 56.80%
23.18

12.51 9.27%
(± 0.20%) (± 0.28%) (± 0.07)

Table 4 Calculated KPIs for the current and improved allocations under the four possible
demand scenarios.

Table4 compares the MESLMHPHF objective function value and simulation derived KPIs
between the current and the optimised allocations, for each demand scenario, along with 90%
confidence intervals over the trials. It can be seen that, as expected, as demand increases then
utilisation of primary and secondary vehicles increase, as the ambulance service is busier.
Similarly, mean response time increases with demand, this is due to the vehicles being busier,
and therefore less chance that the most optimally placed vehicle is dispatched. This is con-
firmed by the percentage of calls abandoned increasing with demand, showing ambulance
unavailability.

The value of the MESLMHPHF objective function and the observedsurvival, as given by
the simulation model, do not match. Section6.4discusses this in more detail.

As desired, the optimisation heuristic has indeed improved theallocation as measured
by the MESLMHPHF objective function. In particular A1 patientsare benefiting from the
improved allocations as measured by the MESLMHPHF objective function, though not by the
simulation. Why the simulation might not capture this is hypothesised in Section6.4. This
measured improvement is due to these patients being more sensitive to small fluctuations in
response time, due to their survival function Equation3. Also, using a better allocation does
increase the survival, and that the drop in survival due to demandincreases is not as severe
when using an improved allocation in comparison to the current allocation, although more
numerical evidence would be helpful here. This improved robustness not only validates the
heuristic but also highlights the research contribution of Section 4.3as an approach to handle
the recursive relationship between an allocationx and the utilisation rates.

It is worth noting that for the simulation based KPIs (mean responsetimes and percent
abandoned), there is not much difference between the currently used allocation and the better
allocation, showing that these KPIs may not be good approximations of survival.
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6.4. Comparing Expected & Simulated Survival Measures

In Table4 it can be seen that there is a large discrepancy between the expected survival, both
overall and of A1 patients, computed using the MESLMHPHF described in Section4.2 and
calculated using the simulation. This is a consequence of the variability in response times,
which is explicitly modelled by the simulation but not captured by the MESLMHPHF. As seen
in the table, the standard deviations of the response times are relatively large in comparison to
the mean response times, and so this effect would be substantial here.

The discrepancies are exacerbated by the use of cut-off survival function curves for most
of the patients: consider a survival function with cut-offL, with response time belowL the
patient’s chance of survival is 0, and aboveL the patient’s chance of survival is guaranteed.
The optimisation will find a solution aiming to push the expected response time aboveL, and
once this is reached, possibly with an expected response time as low asL itself, it will not
attempt to push the expected response time above this, as it will have no effect on the expected
survival. However considering variability of mean response times, a considerable proportion
of the response times will lie below the expected value, and sopossibly belowL, resulting
in worse survival probabilities, as observed in Table4. Therefore the distributions chosen to
model travel times can have a large impact on the survival measures, in this case the naive
Triangular distribution.

Therefore we present two separate models to measure overall survival, both of which have
drawbacks in terms of capturing the stochasticity of the system. We present both as a holistic
view of the system, and suggest the true outcomes lie somewherein between the two measures.
As the heuristic improves the outcomes in one measure and does noharm in the other, we anti-
cipate that this procedure will improve patient outcomes. Thisleads to a number of avenues of
future work to improve this and overcome this effect. Variability could be explicitly modelled
within the MESLMHPHF, such that it is not only maximisingexpectedsurvival, but considers
some percentiles of guaranteed survival. Another avenue wouldbe to use the simulation expli-
citly in the optimisation process, incorporating the simulation into the objective function and
using simulation-optimisation techniques to improve runtimeefficiency.

Due to the naive choice of travel time distributions, including difficulties in being able to
validate such a model and the choices made, we consider only the MESLMHPHF objective
from now on.

6.5. Finding Better Allocations for Any Resource Level

The metaheuristic algorithm described in Section4.5finds allocation of ambulances across the
67 current ambulance stations for a given number of primary and secondary vehicles. Infor-
mation supplied by one of the ambulance operators suggested that in terms of total running
costs one EA (primary vehicle) was approximately equivalent to three RRVs (secondary veh-
icles), and so we consider three RRVs to be one resource; that is, aresource level of 60 could
represent 60 primary and 0 secondary vehicles, or 59 primary and 3 secondary vehicles, or 58
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primary and 6 secondary vehicles, and so on. For a given resource level we run the optimisa-
tion algorithm allowing for one primary to be swapped for three secondary vehicles, and vice
versa, and we report KPIs for the best performing, in terms of maximal survival, combinations,
as well as for the case when the number of secondary vehicles is fixed at zero. We call these
the multiple vehicle type and single vehicle type scenarios.

Figures10a-15b display the obtained KPIs for each of these allocations. Confidence inte-
rvals over the replications were too small to display on the plots. It can immediately be seen
that increasing the resource level has a positive effect on all KPIs, with vehicle utilisations,
mean response times, and percentage abandoned decreasing, andoverall survival increasing.
Similarly, as expected increasing the demand of emergency calls has a negative impact on all
KPIs.

Fig. 10. MESLMHPHF objective expected survival results. (Note thatFigures10a and10b do not have the same
y-axis scale in order to keep the data points visible.)

It is particularly interesting to compare the scenario in which single vehicle types (only
emergency ambulances) were allocated against the scenario where multiple vehicle types (both
emergency ambulances and rapid response vehicles) were allocated. For equivalent resource
levels, introducing secondary vehicles increases ambulance utilisation, and so decreases avai-
lability, resulting in an increase in abandoned calls. However, introducing secondary vehicles
also results in a decrease in the mean response time, and a large increase in the expected
survival, especially those of speciality A1. In fact, it can beseen from Figure11b that when
using multiple vehicle types the survival of A1 patients plateaus as the resource level incre-
ases, indicating that the system has reached an upper bound onthe survival of A1 patients.
This is corroborated by considering the survival function of A1 patients given in Equation3,
where even if all patients were seen immediately a survival of 43.5% would be expected, and
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Fig. 11. Expected survival of A1 patients results.

Fig. 12. Ambulance utilisation results.

so accounting for even a minimum travel time to the patients an observed plateau value of 32%
could not be improved upon by adding more resource level.

An interesting phenomenon occurs when looking at Figure14b. Here it seems that, when
using multiple vehicles, mean response time decreases as demand increases, which is counter-
intuitive. This is however due to a peculiar interplay between demand and vehicle behaviours:
as stated in Section6.2only demand for emergency patients are increased (specialitiesA1 and
A2), which are also the patients that can be seen by secondary vehicles, and so would have a
lower response time than non-emergency patients (speciality B). Thus, demand scenarioD45
receives a larger proportion emergency patients than scenarioD13, and so a larger proportion
of patients with lower response times due to being seen by secondary vehicles; bringing the
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Fig. 13. RRV utilisation results.

Fig. 14. Mean response time results.

overall mean response time down. This does not mean however that emergency patients in
scenarioD45 have lower response times than those in scenarioD13.

It is also noticeable that the increases or decreases in the simulation derived KPIs are not
necessarily monotonic with increases in resource level. This isdue to the derived allocations
being based on the MESLMHPHF score only, which is a measure of survival, while the simu-
lation derived KPIs are indirect measures of performance. Again, this may indicate that these
indirect measures of performance, such as mean response times or percentage within target,
are not good indicators of survival.

Crucially, the plots show that the allocations produced by theoptimisation algorithm per-
form better than the current allocation for the same demand and resource levels. The current
levels include 81 EAs and 13 RRVs, so a resource level of 85.33, with multiple vehicles. Com-
paring the derived allocations for this level in Figures10a-15b to the results given in Table1,
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Fig. 15. Percent of abandoned calls results.

the derived allocations give lower ambulance and RRV utilisations, lower mean response times,
and a higher percentage of patients seen within target.

7. Discussion & Conclusions

This paper has described the development of EMS demand and capacity models and their
application to the city of Jakarta, Indonesia. To our knowledge, this is the first such study of
analysing emergency ambulance services in Jakarta, and the work has directly assisted and
guided providers and the government to make investment decisions for a coordinated and free
to use EMS.

Firstly, we have considered patient survival and outcomes within a developed MESLMH-
PHF model. By considering geospatial travel times and accounting for the varying needs of
different patient types through categorising patients by speciality and through using different
survival function profiles, an expected overall survival was given. This was used within a
optimisation processes, with an evolutionary metaheuristic,to find vehicle fleet allocations
that maximised expected survival. This expected survival function extends previous work in
Knight et al.(2012) to include more than one vehicle type. A particular novelty here was nume-
rically solving implicit utilisation relationships, equations13and14, to calculate the expected
survival, as an alternative to busy fractions and hypercube models.

Secondly, a discrete event simulation model has been used to evaluate existing and poten-
tial heterogeneous vehicle ambulance feet allocations in terms of key performance measures,
such as response times, survival, and vehicle utilisation rates. This takes into consideration
geospatial demand and travel, and temporal variation in demandand traffic levels. A novel
feature of our approach is that the model comprises of sequentialsimulations, feeding data
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directly from one into the other in order to simulate primary and secondary vehicles separa-
tely while maintaining synchronicity, with the overall aim ofreducing the complexity of the
simulation logic and maintaining modularity.

Both models investigate ambulance service activity in the case of heterogeneous patients
and heterogeneous fleets. Heterogeneous patient groups consider those with distinct demand
profiles, priorities, and survival functions. Heterogeneous fleets concern different types of
vehicles, in our case emergency ambulances (EAs) which respond to every patient, and Rapid
Response Vehicles (RRVs) which can be utilised to reach patients faster, despite being unable
to transport patients themselves.

Using a combination of models has permitted an approach that can capture performance
measures or take into account factors that each model in isolation can not. For example, the
maximum expected survival model is a lot more appropriate for use within an optimisation
process as the runtimes are a far more reasonable than the simulation. On the other hand, the
simulation allows for greater complexity such as temporal demand, and is able to capture a
greater range of KPIs. Crucially, using mixed methodology such as this allowed for indepen-
dent evaluation of the output of one using the other; but also insights from an initial run of the
simulation gave helped parametrise and justify assumptions ofthe optimisation.

Combinations of models allow for robust conclusions to be drawnabout the system, by
considering the specific attributes of each modelling approach. Here, the MESLMHPHF
is quick to run, but can fail to capture stochasticity, while the simulation is parametrised
using expert opinions that can effect its robustness. Taking both into account offers a better
approximation and more insight.

A key feature of both models, and their novelty, is the consideration of heterogeneous
fleets. In a highly populated area such as Jakarta (around 16,000 population per km2), the
inclusion of RRVs such as paramedics on motorbikes is very important, given RRVs can access
areas that cannot easily or quickly be accessed by ambulances. Results from both the optimisa-
tion and simulation research showed that the RRVs can help increase the overall survival and
reduce the response times, especially crucial when responding to life threatening events such
as cardiac arrests (Holmén et al., 2020).

In building the models, some assumptions or relaxations were made to simplify the model,
and future work should investigate the effects of these, for example the assumption that service
times are not location dependent is unrealistic, but relaxed here. Further developments of
the model could consider explicitly modelling service rates using the travel time matrices.
Another limitation identified was the lack of consideration of variability in travel times in
the optimisation model, which cased some discrepancies between the simulated and expected
survivals. One method to overcome this could be to incorporate variability directly into the
MESLMHPHF objective, for example using percentiles instead of averages, or to optimise
using the simulation as an objective. However in both approaches, a good estimate of travel
time distributions would be needed, with better validation.Another direction of future work
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is to find exact methods of solving the MESLMHPHF instead of relying on a metaheuristic
algorithm.

The results of our research also suggest that allocation strategies may not be intuitive to
ambulance service managers, further emphasising the value of a modelling approach. For
example, senior managers suggested the use of a grid allocation to maximise geographic
coverage, with ambulances equally spread across the city. Thiswas shown to be sub-optimal
because neighbourhoods have different population densities and characteristics. For example,
the number of daily commuters in Jakarta is considerably high during day time due to work
and education (Badan Pusat Statistik Provinsi DKI Jakarta, 2001). Municipalities where tra-
ding, educational institutions, and offices are concentratedmay become more populated during
day time. The model has quantified the deterioration in responsetimes and patient outcomes
should a fixed grid system be implemented, leading to 119 to dropthis consideration.

The ambulance posts in Jakarta depend on the service provider. Those ambulances pro-
vided by the government are in various locations including government buildings as well as
community clinics and sub-district hospitals. In our case, we used current ambulance posts
as the locations for allocating the resources. As demands for ambulances may change from
time to time, future work could evaluate different, and perhaps dynamic, ambulance posts that
depend on changing demand volumes in neighbourhoods by time of the day.

The data used for ambulance demand covered one year from 1 January to 31 December
2019, prior the COVID-19 pandemic. Recent studies related to ambulance demand indicate
that the pandemic has severely impacted on the utilisation ofEMS, for examples in call volu-
mes (Şan et al., 2021) and in specific medical conditions such as trauma (Azbel et al., 2021),
and possibly still continue to affect demand. Ambulance providers, such as 118 and 119, may
use our modelling tools to incorporate future demand data and re-evaluate resource needs. To
aid this, we are currently working on interfacing the simulation and optimisation into a single
easy to use decision support tool with a dashboard (data visualiser).

Studies have shown that the quality in pre-hospital data collection varies considerably in
Indonesia (Hooper et al., 2019). We encountered similar challenges and have suggested to 119
and the Indonesian Government that they should continue to strive to improve the coverage
and quality of data collection. Future work could explore in moredepth unmet demand that is
not recorded in the ED or in the ambulance data.

Indonesia is a vast country with an uneven population density and varying quality of
available healthcare resources. The models have been parameterised with data from a high
population, high density urban area which is also relatively well resourced with healthcare
facilities compared to other regions in the country. Ambulanceservices in rural areas of
Indonesia may not have the same quality in management and organisation compared to the
capital, Jakarta. We intend to conduct future studies to apply the developed models to analyse
ambulance demand and allocations in different areas of Indonesia, including in rural regions.

In conclusion, the developed models have demonstrated a novelapproach in modelling
ambulance allocations that incorporate multiple vehicle types and health conditions, whilst

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/advance-article/doi/10.1093/im

am
an/dpaf027/8190187 by guest on 22 July 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS 33

also capturing patient survival. Our work has already informed major decisions on the design of
a free to use and coordinated EMS system for Jakarta. Ongoing collaboration will continue to
assist ambulance providers and the Indonesian Government in providing evidence-based deci-
sion making for the benefit of patients and the population theyserve, including the exploration
of the roll-out of 119 beyond Jakarta to other regions of Indonesia.
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A. Annotated Objective Function

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/advance-article/doi/10.1093/im

am
an/dpaf027/8190187 by guest on 22 July 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS 35

B. Full MESLMHPHF Optimisation Model

Decision variables:Za, Z̃a, Maximise:

g
(

Za, Z̃a
)

= ∑
p∈P

∑
a∈A

(

∑
k∈KA

wkλpkΨ̂kpa+ ∑
k∈KB

wkλpkΨkpa

)

where

Ψkpa= sk (bpa)
(

1−πZa
a

)

∏
α∈A

π(Zα βpαa)
α

and

Ψ̂kpa= sk
(

b̃pa
)

(

1− π̃ Z̃a
a

)

∏
α∈A

π̃(Z̃α βpαa)
α π(Zα Rpαa)

α

+sk (bpa)
(

1−πZa
a

)

∏
α∈A

π(Zα βpαa)
α π̃(Z̃α(1−Rpaα))

α

subject to
Za, Z̃a ∈ N0

Za+
1
3

Z̃a = L

whereL is the resource level.

C. Model Parameters

Call arrival ratesλpk are derived from 2019 demand data split by municipality and speciality,
and time of day. Probabilitiesqpky are similarly derived from the 2019 data of transit journeys.
All traffic-free travel times are found using Google Maps API, while time-dependent traffic
delays are found from the TomTom website and given in TableC.5.

The other models are parameterised in the following way:

• From a sample of calls the time at siteGk was found to follow a lognormal distribution
with parametersµ = −0.6219 andσ = 0.8048. For the case of Jakarta this was modelled

h 0000-0500 0500-1500 1500-1800 1800-0000

dh 0.98 0.66 0.59 0.77
d̃h 1.96 0.91 0.83 1.16

Table C.5 Primary and secondary delay factors.
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identically for all specialitiesk. Comparison between the lognormal fit and the sampled
times are given in FigureC.1.

• From discussions with staff at the ambulance service in Jakarta, the time at hospitalJk

was modelled as a Uniform distribution between 40 and 60 minutesfor the emergency
specialities A1 and A2, and between 20 and 30 minutes for non-emergency speciality B.

• From discussions with staff at the ambulance service in Jakarta, the refill timeΘ is taken to
be 60 minutes for an emergency ambulance, and 15 minutes for an RRV.

D. Exploration of Optimisation Hyperparameters

FigureD.2 shows the performance of the evolutionary metaheuristic algorithm under different
values of the hyperparametersN, κ, m0, andc.

E. Improved Allocations for Current Vehicle Numbers

FiguresE.3, E.4, E.5andE.6show the improved allocations for 81 primary and 13 secondary
vehicles under demand scenariosD13, D19, D34, andD45 respectively.

Fig. C.1. Comparison between the sampled time on site and the lognormal fit.
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Fig. D.2. Comparison between optimisation performance for low, medium, and high values ofN, κ, m0, andc.
Optimisation is run on demand scenarioD19, for a resource level of 75.

Fig. E.3. Improved allocation of 81 EAs and 13 RRVs, under scenarioD13.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/advance-article/doi/10.1093/im

am
an/dpaf027/8190187 by guest on 22 July 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

38 ON THE OPTIMISATION OF HETEROGENEOUS AMBULANCE FLEET ALLOCATIONS

Fig. E.4. Improved allocation of 81 EAs and 13 RRVs, under scenarioD19.

Fig. E.5. Improved allocation of 81 EAs and 13 RRVs, under scenarioD34.

Fig. E.6. Improved allocation of 81 EAs and 13 RRVs, under scenarioD45.
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