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Facial appearance, one of the most recognizable and heritable human traits,
exhibits substantial variation across individuals within and between popula-
tions due to its complex genetic underpinning, which remains largely elusive.
Here, we report a combined genome-wide association study (C-GWAS) of 946
facial features derived from 44 landmarks obtained from 3D digital facial
images of 11,662 individuals of European descent. We identify 253 unlinked
single nucleotide polymorphisms (SNPs) across 188 distinct genetic loci sig-
nificantly associated with facial variation, including 64 SNPs at 62 novel loci
and 33 novel SNPs within 29 previously reported face loci that are in very low
LD with the previously reported top SNPs. Together, these SNPs account for up
to 7.9% of the facial variation per trait, marking an average 2.25-fold increase
over previous estimates. Cross-ancestry replication in 9,674 Chinese confirms
the effect of 70% of these SNPs. A 382-SNPs prediction model of five nose traits
achieves an AUC of 0.67 for individual re-identification from nose images. DNA
predicted faces of archaic humans differ more from those of Europeans than
from Africans. In genetically modelled Neanderthal faces, 15 of 16 DNA-
predicted facial features are in line with skull evidence. Ten DNA-predicted
facial features differentiate Neanderthals from Denisovans. Overall, this study
substantially enhances our genetic understanding of human facial variation
and provides improvements of genetic face prediction in modern and archaic
humans.

Facial appearance, marked by a wide range of similarities and differ-
ences across individuals within and between human populations, is
shaped largely by genetics', and has strong relevance in different
fields of science®. Facial variation is a key area of interest in anthro-
pology, where understanding the genetic foundations of facial differ-
ences has broad implications®*. A comprehensive genetic
understanding of facial appearance could enable the prediction of

faces from DNA, which would be invaluable in studying ancient DNA to
ascertain the facial characteristics of archaic human species, as well as
reconstructing the faces of historical figures”®. This is particularly
relevant when physical evidence from skull bones has not yet been
recovered, as is the case for Denisovans’'®, but also when skulls are
available while the skull does not reveal a facial feature of interest, such
as the nose. It is also relevant in evolutionary biology, as ancient DNA
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studies on facial genes could allow unveiling the evolutionary history
of facial appearance of modern humans and may identify facial traits of
modern humans they received from archaic humans by interbreeding
in the distant past" . Additionally, this knowledge could potentially
be used in forensic genetics for DNA-prediction of facial features of
unknown perpetrators, who in principle are not identifiable using
forensic DNA profiling". Currently, DNA-based appearance prediction
is largely confined to a few categorical traits, most notably eye®, hair'®,
and skin colour”. Finally, exploring the genetic basis of facial variation
is crucial in medical genetics, particularly because numerous medical
syndromes manifest distinct facial feature'®" and facial trait variations
are also linked with non-syndromic human diseases?.

Recently, genome-wide association studies (GWASs) on facial
features across different human populations** have highlighted the
complex genetic underpinnings of facial appearance, marked by
multiple genetic loci each contributing small effects to different facial
dimensions. Our comprehensive review of the human face genetic
literature, as summarized in Supplementary Data 1, identified 440
independent genetic loci (any two DNA variants separated by at least
500 kb) significantly associated with facial features in previous studies.
Although no major gene effect is generally observed, and despite the
ongoing issue of missing heritability, certain genes have been found to
exert significant influences on specific facial traits in particular human
populations. For example, PAX3, recognized as a face gene in the first-
ever two parallel facial GWASs?™?, is associated with the positioning of
the nasion in Europeans, while EDAR is linked to a range of facial traits
and other surface ectoderm-derived characteristics, such as hair phe-
notypes, in East Asians®?°.

There has been a significant transition in facial phenotyping meth-
odologies from traditional anthropological methods used in the past to
cutting-edge 3D computational imaging techniques applied today”. In
facial GWAS, two primary phenotyping methods using 3D facial images
dominate: facial landmarking® and global-to-local facial segmentation®.
Facial landmarking offers several advantages, including avoiding the
need to share individual-level data among collaborative partners, which
may have privacy implications. It effectively captures facial variation
through automatically placed landmarks*~°, providing discrete and
replicable results for independent and external datasets, and delivering
interpretable findings valuable for applied research, such as genetic
prediction studies. The initial limitation of GWASs based on facial traits
obtained via facial landmarking was its lower statistical power due to
ignoring complex correlations among facial traits influenced by shared
genetic and nongenetic factors. This issue has been mitigated by our
recently developed combined genome-wide association study (C-GWAS)
method®, which has demonstrated increased statistical power in both
computer simulations and applications to real data. C-GWAS surpasses
the accumulation of single-trait GWAS results and other GWAS-
combining methods like MTAG*, especially in the presence of a large
number of single-trait GWASs, as is the case in complex morphological
traits. Thus far, C-GWAS has proven effective in uncovering novel
genetic loci associated with variation of the human face™ and ear® that
remained undetected with standard single-trait GWAS methods. This
enhanced power is especially critical for genetic studies of the human
face, where increasing sample size to increase statistical power is often
unfeasible due to limited funding and other restrictions, and thus
increasing the power through methodological advances is essential.

In the present study, we report the results of a C-GWAS on 946
inter-landmark distances between 44 facial landmarks obtained from
3D digital facial images of 11,662 individuals of European descent
across five cohorts, followed by cross-ancestry replication analysis in
9674 Chinese individuals. Based on the obtained results, we carried
out enrichment and functional annotation analyses. Finally, we applied
the generated genetic knowledge to prediction analyses of facial fea-
tures in both modern and archaic humans. Overall, our study sig-
nificantly enhances the genetic knowledge underlying human facial

variation and provides improvements in genetic face prediction in
modern and archaic humans.

Results

C-GWAS and replication highlight 62 novel face loci

The C-GWAS discovery phase included 11,662 individuals of European
descent from five cohorts (Supplementary Table 1 and see the
“Methods” section): the Rotterdam Study (RS, N =4242), the TwinsUK
study (VN =1080), two US studies from Pennsylvania and Indiana (US-P:
N=1990 and US-I: N=784), and the Avon Longitudinal Study of Par-
ents and their Children (ALSPAC, N=3566). From digital 3D facial
images, we mapped 44 a-priori defined facial landmarks from which
946 inter-landmark facial distances were obtained (Fig. 1a and Sup-
plementary Table 2) spanning eight regions of the face: forehead, eyes,
upper nose (root and bridge), lower nose (wing and tip), mouth, upper
cheek, lower cheek, and chin (Fig. 1b). Following General Procrustes
analysis and outlier removal, the landmark coordinates were con-
firmed to be normally distributed across all cohorts (Bonferroni cor-
rected p>0.05, see the “Methods” section), with specific examples
from RS and TwinsUK illustrated in Supplementary Fig. 1. The 946
distances, adjusted for covariate effects, were rank-normalized across
all 5 cohorts and used as phenotypes in the subsequent genetic ana-
lyses (see the “Methods” section).

C-GWAS was conducted in two stages. First, 432 pairs of GWAS
meta-analyses for symmetrical distances were combined into 432
single-trait GWAS outputs. Next, these were combined with 82 addi-
tional GWAS meta-analyses for non-symmetrical distances (total 514)
into one C-GWAS output (see the “Methods” section). SNP-based her-
itability of 514 facial traits GWAS was estimated using LD score
regression* (LDSC) at an average of 0.23 and a range from 0.06 to 0.36
(Supplementary Data 2). Higher heritability was observed for the nose
and forehead, whereas lower values for the mouth and cheek (Sup-
plementary Fig. 2). Notably, the mouth and chin exhibited significant
heritability divergence between internal variation and distances to
other facial regions, highlighting the composite nature of facial varia-
tion, driven by cranial structure and soft tissue thickness™.

The C-GWAS method ensures that under the null hypothesis of no
association, combined p-values follow a uniform distribution®, allow-
ing the standard genome-wide significance threshold of 5x 1078 to be
used as the study-wide threshold. Similarly, minimal p-values from 514
single-trait GWASs were adjusted within C-GWAS (see the “Methods”
section), referred to as MinGWAS, ensuring they also follow a uniform
distribution under the null. This adjustment enables direct comparison
between C-GWAS, MinGWAS, and single-trait GWAS results. We
assessed statistical inflation using LDSC and the genomic control fac-
tor Agc (Fig. 1c). The LDSC intercept quantifies inflation from non-
polygenic effects, such as population stratification. 514 single-trait
GWASs showed no significant inflation (LDSC intercept<1.03),
although Agc showed slight inflation with an average of 1.06 and a
range from 1.03 to 1.08 (Supplementary Data 2), likely due to polygenic
effects, consistent with previous GWAS findings for highly polygenic
complex traits. Both MinGWAS and C-GWAS showed no LDSC inflation
(LDSC intercept <1.01) but higher lambda values (C-GWAS Agc =1.25,
MinGWAS Agc =1.21) due to the increased power of multi-trait analysis.
After excluding all study-wide significant regions (+500 kbp), Agc
decreased but remained elevated (C-GWAS Agc=119, MinGWAS
Acc =116, Supplementary Fig. 3), suggesting persistent minor poly-
genic effects even after removing significant regions.

Compared with our previous face C-GWAS of 78 traits obtained
from 13 landmarks in 10,115 individuals”, the current C-GWAS of 946
facial traits from 44 landmarks in 11,662 individuals gained 184% extra
statistical power as estimated using the increase in the mean x statistic
method described in Turley et al.*2. C-GWAS identified 188 distinct
genetic loci (separated by >500kb) at study-wide significance
(p<5x10®), four times more than MinGWAS (Fig. le). As the

Nature Communications | (2025)16:6562


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61761-7

(a) (b) .

Uppernose .

A

Lowernose

1004

C-GWAS Agc = 1.25 d
(C) LDSC intercept = 1.01 ( )

%7 _ MinGWAS g = 1.21 214
3 LDSC intercept = 1

= _ GWAS Agc = 1.08

S LDSC intercept = 1.03

-

|

e

[

<

[

(%]

Q2

(@)

Loci of 20 previous studies

2 3 4 5 6 7 Loci of the current study
Expected —Logio(p)

O Loci with study-wide significance

—log1o(p)

50-

Fig. 1| C-GWAS identified 188 genetic loci with study-wide significant face
association. a Localization of 44 landmarks on the face. b Eight facial regions and
their corresponding landmarks. ¢ QQ plots for C-GWAS combined p-values (one-
sided), MinGWAS adjusted p-values (one-sided), and associated p-values of the
most inflated single-trait GWAS (two-sided). Grey dots represent results from the
GWAS for the facial trait L21_L23, which had the highest inflation among all single-
trait GWASs. LDSC intercepts and A for the three types of results are indicated.
The solid line indicates the expected distribution of p-values under the null
hypothesis. d Venn diagram illustrates the overlap between the 188 loci identified
by C-GWAS and the 440 loci reported by previous GWASs obtained by our literature

MinGWAS

* Overlapped Loci
% Independent Loci
¥ Novel Loci of C-GWAS

survey. e Miami plots display the results of C-GWAS combined p-values (one-sided)
and MinGWAS adjusted p-values (one-sided). Solid and dashed lines represent the
study-wide significance (5 x 10~%) and suggestive significance (1x10~°) thresholds,
respectively. Loci with the study-wide significance are highlighted using three types
of marks, including purple dots for overlapping loci between C-GWAS and Min-
GWAS, green crosses for independent loci from C-GWAS or MinGWAS, and orange
triangles for novel loci identified by C-GWAS that were not reported in previous
GWASs. The 3D template facial image in this figure is adapted from White et al.*?
published under an Open Access license (CC BY 4.0), see http://creativecommons.
org/licenses/by/4.0/.

significance of C-GWAS results increases, the proportion of C-GWAS
results surpassing MinGWAS rises (Supplementary Fig. 4). Specifically,
when the C-GWAS p-value is below 107, over 95% of the results are
more significant than MinGWAS, and increases to over 99% at study-
wide significance. One of the abundant examples, rs970797 at 2q31.1
MTX2 showing p =2.86 x107%* with C-GWAS, while p=7.9 x10™* with
MinGWAS. These findings suggest that most face-associated SNPs
affect multiple facial dimensions simultaneously, rather than being
specific to a single trait.

Of the 188 identified genetic loci, 62 (33%) were novel and had not
been reported in previous facial GWASs. Among the remaining 126 loci
overlapping with previous face GWASs, 26 (20%) were previously
genome-wide but not study-wide significant, confirming the increased
power of our approach (Fig. 1d). Among the 188 loci, in addition to the
top SNPs at each locus, 41 (21.8%) hosted 65 additional independent
study-wide significant SNPs identified through conditional analysis
using a modified version of GCTA-COJO* (Supplementary Data 3, see
the “Methods” section), resulting in a total of 253 lead SNPs (Supple-
mentary Data 4). Of these, 97 (38%) were novel SNPs, with 64 located in
62 novel loci and 33 located in 29 previously reported facial loci but in
low LD (2 < 0.1) with the previously reported top SNPs at these loci.
The 2q36.1 PAX3 and 14q32.2 BCL11B harboured the largest number of
independently associated SNPs, with 6 and 5 SNPs, respectively (Fig. 2).
These findings reinforce that multiple independent lead SNPs within
the same locus can distinctly influence diverse facial attributes”.

Intraclass correlation coefficient (ICC) analysis of allelic effects
demonstrated high consistency across the five European cohorts for
both, previously known and novel lead SNPs (Supplementary Data 5),
with a specific example of effects on nasion width from RS and ALSPAC
illustrated in Supplementary Fig. 5. MAMBA®* analysis further assessing
posterior probability of replicability (PPR) across all five European
cohorts revealed high PPR values approaching 1 (Supplementary
Fig. 6). The associations with more significant meta-analysis p-values
corresponded to higher PPR values, further corroborating the
robustness of our findings. External cross-ancestry replication analyses
in 9674 Chinese individuals revealed high replication rates of 69.8% in
all lead SNPs and 39.6% in the novel lead SNPs (FDR corrected p < 0.05,
Supplementary Data 4). Further details on covariate impact and pan-
ethnic effects of lead SNPs are provided in Supplementary
Notes 1 and 2.

Biological annotations and pleiotropy of face-associated SNPs

A stratified LDSC* of C-GWAS summary statistics across various cell
and tissue types identified 15 significantly enriched cell types (Bon-
ferroni threshold p=4.9 x10™, Supplementary Fig. 7, Supplementary
Data 6). The most substantial enrichments were notably observed in
adult dermal fibroblast primary cells (p=3.3 x10™) and cranial neural
crest cells (CNCC, p=2.1x107). A multi-omics integration analysis
(CNCC regulatory network’®, multi-tissue eQTLs and chromatin inter-
actions) revealed 365 candidate genes potentially functionally
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(black texts) and non-coding RNAs (grey texts) in the same region are annotated
below the plots according to their chromosomal positions (GRCh37). The bottom
layer displays the LD (r?) patterns of multiple lead SNPs and their LD counterparts.
LDs are calculated in RS, and hierarchical clustering is applied. Multiple lead SNPs
are marked with arrows corresponding to their colours. The 3D template facial
image in this figure is adapted from White et al.*? published under an Open Access
license (CC BY 4.0), see http://creativecommons.org/licenses/by/4.0/.

affecting human facial variation (see the “Methods” section, Supple-
mentary Data 4 and 7). GO enrichment analysis of these genes high-
lighted 177 significant GO-term biological processes (Bonferroni
corrected p <0.001, Supplementary Data 8) clustered into 16 groups
(Supplementary Fig. 8 and Supplementary Data 9), covering not only
well-established craniofacial morphogenesis processes, such as
embryo, skeleton, limb, bone, ear, brain, neuron, eye, differentiation,
growth, and the Wnt pathway, but also processes in the key cell types
highly relevant to CNCC formation including epithelium, mesench-
yme, and mesoderm (Fig. 3a). Additional enrichment in seemingly
unrelated processes like vasculum, heart, muscle, urogenital, and
digestive systems further emphasize a pleiotropic nature of facial
genetic factors. Further details on contributing cell types and candi-
date gene robustness are provided in the Supplementary Data 10,
Supplementary Notes 3 and 4.

Hierarchical clustering analysis revealed four distinct sets of
candidate genes predominantly affecting different sets of facial
regions (Fig. 3b and Supplementary Fig. 9) and showed specificity in
biological processes (Fig. 3a and Supplementary Data 9). For exam-
ple, genes influencing the nose were more enriched in limb mor-
phogenesis, while those affecting the chin and mouth were more
enriched in morphogenesis of branching structures, particularly
axons. These findings offer a preliminary map of how embryonic
development, driven by shared genetic factors, potentially influences
distinct facial features. The extensive pleiotropy was further sup-
ported by a GWAS Catalog look-up, where 144 (57%) of the 253 lead
SNPs, or their high LD counterparts (* > 0.6), were associated with 13
phenotypic categories of non-facial traits (Supplementary Fig. 10).
The top-associated categories are anthropometric, brain imaging,
metabolic and appearances traits, such as height, waist-to-hip ratio,
sulcal depth, cortical surface area, total testosterone levels,
contactin-2 levels, male pattern baldness, and hair colour (Supple-
mentary Data 11). These results collectively suggest that the pheno-
typic spectrum of face-associated SNPs is more extensive than
previously may have thought.

Enhanced proportion of genetically explained facial variance
and facial PRS profiles

Across the 514 facial traits, the combined proportion of variance
explained (PVE) from all 253 lead SNPs together ranged from 2.25% to
7.89% (Supplementary Data 2), a 2.25-fold average increase from our
earlier study’, which were based on 31 SNPs and 78 facial traits and
ranged from 0.65% to 4.62%. To further explore the explanatory power
of the lead SNPs, we extended the analysis to assess PVE across the
entire face (face-PVE, including all 514 traits) and within specific facial
regions (regional-PVE, including up to 32 traits per region, see the
“Methods” section). Combining 253 lead SNPs resulted in a face-PVE of
4.5%, with the highest regional-PVE in the upper nose (6.0%) and lower
nose (5.6%), and the lowest in the lower cheek (3.2%) and mouth (3.6%)
(Fig. 4a). Notably, the novel SNPs tended to have more widespread
effects across multiple facial regions rather than being confined to a
specific area (Supplementary Fig. 11). Our comprehensive mapping of
genetic effects on distinct facial dimensions highlighting the polygenic
and multidimensional nature of facial shape (Supplementary Data 12).
Detailed single-trait PVE, face-PVE and regional-PVE analyses are pro-
vided in the Supplementary Note 5.

Building on these findings, we constructed polygenic risk score
(PRS) profiles for 2000 individuals across four major continental
populations (African, AFR; European, EUR; East Asian, EAS; South
Asian, SAS) using data from the 1000 Genomes Project*, excluding
admixed samples from AFR and the American population. The PRS was
based on 382 face-associated SNPs, including 253 lead SNPs from our
C-GWAS and 129 SNPs from previous facial shape GWASs, for 23 most
genetically explainable and independent facial traits (see the “Meth-
ods” section, Supplementary Data 13). Facial PRS profiles largely agree
with established anthropological knowledge concerning nose shape
variation among continental populations (Fig. 4b-d, Supplementary
Data 14 and Supplementary Note 6). A comparative analysis of com-
puted tomography scans of 388 adults of AFR, Asian (ASN), and EUR
ancestry* further confirmed significant correlations between mean
differences in facial PRS profiles and phenotypic traits between EUR
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Fig. 3 | Enriched biological processes and four clusters of face candidate genes.
a The figure details the enriched biological processes and the specificity of 4 face
candidate gene sets annotated by 253 lead SNPs. The outer bar chart contains 177
biological processes with significant enrichment Bonferroni corrected p-values

(one-sided hypergeometric test), divided into 16 categories. The dashed line indi-
cates the significance threshold (p = 0.001). The inner radar chart reflects the mean
fold enrichment of genes in each gene set across the biological processes in each of
the 16 categories. Different colours denote different gene sets. The dashed line

represents the mean fold enrichment under the null distribution (no enrichment).
The outer ring annotations include the titles of the 16 categories, the top three most
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significant enriched biological processes in each category, and biological processes
in the top 5% of fold enrichment of genes in 4 gene sets across the 177 biological

processes, highlighted in the corresponding colour of the gene set. b Hierarchical
clustering of 225 face candidate gene sets annotated by 253 lead SNPs, identified 4
clusters based on their effects on facial regions (in terms of regional-PVE across 8
facial regions, see the “Methods” section). Face maps showed the total effects of the
annotated genes on the face for gene sets corresponding to four clusters. The 3D
template facial image in this figure is adapted from White et al.*? published under an
Open Access license (CC BY 4.0), see http://creativecommons.org/licenses/by/4.0/.

and AFR (Pearson’s r= 0.75), as well as between EUR and ASN (r=0.81)
(Supplementary Note 7). Specifically, considering the average facial
PRS profiles of EUR as reference (z=0), AFR showed notably smaller
nose root (z=-1.86), less protruded (z=-1.76) but more upturned
(z=0.74) nose tips, alongside broader nose wings (z=0.8) and shorter
nose bridges (z=-0.82). EAS were characterized by significantly
smaller (z=-1.77) and less (z=-2.42) protruded nose tips, along with
smaller nose root (z=-1.12). Meanwhile, SAS displayed similar nose
shapes to EUR (all |z|<0.5), which is remarkable given their closer
geographic proximity to EAS. The latter finding is in line with the study
of Zaidi et al.** finding that the average nose differences between SAS
and EUR were smaller than other intercontinental comparisons.

Furthermore, our findings are largely consistent with numerous facial
photogrammetric studies reviewed by Wen et al’, reinforcing the
correlation between genetic facial profiles and physical facial
anthropometry.

Re-identification of individuals from 3D images with facial PRS
profiles

Motivated by these findings, we explored the feasibility of re-
identification of individuals’ images from their facial PRS profiles,
focusing on the nose region, which manifested the highest genetically
explainable phenotypic variance (Supplementary Data 14). This was
achieved by calculating the cosine similarity scores between PRS
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Fig. 4 | Facial effect of face-associated SNPs with a focus on the nose.
alllustration of the total effects of 253 lead SNPs on the face, based on regional-PVE
across 8 facial regions. The 3D template facial image in a is adapted from White et
al.*? published under an Open Access license (CC BY 4.0), see http://
creativecommons.org/licenses/by/4.0/. b Enlarged frontal and lateral views of the
nose with 14 landmark points highlighted in ¢ and d, and Supplementary Note 6.
The scale indicates the p-value of deviation of the landmark from the average in
c and d, which is derived from the association test between PRS and landmark
coordinates using linear regression. PRS analysis and its effects on the nose are
illustrated for: ¢ for L21-1.24 and L23-126, and d for L7-L8 and L8-L9. Each figure is
divided into three sections: PRS effects on the nose (left, enlarged nasal view),
population profiling (middle, violin plots), and gene contributions (right). In the
nasal views, landmarks significantly associated with standardized PRS are marked
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with orange dots (3 times positive effect offset) or blue dots (3 times negative effect
offset). Connecting lines visually represent nasal variation, with scaled distances
shown in the top left. Nasal images reconstructed at mean PRS + 3 SD are framed in
orange (+3SD) and blue (-3SD) and generated using a 3D graph auto-encoder (see
the “Methods” section). The overall effect of increasing PRS is described in text at
the top left. The violin plots show standardized PRS results for four major popu-
lations from the 1000 Genomes Project (African, AFR, N=504; European, EUR,
N=504; East Asian, EAS, N=503; South Asian, SAS, N =489), with the band indi-
cating the median, the box representing the first and third quartiles, and whiskers
extending 1.5 times the interquartile range. Gene contribution plots on the right list
the top regions accounting for 50% of PRS variance. The 3D template facial image in
b-d was generated from the average covariate-adjusted facial shape of all RS par-
ticipants (N =4242).

profiles of the nose (referred to as nose PRS profile) and 3D image-
derived phenotypic nose profiles (referred to as nose 3D profiles) in
the RS. When focusing on the top 1% of the nose 3D profiles that most
closely mirrored an individual’s nose PRS profile, we observed a 3.4%
probability of accurately identifying the correct individual’s nose 3D
profile based on its nose PRS profile (cumulative matching character-
istic, CMC1% = 3.4%, that is, with a 1% selection threshold, the matching
probability was 3.4%). The matching accuracy significantly improved
with less stringent selection thresholds, achieving 24% at CMC10% and
73% at CMC50% (Fig. 5a).

Utilizing a binary variable of true and false matches, the similarity
score achieved a moderate AUC of 0.67 (Fig. 5b, see the “Methods”
section). Because RS was part of the C-GWAS discovery dataset, aiming
to establish a benchmark, we generated null AUC values through
10,000 replicates, where each replicate employed PRS constructed
from randomly selected SNPs that were matched by number and MAF.
The AUC of 0.67 in RS significantly exceeded the null distribution,
confirming that our matching accuracy surpasses expectations by
random chance (Fig. 5c). Next, we employed the TwinsUK data in this
re-identification analysis. Although the TwinsUK dataset was also part
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Fig. 5 | Individual re-identification using phenotypic and PRS nose profiles.

a Cumulative Match Characteristic (CMC) curve for the individual re-identification
model using the PRS of the five nose traits, as detailed in Fig. 4 and Supplementary
Note 6. The curve is based on 50 rounds of 10-fold cross-validation, highlighting
CMC1%, CMC10%, and CMC50% in orange crosses and labelled in the top left.

b Receiver operating characteristic (ROC) curve for the individual re-identification
model using the PRS of the same five nose traits, based on 50 rounds of 10-fold

cross-validation. The average AUC is labelled on the top left. ¢ Distribution of AUC
values across different prediction validation scenarios in two European cohorts, RS
and TwinsUK. The density plot shows the distribution of AUC null values obtained
through 10,000 replicates, where each replicate involved PRS constructed from a
number and MAF-matched SNPs randomly selected across the genome. AUC values
achieved by our PRS models under different validation scenarios were compared

with the null distribution using arrowed lines.

of the C-GWAS discovery dataset, we assessed the potential decrease in
AUC when applying the PRS to TwinsUK as a separate dataset. By
considering 216 SNPs that overlapped between both datasets, the
internal validation within the reference sample of RS yielded an AUC of
0.62. When this PRS was then applied to the TwinsUK dataset, we
obtained an AUC of 0.60 (Fig. 5c). This small AUC reduction of 0.02
suggests a negligible winner’s curse effect within the training cohort
(i.e., RS), as confirmed by additional simulation analyses (Supplemen-
tary Note 8). The significant deviation from the null distribution of both
AUC outcomes, from RS and TwinsUK, implies that our genetic model
captures meaningful effects beyond random noise. While the AUC
values obtained here may seem modest, it is important to emphasize
that these results were achieved in homogeneous populations and
based solely on SNP data for nose traits alone. Expanding the number
of genetically predictable facial phenotypes beyond the nose, even if
each has limited accuracy, could collectively improve the overall
accuracy in individual re-identification.

Face-associated SNPs experienced positive selection in
Europeans

Among the 253 lead SNPs identified in our facial C-GWAS, 69%
exhibited a frequency difference > 0.2 among EUR, EAS, and AFR, as
per the 1000 Genomes Project data (Supplementary Data 4). This
proportion is significantly higher than the average observed in ran-
dom samples of the same number of SNPs across the genome after
10,000 replicates (p = 0.023, Supplementary Fig. 12). The average of
fixation index (Fst), which reflects genetic variation between groups
and can indicate local positive selection, was significantly higher
between EUR and EAS (p =0.017) and EUR and AFR (p = 0.011) than

expected from randomly sampled SNPs (Fig. 6a). However, this pat-
tern was not observed in the EAS-AFR comparison (p=0.32, Sup-
plementary Fig. 12). Moreover, the mean Population Branch Statistic
(PBS) for the 253 lead SNPs compared to randomly selected SNPs was
statistically significant in EUR (p<0.01, Fig. 6a), but not in EAS
(p=0.44) and AFR (p=0.25). These findings suggest a more pro-
nounced influence of positive selection on face-associated SNPs in
Europeans.

Although our targeted SNPs may have higher MAF in EUR
because they were identified through a European-based C-GWAS, a
recent large-scale face GWAS conducted in East Asians* identified 244
face-associated SNPs and found evidence of positive selection on
these SNPs in Europeans. This suggests that facial differences
between Europeans and East Asians, such as more protruded and
narrow noses in Europeans, may result from adaptation and positive
selection in European populations. The consistency of findings across
independent GWAS in different continental populations indicates
these results are not merely artefacts of GWAS-based allele frequency
biases.

Of the 188 genetic loci where the 253 lead SNPs are located, 22
displayed strong signals of positive selection (top 1% of the genome,
Supplementary Data 15), highlighting their importance in the evolu-
tionary history of facial variation in modern humans. Among these, two
loci were at the extreme tail of statistical significance: 2q12.1, con-
taining POU3F3 primarily associated with the nose region, and 9p22.3-
p22.2 containing BNC2 primarily associated with the chin region
(Fig. 6b and c). Notably, BNC2 was previously identified as a skin-colour
gene based on association*® and functional evidence**, and is located in
a genomic region of Neanderthal ancestry (introgressed segments)*.
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Fig. 6 | Face-associated SNPs under positive selection in Europeans.

a Simulations analyses show the positive selection. Grey bars and curves show the
expected distribution density from 10,000 simulations under the null hypothesis.
The dashed line indicates the one-sided 0.95 cumulative density threshold.
Observed values from 253 lead SNPs are highlighted in orange with one-sided
empirical p-values. For illustration of the 2q12.1 region (b) and 9p22.3-p22.2 region
c under natural selection, Left: C-GWAS combined p-values within 250 kb of the top
SNP plotted against PBS results in EUR. Dashed lines indicate suggestive

significance threshold for C-GWAS and the top 1% threshold for PBS, respectively.
The top SNP is highlighted with a purple diamond, and LD counterparts are in
colour scale. The SNP with both a significant facial effect and a selection signal is
annotated. Middle: World map of allele frequency for annotated SNPs based on
1000 Genomes Project sub-populations. Base map is from Natural Earth data v1.4.0
(public domain). Right: Regional-PVE effects of annotated SNP. The 3D template
facial image in this figure is adapted from White et al.*? published under an Open
Access license (CC BY 4.0), see http://creativecommons.org/licenses/by/4.0/.

Facial PRS profiles of Neanderthals differ more from Europeans
than from Africans

Next, we explored whether face-associated SNPs identified via C-GWAS
in Europeans could help genetically reconstruct facial traits in archaic
humans. Modern human populations outside Africa carry ~1.5-2.1%
Neanderthal-derived ancestry*®*’. We annotated our 253 lead SNPs
with previously identified introgressed segments of Neanderthal in the
genomes of EUR and EAS**°. On average, 65 SNPs (25.7%) in EUR and
57 SNPs (22.5%) in EAS overlapped with Neanderthal introgressed
segments, including 30 SNPs (11.9%) shared between both populations
(Supplementary Data 16). Lead SNPs in EUR-specific segments pre-
dominantly influenced the upper nose and forehead, while those in
EAS-specific segments primarily affected the chin, and shared lead
SNPs were mostly associated with variation in the lower nose (Fig. 7a
and Supplementary Fig. 13). This pattern suggests that face-associated
SNPs located in Neanderthal introgressed segments have shaped facial
variation differently across modern human populations, for instance,
prominent brow ridges in EUR® and flatter chin structures in EAS®.
Distinct genetic loci contributed to these population-specific intro-
gression effects (Fig. 7b). Notably, chromosome 6p21.1 contains
SUPT3H (EUR-specific) associated with the upper nose, and RUNX2
(EAS-specific) associated with the upper cheek (Supplementary
Fig. 14). Additionally, TBX15 on chromosome 1pl12, represented by
three lead SNPs with broad facial effects, significantly contributed to
EAS-specific introgression influence, aligning with previous findings
linking TBX1S5 to Denisovan introgression associated with lip thickness
in Latin Americans'. Importantly, our analysis relies solely on C-GWAS
lead SNPs overlapping within previously reported introgressed seg-
ments, without considering ancestral/derived allelic states. To explore
this further, we examined whether the lead SNP in the introgressed
segments meets the condition of archaic variants as previously
defined®, which would increase confidence that the lead SNP repre-
sents a true introgressed variant. However, the presence of such

variants in modern populations is not necessarily due to hybridization
between Neanderthals and Early Sapiens; it could also be due to
incomplete lineage sorting. Furthermore, the limited number of high-
confidence introgressed face-associated SNPs identified using this
approach restricts our ability to draw robust conclusions (Supple-
mentary Data 17 and Supplementary Note 9).

Next, we constructed facial PRS profiles based on 357 face-
associated SNPs available in 10 archaic humans (8 Neanderthals, 1
Denisovan, and 1 Neanderthal-Denisovan admixed individual) using
genomic data obtained from the Allen Ancient DNA Resource™ (see the
“Methods” section, Supplementary Table 3 and Supplementary
Data 18). When comparing archaic humans to the four major modern
human populations in the 1000 Genomes Project, archaic facial PRS
profiles are more different from three non-African groups, including
EUR, than from AFR (Fig. 7c). This finding aligns with current under-
standing that Africans are ancestral to all modern humans, making
them genetically closer to the common ancestors of both modern and
archaic humans. However, this finding may appear as a paradox given
that the introgression happened in non-Africans. To explore this fur-
ther, we calculated the mean absolute differences in allele frequencies
for the 357 SNPs between archaic humans and modern human popu-
lations, and compared these to 10,000 random sets of number-
matched random SNPs. Differences between archaic humans and AFR
were consistently smaller than those between archaic humans and all
non-Africans from EUR, EAS, and SAS, even when focusing on SNPs
within introgressed segments (Fig. 7d). These findings suggest that the
similarity in facial PRS profiles between archaic humans and AFR is
likely due to shared ancestral alleles. However, we acknowledge a
potential bias stemming from the predominantly European GWAS
origin of these 357 facial SNPs. Future studies should prioritize facial
GWAS in diverse populations, particularly in African cohorts, to reduce
such biases and clarify the evolutionary history underlying facial shape
genetics.
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N=489), grouped by Neanderthals, Neanderthal-Denisovan admixed individual,
and Denisovan. The band indicates the median, the box indicates the first and third
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samples from four major populations in the 1000 Genomes Project (same as c)
were illustrated for different sets of SNPs, with higher values indicating greater
dissimilarity (see the “Methods” section). The dashed line corresponds to the 357
SNPs used to construct the archaic human facial PRS profiles. The violin plots
represent replicates of 10,000 random sets of SNPs. The band indicates the med-
ian, the box indicates the first and third quartiles, and the whiskers indicate 1.5
times of interquartile range from the box. Labels on the x-axis denote the different
SNP sets used: “ALL” represents random 357 genome-wide SNPs, “EUR segments”
and “EAS segments” include the SNPs among the 357 overlapping introgression
segments specific to Europeans and East Asians, respectively. The 3D template
facial image in this figure is adapted from White et al.*> published under an Open
Access license (CC BY 4.0), see http://creativecommons.org/licenses/by/4.0/.

Facial PRS profiles of Neanderthals align with Neanderthal skulls
Neanderthal skulls have been discovered and show a series of distinct
features that are different compared to skulls of modern humans™>,
To validate Neanderthal facial PRS profiles, we mapped them to 16
Neanderthal facial features reflected by skulls, excluding features not
reflected in bone structure, such as the nose tip and certain aspects of
the nose bridge (Supplementary Table 4, see the “Methods” section).
Of the 16 facial features analysed, 15 showed concordances between (a)
the direction of the difference predicted by facial PRS profiles in
Neanderthals relative to Europeans, and (b) the direction of the
reported feature differences for Neanderthals relative to modern
humans, examples include a wider face, more protruded brow ridge,
flatter cheekbones, and lower palate (Fig. 8a). Permutation tests (see
the “Methods” section) indicated that observing 15 concordant fea-
tures is statistically highly significant, exceeding all 10,000 random
permutations (p < 0.0001, Fig. 8b). Only one feature (wider palate in
Neanderthals) showed inconsistent classification due to conflicting
directions from multiple overlapping PRS (p=0.0126). No discordant
results were observed (p = 0.0012). The statistical significance of these

findings indicates that the observed concordance between European-
based PRS predictions for Neanderthals and their known facial features
relative to modern humans is unlikely to have occurred by chance. To
further assess the robustness of these results, we conducted simula-
tions to evaluate how data limitations for archaic humans, such as
pseudohaploid data, small sample sizes, and low call rates, might affect
PRS accuracy (Supplementary Notes 10 and 11). The results showed
that pseudohaploid data and small sample sizes did not bias PRS
averages, although they did increase the uncertainty. Additionally,
imputing genotypes for low call rate samples yielded PRS averages
highly consistent with those from high call rate samples. These find-
ings suggest that, despite moderate PRS r* values that may not accu-
rately represent individual facial profile and the inherent uncertainty
of archaic DNA data, the broader patterns in PRS profiles, such as
directionality of averages, remained robust, particularly for extreme
values, reinforcing the reliability of archaic PRS profiles for char-
acterizing population-level facial difference.

Next, we compared the facial PRS profiles between Neanderthals
(8 samples) and EUR from the 1000 Genomes Project using a t-test,
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Fig. 8 | Facial PRS profiles of archaic humans. a Mapping facial PRS profiles of
Neanderthals to 16 facial features reflected by skulls. Left panel: PRS (absolute
values > 0.4) are sorted and summarized by their facial effects. Right panel: 16
known Neanderthal facial features categorized by different colour according to
facial regions, with lines indicating enhancement (solid) or reduction (dashed)
predicted by the corresponding PRS. Triangles represent consistent directional
predictions, including upward (enhancement) or downward (reduction) those, and
circles denote inconsistencies. The diamonds highlight PRS not corresponding to
known features. b Comparison of concordance in Neanderthal facial features based
on phenotypic and genetic differences. The bar graph assessed the concordance
between phenotypic descriptions from archaeological studies and genetic

predictions using PRS for 16 facial features of Neanderthals. Each bar represents the
number of facial features displaying concordant (orange), discordant (purple), or
inconsistent (green) results based on the alignment between skull morphology
differences and the direction of mean PRS differences for Neanderthals relative to
EUR (see the “Methods” section). The analysis involved 10,000 permutations using
357 MAF-matched SNPs to generate null distributions and assess the statistical
significance of the observed patterns with three one-sided significance levels noted
at the top. ¢ Same form of illustration as a but displayed the difference between
Denisovans and Neanderthals using the PRS difference (Denisovan PRS minus
Neanderthal PRS average).

which showed significant differences for 18 out of 23 facial traits
(FDR <0.05, Supplementary Data 14). Notably, Neanderthals had a
significantly wider and flatter upper cheek region (p=_8.5x107) than
EUR, consistent with fossil evidence showing the broad facial structure
and relatively straight cheekbones of Neanderthals relative to modern
humans®*¢, Additionally, Neanderthals had a more retracted nose tip
(p=1.34x107) than EUR, which represents a previously unreported
finding since no soft tissue evidence exists for Neanderthals. While
methods to predict nose shape from skull data have been developed
for modern humans®’*%, they are trained and validated with head image
data of soft and hard tissues of modern humans and are therefore not
applicable to archaic humans. More specifically, average Neanderthal
PRS profiles predicted shorter (z=-3.14), narrower (z=-1.91), but
more protruded (z=1.35) nose bridges, less protruded (z=-1.99) but
more upturned (z=1.5) nose tips, alongside broader nose wings
(z=1.91), differing more from the nose PRS profiles of EUR (z=0) than
from those of AFR.

Although genomic data are currently only available for a single
Denisovan individual, we also performed facial PRS analysis for

Denisovans, reflecting preliminary findings. Denisovan PRS fell within
the EUR PRS distribution for 17 out of 23 facial traits, with six traits at
the extreme tail (p < 0.05, Supplementary Data 14). Notable differences
from EUR included a shorter (z=-3.66) nose bridge, less protruded
nose tips (z=-3.12), wider orbits (z=4.19), a higher brow ridge
(z=2.12), a higher chin (z=-2.37), and a smaller tear trough (z=-1.94).
Denisovan PRS also differed from Neanderthals for 10 out of 16 map-
ped traits, including a higher, more protruded brow ridge, a nose with
more European characteristics (larger nose root, narrower wings, and
lower tip), more protruded cheekbones, a flatter infraorbital region,
and a higher, flatter chin compared to Neanderthals (Fig. 8c). Although
complete Denisovan skulls have not been discovered yet, a Denisovan
partial mandible (Xiahe mandible, >160 kya) found on the Tibetan
Plateau shows a higher anterior mandible than modern humans but
lower than Neanderthals, with a smaller symphyseal angle, indicating a
flatter, more retracted chin. Our chin PRS profiles for Denisovans
aligned with three of these findings but inconsistently predicted a
higher anterior mandible than Neanderthals (Supplementary Data 19).
Inspecting previously reported differences in DNA methylated regions
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among modern humans, Neanderthals and Denisovan®, we found
consistent results with Denisovan facial PRS profiles for 9 out of 12
overlapping predictions, including face width, face length, palate
height, etc., but inconsistencies were noted for midface prominence
and palate width, etc (Supplementary Fig. 15 and Supplementary
Data 19).

While these results indicate genetic evidence for facial differences
between archaic and modern humans in specific directions, as well as
between Neanderthals and Denisovans, we emphasize the limitations
of these findings given the small sample size of currently available
genome data from archaic humans.

Discussion

This study significantly advances the genetic understanding of human
facial variation by expanding previous C-GWAS work®. We increased
facial landmarks from 13 to 44 and derived facial distance traits from
78 to 946. Additionally, we enlarged our discovery sample from 10,115
individuals across four cohorts to 11,662 individuals across five
cohorts. These enhancements boosted statistical power by 2.84-fold,
tripled identified face-associated loci, and doubled genetically
explained facial variance, providing a robust foundation for down-
stream predictive analyses in both modern and archaic human studies.
The success of this study empirically exemplified the effectiveness of
C-GWAS for combining extraordinarily large numbers of correlated
traits across multiple cohorts, setting an important standard for future
GWAS in areas like methylation, proteomics, metabolomics, and bio-
imaging traits in the brain and other tissues. However, we also note
several limitations of the current C-GWAS method in analysing multi-
ple GWASs. First, applying C-GWAS to combine GWASs from distinct
genetic backgrounds, such as populations from different continental
ancestries, may result in inaccurate effect correlation estimates,
potentially reducing statistical power. In such cases, it is advisable to
perform a meta-analysis of GWASs from different genetic backgrounds
prior to applying C-GWAS for multi-trait combination, thereby
improving the reliability of the results®. Second, combining GWAS
with varying proportions of missing SNP genotypes using C-GWAS can
bias effect estimates since missing SNPs are set to have zero effect by
default. When the proportion of missing SNPs is substantial, it is
advisable to exclude these variants to minimize bias. Third, to reduce
computational burdens and errors from collinearity, it’s advisable to
first combine highly correlated GWASs, which we implemented by
initially combining symmetric facial traits to improve reliability and
efficiency.

We used facial shape GWAS results from East Asians for the
replication analysis, despite differences in cohort genetic background
(East Asians vs. Europeans) and phenotyping methods (global-to-local
segmentation vs. landmark-based). While these differences limit exact
replication and reduce replication power due to varying allele fre-
quencies, adjusted replication p-values confirmed a significant pro-
portion of facial lead SNPs, including novel ones, highlighting a robust
pan-ethnic genetic influence on facial features when it comes to Eur-
opeans and East Asians at least. However, genetic effects specific to
non-Europeans were less emphasized, indicating a need for discovery
C-GWAS in non-European populations. Furthermore, by integrating
multi-omics annotations of facial lead SNPs and their associations with
non-facial traits, we have outlined the most comprehensive biological
and pleiotropy map of face-associated SNPs. This reinforces known
facial shape genetics while providing additional insights into shared
genetic links between facial shape and a broader spectrum of human
traits, offering a list of candidate traits and corresponding associated
SNPs for future research on disease risks and genetic foundations.

The facial lead SNPs we identified significantly enlarged the
number of genetic loci involved in facial variation, but collectively
explained less than 10% of the phenotypic variation. This limited
explanatory power indicates that reconstructing a detailed face solely

from DNA, which is akin to drawing an accurate portrait of a person
from his/her DNA, is currently beyond any reach. However, re-
identification of individuals in facial imagery datasets using facial
genetic data may be more achievable. This approach relies on com-
bining multiple predicted traits rather than accurately predicting each
individual feature. Previous simulations® have confirmed that even
modestly accurate individual trait predictions can effectively identify
individuals when combined. Our model for five nose traits, though not
highly accurate on its own, highlights the potential of this approach.
Previous research®® reported an AUC of 0.77 for DNA-based facial
recognition in diverse populations, such as from the US, primarily
driven by distinct genetic ancestry among individuals. In our study, the
AUC of 0.67 for nose-based re-identification represents a significant
initial demonstration that moderate predictive accuracy can be
achieved in a homogeneous population using SNP data, even when
only using nose traits alone. Looking ahead, the model’s overall dis-
criminative power could be further enhanced by incorporating more
facial features, pigmentation traits®, hair features'®, and age
estimations™, along with ancestry-informative DNA markers®>®*, all of
which have previously shown promise for direct DNA-based predic-
tion. Furthermore, novel facial lead SNPs, despite exhibiting lower
statistical significance than previously reported ones, demonstrated
comparable mean face-PVE and were more likely to influence multiple
facial regions. This suggests that SNPs with broader but weaker effects
may be missed due to limitations in multi-trait analysis methods.
Nonetheless, their overall impact on facial variation may not be weaker
than SNPs that strongly affect specific regions. This highlights the
importance of identifying more face-associated SNPs, even those with
modest statistical significance, to improve model performance.
Besides, we were unable to test our nose PRS in external non-European
cohorts, but previous studies suggest facial trait PRS can generalize
across populations. For instance, Xiong et al.” showed that PRS derived
in one population can capture key facial features in different genetic
backgrounds. Specifically, Zhang et al.*> demonstrated that PRS-based
facial shapes successfully captured facial shape variations between
EUR and EAS populations, closely resembled the true population
average shapes across different facial regions both visually and sta-
tistically. These suggest that the facial shape effects identified are not
confined to a single population, supporting the potential cross-
ancestry applicability of our facial PRS profiles. Overall, our findings
underscore both the current limitations and the future potential of
DNA-based facial recognition as methodologies and datasets expand.

While these findings are preliminary and serve as an initial proof-
of-concept rather than providing a next step towards practical impli-
cations, we would like to point out that DNA-based facial recognition
or face prediction can raise ethical and societal concerns that warrant
careful consideration. The ability to recognize or reconstruct a per-
son’s facial features from DNA could lead to privacy violations, unau-
thorized tracking, and potential discrimination, especially if accuracy
varies across genetic backgrounds. There is further the potential of
politically or otherwise motivated misuse of such technology. While
yet, the scientific and technological knowledge is too premature to
know if these concerns will ever become practically relevant, devel-
oping ethical guidelines and regulatory frameworks alongside scien-
tific advancements is crucial to managing these potential risks.

A few studies have demonstrated that archaic human introgres-
sion influences modern human facial features. For example, Nean-
derthal introgression has been linked to nose length®, while a 28 kb
Denisovan-derived fragment on chromosome 1, near WARS2
andTBX1S, affects upper lip thickness and prominence". Furthermore,
research on a wide range of complex traits in the UK Biobank has
shown that Neanderthal introgression significantly contributes to the
heritability of dermatological traits, such as those related to hair and
skin®*, suggesting that introgression may similarly affect facial shape
due to the link between facial variation and skin development, as
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demonstrated in our cell type analysis. In our study, genomic regions
retaining Neanderthal ancestry were primarily associated with facial
variations in population-specific features and showed evidence of
natural selection within the corresponding population’, offering
notable insights into the genetic basis for facial differences among
populations. However, there are limitations to our understanding of
introgression’s role in facial traits. Specifically, it'’s unclear whether
archaic DNA segments recombined with modern human variants
shortly after introgression or if the variations emerged later®. Sup-
porting the latter scenario, fewer than 10% of face-associated variants
within archaic segments are high-confidence introgressed SNPs in our
analysis. This may reflect demographic and evolutionary history:
introgression occurred close in time after the out-of-Africa
migration*®, followed by strong selection pressures on facial shape,
particularly on nose shape, in the northern hemisphere due to adap-
tation to changing climatic conditions such as lower temperature and
humidity®®. This suggests that a substantial portion of alleles involved
in nose shape variation, which substantially contribute to overall facial
variation, may have arisen or been selected post-introgression,
explaining why archaic alleles have a relatively small effect on facial
variation.

Currently, three high-coverage Neanderthal genomes are avail-
able: Altai (110 kya, 52x coverage, Siberia)*’, Vindija (50 kya, 30x cov-
erage, Croatia)®’, and Chagyrskaya (80 kya, 27x coverage, Siberia)®®.
Genetic evidence indicates that early Neanderthals formed at least two
geographic populations: an eastern group (Altai) and a western group
(Vindija), which shows genetic continuity with later Neanderthals'.
Vindija contributed an additional ~10% of Neanderthal sequences to
modern Eurasians®®, highlighting differences between these two
Neanderthal samples and their historical gene flow with modern
humans. However, because of Altai’s higher coverage, most intro-
gression studies have focused on Altai, limiting understanding of
Neanderthal diversity. Although our study has integrated various
methods*®° to detect introgressed segments, there is still a lack of
data on western Neanderthal introgression represented by Vindija. The
Vindija sample is expected to be the best representative of the intro-
gression population, as suggested by Reilly et al.”” and recent studies
have proposed a narrow time range (-45-49 kya BP) for the intro-
gression period’®”". We anticipate that future research will provide a
more comprehensive perspective on the introgression of Nean-
derthals into modern human populations.

Applying PRS to archaic genomes, such as those of Neanderthals
and Denisovans, presents considerable challenges. PRS models are
based on modern human populations and rely on assumptions about
linkage disequilibrium, allele frequency, and additive genetic effects,
which may not apply to archaic lineages that evolved under different
environmental conditions and selective pressures’”. Moreover, the
limited genetic diversity and unique adaptations of archaic popula-
tions, evident in traits shaped by now-extinct environments, further
complicate attempts to generalize modern PRS to these ancient
groups. For instance, Denisovan-specific adaptations, with rare
exceptions like high-altitude adaptations in present-day Tibetans’ are
not well-captured in modern datasets. Despite these uncertainties, our
simulations and fossil skull comparisons indicate that pseudohaploid
data and small sample sizes, which characterize current archaic gen-
omes, do not significantly bias overall PRS estimates. This finding
suggests that, while absolute values should be interpreted cautiously,
PRS still provide reasonably reliable directional insights into pheno-
typic shifts over evolutionary time.

Until now, our understanding of archaic human facial features has
mainly come from a limited number of skull specimens. Neanderthal
skulls have offered some insight into their facial structure®, but fea-
tures like nose shape are not well preserved in bone, making genetic
prediction particularly informative. The absence of complete Deniso-
van skulls makes genetic inference about their facial features especially

interesting’. Our archaic facial PRS profiles align well with fossil evi-
dence and previous predictions, predicting detailed nose and cheek
features of Denisovan, which had not been characterized in such detail
before, and highlighting more comprehensive facial differences
between Neanderthals and Denisovan than previously known. Inter-
estingly, our European-calibrated PRS suggests Neanderthal noses may
differ more from Europeans than from Africans, which appears
inconsistent with cold-climate adaptations in Europeans®®. This dis-
crepancy may reflect differences in nasal cavity adaptations in Nean-
derthals, allowing them to regulate the temperature and humidity of
inhaled air within the nasal cavity rather than through external nose
shape’”. However, it is important to acknowledge that the similarity of
facial PRS profiles between AFR and Neanderthal can be due to a dis-
covery cohort bias, i.e., due to a weak portability of the PRS to other
populations. A key limitation of our findings is the scarcity of archaic
human genomes, especially for Denisovans, with only one high-quality
sample available. This may explain inconsistencies between our chin
PRS profiles and fossil evidence from the Xiahe mandible, which came
from a different individual in a different time and geographic region®°.
Another limitation is that internal craniofacial features, such as those
related to the oral cavity and teeth, were overlooked in our study.
Expanding the number of archaic samples and improving facial land-
mark coverage will enhance the accuracy of genetic facial inferences,
deepening our understanding of how archaic humans looked and how
facial shape evolved in modern humans.

In summary, this study represents the largest, regarding both
sample size and phenotype number, facial shape GWAS undertaken to
date in Europeans and in general. By integrating genomic and facial
imagery datasets that were previously analysed and published sepa-
rately, allowing to increase sample size, by enlarging the number of
facial traits and thus the phenotypic variation considered, and by
applying our recently developed C-GWAS method allowing to combine
GWASs of almost one thousand facial traits, we have increased by far
the number of known genetic loci and candidate genes involved in
facial variation. Our findings improve the genetic knowledge under-
lying human facial variation, provide evidence for the partially shared
genetic basis of facial variation in different continental populations,
provide insights into facial appearance of archaic humans including
Denisovans, for which no complete skull information is available thus
far, and underline as well as extend the biological functions and
pleiotropy spectrum relating to genes involved in facial shape. The less
than 10% of facial variance explained by our improved genetic findings
underlines the continuous missing heritability problem of the human
face, as well as the limitations in genetic prediction of human faces,
which shall motivate more facial GWAS studies in different human
populations in the future.

Methods

Ethics statement

The Rotterdam Study has been approved by the Medical Ethics Com-
mittee of the Erasmus MC (registration number MEC 02.1015) and by
the Dutch Ministry of Health, Welfare and Sport (Population Screening
Act WBO, license number 1071272-159521 PG). The Rotterdam Study
has been entered into the Netherlands National Trial Register (NTR;
www.trialregister.nl) and into the WHO International Clinical Trials
Registry Platform (ICTRP; www.who.int/ictrp/network/primary/en/)
and under shared catalogue number NTR6831. The TwinsUK Study has
been approved by the St. Thomas’ Hospital Local Research Ethics
Committee. For the ALSPAC samples, ethical approval for the study
was obtained from the ALSPAC Ethics and Law Committee and the
Local Research Ethics Committees. For the US Pennsylvania Study
samples, the following local ethics approvals were obtained: Urbana-
Champaign, IL (PSU IRB 13103); New York, NY (PSU IRB 45727); Cin-
cinnati, OH (UC IRB 2015-3073); Twinsburg, OH (PSU IRB 2503); State
College, PA (PSU IRB 44929 and 4320); Austin, TX (PSU IRB 44929);
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and San Antonio, TX (PSU IRB 1278). For the US Indiana Study samples,
the following local ethics approvals were obtained: Indianapolis, IN,
and Twinsburg, OH (IUPUI IRB 1409306349).

Study populations

The Rotterdam Study is a population-based cohort study of 14,926
participants’ aged 45 years and older, living in the same suburb of
Rotterdam in the Netherlands’™. The present study includes 4242
participants of Dutch European ancestry, of whom high-resolution
3dMD digital facial photographs were taken. Genotyping was carried
out using the Infinium I HumanHap 550K Genotyping BeadChip ver-
sion 3 (Illumina, San Diego, CA, USA). Microarray-based genotyping
according to the manufacturer’s instructions was performed at Eras-
mus MC with details provided elsewhere”. All SNPs were imputed
using MACH software (www.sph.umich.edu/csg/abecasis/MaCH/)
based on the 1000 Genomes Project reference population
information’®. Quality control procedures and parameters are detailed
in Supplementary Table 1. After all quality controls, the current study
included a total of 6,729,404 autosomal SNPs. All participants pro-
vided written informed consent to participate in the study and to have
their information obtained from treating physicians.

The TwinsUK study included 1,574 participants within the Twin-
sUK adult twin registry based at St. Thomas’ Hospital in London, UK.
Participants were photographed using 3dMD (Atlanta, GA, USA) pho-
tographic scanning system, and 3D avatars were rendered from two 2D
photos taken from the left and right directions. Genotyping of the
TwinsUK cohort was done with a combination of Illumina Human-
Hap300 and HumanHap610Q chips. Intensity data for each array were
pooled separately, and genotypes were called with the Illuminus32
calling algorithm, employing a threshold on a maximum posterior
probability of 0.95 as suggested in a previous study’”. Imputation was
performed using the IMPUTE 2.0 software package using haplotype
information from the 1000 Genomes Project’®. After all quality con-
trols (Supplementary Table 1), the current study included a total of
4,574,672 autosomal SNPs and 1080 individuals (all females of Eur-
opean ancestry) for whom high-resolution 3dMDface digital photo-
graphs were taken. All participants provided fully informed consent
under a protocol reviewed by the St. Thomas” Hospital Local Research
Ethics Committee.

The ALSPAC is a longitudinal birth cohort in which pregnant
women residing in Avon, UK, with expected dates of delivery between 1
April 1991 and 31 December 1992 were recruited®>*.. The initial number
of pregnancies enroled was 14,541 (14,203 unique mothers). Of the
initial pregnancies, there was a total of 14,676 foetuses, resulting in
14,062 live births and 13,988 children who were alive at 1 year of age. As
a result of the additional phases of recruitment, the total sample size
for analyses using any data collected after the age of seven is 15,447
pregnancies (14,833 unique women), resulting in 15,658 foetuses. Of
these 14,901 children were alive at 1 year of age. In addition to this, 4731
ALSPAC children were imaged using a Konica Minolta Vivid 900 laser
scanner (Konica Minolta Sensing Europe). Please note that the study
website contains details of all the data that is available through a fully
searchable data dictionary and variable search tool (http://www.
bristol.ac.uk/alspac/researchers/our-data/). The current study sample
included 3566 unrelated individuals of European ancestry with quality-
controlled images, covariates, and genotype data, which are the same
samples analysed in a previous facial GWAS?. Quality control of 3D
image, genotyping, and imputation process is the same as in the pre-
vious study and has been described elsewhere?’. ALSPAC participants
were genotyped using the Illumina Human Hap550 quad array, per-
formed by Sample Logistics and Genotyping Facilities at the Wellcome
Trust Sanger Institute (Cambridge, UK) and the Laboratory Corpora-
tion of America (Burlington, NC), supported by 23andMe. Imputation
was performed using the IMPUTE 2.0 software package using haplo-
type information from the 1000 Genomes Project Phase 1 reference

panel (Version 3)’%. After quality controls (Supplementary Table 1), a
total of 7,417,599 autosomal SNPs were included. Informed consent for
the use of data collected via questionnaires and clinics was obtained
from participants following the recommendations of the ALSPAC
Ethics and Law Committee at the time. Consent for biological samples
has been collected in accordance with the Human Tissue Act (2004).

For the two US cohorts of European ancestry from Pennsylvania
(US-P) and Indiana (US-I), summary statistics of the 946 facial traits
were provided to this study, which were based on samples used in a
previous facial GWAS”. As reported by White et al.”, institutional
review board approval was obtained at each recruitment site of US-P
and US-I, and all participants gave their written informed consent
before participation. See White et al.” for further details.

Facial phenotyping

Participants’ raw 3D facial images were acquired using a 3D photo-
graphic scanning system by 3dMD (http://www.3dmd.com/). During
scanning, participants maintained a neutral expression with closed
mouths. 3D avatars were generated from 2D photos taken from various
predefined angles, i.e.,, from front-top, left-down, and right-down
directions. MeshMonk®? software was used to identify 44 predefined
facial landmarks (Supplementary Table 2). Quality control on land-
marks involved the following iterative process to exclude outliers: (1)
Perform scaled General Procrustes analysis on all samples; (2) Calcu-
late average coordinates for each landmark; (3) Compute standardized
coordinate differences for each landmark in X, Y, and Z axes; (4) Sum
the squared standardized differences and obtain p-values under the x*
distribution with 3 degrees of freedom; (5) Remove samples with sig-
nificant deviations after Bonferroni correction. This process iterates
until no significant deviations are found. Subsequently, we computed
946 pairwise Euclidean distances between the 44 landmarks, extract-
ing residuals after regressing out covariates (Supplementary Table 1).
The residuals, standardized and ranked, represented facial traits and
were used in GWAS followed.

GWAS and meta-analysis

We performed GWAS on 946 facial traits using a linear regression
model assuming additive allele effects in Plink®. For TwinsUK, which
includes related individuals, we used fastGWA®*, a mixed linear model
that controls for population relatedness. Meta-analysis of GWAS
summary statistics from RS, TwinsUK, US-P, US-1, and ALSPAC was
conducted using the Inverse Variance Weighting (IVW) method. We
retained SNPs present in RS and with a sample size greater than two-
thirds of the total (V=7775), resulting in 6,343,785 SNPs. This ensured
consistent effects across populations, as RS, primarily an elderly
cohort, may have different genetic structures for facial shape com-
pared to the teenager cohort ALSPAC. Effect-based Inverse Covariance
Weighting® (EbICoW), an extension of IVW, was applied in C-GWAS for
each pair of symmetric facial distances, reducing the number of meta-
analyses GWASs to 514. SNP-based heritability and inflation factors for
these 514 GWASs were estimated using LDSC* (Supplementary
Data 2). Consistency of SNP effects across cohorts was assessed using
the Intraclass Correlation Coefficient (ICC) calculated with the R
package ‘irr’. Reducing SNPs to trait-specific associated SNPs (meta-
analysis GWAS p < 0.05) increased ICC (Supplementary Data 5), indi-
cating heterogeneity in genetic effects on facial shape. We conducted a
MAMBA?* analysis on the 253 lead SNPs identified in the C-GWAS. We
analysed summary statistics for the 253 lead SNPs across all facial
traits, gathering data on effect sizes (beta) and standard errors (se) for
each facial trait in each of the five European cohorts. This yielded an
input dataset with dimensions 253 (SNPs), 514 (facial traits), and 5
(cohorts). MAMBA then calculated the posterior probability of replic-
ability (PPR) for each SNP-trait association across cohorts, indicating
the likelihood that a SNP has a non-zero effect on a facial trait without
outliers in multiple cohorts.
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C-GWAS
The C-GWAS is an R library that is freely available at https://github.
com/Fun-Gene/CGWAS. The summary statistics of the 514 meta-
analysis GWASs were used as input for C-GWAS. Details of C-GWAS are
provided in the previous study®. In brief, the null hypothesis (HO) of
C-GWAS for a SNP under testing is the absence of any allelic effect on
all traits, and the alternative hypothesis (H1) is that its allelic effects
deviate from O for at least one of the multiple traits. C-GWAS incor-
porates two different tests, each sensitive to either homogeneity
effects or heterogeneity effects, to maximize statistical power. All
resultant p-values from C-GWAS are adjusted using simulations
implemented in C-GWAS to ensure that C-GWAS p-values follow the
uniform distribution under the null. A common approach for handling
correlated traits in GWAS involves performing separate GWASs for
each single trait and selecting the minimum p-value (MinGWAS).
However, MinGWAS is inflated under the null hypothesis (no effect on
any trait), requiring stricter significance thresholds or adjustments for
multiple correlated traits. In this study, we adjusted MinGWAS using
the getCoef function in C-GWAS. This function employs simulation
analyses to ensure that both C-GWAS and the adjusted MinGWAS
follow a uniform distribution under the null. Consequently, our
MinGWAS refers to the getCoef-calibrated minimum p-value, allowing
direct comparison between the outcomes of C-GWAS, MinGWAS, and
any single-trait GWAS. Thus, the traditional genome-wide significance
threshold of 5x107® corresponds to our study-wide significance
threshold. Univariate LDSC** was employed to z-transform C-GWAS
p-values to estimate the inflation factor of C-GWAS and MinGWAS
results®. The gain of power for C-GWAS was estimated according to
the increase in the mean x? statistic method described in Turley
et al.®>. In brief, the power ratio between two GWASs can be derived as
lEU(ZGWASl)’Eoﬂzmn)cwfxm
E(XéWAsz)’Eodull )GWASZ.

E(x2u1) currene = 1-013. In our previous study®, E(X3 eious) =1.142 and
E(szlull)Previous =0.985, so that % =2.84.

In our current study, E(X2,en)=1459 and

Lead SNP selection and literature integration

COJO implemented in GCTA** is able to identify independently
associated SNPs using GWAS summary statistics, which suits our
study. However, this approach requires effect size and standardized
error to process, thus is not compatible with p-values finally out-
putted by C-GWAS. We therefore applied a modified version of COJO
based on z-statistics distribution of SNPs in the LD region® to
identify SNPs with significant independent effect. In brief, the
independent effect of the target SNP can be derived as the differ-
ence between the observed effect of the target SNP and the non-
independent effect, which can be predicted from other LD SNP¥,
i.e., zm—rpRpZp, Where z,, and z;;, denote statistics of the target
SNP and its LD counterparts, r;, and R, denote LD correlations
between the target SNP and its LD counterparts and LD counterpart
pairs. We used a stepwise selection process identical to COJO to
iteratively select lead SNPs in a set of SNPs. This process was applied
separately for z-transform C-GWAS p-values of all study-wide sig-
nificant SNPs in each locus, yielding 41 loci with at least two SNPs
with independent effects (Supplementary Data 3). We considered a
locus novel if no study-wide significant SNPs of this locus were
located within 500 kb of any known face-associated SNPs listed in
Supplementary Data 1. We considered a lead SNP novel if it was not
in LD (* < 0.1) with any known face-associated SNPs in Supplemen-
tary Data 1. To determine the study-wide significant threshold of
previous facial shape studies, for studies with the threshold
reported, we employed the provided thresholds; for studies not
mentioning the threshold, we calculated the Bonferroni corrected
threshold using the method of effective number of independent
tests®s.

Genes prioritization and functional annotation

We identified a comprehensive list of 365 candidate genes for sub-
sequent analyses through a structured, multi-step prioritization and
functional annotation process. Initially, we determined the closest
genes to each of the 253 lead SNPs by utilizing the GRCh37 gene
position data from the ‘hsapiens_gene_ensembl’ dataset via the ‘bio-
maRt’ package in R. To enhance the relevance and functional sig-
nificance of the identified genes, we proceeded to prioritize functional
genes by evaluating associations between SNPs and nearby genes
across four key dimensions: (1) regulatory network involvement, (2)
cis-expression quantitative trait loci (cis-eQTL) associations, (3) chro-
matin interactions, and (4) physical proximity. Each of these dimen-
sions contributed to a prioritization score ranging from O to 1, which
was adjusted for linkage disequilibrium (LD) where applicable. Speci-
fically, we assessed (1) whether lead SNPs or their LD counterparts
located in elements regulating the target gene in the CNCC regulatory
network from hReg-CNCC*; (2) whether lead SNPs or their LD coun-
terparts are cis-eQTLs of the target gene in FUMA® results using
‘SNP2GENFE’ function; (3) whether lead SNPs or their LD counterparts
are in regions with chromatin interactions involving the target gene in
FUMA results using ‘SNP2GENE’ function; and (4) whether lead SNPs or
their LD counterparts are physically close to the target gene using R
package ‘biomaRt’. Genes that met predefined thresholds in any of
these four dimensions were retained as functional genes, resulting in a
combined total of 581 genes from combining closest genes (Supple-
mentary Data 4) and functional genes (Supplementary Data 7). To
refine this gene list further and ensure robustness, we conducted a
Gene Ontology (GO) analysis on the 581 genes for biological process
(BP) using clusterProfiler’®. We retained 365 genes that were sig-
nificantly involved in at least one BP, applying a Bonferroni-corrected
p-value threshold of less than 0.01. This final set of 365 genes con-
stituted our candidate genes for subsequent analyses.

To comprehensively explore the 177 biological processes identi-
fied with a stringent Bonferroni-corrected p < 0.001 from GO enrich-
ment analyses with these candidate genes, we performed hierarchical
clustering to 177 BPs based on gene set similarity. Utilizing the ‘hclust’
function in R with the ‘ward.D’ method, we clustered the dissimilarity
matrix of gene sets involved in 177 BPs, setting the clustering height to
1.5 to achieve an optimal balance between the number and diversity of
clusters (Supplementary Fig. 8). For enrichment testing of certain gene
set, we employed the ‘phyper’ function in R to assess specific gene sets
across 177 BPs from the enrichment analysis of the 356 genes. Fold
enrichment was calculated as the ratio of the proportion of genes
involved in a certain BP from the gene set to all candidate genes
involved in the same BP, divided by the proportion of genes from the
gene set to all candidate genes (Supplementary Data 9). Furthermore,
all 253 lead SNPs and their high LD counterparts (> > 0.6) were anno-
tated for genome-wide significant associations (p <5 x 1078) using data
sourced from the GWAS Catalog (www.ebi.ac.uk/gwas/) via the
‘SNP2GENE’ function in FUMA. This annotation process allowed us to
summarize pleiotropic associations linked to each lead SNP, as
detailed in Supplementary Data 11. By searching for manually curated
keywords, we classified the associated pleiotropic traits into 13 distinct
categories, e.g., “waist-to-hip”, “circumference”, “weight”, “height”,
etc., corresponding to anthropometric traits; “cholesterol”, “glucose”,
“serum”, “protein”, etc., corresponding to metabolic traits; “myopia”,
“orbital”, “cup-disc”, “glaucoma”, etc., corresponding to optical traits;
“platelet”, “monocyte”, “neutrophil”’, “haemoglobin”, etc., corre-
sponding to haemocytes traits, etc.

Proportion of genetically explained phenotypic facial variance
Summary statistics from 514 facial traits meta-analysis GWASs were
employed to estimate the PVE among 253 lead SNPs and 514 facial
traits. First, we derived the formula for the PVE of an individual SNP for
an individual trait. We then aggregated these PVEs to calculate
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regional-PVE or face-PVE for multiple SNPs and traits. For the asso-
ciation analysis, a linear model was assumed, ft = bm + e, where ft is the
standardized facial trait, b is the effect size of SNP m, and e is the
residual. The PVE was derived as pve,, = bZVar(m). Since the lead SNPs
are independent, the PVE for a SNP set M was the sum of pve,. To
correct for biases from increasing SNP numbers, given that pve,, is
always greater than O under the null, we simulated SNP statistic ¢,
under the null and derived the corrected PVE as (1 — ¢2,,,/¢2,)b*Var(m),
where ¢, is the statistic of SNP m. We repeated simulations 10,000
times and regarded the average as the PVE. Next, we defined the multi-
trait PVE to comprehensively evaluate the explanatory power of indi-
vidual SNPs across multiple traits. For N independent traits, we directly
took the average of pve,. For N correlated traits, we transformed the
traits into an eigenvector space, where dimensions are uncorrelated,
allowing us to use the eigenvalue-weighted average of the PVE in each
dimension. Specifically, given the correlation matrix C and its eigen-
vector matrix V, the multi-trait PVE was pvey =Y (b"V)? Var(m)/N. We
derived the corrected multi-trait PVE similarly, using a simulated SNP
statistics matrix T, based on a multivariate normal distribution with
correlations C, i.e., > (1 — T2,,/T2)(b" V) Var(m)/N, where T, denotes
statistics of SNP m associated with N traits, using ‘mvrnorm’ functionin
the R package ‘MASS'. We calculated multi-trait PVEs for the entire
face, within and between regions, resulting in face-PVE and 36 regional-
PVEs, later encompassing 8 facial regions and 28 connection regions in
between. We then summarized the regional PVEs of each lead SNP onto
candidate genes, including, (1) merging genes with the same PVE pat-
terns as one set and removing redundancy; (2) some candidate genes
were prioritized by multiple lead SNPs, summing their regional PVEs
accordingly. These yielded a regional PVE matrix for 225 different
candidate gene sets (Supplementary Data 12). After excluding 32 can-
didate gene sets with no significant regional PVEs (Bonferroni cor-
rected p<0.001), we performed hierarchical clustering on the
remaining 193 sets using Spearman’s correlation and the ‘ward.D’
method of ‘hclust’ function in R.

Genetic modelling of facial traits
Among the 946 facial distances, 82 measured symmetric landmarks
on both sides of the face or in the mid-axis, leaving 864 distances
(432 pairs of symmetric distances). In RS and TwinsUK, the average
values for each pair of these symmetric distances were derived,
yielding 432 facial traits. Combined with the remaining 82 traits, this
resulted in a total of 514 facial traits used in the PRS analysis. To
reduce redundancy among the 514 facial traits, we selected 331 traits
for genetic modelling based on a threshold of trait correlation
r’<0.8, prioritizing by their PVEs. Along with 253 lead SNPs, we
included 129 previously reported independent SNPs (LD r»<0.1)
from Supplementary Data 1 with MAF > 0.01 in the RS and p < 0.05 in
our discovery phase C-GWAS results, totalling 382 SNPs. A multi-
variate linear model was constructed for each of 331 traits using these
382 SNPs, and the model performance was evaluated using 10-fold
cross-validation r* calculated in the RS. Due to the genetic hetero-
geneity of facial shapes, we employed a forward selection strategy to
prioritize SNP sets for each model. We refined these models by
selecting 23 based on a model fitted values correlation threshold of
r’<0.1, prioritizing by model cross-validation r>. Thus, these 23
models represent the most genetically explainable and independent
traits among the 514 facial traits (Supplementary Data 13). PRSs for
these 23 traits were computed using effect sizes from the models, i.e.,
82h.m;, where b is the scaled effect size of SNP m, ensuring the
fitted PRS follows a standard normal distribution. Facial PRS profiles
for different continental populations in the 1000 Genomes Project
(AFR, EUR, EAS, and SAS, totalling 2000 samples) were derived by
averaging the PRS of samples within each population (Supplemen-
tary Data 14).

We observed that the top 5 cross-validation > models were for nose
traits. We assessed the identification ability of the top 5 nose PRSs by
calculating the cosine similarity in correct matches (a sample’s nose PRSs
and traits) and false matches (a sample’s nose PRSs and other samples’
traits). Identification ability was evaluated using 10-fold cross-validation,
CMC, and ROC curves in the RS. For CMC calculation, each test set
included one correct match and 399 random false matches (N =400). The
proportions of correct matches ranked in the top 4, 40, and 200 were
recorded as CMC1%, CMC10%, and CMC50%, respectively. ROC curves
and corresponding AUC value were derived with the R package ‘pROC.

Genetic diversity and positive selection

The effect allele frequency of 253 lead SNPs and their high LD coun-
terparts (©*>0.6) in three super-populations, i.e., Europeans (EUR),
East Asians (EAS), and Africans (AFR), were derived from the 1000
Genome Project*’. We performed two selective statistics for each SNP,
including Wright's fixation index” (Fsr) measuring the differences
between populations, and the population branch statistic®> (PBS). Both
Fst and PBS were calculated based on continental populations from
EUR, EAS and AFR, which was consistent with the setting of the pre-
vious study®®. The Weir and Cockerham estimators’ implemented in
GCTA® were used to compute Fst. PBS values were subsequently cal-
culated based on the obtained Fst values using the method described
in Yi et al.”. In brief, for a given SNP among three populations X, ¥, and
Z, the pair-wise Fsr are first transformed using a logarithmic conver-
sion as L =-In(1-Fst). The PBS for the target population, for example,
X, is then calculated as (Lxy + Lxz—Lyz)/2. This represents the amount of
allele frequency divergence specific to population X, relative to the
other two populations. Empirical significance cut-offs for both Fst and
PBS were set at the values corresponding to the top 1% values across
the genome (Supplementary Data 15). Enrichment analysis®* was con-
ducted for 253 lead SNPs to assess whether these SNPs exhibited sig-
nificantly higher Fst and PBS values than random SNPs. In brief, the
average Fst and PBS value across 253 lead SNPs was compared to a null
distribution, empirically generated by 10,000 times of calculating the
average values from a randomly selected 253 SNP set. These random
SNP sets were chosen to have matched MAF to 253 lead SNPs. To
achieve this, the range of MAFs (0-1) was divided into 50 equal bins
separately for each of the three populations (EAS, EUR, and AFR). A
matched SNP was then randomly selected from the same bin as the
original SNP. The enrichment was considered significant if the
observed average value exceeded the 95th percentile of the null dis-
tribution, corresponding to a 5% alpha level.

Archaic introgressed regions and facial PRS profiling

We aimed to explore the contribution of the Neanderthal archaic
introgression to human facial variation. To achieve this, we gathered
the Neanderthal introgressed segments identified in EUR and EAS in
three studies*®°. In addition to downloading the raw data, we used
BEDtools” to obtain the union of introgressed segments found in the
three studies identified in EUR and EAS, respectively. Finally, we
acquired 8 segmentation annotation files (three studies and their
union in EUR and EAS) for the following analysis. We annotated and
attained the overlaps of 253 lead SNPs based on 8 annotations (Sup-
plementary Data 16). We applied the effect sizes estimated from 23
models in the RS to 8 Neanderthals, 1 Denisovan, and 1
Denisova-Neanderthal admixed individual in the Allen Ancient DNA
Resource™ (AADR) (Dataverse 8.0) to derive facial PRS profiles of
archaic individuals. Due to limited overlap between modern and
archaic genotypes for the 382 SNPs used in the 23 models trained in the
RS, we replaced non-overlapping SNPs with their highest LD counter-
parts (at least > 0.6) with available archaic genotypes. This resulted
in 357 SNPs (24 had no suitable replacements) being determined and
used to re-model and compute PRSs for archaic individuals
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(Supplementary Data 18). The similarity between population genetic
profiles of faces was evaluated by the squared correlation between
the facial PRS profiles of the corresponding populations. We compared
the mean absolute differences in allele frequencies for 357 SNPs
between archaic humans (Archaic, 10 samples) from the AADR and
four modern populations from the 1000 Genomes Project (AFR, EUR,
EAS, and SAS, totalling 2000 samples). To assess whether these dif-
ferences were specific to the selected face SNPs, we performed ran-
dom sampling of 10,000 SNP sets and calculated the mean absolute
differences in allele frequencies between archaic and modern human
groups for each set.

Validation of archaic facial PRS profiles with previous studies
We selected 16 facial features documented in archaeological and
anthropological studies and overlapped with 23 facial traits in our PRS
model to establish the direction of phenotypic differences between
Neanderthal skulls and modern human skulls. Compared to modern
human skulls, Neanderthal cranial fossils exhibited a wide face®°,
long face®**® and protruded midface’*®, and 13 regional ones,
including low* and protruded® brow ridge; large orbital
volume®®”; a nose with retracted nose root’*, protruded nose
bridge®?, tall nostril® and wide nose wing™’; barely curved
cheekbones® ¢ and infraorbital inflation’®; wide®® and low®®® palate;
high anterior mandible®*? and flat chin®***. Moreover, we compared
mean PRS obtained from 8 Neanderthals, 1 Denisovan, and 503
modern Europeans in EUR (using the same approach described in the
section “Genetic modelling of facial traits” and “Archaic introgressed
regions and face PRS profiling”) to each other to determine the
direction of genetic difference for each feature. To assess the con-
sistency between facial PRS profiles and skull morphology of Nean-
derthals, we compared the direction of phenotypic difference from
the literature with the direction of mean PRS difference from our
study for each feature between Neanderthals and EUR. If the direction
of the phenotypic difference matched the direction of the PRS dif-
ference (both indicating either an increase and a decrease in Nean-
derthals relative to EUR), the result was classified as concordant. If the
directions were opposite, the result was classified as discordant. If
multiple PRS overlapped with a single feature and showed conflicting
directions of difference, the result was classified as inconsistent. To
assess the statistical significance of our findings, we conducted a
permutation test involving 10,000 iterations. In each iteration, 357
MAF-matched SNPs (using the same approach described in the sec-
tion “Genetic diversity and positive selection”) were randomly selec-
ted from the genome. PRSs were recalculated for Neanderthals using
these randomly selected SNPs and were reclassified as concordant,
discordant, or inconsistent based on the criteria mentioned above.
The counts of the three concordance statuses from all iterations were
used to construct a null distribution representing the expected dis-
tribution of outcomes under the null hypothesis of no true associa-
tion. The observed results were compared against the null
distributions to determine their quantiles. A result was considered
statistically significant if its occurrence was rare under the null dis-
tribution (e.g., in the top or bottom 1% of the distribution). To confirm
the consistency between our Denisovan facial PRS profiles and
previous studies, we included a fossil study'® (Xiahe mandible) and
a prediction study® (methylation profiling). We extracted and com-
pared the Xiahe mandible measurements for ‘symphyseal height’ and
‘symphyseal angle’ from SI Table 2 in Chen at al.", corresponding to
the characteristics ‘high anterior mandible’ and ‘flat chin’ in our
study. Additionally, we extracted and compared data of six over-
lapping traits from Denisovan methylation profiles from Table S7 in
Gokhman et al.®. Comparisons were made twice: once between
Denisovans and modern humans and once between Denisovans and
Neanderthals. Details of the consistency are provided in Supple-
mentary Data 19.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Summary statistics data of C-GWAS and MinGWAS, full FUMA results in
253 loci, visualized regional-PVE of 253 lead SNPs, and reconstructed
average facial images using 3D graph auto-encoder for 23 traits in face
PRS profiles are available at https://doi.org/10.6084/m9.figshare.
26360206. Single-trait summary statistics of meta-analyses of GWAS
for the European discovery phase data generated in this study are
available at https://doi.org/10.5281/zenodo0.13730680. GWAS summary
statistics for the East Asian replication phase data are available at https://
www.biosino.org/node/project/detail/OEP00002283. The ChIP-seq data
of CNCC are available in the Gene Expression Omnibus with accession
number GSE70751. The regulation region annotation data in embryonic
craniofacial tissues are available in the Gene Expression Omnibus with
accession number GSE97752. The regulation region annotation data in
other general cell types are available in the Roadmap Epigenomics
Project (https://egg2.wustl.edu/roadmap/web_portal/chr state_learning.
html#core_15state). The regulatory network of CNCC is available at
https://github.com/AMSSwanglab/hReg-CNCC. The 1000 Genomes
Project phase 3 data are available at https://www.internationalgenome.
org/category/phase-3. Other statistical data for generating figures in this
study are provided in the Supplementary Information and Supplemen-
tary Data. Individual-level data used in this study have different data
accessibility conditions based on the cohorts’ informed consent. For
ALSPAC, data access can be granted via an approved application (http://
www.bristol.ac.uk/alspac/researchers/access/) according to defined
regulations (https://www.bristol.ac.uk/media-library/sites/alspac/
documents/researchers/data-access/ALSPAC_Access_Policy.pdf), includ-
ing on the time frame of response and access, and queries can be sent to
the ALSPAC data team (alspac-data@bristol.ac.uk) and the ALSPAC
Executive team (alspac-exec@bristol.ac.uk). For TwinsUK, data accessed
can be requested by submitting a formal Data Access Application (http://
twinsuk.ac.uk/resources-forresearchers/access-our-data/) according to
defined regulations (https://twinsuk.ac.uk/resources-for-researchers/
our-data/) including on the time frame of response and access, and
queries can be sent to the data access and collaboration manager Vic-
toria Vazquez, at King’s College London (Victoria.vazquez@kcl.ac.uk).
For RS and the two US datasets (US-P and US-I), informed consent does
not allow sharing individual-level data, unless as part of direct colla-
borations with the cohort owners. For RS, collaboration requests can be
directed to Frank J.A. van Rooij at Erasmus MC (f.vanrooij@er-
asmusmc.nl), for US-P to Mark Shriver at Pennsylvania State University
(mdsl7@psu.edu), and for US-I to Susan Walsh at Indiana University
Indianapolis (walshsus@iu.edu); responses to collaboration requests will
be answered in a timely fashion, typically one calendar month.

Code availability

MeshMonk is implemented as an open-source toolbox available at
https://gitlab.kuleuven.be/mirc/meshmonk. C-GWAS is implemented
as an open-source R package available at https://github.com/Fun-
Gene/CGWAS. LDSC is implemented as an open-source command line
tool available at https://github.com/bulik/Idsc. SpiralNet++ is imple-
mented as an open-source 3D graph auto-encoder available at https://
github.com/sw-gong/spiralnet_plus. The latest version of MeshMonk is
available at https://doi.org/10.6084/m9.figshare.c.6858271.v1’°. The
latest version of C-GWAS is available at https://doi.org/10.6084/m9.
figshare.26360206'°°. Other softwares used in data analysis includes:
Plink (https://www.cog-genomics.org/plink2/), FastGWA (https://
yanglab.westlake.edu.cn/software/gcta/#fastGWA), FUMA, GCTA-Fst
(https://yanglab.westlake.edu.cn/software/gcta/#Fst), R  package
‘shapes’ (version 1.2.7), R package ‘irr’ (version 0.84.1), R package
‘mamba’ (version 1.12), R package ‘clusterProfiler’ (Version 4.6.2), R
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package ‘org.Hs.eg.db’ (version 3.16.0), R package ‘biomaRt’ (version
2.54.1), R package ‘MASS’ (version 7.3.57), R package ‘pROC’ (ver-
sion 1.18.4).

References

1.

10.

.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Johannsdottir, B., Thorarinsson, F., Thordarson, A. & Magnusson, T.
E. Heritability of craniofacial characteristics between parents and
offspring estimated from lateral cephalograms. Am. J. Orthod.
Dentofac. Orthop.127, 200-207 (2005). quiz 260-201.

Djordjevic, J., Zhurov, A. I., Richmond, S. & Visigen, C. Genetic and
environmental contributions to facial morphological variation: a
3D Population-Based Twin Study. PLoS ONE 11, e0162250 (2016).
Xiong, Z. et al. Novel genetic loci affecting facial shape variation in
humans. Elife 8, 49898 (2019).

Richmond, S., Howe, L. J., Lewis, S., Stergiakouli, E. & Zhurov, A.
Facial genetics: a brief overview. Front. Genet. 9, 462 (2018).
Wen, Y. F., Wong, H. M., Lin, R., Yin, G. & McGrath, C. Inter-ethnic/
racial facial variations: a systematic review and bayesian meta-
analysis of photogrammetric studies. PLoS ONE 10, e0134525
(2015).

Farkas, L. G. et al. International anthropometric study of facial
morphology in various ethnic groups/races. J. Craniofac. Surg. 16,
615-646 (2005).

Du, P. et al. Ancient genome of the Chinese Emperor Wu of
Northern Zhou. Curr. Biol.34, 1587-1595 1585 (2024).

Gokhman, D. et al. Reconstructing Denisovan anatomy using DNA
methylation maps. Cell 179, 180-192 €110 (2019).

Reich, D. et al. Genetic history of an archaic hominin group from
Denisova Cave in Siberia. Nature 468, 1053-1060 (2010).

Chen, F. et al. A late Middle Pleistocene Denisovan mandible from
the Tibetan Plateau. Nature 569, 409-412 (2019).

Bonfante, B. et al. A GWAS in Latin Americans identifies novel face
shape loci, implicating VPS13B and a Denisovan introgressed
region in facial variation. Sci. Adv. 7, eabc6160 (2021).

Reilly, P. F., Tjahjadi, A., Miller, S. L., Akey, J. M. & Tucci, S. The
contribution of Neanderthal introgression to modern human traits.
Curr. Biol.32, R970-R983 (2022).

Li, Q. et al. Automatic landmarking identifies new loci associated
with face morphology and implicates Neanderthal introgression in
human nasal shape. Commun. Biol. 6, 481 (2023).

Kayser, M., Branicki, W., Parson, W. & Phillips, C. Recent advances
in Forensic DNA Phenotyping of appearance, ancestry and age.
Forensic Sci. Int. Genet. 65, 102870 (2023).

Simcoe, M. et al. Genome-wide association study in almost
195,000 individuals identifies 50 previously unidentified genetic
loci for eye color. Sci. Adv. 7, eabd1239 (2021).

Chen, Y. et al. Genetic prediction of male pattern baldness based on
large independent datasets. Eur. J. Hum. Genet.31, 321-328 (2023).
Breslin, K. et al. HirisPlex-S system for eye, hair, and skin color
prediction from DNA: massively parallel sequencing solutions for
two common forensically used platforms. Forensic Sci. Int. Genet.
43, 102152 (2019).

Gurovich, Y. et al. Identifying facial phenotypes of genetic dis-
orders using deep learning. Nat. Med. 25, 60-64 (2019).

Hsieh, T. C. et al. GestaltMatcher facilitates rare disease matching
using facial phenotype descriptors. Nat. Genet. 54, 349-357 (2022).
Dingemans, A. J. M. et al. PhenoScore quantifies phenotypic var-
iation for rare genetic diseases by combining facial analysis with
other clinical features using a machine-learning framework. Nat.
Genet. 55, 1598-1607 (2023).

White, J. D. et al. Insights into the genetic architecture of the
human face. Nat. Genet. 53, 45-53 (2021).

Zhang, M. et al. Genetic variants underlying differences in facial
morphology in East Asian and European populations. Nat. Genet.
54, 403-411 (2022).

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Liu, F. et al. A genome-wide association study identifies five loci
influencing facial morphology in Europeans. PLoS Genet. 8,
1002932 (2012).

Paternoster, L. et al. Genome-wide association study of three-
dimensional facial morphology identifies a variant in PAX3 asso-
ciated with nasion position. Am. J. Hum. Genet. 90, 478-485
(2012).

Tan, J. et al. The adaptive variant EDARV370A is associated with
straight hair in East Asians. Hum. Genet. 132, 1187-1191 (2013).
Adhikari, K. et al. A genome-wide association scan implicates
DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation.
Nat. Commun. 7, 11616 (2016).

Stephan, C. N., Caple, J. M., Guyomarc’h, P. & Claes, P. An over-
view of the latest developments in facial imaging. Forensic Sci.
Res. 4, 10-28 (2019).

Claes, P. et al. Genome-wide mapping of global-to-local genetic
effects on human facial shape. Nat. Genet. 50, 414-423 (2018).
de Jong, M. A. et al. Ensemble landmarking of 3D facial surface
scans. Sci. Rep. 8, 12 (2018).

Qiao, H. et al. A comprehensive evaluation of the phenotype-first
and data-driven approaches in analyzing facial morphological
traits. iScience 27, 109325 (2024).

Xiong, Z. et al. Combining genome-wide association studies
highlight novel loci involved in human facial variation. Nat. Com-
mun. 13, 7832 (2022).

Turley, P. et al. Multi-trait analysis of genome-wide association
summary statistics using MTAG. Nat. Genet. 50, 229-237

(2018).

Li, Y. et al. Combined genome-wide association study of 136
quantitative ear morphology traits in multiple populations reveal 8
novel loci. PLoS Genet. 19, €1010786 (2023).

Bulik-Sullivan, B. K. et al. LD Score regression distinguishes con-
founding from polygenicity in genome-wide association studies.
Nat. Genet. 47, 291-295 (2015).

Qian, W. et al. Genetic evidence for facial variation being a com-
posite phenotype of cranial variation and facial soft tissue thick-
ness. J. Genet. Genom.=Yi chuan xue bao 49, 934-942 (2022).
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS
summary statistics identifies additional variants influencing com-
plex traits. Nat. Genet. 44, 369-375 (2012). S361-363.

McGuire, D. et al. Model-based assessment of replicability for
genome-wide association meta-analysis. Nat. Commun. 12,

1964 (2021).

Finucane, H. K. et al. Partitioning heritability by functional anno-
tation using genome-wide association summary statistics. Nat.
Genet. 47, 1228-1235 (2015).

Feng, Z. et al. hReg-CNCC reconstructs a regulatory network in
human cranial neural crest cells and annotates variants in a
developmental context. Commun. Biol. 4, 442 (2021).

Genomes Project C et al. A global reference for human genetic
variation. Nature 526, 68-74 (2015).

Simmons-Ehrhardt, T. L., Monson, K. L., Flint, T. & Saunders, C. P.
Quantitative accuracy and 3D biometric matching of 388 statisti-
cally estimated facial approximations of live subjects. Forensic
Imaging 21, 200377 (2020).

Zaidi, A. A., Mattern, B. C., Claes, P., McEvoy, B., Hughes, C. &
Shriver, M. D. Investigating the case of human nose shape and
climate adaptation. PLoS Genet. 13, 1006616 (2017).

Jacobs, L. C. et al. Comprehensive candidate gene study high-
lights UGT1A and BNC2 as new genes determining continuous skin
color variation in Europeans. Hum. Genet. 132, 147-158 (2013).
Visser, M., Palstra, R. J. & Kayser, M. Human skin color is influenced
by an intergenic DNA polymorphism regulating transcription of
the nearby BNC2 pigmentation gene. Hum. Mol. Genet. 23,
5750-5762 (2014).

Nature Communications | (2025)16:6562

17


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61761-7

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Gittelman, R. M. et al. Archaic hominin admixture facilitated
adaptation to out-of-Africa environments. Curr. Biol.26,
3375-3382 (2016).

Green, R. E. et al. A draft sequence of the Neandertal genome.
Science 328, 710-722 (2010).

Prufer, K. et al. The complete genome sequence of a Neanderthal
from the Altai Mountains. Nature 505, 43-49 (2014).
Sankararaman, S. et al. The genomic landscape of Neanderthal
ancestry in present-day humans. Nature 507, 354-357 (2014).
Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal lineages
from modern human genomes. Science 343, 1017-1021 (2014).
Yuan, K. et al. Refining models of archaic admixture in Eurasia with
ArchaicSeeker 2.0. Nat. Commun. 12, 6232 (2021).

Weaver, T. D. Out of Africa: modern human origins special feature:
the meaning of neandertal skeletal morphology. Proc. Natl Acad.
Sci. USA 106, 16028-16033 (2009).

Bergmann, I., Hublin, J. J., Gunz, P. & Freidline, S. E. How did
modern morphology evolve in the human mandible? The rela-
tionship between static adult allometry and mandibular variability
in Homo sapiens. J. Hum. Evol. 157, 103026 (2021).

Zeberg, H. et al. A Neanderthal sodium channel increases pain
sensitivity in present-day humans. Curr. Biol.30, 3465-3469
e3464 (2020).

Mallick, S. et al. The Allen Ancient DNA Resource (AADR) a curated
compendium of ancient human genomes. Sci. Data 11, 182 (2024).
Schwartz, J. H. & Tattersall, I. Fossil evidence for the origin of
Homo sapiens. Am. J. Phys. Anthropol. 143, 94-121 (2010).
Tattersall, I. & Schwartz, J. H. Morphology, paleoanthropology,
and Neanderthals. Anat. Rec. 253, 113-117 (1998).

Rynn, C., Wilkinson, C. M. & Peters, H. L. Prediction of nasal mor-
phology from the skull. Forensic Sci. Med Pathol. 6, 20-34 (2010).
Ryu, J. Y. et al. Craniofacial anthropometric investigation of rela-
tionships between the nose and nasal aperture using 3D com-
puted tomography of Korean subjects. Sci. Rep. 10, 16077
(2020).

Lippert, C. et al. Identification of individuals by trait prediction
using whole-genome sequencing data. Proc. Natl Acad. Sci. USA
114, 10166-10171 (2017).

Sero, D. et al. Facial recognition from DNA using face-to-DNA
classifiers. Nat. Commun. 10, 2557 (2019).

Chen, Y. et al. The impact of correlations between pigmentation
phenotypes and underlying genotypes on genetic prediction of
pigmentation traits. Forensic Sci. Int Genet 50, 102395 (2021).

de la Puente, M. et al. Development and Evaluation of the Ancestry
Informative Marker Panel of the VISAGE Basic Tool. Genes (Basel)
12, 1284 (2021).

Ruiz-Ramirez, J. et al. Development and evaluations of the ancestry
informative markers of the VISAGE Enhanced Tool for Appearance
and Ancestry. Forensic Sci. Int. Genet. 64, 102853 (2023).
McArthur, E., Rinker, D. C. & Capra, J. A. Quantifying the con-
tribution of Neanderthal introgression to the heritability of com-
plex traits. Nat. Commun. 12, 4481 (2021).

Zeberg, H., Jakobsson, M. & Paabo, S. The genetic changes that
shaped Neandertals, Denisovans, and modern humans. Cell 187,
1047-1058 (2024).

Noback, M. L., Harvati, K. & Spoor, F. Climate-related variation of the
human nasal cavity. Am. J. Phys. Anthropol. 145, 599-614 (2011).
Prufer, K. et al. A high-coverage Neandertal genome from Vindija
Cave in Croatia. Science 358, 655-658 (2017).

Mafessoni, F. et al. A high-coverage Neandertal genome from
Chagyrskaya Cave. Proc. Natl Acad. Sci. USA 117, 15132-15136
(2020).

Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and
interpreting apparent Neanderthal Ancestry in African individuals.
Cell 180, 677-687 €616 (2020).

70.

7.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

lasi, L. N. M. et al. Neanderthal ancestry through time: insights
from genomes of ancient and present-day humans. Science 386,
eadg3010 (2024).

Sumer, A. P. et al. Earliest modern human genomes constrain
timing of Neanderthal admixture. Nature 638, 711-717 (2025).
Brand, C. M., Colbran, L. L. & Capra, J. A. Predicting archaic
hominin phenotypes from genomic data. Annu. Rev. Genom. Hum.
Genet. 23, 591-612 (2022).

Huerta-Sanchez, E. et al. Altitude adaptation in Tibetans caused by
introgression of Denisovan-like DNA. Nature 512, 194-197 (2014).
Peyregne, S., Slon, V. & Kelso, J. More than a decade of genetic
research on the Denisovans. Nat. Rev. Genet. 25, 83-103 (2024).
de Azevedo, S. et al. Nasal airflow simulations suggest convergent
adaptation in Neanderthals and modern humans. Proc. Natl Acad.
Sci. USA 114, 1244212447 (2017).

Hofman, A. et al. The Rotterdam Study: 2014 objectives and
design update. Eur. J. Epidemiol. 28, 889-926 (2013).

Kayser, M. et al. Three genome-wide association studies and a
linkage analysis identify HERC2 as a human iris color gene. Am. J.
Hum. Genet. 82, 411-423 (2008).

Genomes Project C et al. An integrated map of genetic variation
from 1,092 human genomes. Nature 491, 56-65 (2012).

Small, K. S. et al. Identification of an imprinted master trans reg-
ulator at the KLF14 locus related to multiple metabolic pheno-
types. Nat. Genet. 43, 561-564 (2011).

Boyd, A. et al. Cohort Profile: the ‘children of the 90s'-the index
offspring of the Avon Longitudinal Study of Parents and Children.
Int. J. Epidemiol. 42, 111-127 (2013).

Fraser, A. et al. Cohort Profile: the Avon Longitudinal Study of
Parents and Children: ALSPAC mothers cohort. Int. J. Epidemiol.
42, 97-110 (2013).

White, J. D. et al. MeshMonk: Open-source large-scale intensive
3D phenotyping. Sci. Rep. 9, 6085 (2019).

Purcell, S. et al. PLINK: a tool set for whole-genome association
and population-based linkage analyses. Am. J. Hum. Genet. 81,
559-575 (2007).

Jiang, L. et al. A resource-efficient tool for mixed model associa-
tion analysis of large-scale data. Nat. Genet. 51, 1749-1755 (2019).
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool
for genome-wide complex trait analysis. Am. J. Hum. Genet. 88,
76-82 (201M).

Chen, W. et al. Improved analyses of GWAS summary statistics by
reducing data heterogeneity and errors. Nat. Commun. 12,

717 (2021).

Pasaniuc, B. et al. Fast and accurate imputation of summary sta-
tistics enhances evidence of functional enrichment. Bioinfor-
matics 30, 2906-2914 (2014).

Li, J. & Ji, L. Adjusting multiple testing in multilocus analyses using
the eigenvalues of a correlation matrix. Heredity 95, 221-227 (2005).
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D.
Functional mapping and annotation of genetic associations with
FUMA. Nat. Commun. 8, 1826 (2017).

Xu, S. et al. Using clusterProfiler to characterize multiomics data.
Nat. Protoc. 19, 3292-3320 (2024).

Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the
Analysis of Population Structure. Evolution 38, 1358-1370 (1984).
Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to
high altitude. Science 329, 75-78 (2010).

Li, M. J. et al. dbPSHP: a database of recent positive selection across
human populations. Nucleic Acids Res. 42, D910-D916 (2014).
Guo, J. et al. Global genetic differentiation of complex traits
shaped by natural selection in humans. Nat. Commun. 9,

1865 (2018).

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26, 841-842 (2010).

Nature Communications | (2025)16:6562

18


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61761-7

96. Lacruz, R.S. et al. The evolutionary history of the human face. Nat.
Ecol. Evol. 3, 726-736 (2019).

97. Pearce, E., Stringer, C. & Dunbar, R. I. New insights into differences
in brain organization between Neanderthals and anatomically
modern humans. Proc. Biol. Sci. 280, 20130168 (2013).

98. Lacruz, R. S. et al. Ontogeny of the maxilla in Neanderthals and
their ancestors. Nat. Commun. 6, 8996 (2015).

99. Goovaerts, S. Joint multi-ancestry and admixed GWAS reveals the
complex genetics behind human cranial vault shape. figshare
https://doi.org/10.6084/m9.figshare.c.6858271.v1 (2023).

100. Xiong, Z. Combined genome-wide association study of facial traits
in Europeans increases explained variance and improves predic-
tion. figshare https://doi.org/10.6084/m9.figshare.26360206
(2025).

Acknowledgements

The authors thank all participants and supporting staff from all
cohorts used in this study. We are grateful for the dedication, com-
mitment and contribution of the study participants, the general
practitioners, pharmacists, and the staff from the Rotterdam Study.
We are extremely grateful to all the families who took part in the
ALSPAC study, the midwives for their help in recruiting them, and the
whole ALSPAC team, which includes interviewers, computer and
laboratory technicians, clerical workers, research scientists, volun-
teers, managers, receptionists and nurses. We thank Mark Shriver and
Susan Walsh for the summary statistics from their Pennsylvania and
Indiana datasets, respectively. The Rotterdam Study is supported by
the Erasmus MC; the Erasmus University Rotterdam; the Netherlands
Organization for Scientific Research (NWO); the Netherlands Organi-
zation for Health Research (ZonMw); the Research Institute for Dis-
eases in the Elderly (RIDE); the Netherlands Genomics Initiative (NGI);
the Ministry of Education, Culture and Science; the Ministry of Health
Welfare and Sport; the European Commission (DG XlI); and the
Municipality of Rotterdam. The generation and management of GWAS
genotype data for the Rotterdam Study were executed by the Human
Genotyping Facility of the Genetic Laboratory of the Department of
Internal Medicine, Erasmus MC. The UK Medical Research Council and
Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol
provide core support for ALSPAC. This publication is the work of the
authors and Manfred Kayser will serve as guarantor for the contents of
this paper. A comprehensive list of grant funding is available on the
ALSPAC website (http://www.bristol.ac.uk/alspac/external/
documents/. grant-acknowledgements.pdf). ALSPAC Genomewide
genotyping data was generated by Sample Logistics and Genotyping
Facilities at Wellcome Sanger Institute and LabCorp (Laboratory
Corporation of America) using support from 23andMe.

Author contributions

Conceptualization: F.L. and M.K.; Methodology: Z.X.; Formal analysis,
Z.X., Y.L, X.L. and H.L.; Data curation: P.G.H., LM.P., A.G.U, F.R., MA.I,
M.G., E.B.W., G.V.R, S.R, T.N,, T.D.S., S.W., F.L. and M.K.; Original draft:
Z.X., Y.L, F.L. and M.K.; Review and editing: Z.X., F.L. and M.K_; Visuali-
zation: Z.X., Y.L. and X.L.; Supervision: F.L. and M.K.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-61761-7.

Correspondence and requests for materials should be addressed to
Fan Liu or Manfred Kayser.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands. 2Department of Epidemiology,
Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands. 3CAS Key Laboratory of Computational Biology, Shanghai Institute of
Nutrition and Health, Chinese Academy of Sciences, Shanghai, China. “Department of Radiology and Nuclear Medicine, Erasmus MC University Medical
Center Rotterdam, Rotterdam, the Netherlands. °Department of Oral & Maxillofacial Surgery, Erasmus MC University Medical Center Rotterdam,
Rotterdam, the Netherlands. ®Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
"Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK. 8Department of Dermatology, Erasmus MC University
Medical Center Rotterdam, Rotterdam, the Netherlands. °Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, UK.
Opresent address: Department of Pathology and Clinical Bioinformatics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.

"These authors contributed equally: Ziyi Xiong, Yi Li. ?These authors jointly supervised this work: Fan Liu, Manfred Kayser.

m.kayser@erasmusmc.nl

e-mail: f.liu@erasmusmc.nl;

Nature Communications | (2025)16:6562

19


https://doi.org/10.6084/m9.figshare.c.6858271.v1
https://doi.org/10.6084/m9.figshare.26360206
http://www.bristol.ac.uk/alspac/external/documents/
http://www.bristol.ac.uk/alspac/external/documents/
https://doi.org/10.1038/s41467-025-61761-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:f.liu@erasmusmc.nl
mailto:m.kayser@erasmusmc.nl
www.nature.com/naturecommunications

	Combined genome-wide association study of facial traits in Europeans increases explained variance and improves prediction
	Results
	C-GWAS and replication highlight 62 novel face loci
	Biological annotations and pleiotropy of face-associated SNPs
	Enhanced proportion of genetically explained facial variance and facial PRS profiles
	Re-identification of individuals from 3D images with facial PRS profiles
	Face-associated SNPs experienced positive selection in Europeans
	Facial PRS profiles of Neanderthals differ more from Europeans than from Africans
	Facial PRS profiles of Neanderthals align with Neanderthal skulls

	Discussion
	Methods
	Ethics statement
	Study populations
	Facial phenotyping
	GWAS and meta-analysis
	C-GWAS
	Lead SNP selection and literature integration
	Genes prioritization and functional annotation
	Proportion of genetically explained phenotypic facial variance
	Genetic modelling of facial traits
	Genetic diversity and positive selection
	Archaic introgressed regions and facial PRS profiling
	Validation of archaic facial PRS profiles with previous studies
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




