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Abstract 

This PhD thesis focuses on developing advanced damage detection methods for beam 

and plate structures to prevent catastrophic failures, with a particular emphasis on plate 

structures. The research is grounded in vibrational analysis, specifically leveraging 

changes in natural frequency as a diagnostic tool. 

In the initial phase, a rotational spring is used to model a crack in isotropic beam 

structures. The reduced stiffness of the beam at the location of the crack is incorporated 

into the dynamic stiffness matrix. The natural frequencies are extracted using the 

Newton-Raphson method and Wittrick-William algorithm. The obtained results are 

validated against previous research studies. Additionally, the results are compared with 

an analytical solution based on a strain energy approach, which is developed as part of 

this work. To achieve computational efficiency, the strain energy approach is employed 

for crack location and characterization in beams, using both noise-free and noise-

contaminated natural frequencies. For noise-free simulations, vector analysis and 

gradient-based optimization are utilized to obtain crack parameters, while interval 

arithmetic methods are applied for crack localization in noise-contaminated 

simulations. The developed analytical solution for beam structures is further used as a 

framework to solve the inverse problem. Its use enhances computational efficiency 

during parameter optimization. 

Building on the insights gained from the beam studies, a novel method for isotropic 

plate structures is developed to calculate the degradation in natural frequencies due to 

the presence of cracks. This method considers changes in rotation and bending moments 

to calculate the total change in the strain energy of the plate. Using the law of 

conservation of energy, a formulation is developed to calculate the difference between 

the intact and cracked plate by integrating changes in strain energy over the crack 

length. This methodology is validated against prior research for simple crack cases 

parallel to plate edges. The analytical formulation is further expanded to model 

arbitrarily oriented cracks, incorporating the twisting effect on the change in strain 

energy of the cracked plate. To validate this expanded work, a corresponding model is 

developed using the finite element software ABAQUS. 
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The developed analytical solution based on the strain energy approach is further 

employed as a framework to solve an inverse problem for determining crack 

parameters. This involves identifying the location and characterization of damage using 

the first six natural frequencies of the cracked plate. The inverse problem is formulated 

using the least-squares difference method and solved using gradient-based 

optimization. 

The methods presented in this thesis provide promising results in terms of accuracy and 

computational efficiency. For future work, improvements are highlighted to expand the 

research for complex geometries, environmental conditions, sensor inaccuracies, and 

human errors. 
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Notations 

𝐶 Compliance used for beams. 

C(d/h) Non-dimensional compliance. 

D Flexural rigidity of the plate. 

d Depth of crack. 

𝐸 Young’s Modulus. 

h Thickness. 

𝐼 Moment of inertia. 

𝑘∗ Rotational spring used in beam. 

𝑙 Length of the crack. 

𝑙𝑒 Length of the element used in ABAQUS to model the intact as well as 

cracked plate. 

𝜇 Weight density. 

𝑇0 Kinetic energy of intact structure. 

𝑇𝑐 Kinetic energy of cracked structure. 

𝑈0 Strain energy of intact structure. 

𝑈𝑐 Strain energy of cracked structure. 

𝑈𝑑 Incremental strain energy associated with the discontinuous rotation 𝜃. 

𝑥0, 𝑦0 Midpoint of the crack. 

𝑥1, 𝑦1 Starting point of the crack. 

𝑥2, 𝑦2 End point of the crack. 

  

 Greek Symbols 

𝛿�̅�(𝑥) Normalised change between squares in the natural frequencies of intact and 

damaged beams (𝛿𝑛). 

𝛿�̅�(𝑥) Normalised change between squares in the natural frequencies of intact and 

damaged beams based on measured or synthetic data. 

𝛿̅𝐿(𝑛=1,2…𝑖)𝑟 Normalized lower limits of the relative changes in the natural frequencies. 

𝛿̅𝑢(𝑛=1,2…𝑖)𝑟 Normalized upper limits of the relative changes in the natural frequencies. 

𝛿𝑛 Difference between squares in the natural frequencies of intact and damaged 

beams for nth mode of vibration. 
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𝛿𝑖
𝑚 Difference between squares in the natural frequencies of intact and damaged 

beam structure for ‘n’ mode of vibration obtained using experiments or 

simulations 

𝛿𝑖
𝑠 Scaling factor for to set up an inverse problem (error function) for beam 

structures. 

𝛿𝑚𝑛 Difference between squares in the natural frequencies of intact and damaged 

plate structure for ‘m’ and ‘n’ mode of vibration. 

 

𝛿𝑟(𝑚,𝑛) 

Relative change in the natural frequencies of cracked plate with respect to 

intact plate. 

𝛿𝑛𝑟(𝑥/𝑙) Relative change in natural frequency for beam, with length l, and location of 

crack (𝑥). 

δMmn Difference between squares in the natural frequencies of intact and damaged 

plate structure for ‘m’ and ‘n’ mode of vibration obtained using experiments 

or simulations. 

δMSmn Scaling factor for to set up an inverse problem (error function) for plate 

structures. 

𝜔𝐿𝑛𝑐 Lower limit for natural frequencies of cracked beam. 

𝛿𝑢𝑛𝑟 Upper limits of the relative changes in the natural frequencies. 

𝜑 Orientation of crack in a plate with respect to X - axis. 

𝜔0 Natural frequency if intact structure. 

𝜔𝑐 Natural frequency of cracked structure. 

𝜔𝑚𝑛0 Natural frequencies of intact plate. 

𝛿𝜃 Change in rotation across the crack. 

𝜆 Non-dimensional frequency parameter for beam structure. 

𝜆∗ Non-dimensional local compliance. 
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1 Chapter 1: Introduction 

1.1 Motivation 

Beams and plates are essential structural elements commonly found in civil and 

mechanical systems, including buildings, bridges, as well as aerospace and automotive 

structures. Beams and plates are designed to efficiently carry and transfer a range of 

loads and can be designed in various sizes, shapes and materials as per the requirement. 

Depending upon the serviceability of the structure, they may be susceptible to static 

and dynamic loads, including dead loads, live loads, wind loads, earthquake loads, and 

fatigue loads.  

During their service life, structural components may experience corrosion or erosion 

due to environmental effects or a loss of mass and stiffness in their structural members 

due to excessive and repetitive loading conditions. Due to such factors, damages may 

occur in the structures. There is also a high probability of growth in the damage that 

has already occurred. Ultimately, this condition can cause a catastrophic failure of the 

structure and may lead to a significant loss of life and economic loss.  

To avoid such calamities, regular inspections and maintenance are required for 

structures which are continuously subject to dynamic loads. Continuous monitoring of 

structural health can provide valuable insight to enable decision making concerning the 

reuse, repair or replacement of damaged structural components. The regular inspection, 

continuous monitoring, and maintenance of a structure can reduce the frequency of 

catastrophic failures causing loss of life and economic loss. 

In the next section, an overview related to the current non-destructive damage detection 

techniques and methods adopted for continuous health monitoring of the structures is 

provided. 

1.2 Damage Detection Methods in Industry 

Structures or structural components can be either inspected periodically or monitored 

continuously. Thus, structural health inspections can be differentiated into non-

destructive testing (NDT) and structural health monitoring (SHM). These different 

strategies comprise the main ways of inspecting structures without causing damage.  
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A wide range of NDT techniques is available in the industry, allowing for detailed 

periodic assessments of structural integrity. On the other hand, SHM represents a more 

advanced approach that involves continuous or periodic monitoring of structural 

components using sensors and data analysis. SHM methods include strain 

measurement, vibration analysis, acoustic emission monitoring, and other sensor-based 

techniques. 

1.2.1 Methods of non-destructive testing 

There are a variety of NDT techniques available in industry. Local NDT includes 

Visual Testing (VT), Magnetic Particle Testing (MT), Radiographic Testing (RT), 

Ultrasonic Testing (UT), Eddy Current Testing (ECT), Acoustic Emission Testing 

(AE), Thermal Infrared Testing (IRT). 

1.2.1.1 Local NDT Methods 

Magnetic Testing (MT) [1] is one of the oldest methods in NDT. It was first used in 

1929 for industrial applications. When a crack or defect is present, the magnetic flux is 

disrupted, creating a leakage field at the location of the discontinuity. As a result, the 

magnetic particles accumulate near these regions, making the defects visible, as 

illustrated in Figure 1.1.  

Figure 1.1 – Magnetic particle Non-destructive testing. [1] 

Ultrasonic Testing (UT) is one of the most widely used methods in non-destructive 

testing (NDT). This technique uses high-frequency sound waves, typically in the range 

of 0.5 to 15 MHz, to detect flaws in materials, components, and structures. A pulse 

generated by a piezoelectric material transmits the sound waves into the specimen. 
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Changes in the velocity or path of the pulse indicate the presence of discontinuities 

within the material. 

Sound waves are reflected when they encounter a boundary between two materials with 

different acoustic impedances, such as a crack, void, or inclusion within the specimen. 

These reflected waves are captured by the transducers and converted into electrical 

signals, which are then displayed as visual representations (e.g., waveforms or images) 

on a screen for analysis.[2].  

The Eddy Current Test (ECT) employs the magnetic field generated by an alternating 

current flowing through a primary coil positioned near the specimen. This magnetic 

field induces eddy currents within the conductive material of the specimen. The eddy 

currents flow in a swirling pattern and create their own magnetic field, which interacts 

with the primary coil. The resulting changes in the magnetic field are detected by a 

secondary coil. Discontinuities or flaws in the metal can be identified at locations where 

there are changes in impedance, which are reflected in the readings from the secondary 

coil [3]. 

Deformation of a structure due to external loading, causes the material to release energy 

in the form of elastic waves. These waves are called acoustic emissions. They travel to 

the surface of the material. The amount of energy released is high at damage locations 

compared to intact parts. The waves can be captured by the transducers and amplified 

to generate a signal for interrogation. Using this mechanism the source of the elastic 

waves can be identified, which corresponds to the damage location in the material.  

The selection of an appropriate non-destructive testing (NDT) method depending on 

the type and location of the damage. However, the implementation of local NDT 

techniques may not be possible for inaccessible areas within the structure. To overcome 

this difficulty, global NDT techniques may be required. 

1.2.1.2 Global NDT Methods  

Two commonly used global non-destructive testing (NDT) methods are the Damage 

Index Method (DIM) and Vibration-based Damage Identification (VDI). The Damage 

Index Method includes techniques such as Frequency Response Function (FRFs), 

Wavelet Analysis (WA), Artificial Neural Networks (ANN), Fast Fourier Transform 

(FFT) Analysis, Autocorrelation Function (AF), and Cepstrum Analysis (CA). 

Alternatively the Vibration-based Damage Identification techniques include the Strain 
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Energy Method (SEM), Natural Frequency Based Method (NFM), Modal Damping 

based Method (MDM), Mode Shape Method (MSM), and Modal Curvature based 

Method (MCM). 

The Damage Index Method (DIM) is a comprehensive approach that utilizes various 

analytical techniques to detect and assess structural damage. One of the most effective 

techniques within DIM is Wavelet Analysis (WA). Wavelet Analysis is particularly 

well-suited for handling nonstationary signals that are commonly encountered in 

structural health monitoring. 

Introduced through developments in applied mathematics during the 1980s, wavelet 

analysis has become a highly effective method for examining signals that vary with 

time, such as those produced by structural vibrations. Unlike Fourier analysis, which 

represents signals as a combination of sine waves, wavelet analysis employs wavelets 

that are confined in both time and frequency. This dual localization enables the method 

to identify short-lived events and subtle changes within a signal, making it particularly 

well-suited for damage detection in structures. 

The applications of Wavelet Analysis in the context of the Damage Index Method are 

diverse and have demonstrated significant potential. Researchers have employed 

techniques such as using Gaussian wavelets for modal parameter identification [4].The 

relationship between the Lamb wave and the amplitude coefficients is utilised to 

identify the damage [5]. The use of spectral plate elements was considered by Krawczuk 

et.al.[6] to model the damaged part of a plate based on the split in two signals when the 

wave passes through a damaged part. Chang and Chen [7] used spatial wavelet 

transform analysis to detect damage in a rectangular plate, identifying damage through 

peak coefficients observed during the analysis. However, when applied to a clamped 

plate with edge cracks, the method produced inaccurate results. Improvements in this 

model have been made with the help of two-dimensional continuous wavelet transforms 

for rectangular steel plate clamped at all edges [8].  

The versatility and effectiveness of Wavelet Analysis in structural health monitoring 

have made it a valuable tool within the Damage Index Method. By leveraging its ability 

to identify subtle changes and localize damage, Wavelet Analysis has proven to be a 

powerful approach for detecting and assessing structural integrity, particularly in the 
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presence of nonstationary signals that are challenging to analyse using traditional 

methods. 

Use of Artificial Neural Networks (ANN) is another significant method in the DIM. 

The concept of ANN is based on the mathematical model developed by McCulloch and 

Pitts [9]. The aim of this developed algorithm was to replicate the functioning of the 

brain’s neural network using a computational framework. ANNs can learn from input 

data, adjust weights to minimize errors, and associate patterns with structural damage. 

They excel at recognizing anomalies in complex data, improving in accuracy as more 

data is fed into the model. The combination of learning, association, and pattern 

recognition makes ANNs well-suited for detecting the presence of defects in structures. 

In the 1980s, this approach was adopted for detecting damage in structures. Artificial 

Neural Networks (ANN) can be trained using the backpropagation method, which relies 

on gradient-based optimization. Research has been conducted using this method to 

analyse post-earthquake structures and the results have been compared with traditional 

techniques [10]. For both single and multiple spring systems, Non-Destructive Testing 

(NDT) has been performed using ANN, utilizing changes in eigenvalues and residual 

stress data for training purposes [11]. 

1.2.1.3 Vibration Characteristics  

Vibration-based damage identification (VDI) methods are very helpful in detecting 

damages like cracks, corrosions, and fatigue damages that occurs in accessible and 

inaccessible areas of structures. Based on the use of VDI, the number of inspections 

can be reduced. In addition, it offers lower operating costs. 

The measurements used to implement this technique can be classified into two parts. 

Measurement of static deflections can be considered as the first part. The relationship 

between the deflection and the stored strain energy can be defined for an intact 

structure. Damaged structures can show unpredictable patterns in the deflection for the 

same load due to the loss in stiffness caused by damage, corrosion, and cracks. 

Measurement of static deflection is quite useful in the inspection of the wings and 

fuselage structures in aircraft, as well as bridges and building structures. Measurement 

of static deflection at inaccessible areas, along with nonlinear behaviour and 

environmental factors, can be considered as challenges in the application of this 

method.  
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In the second part, natural frequencies, mode shapes, and modal damping can be 

considered for the VDI. The Strain Energy Method is a widely used vibration-based 

non-destructive testing (NDT) technique for identifying structural damage. This 

method detects changes in the strain energy by comparing mode shapes from the 

undamaged and damaged states of a structure. An advanced algorithm developed by 

Cornwell et al.[12] can accurately locate damage using only a few modes, even with a 

small stiffness reduction. The Differential Quadrature Method (DQM) is used to 

compute strain energy from modal analysis, allowing for the creation of a damage index 

that can identify surface cracks through peak locations, although irregularities in mode 

shapes can sometimes produce false peaks in undamaged areas [13]. 

A Modal Strain Energy Damage Index (MSE-DI) algorithm has been used to detect and 

locate delamination in composite stiffeners, particularly in aircraft structures [14]. More 

recently, time-domain methods using dynamic response data and time series analysis 

have gained attention for structural damage identification. These include state-space 

analysis to extract damage-sensitive parameters, as well as nonlinear time series 

analysis techniques like examining state-space distributions and Poincare maps of 

dynamic responses. A space-time autoregressive moving average (STARMA) model 

has also been developed to identify damage in specific regions of vibrating plates [15]. 

However, time-domain methods can be sensitive to noise, which can compromise the 

accuracy of their damage detection algorithms and lead to potential failures in 

identifying damage.  

Overall, VDI is an attractive method to employ for global NDT which can be performed 

without prior knowledge of the damage locations including inaccessible areas. 

Doebling et al,[16]. Wang and Chan [17] and Fan and Qiao [18] have presented 

comprehensive review papers on damage modelling and detection, highlighting various 

techniques and approaches used in the field. 

1.2.1.4 Significance of Natural Frequencies 

Cracks or damage, caused by corrosion or fatigue in structural elements impact the 

vibrational characteristics of structures, including static deflection, mode shape, natural 

frequencies, and modal damping. Measuring static displacements and mode shapes can 

be challenging in areas of the structure that are difficult to access. However, natural 

frequencies can be measured at accessible points on the structure, allowing for 
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experimentation. Even for cracks located in hard-to-reach areas, shifts in natural 

frequencies can be detected from any accessible point, simplifying the experimental 

analysis. 

Previous studies have successfully demonstrated the use of natural frequencies as a 

parameter for detecting damage in aluminium plates [19]. The sensitivity of natural 

frequencies to damage, combined with the cost-effectiveness of these methods makes 

them attractive as a damage detection technique. However, factors such as temperature, 

humidity, additional mass, and boundary conditions can affect their efficiency. 

Furthermore, local changes in stiffness caused by a small crack do not significantly 

affect the overall structural stiffness, which is why the resulting changes in natural 

frequencies are generally small in magnitude. 

Considering the vital need to maintain the safety and integrity of plates with cracks or 

other forms of damage, it is essential for engineers to comprehend the static, dynamic, 

buckling, and post-buckling behaviour of these plates. Conventional local non-

destructive testing (NDT) techniques need prior knowledge of where damage may 

occur and physical access to the structure, which can obstruct their effectiveness. As a 

result, a global quantitative NDT approach that relies on variations in natural 

frequencies is especially beneficial for examining large, complex plate-like structures. 

In this thesis, an analytical solution has been created using the Rayleigh quotient for a 

cracked isotropic beam and plate structure, where the crack is modelled as a rotational 

spring. This solution establishes a connection between the degradation of natural 

frequencies in the beam and plate structures. The results have been validated using finite 

element analysis. Damage quantification for beam structures has been shown through 

vector algebra, interval arithmetic, and gradient-based optimization. Gradient-based 

optimization method has been employed for the damage quantification in a plate 

structure. An overview of the thesis is given in following sections.  

The studies conducted in this thesis have not considered damping, which assumes of 

ideal, undamped free vibration. This simplification provides a clearer understanding of 

the system's fundamental dynamic behaviour and natural frequencies without the 

complications introduced by energy dissipation mechanisms. However, it is important 

to note that damping, whether structural or viscous, is being omitted in this preliminary 

analysis and fundamental study. While this simplification aids in understanding the 
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system's response, it is essential to recognize that damping can significantly impact 

performance in real-world engineering applications. 

Structural damping arises from the material properties and geometry of a system, often 

represented through hysteretic mechanisms or complex stiffness. In contrast, viscous 

damping is typically associated with external or environmental interactions and is 

modelled as a force that is proportional to velocity. Both types of damping lead to a 

decrease in amplitude over time and can also cause shifts in natural frequencies. In 

lightly damped systems, these frequency shifts are often small enough to be considered 

negligible for certain analyses. However, in heavily damped systems, more complex 

interactions can occur, including mode coupling and more pronounced frequency shifts, 

which can significantly affect the system's dynamic behaviour. 

Excluding damping is reasonable in initial theoretical models or in cases where it is 

negligible, such as during preliminary design phases. However, in practical 

applications, even minimal damping can influence resonance amplitude and dynamic 

stability. Future research may incorporate damping effects to investigate these 

influences, particularly in evaluating modal damping ratios and enhancing predictions 

of resonance behaviour and energy dissipation. 

1.3 Thesis aims and objectives  

The development of a mathematical model to calculate the degradation in the natural 

frequencies of beam and plate structures due to the presence of cracks can be considered 

a direct problem. Conversely, predicting the crack location and severity using the 

degradation observed in the natural frequencies of beam and plate structures relative to 

their intact state can be described as an inverse problem. 

The aim of this thesis is to solve both the direct and inverse problems for isotropic beam 

and plate structures. In the first part (direct problem), the focus is on the development 

of analytical methods to estimate the degradation in natural frequencies caused by 

damage (cracks). In the second part, the focus shifts to precisely solving the inverse 

problem, which involves predicting the location and characterizing the crack using the 

framework developed to calculate the degradation in natural frequencies from the direct 

problem. 
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The objectives of the thesis are defined as follows: 

1) Development of a mathematical model to calculate the degradation in the 

natural frequencies of isotropic beam and plate structures. 

2) Solving the inverse problem for beam and plate structures to predict the location 

and characterization of cracks. 

The thesis is divided into two parts. In Chapters 3 and 4, the objectives are achieved for 

beam structures. In Chapters 5 and 6, inspired by the outcomes of Chapters 3 and 4, the 

same objectives are extended to plate structures. 

In the next section, an overview of the thesis is presented, summarizing each chapter. 

1.4 Thesis Overview 

This thesis provides a comprehensive exploration of damage modelling and detection 

in isotropic beam and plate structures based on natural frequencies. Following this 

introduction Chapter 2 presents a detailed literature review, subdivided into two key 

parts. The first part focuses on research related to crack modelling and detection in 

beam structures, while the second part deals with crack modelling and detection 

methods in plate structures. 

Chapter 3 concentrates on the free vibration analysis of a cracked beam. The effect of 

crack is modelled using rotational spring within the beam structure, and the dynamic 

stiffness matrix is formulated using this model. The Newton-Raphson method is 

employed to compute eigenvalues, and an analytical solution based on the strain energy 

approach is developed to quantify the degradation in the beam’s natural frequencies 

due to the presence of a crack. 

In Chapter 4, the thesis examines the detection of single cracks in beam structures with 

a focus on computational efficiency. An analytical solution based on the strain energy 

approach is utilized as the foundation for crack localization and quantification. 

Additionally, three methods:1) Vector Algebra, 2) Interval Arithmetic, and 3) Gradient-

Based Optimization, are implemented for crack identification, with the latter leveraging 

the MATLAB FMINCON toolbox. 

Chapter 5 shifts attention to the free vibration analysis of a simply supported isotropic 

plate structure. This chapter is divided into two parts: the first models a crack parallel 
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to the plate edge using a rotational spring and validates the observed degradation in 

natural frequencies with prior studies and advanced finite element analysis [20]. The 

second explores the effects of arbitrarily oriented cracks, considering twisting effects, 

and conducts comparative studies using the finite element software ABAQUS [21]. 

Chapter 6 addresses damage quantification in plate structures. Building on the 

numerical methodologies from Chapter 4, gradient-based optimization emerges as a 

suitable technique for crack quantification in beam structures. Inspired by these results, 

the same approach is applied to plate structures. An error function is formulated using 

the least squares method, and with an optimization process focussing on minimising 

this error to determine the crack parameters is executed through the MATLAB 

FMINCON toolbox. This chapter demonstrates the robustness and effectiveness of the 

proposed technique through numerical examples and comparative studies. 

Finally, Chapter 7 provides a comprehensive conclusion summarizing all the research 

studies conducted in this thesis. It highlights the efficiencies of the proposed methods, 

discusses the remaining research gaps, and outlines potential future directions for 

extending this work. 
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1.5 Publication List 

One journal paper has been prepared based on the analytical solution developed to 

calculate the degradation in the natural frequencies in an isotropic plate structure and 

implemented damage detection techniques, described in Chapter 3 and 4. 

1. A. Satpute, D. Kennedy, and C. Featherston, A. Kundu, 2025 Crack modelling

and detection in an isotropic plate structure based on strain energy approach. In

preparation. For submission to Computers and Structures.

Moreover, five conference papers have been presented which have arisen from 

Chapters 3, 5 and 6. 

1. A. Satpute, D. Kennedy, and C. Featherston, “Damage modelling and 

detection in beams by Newton Raphson method,” presented at the 15th World 

Congress on Computational Mechanics & 8th Asian Pacific Congress on 

Computational Mechanics, Yokohama, Japan. 2021.

2. F. Masoudian, A. Satpute, D. Kennedy, C. A. Featherston, and S. Ilanko,

“Natural frequencies of cracked rectangular plates: An energy approach,” 

presented at the 13th International Symposium on Vibrations of Continuous 

Systems (ISVCS13), Pomeroy, Kananaskis Mountain Lodge, Alberta, 

Canada,2023.

3. A. Satpute, D. Kennedy, and C. Featherston, “Crack modelling and detection 

in a plate structure,” presented at the UNIfied Conference 2023, Huddersfield, 

UK, 2023.

4. A. Satpute, D. Kennedy, and C. Featherston, A. Kundu “Vibration-based crack 

detection in plates based on natural frequency degradation,” presented at the 

XIVth International Conference on Recent Advances in Structural Dynamics, 

Southampton, UK. 2024. doi:10.1088/1742-6596/2909/1/012017

5. A. A. Satpute, D. Kennedy, C. A. Featherston, and A. Kundu, “Detecting 

cracks in plates using vibration analysis and natural frequency degradation,” 

presented at the UNIfied International Conference on Emerging Technologies 

in Cyber-Physical Systems and Industrial AI, Malaviya National Institute of 

Technology, Jaipur, India, 2024.
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2 Chapter 2: Literature Review: 

2.1 Introduction 

Environmental changes and unexpected loading can cause defects in materials and 

damage to structures. An efficient design and adequate maintenance of structures can 

be helpful to improve the lifespan of and avoid catastrophic failures. Regular 

assessment of structures can reduce the risk of economic loss and, in the worst scenario, 

loss of life.  

The damage can be observed in the form of cracks, delamination or deterioration of the 

material over the service life of the structure. Preliminary and detailed analysis 

regarding the damage location within beams, frames and plate structures made of 

isotropic or anisotropic material can be considered using changes that occur in the 

dynamic response of the structures. 

Quantification of changes that occurred in the dynamic parameters of the structures i.e. 

mode shapes, amplitude, natural frequencies, damping for a predetermined damage 

location and severity can be considered as a direct problem to create a baseline. With 

the combination of the generated baseline model and dynamic response from the 

damaged structure, the damage location and severity can be obtained. This can be 

considered as an inverse problem. 

A wide range of research work along with their limitations has been studied in this 

chapter for beam and plate structures using the concept of direct and inverse problems. 

The chapter explores the research areas for beams and plate structures regarding 

damage modelling and detection based on the changes observed in the dynamic 

parameters i.e. natural frequencies, mode shapes, and amplitudes. Along with that, 

literature with various optimization techniques was studied for the damage 

quantification. (i.e. Bayesian approach, neural network, machine learning.) 

2.2 Direct Problem: Beam and Framed Structures 

Obtaining the dynamic parameters of the beam structures with the predefined crack 

location and severity has been covered in this section. 
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Christides and Barr [22] utilised a local function which assumes an exponential decay 

from the distance of the crack. The solution was considered for two symmetric cracks 

at one location using displacement and stress-strain fields in the Euler-Bernoulli beam 

with the Rayleigh-Ritz method. The natural frequencies were calculated incorporating 

the local function and further validated using experimental results. 

This theory was extended to beams which consist of double-sided cracks, occurring in 

the case of cyclic loading and single-sided cracks, occurring in fluctuating loading by 

Ostachowicz and Krawczuk [23]. The authors determined the inherent frequencies of a 

cantilever beam subject to damage, specifically considering cases where the beam 

contained two single-edge or double-edge cracks using an analytical solution based on 

the change in strain energy. The opening mode of the crack during vibration analysis is 

considered. 

 Hu and Liang et al.[24] employed an integrated approach for damage modelling using 

massless, infinitesimal spring to represent the individual cracks with the continuum 

damage concept. The theoretical relationship between the changes in the 

eigenfrequencies and the location and severity of the cracks was developed using 

Castigliano’s theorem. The continuum model was developed by associating the stress 

concept with Hamilton’s principle. The integrated function can be developed with those 

two described models. The method was applied for a simply supported beam with two 

individual cracks. 

Hearn and Testa [25] used the correlations between the changes in natural frequencies 

and mode shapes concerning changes in stiffness to model cracks in a frame structure. 

For damage localization, the ratio of the changes in natural frequencies for different 

modes led to the elimination of the severity of the crack. The experiments were 

conducted on welded steel frames and wires. The changes in the natural frequencies 

were considerable for the steel frames. On the other hand, very little change in natural 

frequencies was observed for the damaged wires. In case of wires, the change in 

damping was significant than the axial stiffness. 

Teughels et al. [26] employed the finite element approach to model change in the 

bending stiffness matrix for a cracked reinforced concrete beam. Using the residual 

force vector obtained from the equation of motion, effect of damage in the beam, frame, 

and plate was deduced using a model based on finite element analysis by Ge and Lui 
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[27]. Chatzi et al. [28] implemented an extended finite element method (XFEM) to 

model the complex flaws like cracks and holes. The developed simulation could 

identify shifts in the strain fields for the damaged structure, which was considered a 

baseline model. 

Escobar et al. [29] considered changes in the element stiffness matrix for damage 

modelling in the case of three-dimensional structures. The matrix transformation 

method was used to update the stiffness matrix of the structure based on dynamic 

parameters (mode shape and natural frequencies) for damage identification.  

Rizos et al. [30] developed closed-form solutions to incorporate damage. Beam 

structures were divided by a hinge modelled using a rotational spring and the equations 

of motion were solved to obtain the eigenfrequencies of the damaged beam. Wittrick 

and Williams [31]  developed an algorithm by utilising the finite strip method for a 

linearly elastic, undamped system modelled using a finite or infinite degree of freedom 

system. The developed algorithm provides the number of natural frequencies below a 

trial value. Caddemi and Calio [32], based on their earlier research [33], formulated a 

closed-form expression for the dynamic stiffness matrix for a Euler–Bernoulli beam 

containing multiple cracks. These were modelled using the Dirac’s delta generalized 

function in the flexural stiffness. These expressions were further employed to model 

damage in frame structures. Utilizing the Wittrick–Williams algorithm, the authors 

obtained the natural frequencies and mode shapes of both intact and damaged frames

[34]. Labib et al. [35] explored the direct problem for a cracked beam and frame 

structure using the Wittrick-Williams algorithm and utilising the bisection method. 

Khiem and Tran  [36] developed a simplified closed-form solution using the location 

and magnitude of the damage and relating these to changes in the eigenvalues. In other 

studies, Khiem and Toan [37] considered the nonlinearity relating to the severity of a 

crack. Jazi et al. [38] developed a closed-form expression for the transverse 

displacement of uneven beams with multiple cracks. 

Most of the research studies have shown progress in calculating the dynamic parameters 

for an open crack, occurring due to a high static load, especially in reinforced concrete 

structures. The assumption for the open crack is valid in most of the cases. For a 

breathing crack, studies introduce non-linearity resulting in bilinear dynamic 

parameters. Chati et al. [39] incorporated such non-linearity using finite element 
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analysis. A similar approach was used by Chandros et al.[40] who modelled cracks as 

continuous flexibility based on the displacement field in the region of the crack. 

Morassi [41] developed a relationship between changes in the square of the natural 

frequencies concerning the square of the displacement at the location of the crack in a 

damaged beam using pretribulation method. The crack is represented as a rotational 

spring. In this method, the mode shape is assumed to be the same for damaged and 

undamaged structures. 

Among the methods discussed, the development of closed-form solutions for columns, 

beams, and frames offers a computationally efficient approach for determining the 

natural frequencies of cracked beams and frames [33], [34], [42]. Additionally, the use 

of a rotational spring to model a crack within the dynamic stiffness matrix allows for 

accurate incorporation of displacements and rotations near the crack, enabling precise 

determination of natural frequencies in cracked beam and frame structures. This has 

been addressed using the Wittrick-Williams algorithm [35]. In this thesis, both 

numerical and analytical methods have been implemented using the rotational spring 

model in beams, and the results have been compared. 

2.3 Inverse Problem: Beam and Framed Structure. 

Analytical or numerical models, based on the known parameters of the damage can be 

considered as the baseline for the development of damage detection methods. The 

developed mathematical relationships between the change in the dynamic response and 

the damage parameters can be used in closed-form solutions. Iterative methods and 

optimization algorithms can then be employed to minimise the difference between the 

baseline model and the actual response of the structure to obtain the unknown 

parameters of the damage.  

Rizos et al. [30] used a rotational spring to model a crack in a cantilever beam. The 

relationship between the crack location and magnitude was defined. After experimental 

results were obtained for a cracked beam member in terms of changes in amplitude for 

the first three vibration modes, a set of non-linear equations was prepared and solved 

to obtain the crack location and severity. This method was shown to be effective when 

the crack depth exceeded 10 % of the beam's depth. A massless rotational spring was 

further employed with the intersection of frequency contour lines, which provided the 

damage location and severity by Hu and Lang [24]. The method mentioned in [24] was 
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based on symbolic computation. Further, it was efficiently defined by Maiti and Patil 

[43] without using symbolic computations. The eigenvalue problem was solved using 

a numerical method that could be applied to different boundary conditions and 

geometries of beam structure using differential equations.  

Nandwana and Maiti [44] modelled a crack using a rotational spring for a stepped 

isotropic cantilever beam. The response for each uniform section was obtained by 

solving the equation of motion equation. Chaudhari and Maiti [45] obtained the mode 

shape of the cracked beam using the Frobenius technique. The damage location in both 

cases was obtained using the plots between the non-dimensional stiffness and locations 

for the first three vibration modes. The intersection of the curve gives the location of 

the damage. The analytical modelling is required to perform the damage detection 

procedures for [44] and [41]. To avoid the repetition of the analytical model, 

Chinchalkar [46] deduced a numerical method, based on finite element analysis, to 

solve the direct problem. The inverse problem was solved using rank-one modification 

of an eigenvalue problem.  

Jinhee [47] modelled a crack in a beam using finite element analysis. In this work, the 

Jacobian matrix was updated using the Newton-Raphson method. The crack was 

defined in terms of location and severity parameters. The natural frequencies of the 

beam were calculated for multiple cracks. However, the number of cracks needs to be 

known before using this method which is a limitation.  

Ghadami et al. [48] developed an algorithm to find the severity and locations of 

multiple cracks using the Rayleigh-Ritz method. The differences in the natural 

frequencies were presented in terms of the change in Young’s modulus. The algorithm 

works more efficiently if the number of cracks is known. Maghsoodi et al.[49] employed 

a similar approach to solve forward and inverse problems for stepped beams. Along 

with that Nandkumar and Shankar [50] and Rubio et al. [51] have introduced a similar 

method based on the assumption of the number of cracks. These methods were extended 

by Cademi and Calio [42] to overcome the limitations based on the assumption of a 

number of cracks using explicit expression.  

Finite element analysis has been observed in numerous studies for damage modelling 

and detection in isotropic beams. Kam and Lee [52] utilized mode shapes to locate 

damage. Hasssiotis et al. [53] employed the localized reduction in stiffness causing 
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changes in the first four natural frequencies to update the stiffness matrix. Bicanic and 

Chen [54] utilized an iterative procedure based on the characteristic equations of 

damaged and undamaged structures. Nikolakopoulos et.al.[55] developed a 

computational-graphical method. The contours of the eigenvalues of the cracked 

structure are plotted. The eigenvalues are then calculated using the finite element 

method. The intersection of the contours and the dimensionless change in the natural 

frequencies are then employed for damage localization and severity detection. The 

intersection of the curves based on the first three natural frequencies for the damaged 

beam, which locates the damage, also seems features in the studies conducted by Patil 

and Maity [43]. Pau et al.   [56] modelled the damage in two-hinge parabolic arches 

using finite element analysis. Damage parameters were obtained by minimizing the 

objective function, which is the total of the squared variances between the numerical 

and experimental values of the frequency variations. 

Lee and Chung [57] applied Armon’s rank ordering method to approximate damage 

localization and used this approximation to update the structure's stiffness. The model 

updating technique was employed by Teughels et al. [26] using mode shapes of 

undamaged and damaged beam structures for damage detection. Escobar et al. [29] 

implemented the transfer matrix method, an iterative method for localizing damage in 

a 10-storey building. 

Greco and Pau [58] utilized the Wittrick-Williams algorithm to model a crack in an 

Euler-Bernoulli beam using a rotational spring. To solve the inverse problem, the least 

squares difference between the uncracked natural frequencies and the cracked natural 

frequencies with respect to the original natural frequencies of the structure is used as 

an optimization criterion. This optimization determines the severity of the crack, 

followed by the crack location. The effect of noise is studied using Monte Carlo 

simulation. Labib et.al [59] employed interval arithmetic to evaluate the range of 

potential damage in frames. With the help of probability distribution, the severity and 

the location were evaluated. 

Friswell et al. [60] employed a finite element model to establish a baseline 

representation of an intact beam. Using synthetic data generated from a cracked beam, 

they updated the model through a genetic algorithm (GA)-based optimization approach. 
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Bakir et al. [61] employed an alternative approach - ‘Coupled Local Minimizers’(CLM) 

for model updating. 

The use of Frequency Response Functions (FRF) has been widely explored in the field 

of damage detection for bridges. Liu et al.[62]  utilized FRF by employing the gapped 

smoothing technique (GSM). The displacement curvature is calculated using FRF. The 

damage is located where a deviation is observed in the smoothed curvature. A smooth 

continuous cubic polynomial is obtained using GSM. Damage assessment relies on the 

precision of estimating the displacement curvature through neighbouring points. Points 

with lower accuracy indicate the damage location. In the case of an undamaged 

structure, irregularities can be seen in the obtained curvature due to external factors like 

ageing or environmental conditions, as the undamaged part is assumed to be smooth, 

which is a drawback of the GSM. Sampaio et al. [63] improved on this by employing 

the Frequency Response Curvature Method (FRCM). In this method, the displacement 

curvature is calculated using FRF for the undamaged structure to establish a baseline. 

Deviation and irregularities in the displacement curvature can be observed for the 

undamaged structure to define a damage index. This method overcomes the limitations 

encountered with the GSM. A disadvantage of this technique is that frequency range 

selection can impact the results. Selecting narrow frequency ranges near the structure's 

natural frequencies can provide information regarding small damages in the structure. 

Conversely, selecting a broader range of frequencies can cause displacement curvatures 

to be influenced by other structural characteristics, potentially leading to the oversight 

of damage indices produced by small cracks. 

Based on the advantages of GSM and FRCM, Limongelli [64]  employed the 

interpolation damage detection method (IDDM) using a cubic spline interpolation 

function. This has been applied to a multistorey frame structure to determine the 

location of the floor with reduced stiffness. 

The operational deflection shape (ODS) of a structure is commonly described as the 

structural displacement occurring at a specific frequency. Zhang et al. [65] utilized the 

ODS curvature to detect damage in beam and plate-like structures. To eliminate the 

need for a baseline, the approximation of an undamaged structure's ODS curvature is 

considered a smooth line. This method can be used for the structure, before and after 

damage, and for damage identification. Transmissibility can be used as a substitute for 
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the FRF. This can be defined as the correlation of the responses at two separate locations 

regardless of the input. Maia et al. [66] employed the correlation of acceleration 

response transmissibility for damage identification due to its increased sensitivity 

compared to FRF. 

In damage detection, the primary challenges revolve around addressing the 

complexities inherent in real-world structures and the presence of noise in 

measurements [67], [68]. Traditional procedure-based methods often struggle to 

achieve the desired accuracy under these conditions. To overcome this limitation, 

numerous probabilistic approaches have been developed [69]. Among these, Bayesian 

inference has been considered since the 1990s, offering a means to derive posterior 

distributions based on observations and prior knowledge [70], [71]. 

Figueiredo et al. [72] applied Bayesian inference, employing a Markov chain Monte 

Carlo (MCMC) method, to quantify damage in bridge structures. Similarly, Arangio 

and Bontempi [73] utilized Bayesian methodology in conjunction with neural networks 

to identify bridge damage using vibrational response data. Subsequently, Arangio and 

Bontempi extended this approach to detect damage in cable-stayed bridges, focusing 

on identifying damage in columns and external span portions [74]. In. In the case of 

machine learning (Supervised), Sparse Bayesian Learning (SBL) has attracted attention 

for damage quantification. 

Genetic algorithms [74],[75], are also extensively employed for damage detection in 

structures. Based on simulated and experimental results, they provide a robust tool for 

finding the global minima related to the objective error function. The literature also 

shows the implementation of neural networks [62],[76] and the Bees algorithm [77]. 

In this section, various methodologies for damage detection in beam structures are 

explored. It has been observed that different approaches have been developed. One 

common method involves the development of a baseline model using numerical or 

analytical techniques, which is then used as a framework to minimize the discrepancy 

between experimental data and model predictions to estimate damage parameters. On 

the other hand, methodologies such as Frequency Response Function (FRF) analysis 

using Operating Deflection Shapes (ODS) do not require baseline models. For efficient 

and cost-effective damage detection in beam structures, tracking changes in natural 

frequencies can be a promising approach. These methodologies can incorporate noise 
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modelling to better match experimental results. Furthermore, techniques such as 

gradient-based optimization, Markov Chain Monte Carlo (MCMC), Sparse Bayesian 

Learning (SBL), or Genetic Algorithms (GA) can be employed to solve the inverse 

problem with improved accuracy. 

2.4 Direct problem: Plate Structure  

The impact of a crack on a plate structure has been studied over the last six decades for 

different loading and boundary conditions. The length, orientation, and depth of the 

crack can cause a significant shift in the dynamic parameters. The first investigation of 

the changes in the vibrational characteristics was observed by Lynn and Kumbasar [78]. 

They presented the homogeneous Fredholm integral equation using Green’s function 

approach.  

Solecki [79] used the Green-Gauss theorem to handle the rigid support to model the 

crack in an isotropic, simply supported plate structure. The finite Fourier transform was 

coupled with the Green-Gauss theorem to obtain the vibrational response. These studies 

showed good agreement with other similar studies based on analytical methods [80] for 

cracks parallel to the edges of the plate. Hirano and Okazaki [81] used the weighted 

residual method to obtain a solution for an isotropic plate with three different boundary 

conditions for cracks parallel to the edges of the plate. Further, Solecki [82] 

incorporated the finite Fourier expansion to model the singularity near the crack tip. 

Qian et al. [83] modelled a crack in a simply supported and cantilevered plate with the 

help of finite element analysis. The authors utilized the changes in the strain energy due 

to the crack to integrate the stress intensity factor, characterising the stress singularities 

at the crack tip under bending, shear, and twisting. The results show good agreement 

with the studies conducted by Solecki [82]. Krawczuk et.al. [6] modelled a crack in a 

rectangular plate using a closed-form solution for the applied stresses. The stiffness 

matrix for the elements near the crack was considered along with the additional 

compliance due to the crack. The changes in the eigenvalues were expressed based on 

the location and the length of the crack. Similar studies were conducted for a static 

internal crack based on forced vibration analysis to provide the relationship between 

the changes in the amplitude and the crack parameters [55]. These studies investigated 

the effect of the plastic zone near the crack tips on the flexibility of the plate, and the 

response was compared to that of structures with purely elastic behaviour. The study 
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concluded that the plastic zone near the crack tip had a relatively small effect on the 

global flexibility as compared to the pure elastic behaviour. Fujimoto et.al [84]  utilized 

a hybrid approach to model a centrally located crack in a plate structure. The Finite 

element method and body force method were used to model the stress singularity near 

the crack. Saito et al. [85] studied the linear and nonlinear vibrations of a cantilever 

plate with a crack using the veering phenomenon. In addition, an estimation of the 

nonlinear resonant frequencies was obtained using a bilinear frequency approximation. 

However, the method provided good results  for a relatively large crack length ratio. 

Bachene et al. [86]  used an extended finite element approach to model an all-through-

the depth, centrally located crack using Mindlin’s plate theory. Both shear and the 

twisting effects were considered while solving the eigenvalue problem. The subspace 

iteration method was adopted to obtain the eigenvalue for square and rectangular plates 

with different boundary conditions. 

To overcome the computational inefficiency in the numerical method provided by Lynn 

and Kumbasar [78], Keer and Sve [87] provided a dual series equation to represent the 

stress near the crack tip. Stahl and Keer [80] utilised a Fredholm integral equation of 

the second kind to obtain the eigenfrequencies of an isotropic plate with external and 

internal cracks running parallel to the edges of the plate. 

An internal crack in an annular plate was studied by Lee [88]  using the Rayleigh-Ritz 

method. Initial studies were conducted on the plate with simply supported and clamped 

inside and outside edges. Lee and Lim [89] used the Rayleigh-Ritz method with domain 

decomposition for isotropic and orthotropic plates. The authors incorporated the shear 

deformation effect using Reissner theory. Liew et al. [90] explored a similar technique 

based on the Rayleigh-Ritz method with domain decomposition. However, the solution 

exhibited discontinuity in the slope and displacement near the boundaries of the 

domain. The reason for this phenomenon was the inadequate stiffness of the spring used 

to represent the crack, which resulted into an inaccurate calculation of the natural 

frequencies for the cracked plate. Khadem and Rezaee [91] used the modified 

comparison function to obtain the natural frequencies of a cracked plate with different 

boundary conditions. The method was based on the Rayleigh-Ritz method. The 

accuracy of the modified comparison function was improved on the assumption of a 

change in the mode shape near the cracked region.  
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Later, Wu and Shih [92] expanded Shen and Pierre’s [93] Galerkin based method for 

analysing beam-like structures. by incorporating von Karman plate theory to study the 

dynamic instability and nonlinear response of simply supported cracked plates under 

periodic in-plane loads. They used the incremental harmonic balance method to solve 

the cracked plate model and discovered that stability behaviour and vibration response 

were influenced by factors such as crack location, aspect ratio, vibration amplitude, and 

loading conditions. Xiao et al. [94] explored the variation in the dynamic parameters 

for a moderately thick plate on an elastic foundation. The authors employed the 

Galerkin method along with the harmonic balance method to solve nonlinear vibration 

equations derived from Reissner plate theory and the Hamilton variational principle. 

Israr et al.[95] employed the Galerkin method to represent the governing equation of a 

cracked plate. Nonlinearities were introduced using the stress-strain field with the help 

of Berger’s approach. The problem was studied for an isotropic plate with a crack 

parallel to the edge of the plate. Huang and Leissa  [96] utilized a corner function to 

represent the stress singularity near the crack tip using the Rayleigh-Ritz method. The 

authors expanded the studies for a thick plate for both simply supported and fixed 

boundary conditions. 

The existing literature indicates that the effects of cracks oriented in arbitrary directions 

have been explored to a lesser extent compared to those of centrally located cracks and 

cracks that are parallel to the edges of the plates. Maruyama and Ichinomiya [97] 

conducted an experimental analysis of clamped rectangular plates with slits at various 

locations and arbitrary orientations using Time-Averaged Holographic Interferometry. 

The shift in the natural frequencies was studied for the various slit lengths, positions, 

and angles of inclination. Wu and Law [98] developed an enhanced stiffness model 

based on the theory presented by Lee [88] for anisotropic plate structures. They further 

extended this theory to thick anisotropic plates, demonstrating good agreement with the 

experimental analyses conducted [99]. Additionally, the authors expanded the 

developed model to accommodate complex structures with various boundary 

conditions and loading scenarios [100].  

Many of the studies that have been conducted have related to cracked beam and plate 

structures with the crack modelled using the line spring method (LSM). The LSM can 

be considered to provide an approximate solution for analytical problems. Rice and 

Levy [101] used the LSM to model part-through-thickness cracks using the 
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assumptions of Kirchoff’s plate theory. Stress intensity factors were calculated based 

on the forces and moments acting on the cracked section, with the solution expressed 

as an Airy stress function. While this method offers a reasonable approximation for the 

impact of a crack that extends through the thickness of a part, it comes with considerable 

computational expense. To address this issue, newer techniques utilizing the LSM have 

been introduced including studies to incorporate the shear effect into LSM by Delale 

and Erdogan [102]. The model holds better agreement up to a 0.8 crack-depth ratio. 

King [103] utilised virtual ligament springs to model the behaviour of a crack in a 

component. The effect of the ligament spring was centralised for simplification in the 

stress strain measurements to approximate the crack impact. The studies explored 

characteristics like the J-integral and crack opening displacements (COD). Yang [104] 

updated the LSM to incorporate nonlinearities like thermal and residual stresses. Their 

updated model shows a good match with finite element analysis for semi elliptical, part-

circular, and triangular crack shapes. Miyazaki [105] integrated the static LSM to a 

dynamic finite element program to perform transient analyses. Joseph and Erdogan 

[106] utilized the LSM to calculate the stress intensity factor for a cracked plate with 

forced vibration analysis and the combination of different modes. Israr et al. [95] used 

the Duffing equation to model a crack running parallel to the edge of a plate to provide 

the relationship between the tensile and bending stresses at the crack location. A similar 

approach was considered by Jain and Joshi [107] to analyse the frequency response of 

a plate with an internal crack. Gupta et. al. explored the same approach for functionally 

graded plate structures [108], [109]. 

The simplified line spring model was effectively used to model a crack in beam and 

plate structures. Researchers such as Caddemi, Calio [42], and Labib et al. [32] 

employed the rotational spring approach to model cracks in beam-like structures. Luo 

et al.[20] further utilized the analogous rotational spring model to determine the natural 

frequencies of an isotropic plate with a crack parallel to the edge.  

Ranjbaran and Seifi [110] have modelled surface and internal crack using LSM. The 

effect of crack has been incorporated using compliance in the governing equation of 

plate. natural frequencies of the plate have been determined using least square 

quadrature method. Heo et al. [111] applied peridynamics to investigate free vibrations 

in cracked Mindlin plates, validating their hybrid PD-FEM ANSYS model against 

experimental and numerical benchmarks. Their study revealed that natural frequencies 
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depend critically on plate thickness, crack length, and orientation, with tapered 

geometries inducing asymmetric mode shapes. Ma et al.[112] developed an analytical 

wave propagation method to study the forced vibration of rectangular plates with part-

through surface cracks. By modelling the crack either within the governing equations 

or as a spring interface between two intact plates, they derived wave modes to 

accurately compute vibration responses under various boundary conditions. Their 

results show high agreement with FEM. 

The research studies discussed in this section provide an overview of crack modelling 

in isotropic plate structures using both analytical and numerical methodologies for 

internal and surface cracks. Several methods exist for introducing nonlinearity and 

modelling damage, including the Galerkin method, Green-Gauss theorem, and Berger’s 

approach, each offering unique advantages depending on the problem context. The Line 

Spring Model (LSM), however, is particularly advantageous for crack modeling as it 

simplifies the representation of cracks by concentrating the effects into a line of springs, 

effectively capturing the stress field variations near the crack. This makes LSM 

especially useful in problems involving localized damage, where it can be integrated 

into both numerical and analytical frameworks with relative ease. Furthermore, in 

inverse problem formulations, LSM facilitates efficient optimization of parameters 

such as the crack-depth ratio due to its reduced computational complexity and strong 

physical interpretability. 

This thesis focuses on developing an analytical solution using the strain energy 

approach to achieve a computationally efficient method for determining shifts in natural 

frequencies caused by the presence of cracks in isotropic plates. To model the crack, a 

rotational spring analogy, like the approach proposed by Bilello [113] and validated by 

Caddemi and Calio [42], is employed for a simply supported configuration. This 

method offers a streamlined yet accurate framework for analysing the structural impact 

of cracks on vibration behaviour. 

2.5 Inverse Problem: Plate Structures 

It can be observed that many of the damage detection techniques developed for beam-

like structures have been further extended to plate-like structures. In the case of beam-

like structures, the inverse problem involves the identification of first the location and 

then the severity of the damage. However, in the case of plate-like structures, the inverse 
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problem becomes more complicated due to the greater number of damage parameters 

and different geometric conditions as compared to beam-like structures. 

In past decades, numerous research studies have been published concerning damage 

quantification based on vibration analysis in beam and plate structures. According to 

Kirkegaard and Rytter [114] damage detection methods can be considered at four 

distinct levels. 

Level 1: Identifying that damage is present in the structure. 

Level 2: In addition to Level 1, determining the geometric location of the damage. 

Level 3: Building on Level 2, quantifying the severity of the damage. 

Level 4: Further extending Level 3, predicting the remaining service life of the 

structure. 

Damage detection methods based on vibration response can be categorized in two main 

types, models-based methods and response-based methods. In case of model-based 

methods, an analytical or numerical model needs to be prepared and the response from 

the damaged structure can be used to update such model. On other hand, in the case of 

response-based method the model is not required. From the response obtained through 

experiments on real structures, the singularity can be captured. 

In addition, on the basis of domain-based methods, the detection of damage can be 

further classified in three specific parts [115].  

1. Modal domain: Modal domain methods based on natural frequencies, mode

shapes, change in the curvature, damping, and strain energy.

2. Spatial Model Domain: This domain concerns changes in the mass, stiffness and

damping matrices.

3. Response Domain: This domain focuses on the spatio-temporal or spatio-

spectral domains, which include frequency response functions (FRF),

operational deflection shapes (ODS), and transmissibility functions.

The use of natural frequencies has been considered by numerous researchers to develop 

analytical and numerical models, combined with experimental data, for the purpose of 

damage identification and quantification. Natural frequencies are preferred over mode 

shapes because they do not require the installation of additional sensors, making the 
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approach cost-effective. Additionally, shifts in the natural frequencies can help to 

understand the global effects. With just a few initial modes of vibration, the damage 

can be quantified. 

In previous studies, researchers have employed various algorithms to obtain damage 

parameters through optimization. The methods chosen for damage detection in plate-

like structures are explored in this section. 

Cawley and Adams [19] utilized the ratio of changes in the natural frequencies across 

various vibration modes to identify the location of damage within aluminium and 

composite plate structures. Theoretical results derived from finite element analysis were 

compared against experimental measurements to determine the precise damage 

location. Stubbs et al. [116] developed a method to calculate the damage index based 

on fractional strain energy for sub regions of 1D structures. Corwell et. al [12] extended 

a similar approach for 2D plate structures with experimental validation. Zhang et al. 

[117] derived a new vibrational characteristic called Frequency the Surface Shift (FSS)

using an auxiliary spring mass system for plate structures. FSS is equivalent to the 

square of the mode shapes. The local changes that occurred in the mode shape of the 

structure due to local damage were hence classified with this approach.    

Dome and Morz [118] demonstrated damage detection in beam and plate structures 

based the shift in the natural frequencies. They employed rigid support in beam and 

plate structures to model the damage and obtain the shifts in the eigenvalues. Using 

optimization, the minimum distance between the theoretical and experimental values 

corresponding to the shifts in the natural frequencies was obtained. Li et al.[119] 

proposed a damage index with the help of strain modes using Rayleigh’s Ritz method. 

The employed technique was validated using numerical and experimental analysis. Yam 

et al. [120] studied the out-of-plane deflection of a plate structure to define the slope, 

curvature of the damaged plate in terms of damage index to narrow down the possible 

damage locations. Lee and Shin [121] introduce a new structural damage identification 

method (SDIM) for plate structures. This approach utilizes frequency response function 

(FRF) data from damaged states, rather than modal data. The method iteratively refines 

the damage localization through a reduced-domain approach and performs well even 

with noisy data. Numerical simulations demonstrate the feasibility of this technique, 

showing improved accuracy compared to traditional methods. Lu et al. [122] employed 
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an artificial neural network (ANN) approach to solve the inverse problem for 

aluminium plates. The training data was generated based on damage parameters 

obtained by modelling the interaction of Lamb waves with finite element simulations 

of the damaged plates. Khatir and Wahab [123] utilized the strain fields of damaged 

plates to optimize the damage parameters using the Jaya algorithm. The data was 

obtained using proper orthogonal decomposition and radial basis function combined 

with the Jaya algorithm.  

Williams et al. [124] introduced the Damage Location Assurance Criterion (DLAC), 

derived from the modal assurance criterion in modal analysis. This approach can also 

be applied to identify multiple damage locations. Hosseini-Hashemi et.al. [125] 

developed a closed form solution to extract the natural frequencies for a functionally 

graded plate structure using Midland theory. With similar forward problem, Yang et al. 

[126] solved the inverse problem utilising intersection of frequency contour line to 

investigate for damage quantification. Jiang et al. [127] utilized the concept of singular 

value decomposition to identify singularities in the mode shapes of a damaged 

aluminium plate. A wavelet finite element model of the damaged plate was developed 

based on the results provided by the singular value decomposition analysis, and ant 

colony optimization was employed for the purpose of damage quantification. Pan et al. 

[128] introduced a novel noise response rate (NNR) concept to select vibration modes 

less affected by noise for damage detection using natural frequency shifts. The NNR 

approach was applied to a curved plate and found to outperform conventional methods. 

The work presented a promising technique to improve the reliability of vibration-based 

damage identification. 

Krawczuk et al. [129] developed a finite spectral plate element model to analyse wave 

propagation in cracked plates. In their approach, they treated cracks with variable 

stiffnesses as line springs. The method allowed for efficient prediction of damage 

parameters based on vibration response, to enhance structural health monitoring. 

Friswell et al.[130], [131]. used a genetic algorithm to locate damage in beam and plate 

structures, with the help of eigen sensitivity. Horibe and Watanabe [132]  also employed 

a genetic algorithm to identify crack locations in plate structures. However, there work 

was limited to the identification of cracks aligned parallel to the plate edges. 
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Yin et al. [133] utilised a Bayesian method to studying thin plates, using only a few 

measured points to understand their dynamic response. Moore et al. [134] developed a 

Bayesian method for analysing cracked plates that vibrate freely, using data from an 

earlier model by Solecki [135]. They used a simulated time series for estimating the 

required parameters. Li et al. [119] employed the ultrasonic scattering field of a 

damaged plate to assess damage. The measured scattered field was compared with 

simulated scattering fields generated using finite element analysis. The Markov chain 

Monte Carlo algorithm was then utilized to accurately determine the location and 

severity of the damage.  

Singh et al. [136] used Lamb waves to determine the reflection and transmission 

coefficients near a damage site. Through experiments, these coefficients were derived 

using Shkerdin’s orthogonality relation, which was then applied in simulations based 

on finite element analysis to identify the damage parameters. Chatzi et al. [137]  utilized 

the extended finite element method (X-FEM) in conjunction with a genetic algorithm 

(GA) to detect voids and cracks in an elliptical shape. Xiang and Liang [138] conducted 

damage detection on a plate structure in two phases. In the first phase, they identified 

the damage location using a wavelet finite element model, which was able to reveal 

singularities in the mode shape. In the second phase, particle swarm optimization was 

applied to assess the severity of the damage. Mohan et al.[139] employed a frequency 

response function (FRF) in combination with genetic algorithms (GA) and particle 

swarm optimization (PSO) to detect damage in beam and framed structures. The authors 

concluded that PSO is more efficient than GA due to its rapid convergence and superior 

local search capabilities. Dinh-Cong et al. [140] employed a finite element model and 

a Modified Differential Evolution (MDE) algorithm for the purpose of detecting 

damage in plate structures. The updated finite element model used in the optimization 

process considered the elimination of non-damaged elements, leadings to the improved 

computational efficiency of the method. 

In this thesis, cracks in beam and plate structures are modelled using a rotational spring 

approach. The rotational spring model for the beam is inspired by the methods 

presented in references [35]  and [20] . This advancement introduces a computationally 

efficient analytical framework for preliminary analysis of isotropic plate structures with 

surface cracks that are partially through the thickness and arbitrarily oriented. 

Analytical modelling of arbitrarily oriented cracks has been explored to a limited extent 
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in previous research, primarily due to the complexity involved. The present work 

addresses this gap by offering an efficient and adaptable solution that enhances early-

stage damage assessment capabilities. The degradation in the natural frequencies can 

be calculated by providing material properties, geometrical properties, and crack 

parameters. In contrast, traditional methods require different simulations for each case, 

which could take comparatively more time. 

This thesis also presents a solution to the inverse problem for beam and plate structures. 

The degradation in the natural frequencies of a cracked plate has been utilized to 

determine the crack parameters. An inverse problem has been formulated using the 

degradations in the natural frequencies of actual and simulated data through the least 

square difference method. The developed error function is further optimized using 

gradient-based optimization efficiently. 

The advancements made in this work provide promising results in the field of damage 

detection, particularly in terms of accuracy and computational efficiency, and match the 

standards mentioned in the literature studies. The work demonstrates significant 

development over existing methods in damage modelling and provides insights into 

incorporating more complexity in the inverse problem. Furthermore, the inverse 

problem offers very promising results and creates opportunities to expand the research 

by incorporating additional complexities. 
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3 Chapter 3: Free vibration analysis of intact and cracked beams 

3.1 Introduction  

A structure's natural frequencies can be calculated using eigenvalue analysis based on 

Newton's second law of motion. In the case of single-degree and multiple-degree 

freedom systems, eigenvectors can be estimated using the stiffness and mass matrices 

associated with the eigenvalues. Beam and plate structures are considered continuous 

systems. In the case of a continuous system, eigenvalues also can be estimated by 

solving equations based on Newton’s second law of motion employing analytical and 

numerical methods based on the boundary conditions of that structure.  

The present study employs the Euler-Bernoulli beam theory to analyse the free vibration 

characteristics of cracked beam structures. This theory assumes that plane cross-

sections remain flat and perpendicular to the neutral axis during bending, effectively 

neglecting the influence of transverse shear deformation. Such an assumption is valid 

for slender beams, particularly when the length-to-depth ratio exceeds 10-15. The beam 

configurations considered in this research fall within this slenderness range, where the 

effects of shear deformation are minimal. As a result, the Euler-Bernoulli model 

provides sufficiently accurate predictions for the natural frequencies of the beams under 

consideration. 

Moreover, the analysis in this study is focused on the lower vibration modes, where the 

influence of shear deformation and rotary inertia is relatively insignificant. The use of 

Euler-Bernoulli theory also simplifies the mathematical formulation, which is 

particularly beneficial when modelling the additional complexity introduced by the 

presence of cracks. Given the geometric proportions of the beams, the vibration range 

of interest, and the need for analytical clarity, the application of Euler-Bernoulli beam 

theory is well-justified and appropriate for the scope of this investigation. 

In this chapter, the free vibration analysis of an isotropic beam is examined. Initially, 

the vibration analysis of an intact beam is considered. The dynamic stiffness matrix for 

the beam from the reference [31], [35],  is used. Using Newton Raphson method, the 

determinant of the dynamic stiffness matrix is calculated to obtain the natural frequency 

parameters. 

A similar procedure is adapted to find the natural frequency parameters for the cracked 

beam. The loss in axial stiffness due to a crack in a beam is often neglected because 
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cracks significantly impact bending stiffness more than axial stiffness. Bending effects 

dominate the structural behaviour of beams, making the rotational spring model 

focusing on flexural rigidity reductions sufficient for practical analysis. This 

simplification avoids unnecessary complexity without compromising accuracy for most 

engineering applications [32], [35]. 

An analytical solution based on Rayleigh's quotient is used to validate the results 

obtained. The analytical formulation based on Rayleigh's quotient is further considered 

for damage detection. The applied methods ignore the structure's damping and non-

linear behaviour. 
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3.2 Natural Frequencies of an Intact Beam. 

Consider a beam with length ‘L’, breadth ‘b’ and depth ‘h’, fixed at both ends, shown 

in Figure 3.1. 

 

Figure 3.1: Beam fixed at both ends. 

where 𝜃1 and 𝜃2 are rotations associated with the bending moments. 𝑀1 and 𝑀2. 𝑤1 

and 𝑤2 are the vertical displacements associated with the forces 𝐹1 and 𝐹2. 

The dynamic stiffness matrix can be expressed as [35]: 

{

𝐹1
𝑀1
𝐹2
𝑀2

} =  [

𝑎𝑛 𝑏𝑛 −𝑑𝑛 𝑒𝑛
𝑏𝑛 𝑐𝑛 −𝑔𝑛 𝑓𝑛
−𝑑𝑛 −𝑔𝑛 𝛼𝑛 −ℎ𝑛
𝑒𝑛 𝑓𝑛 −ℎ𝑛 𝛾𝑛

] {

𝑤1
θ1
𝑤2
θ2

} 

 

 

(3.2.1) 

Here, ‘n’ denotes the members or substructure number. For a single beam, n =1. The 

elements in the stiffness matrix can be expressed: 

𝑎𝑛 = 𝛼𝑛 =
𝐸𝐼𝜆3(𝑆𝑛𝐶𝑛

′ + 𝐶𝑛𝑆𝑛
′ )

𝜎𝑛
, 𝑏𝑛 = ℎ𝑛 =

𝐸𝐼𝜆2(𝑆𝑛𝑆𝑛
′ )

𝜎𝑛
,

𝑐𝑛 = 𝛾𝑛 =
𝐸𝐼𝜆(𝑆𝑛𝐶𝑛

′ − 𝐶𝑛𝑆𝑛
′ )

𝜎𝑛
, 𝑒𝑛 = 𝑔𝑛 =

𝐸𝐼𝜆2(𝐶𝑛
′ − 𝐶𝑛)

𝜎𝑛
,

𝑑𝑛 =
𝐸𝐼𝜆3(𝑆𝑛 + 𝑆𝑛

′ )

𝜎𝑛
, 𝑓𝑛 =

𝐸𝐼𝜆3(𝑆𝑛 − 𝑆𝑛
′ )

𝜎𝑛
,

}
  
 

  
 

 

 

 

 

(3.2.2) 

in which 

𝑆𝑛 = sin𝜆𝐿𝑛, 𝐶𝑛 = cos𝜆𝐿𝑛
𝑆𝑛
′ = sinh𝜆𝐿𝑛, 𝐶𝑛

′ = cosh𝜆𝐿𝑛

𝜆 = √
𝜇𝜔2

𝐸𝐼

4

, 𝜎𝑛 = 1 − 𝐶𝑛𝐶𝑛
′

}
 
 

 
 

 

 

(3.2.3) 
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where, E is Young’s Modulus, I is moment of inertia, and 𝜇 is the mass per unit length  

of the beam. 

 From Figure 3.2 it can be seen that, when the beam is fixed at both ends, the rotations 

and deflections at these ends are restricted. To simplify the problem, a node is 

considered at the midpoint of the beam.  The dynamic stiffness matrix is expressed in 

Eq. (3.2.4) 

 

Figure 3.2 - Beam fixed at both ends (Node at midspan). 

 

{
 
 

 
 
𝐹1
𝑀1
𝐹2
𝑀2

𝐹3
𝑀3}
 
 

 
 

=  

[
 
 
 
 
 
𝑎1 𝑏1 −𝑑1 𝑒1 0 0
𝑏1 𝑐1 −𝑔1 𝑓1 0 0
−𝑑1 −𝑔1 𝑎2 + 𝛼1 𝑏2 − ℎ1 −𝑑2 𝑒2
𝑒1 𝑓1 𝑏2 − ℎ1 𝑐2 + 𝛾1 −𝑔2 𝑓2
0 0 −𝑑2 −𝑔2 𝛼2 −ℎ2
0 0 𝑒2 𝑓2 −ℎ2 𝛾2 ]

 
 
 
 
 

{
 
 

 
 
𝑤1
θ1
𝑤2
θ2
𝑤3
θ3}
 
 

 
 

 

 

 

 

(3.2.4) 

Based on the boundary conditions, the dynamic stiffness matrix can be updated from 

Eq. (3.2.4) to Eq. (3.2.5) 

{
 
 
 
 

 
 
 
 𝐹1
𝑀1
𝐹2
𝑀2
𝐹3
𝑀3}

 
 
 
 

 
 
 
 

= 

[
 
 
 
 
 
 
 
 
 𝑎1 𝑏1 −𝑑1 𝑒1 0 0
𝑏1 𝑐1 −𝑔1 𝑓1 0 0
−𝑑1 −𝑔1 𝑎2+𝛼1 𝑏2−ℎ1 −𝑑2 𝑒2
𝑒1 𝑓1 𝑏2−ℎ1 𝑐2+𝛾1 −𝑔2 𝑓2
0 0 −𝑑2 −𝑔2 𝛼2 −ℎ2
0 0 𝑒2 𝑓2 −ℎ2 𝛾2 ]

 
 
 
 
 
 
 
 
 

{
 
 
 

  
 0
0
𝑤2
θ2
0
0 }
 
 
 

  
 

 

 

 

 

(3.2.5) 
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Eq. (3.2.5) can be further simplified 

{
𝐹2
𝑀2

}= [
𝑎2+𝛼1 𝑏2−ℎ1
𝑏2−ℎ1 𝑐2+𝛾1

] {
𝑤2
θ2

} 
(3.2.6) 

The determinant of the dynamic stiffness matrix can then be expressed as: 

|𝑘| = (𝑎2 + 𝛼1)(𝑐2 + 𝛾1) − (𝑏2 − ℎ1)
2 (3.2.7) 

For the midpoint node, 𝑎2 = 𝛼1, 𝑐2 = 𝛾1 and 𝑏2 = ℎ1, which results in: 

|𝑘| = (2𝛼1)(2𝛾1) = 4𝛼1𝛾1 (3.2.8) 

To find the natural frequencies of the beam, we need to solve the equation for |k| = 0. 

4𝛼1𝛾1  = 0 (3.2.9) 

Eq. (3.2.9) can be satisfied when  𝛼1 = 0 or 𝛾1 = 0. 

If 𝛼1 = 0 then  

𝑆1𝐶1
′ + 𝐶1𝑆1

′ = 0  

 tan(𝜆 2⁄ ) = −   tanh(𝜆 2⁄ ) 

which occurs when (𝜆 2⁄ ) is close to (𝑖 − (1 4⁄ ))𝜋 where 𝑖 = 1,2,3, … 

If 𝛾1 = 0 then  

𝑆1𝐶1
′ − 𝐶1𝑆1

′ = 0  

tan(𝜆 2⁄ ) = tanh(𝜆 2⁄ ) 

which occurs when (𝜆 2⁄ ) is close to (𝑖 + (1 4⁄ ))𝜋 where 𝑖 = 1,2,3, … 

A numerical procedure is required to find these zeros accurately. The Wittrick-Williams 

algorithm [31] has been considered by Labib et al. [35], with the bisection method to 

calibrate the natural frequencies of the cracked beam after the introduction of the crack 

as a rotational spring. 

In the Section 3.3, a crack is introduced represented by a rotational spring. To improve 

the efficiency and accuracy of the results, Newton-Raphson method is employed along 

with the symbolic computation toolbox available in MATLAB.  



Chapter 3: Free vibration analysis of intact and cracked beams 

35 

3.3 Natural Frequencies of a Cracked Beam: Crack Modelling Based on a 

Rotational Spring. 

As discussed in the literature review, various methods have been used to model damage 

in beam and frame-like structures. including finite element analysis (FE) and extended 

finite element analysis (XFEM). Modelling a crack based on the consequent loss of 

stiffness is the mostly frequency used method. Researchers have carried out a number 

of studies regarding open and breathing crack and the employment of linear or non-

linear rotational springs with or without consideration of axial stiffness and damping. 

Cademmi and Calio [32], [34]  provided a formulation for the stiffness of a rotational 

spring, employed to model a concentrated crack in a Euler Bernoulli beam based on the 

depth of the crack.  Formulation for the stiffness of a rotational spring is expressed in 

Eq. (3.3.1). Figure 3.3 shows a simply supported cracked beam.

(a) 

(b) 

Figure 3.3 - Beam with a crack a) beam with crack depth ‘d’. b) Rotational spring 

model with resulting forces. 

𝑘∗ =
𝐸𝐼

𝐿

1

𝜆∗
(3.3.1) 
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Here, 𝜆∗ is the non-dimensional local compliance, which can be further expressed by 

the formulation given in Eq. (3.3.2)  

𝜆∗ =
ℎ

𝐿
 𝐶(𝑑/ℎ) 

(3.3.2) 

𝐶(𝑑/ℎ) is a nondimensional term, which is given by: 

𝐶(𝑑/ℎ) = 𝑎0∑𝑎𝑛 (
𝑑

ℎ
)
𝑛10

𝑛=1

 

(3.3.3) 

 

Cademmi and Calio [32] developed the formulation for this dimensionless parameter 

expressed in Eq. (3.3.4)  

𝐶(𝑑/ℎ) =
(𝑑/ℎ)[2 − (𝑑/ℎ)]

0.9[1 − (𝑑/ℎ)]2
 

(3.3.4) 

 

Labib et al. [35] provided a comparison of this non-dimensional parameter with 

previous literature and concluded on the accuracy of the formulation used in Eq. (3.3.4), 

setting the upper limit of the crack depth ratio to 0.4. 

To conduct studies regarding the damage modelling and the detection in this thesis, this 

parameter Eq. (3.3.4) will be utilized to evaluate the non-dimensional compliance and 

stiffness associated with the rotational spring. The derivation of the dynamic stiffness 

matrix for beam which are fixed at both ends with a concentrated crack at their midpoint 

is explained in section 3.4. 
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3.4 Derivation of The Dynamic Stiffness Matrix for a Cracked Beam. 

 

(a) 

 

 

(b) 

Figure 3.4 - Beam with fixed ends: a) with crack b) Free body diagram with 

rotational spring model.  

 

The crack can now be introduced into the dynamic stiffness matrix for the beam. Based 

on a rotational spring with stiffness 𝑘∗ with three degrees of freedom, the node 

corresponding to the spring is associated with a vertical displacement and rotations at 

the left-and right-hand sides of the crack as shown in Figure 3.4 The stiffness matrix 

associated with the rotations of the crack is expressed in Eq. (3.4.1) 

{
𝑀𝐿

𝑀𝑅
} =  [

𝑘∗ −𝑘∗

−𝑘∗ 𝑘∗
] {
θ𝐿
θ𝑅
} 

(3.4.1) 

The dynamic stiffness matrix can be developed based on reference [35], as follows: 
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{

𝐹1
𝑀1

𝐹2
𝑀2𝐿

𝑀2𝑅

𝐹3
𝑀3 }

= 

[

𝑎1 𝑏1 −𝑑1 𝑒1 0 0 0
𝑏1 𝑐1 −𝑔1 𝑓1 0 0 0
−𝑑1 −𝑔1 𝑎2 + 𝛼1 −ℎ1 −𝑏2 𝑑2 𝑒2
𝑒1 𝑓1 −ℎ1 𝑘∗ + 𝛾1 −𝑘∗ 0 0
0 0 −𝑏2 −𝑘∗ 𝑘∗ + 𝑐2 −ℎ2 𝑓2
0 0 −𝑑2 0 −𝑔2 𝑎2 −ℎ2
0 0 𝑐2 0 𝑓2 −ℎ2 𝛾2 ] {

𝑤1
θ1
𝑤2
θ2L
θ2R
𝑤3
θ3 }

(3.4.2) 

where the elements of the stiffness matrix from Eq. (3.4.2) can be expressed as 

𝑎1 = 𝛼1 =
𝐸𝐼𝜆3(𝑆1𝐶1

′ + 𝐶1𝑆1
′)

𝜎1
, 𝑏1 = ℎ𝑛 =

𝐸𝐼𝜆2(𝑆1𝐶1
′ + 𝐶1𝑆1

′)

𝜎𝑛
,

𝐶1 = 𝛾1 =
𝐸𝐼𝜆(𝑆1𝐶1

′ − 𝐶1𝑆1
′)

𝜎1
, 𝑒1 = 𝑔1 =

𝐸𝐼𝜆2(𝐶1
′ − 𝐶1)

𝜎𝑛
,

𝑑1 =
𝐸𝐼𝜆3(𝑆1 + 𝑆1

′)

𝜎1
, 𝑓𝑛 =

𝐸𝐼𝜆3(𝑆1 + 𝑆1
′)

𝜎1
,

}

(3.4.3) 

𝑆1 = sin𝜆𝐿1, 𝐶1 = cos𝜆𝐿1
𝑆1
′ = sinh 𝜆1, 𝐶′1 = 𝑐osh𝜆𝐿1

𝜆 = √
𝜇𝜔2

𝐸𝐼

4

, 𝜎1 = 1 − 𝐶1𝐶
′
1
} (3.4.4) 

𝑎2 = 𝛼2 =
𝐸𝐼𝜆3(𝑆2𝐶2

′ + 𝐶2𝑆2
′)

𝜎1
, 𝑏2 = ℎ2 =

𝐸𝐼𝜆2(𝑆2𝐶2
′ + 𝐶2𝑆2

′)

𝜎𝑛
,

𝐶2 = 𝛾2 =
𝐸𝐼𝜆(𝑆2𝐶2

′ − 𝐶2𝑆2
′)

𝜎1
, 𝑒2 = 𝑔2 =

𝐸𝐼𝜆2(𝐶2
′ − 𝐶2)

𝜎𝑛
,

𝑑2 =
𝐸𝐼𝜆3(𝑆2 + 𝑆2

′)

𝜎2
, 𝑓𝑛 =

𝐸𝐼𝜆3(𝑆2 + 𝑆2
′)

𝜎2
,

}

(3.4.5) 

2
′

𝑆2 = sin𝜆𝐿2, 𝐶2 = cos 𝜆𝐿2
𝑆   = sinh𝜆2, 𝐶′2 = cosh𝜆𝐿2

𝜆 = √
𝜇𝜔2

𝐸𝐼

4

, 𝜎2 = 1 − 𝐶2𝐶
′
2
} (3.4.6) 
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Here, 𝑘∗ can be expressed based on the crack depth (𝑑) from Eq. (3.3.1). After

applying boundary conditions, the dynamic stiffness matrix can then be updated: 

The determinant of the dynamic stiffness matrix is expressed in Eq. (3.4.7), as a 

function of the non-dimensional frequency parameter (𝜆). 

𝑓(𝜆) = (𝑎2 + 𝛼1)[(𝑘 + 𝛾1)(𝑘 + 𝑐2) − 𝑘
2]

+ ℎ1[(𝑘 + 𝑐2)(−ℎ1) − 𝑏2𝑘]−𝑏2[ℎ1𝑘 + 𝑏2(𝑘 + 𝛾1)]
(3.4.7) 

Eq. (3.4.8) is the differential of Eq. (3.4.7) with respect to the non-dimensional 

frequency parameter (𝜆) which allows us to apply the Newton-Raphson method for the 

determination of the non-dimensional frequency parameters associated with the natural 

frequencies. Appendix (B) provides the MATLAB codes for formation of Eq. (3.4.8). 

𝑓′(𝜆) =
𝑑𝑓(𝜆)

𝑑𝜆

(3.4.8) 

3.5 Application of Newton-Raphson Method. 

The Newton-Raphson method can be defined as an iterative method for approximating 

the roots of real-valued functions through successive refinements of initial trial values 

or estimates. Its iterative formula leverages function evaluations and derivatives to 

swiftly converge towards solutions, rendering it particularly effective for sufficiently 

smooth functions.  

However, the limitations associated with this method are in relation to singularities and 

discontinuities of the function, which require the accurate selection of initial guesses 

and convergence criteria. Despite these limitations, its widespread adoption across 

scientific and engineering disciplines underscores its computational prowess and utility 

in tackling complex numerical challenges.  

The Newton-Raphson iteration formulation is a key component of this root-finding 

method. The formulation is expressed in the Eq. (3.5.1) 

𝑥𝑛+1 = 𝑥𝑛 − 
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

(3.5.1) 
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It provides a recursive process to update an initial guess 𝑥𝑛 to obtain a better

approximation 𝑥𝑛+1 of the root of a function 𝑓(𝑥). Mathematically, the formula states

that the next approximation 𝑥𝑛+1 is equal to the current approximation 𝑥𝑛 minus the

ratio of the function value 𝑓(𝑥𝑛) to its derivative 𝑓′(𝑥𝑛)  at that point. In essence, it

adjusts the current estimate based on the function's slope (derivative) at that point, 

aiming to approach the root by iteratively refining the approximation. This process 

continues until a satisfactory level of precision or convergence is achieved. 

Figure 3.5 - Graphical representation of Newton-Raphson method a) Initial Guess (𝑥0)

with obtained root (𝑥1)  b) Using ‘ 𝑥1’ as a trial value for next iteration to obtain (𝑥2).

Figure 3.5 illustrates the graphical interpretation of the Newton Raphson method for 

finding the root of a function 𝑓(𝑥). In Figure 3.5(a), an initial guess 𝑥0 is chosen, from

which a tangent is drawn to the curve at the point (𝑥0, 𝑓(𝑥0)). The intersection of this

tangent with the x-axis gives the next approximation  𝑥1 , which is expected to be closer

to the actual root. 

This new estimate 𝑥1 is then used as a refined initial guess, as shown in Figure 3.5 (b).

Repeating this process iteratively leads to successive approximations 𝑥2, 𝑥3……. that

converge to the actual root of the function. 

Newton Raphson method is applied using the MATLAB symbolic computational tools. 

From Eq. (3.4.7) and Eq. (3.4.8), the non-dimensional frequency parameter can be 

updated based on Eq. (3.5.2).  

𝜆𝑛+1 = 𝜆𝑛 − 
𝑓(𝜆𝑛)

𝑓′(𝜆𝑛)

(3.5.2) 

(a) (b) 
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 The non-dimensional parameter is updated with each iteration, and the iteration stops 

when it satisfies the expected tolerance, which depends on the difference between the 

function's final value and the last two updated parameters. 

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 < |𝑓(𝜆𝑛+1) − 𝑓(𝜆𝑛)|  

The initial trial guess used in this method is obtained from the original natural 

frequencies of the structure. The significance behind this choice is that the damaged 

natural frequencies will be close to the original natural frequencies due to a single crack 

in the beam. A numerical example is considered in the next section 3.5.1 to obtain the 

results for the degradation in the natural frequencies of the beam because of the 

presence of a single crack. The results are validated with the method based on the 

Wittrick-Williams algorithm mentioned in [35]. 

In this thesis, the Newton-Raphson method has been used to determine the non-

dimensional frequency parameters for cracked beams by solving the determinant of the 

dynamic stiffness matrix. Furthermore, for both beam and plate structures, analytical 

solutions have been developed to obtain the natural frequencies of cracked 

configurations. The Newton-Raphson method is fundamentally designed to solve 

equations involving a single variable. In the case of the inverse problem for a beam, 

two parameters (crack location and severity) must be identified, whereas for plate 

structures, a total of five parameters are to be determined. Therefore, direct 

implementation of the Newton-Raphson method was not feasible. Instead, an inbuilt 

toolbox available in MATLAB, FMINCON, which employs the interior-point algorithm 

and internally utilizes a Newton-Raphson-based approach for multivariable functions, 

has been used to solve the inverse problem for both beam and plate structures. 

 

3.5.1 Numerical Example. 

Figure 3.6 illustrates an isotropic beam fixed at both ends, has a Young’s modulus of 

2.06 x 1011 N m-2 and a mass per unit length  of 185.40 kg m-1. It has a length L = 3 m, 

with a breadth (b) and depth (h) of 198 mm and 122 mm respectively, and a 10 mm 

deep crack. 

A single crack is modelled at two different locations in the beam presented in Figure 

3.6.  
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(a) 

(b) 

Figure 3.6 - Beam with fixed end supports with a crack at, (a) 1m, (b) 0.5 m from left 

hand support. 
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Table 3.1- Natural frequencies of a cracked beam using W-W algorithm and N-R 

method shown in Figure 3.6 (a). 

Mode (a) (b) (c) (d) (e) (r)

1 448.129 438.871 438.871 9.257 9.269 0.998 

2 1235.286 1164.962 1164.959 70.33 70.2 1.00043 

3 2421.654 2412.327 2412.326 9.327 9.324 1.00033 

4 4003.118 3864.854 3864.848 138.2 138.28932 0.99982 

Table 3.2 - Natural frequencies of a cracked beam using W-W algorithm and N-R 

method shown in Figure 3.6 (b). 

Mode (a) (b) (c) (d) (e) (r)

1 448.129 444.53 444.51 3.59 3.6307 0.99136 

2 1235.280 1226.72 1226.7 8.553 8.5532 1.00005 

3 2421.65 2325.327 2325.4 96.324 96.25132 1.00076 

4 4003.11 3792.16 3792.1 210.95 211.0379 0.99958 

Table 3.3 – Reference  for Table 3.1 and Table 3.2 

(a) Uncracked natural frequencies (rad/sec) 

(b) Cracked natural frequencies calculated using the Wittrick-Williams 

algorithm (rad/sec) [35]. 

(c) Cracked natural frequencies calculated using the Newton-Raphson 

method (rad/sec) 

(d) Error for uncracked natural frequencies.  (a) - (b) rad/sec 

(e) Error for uncracked natural frequencies.  (a) - (c) rad/sec 

(r)  Ratio. (d)/(e) 

Tolerance 10-4

From Table 3.1 and Table 3.2 , it can be observed that the results obtained using the 

Newton-Raphson method closely match the results from [35] which are based on the 
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Wittrick-Williams algorithm and bisection method. The tolerance used for the iterations 

is 10-4 for accurate results. 

The validation of the applied techniques is considered in section 3.6  based on the strain 

energy method explored by Morassi [41] for crack modelling and detection in a beam 

structure. 

3.6 Strain Energy Approach. 

The relationship of changes in the natural frequencies due to presence of crack, with 

respect to the stored strain energy of an intact cross section of the beam has been defined 

by Morassi [41].The formulation for the compliance and rotational spring was defined 

by Freund and Hermann [141] , based on energy release rate at the crack location due 

to bending moment. In this section, the relationship between the difference between the 

square of the natural frequencies between intact and cracked beam has been 

redeveloped using rotational spring and compliance provided by Biello and validated 

by Caddemi and Calio [34], and Labib et al. [35] . The formulation for the degradation 

in the natural frequency is derived for the simply supported beam with length (𝑙), 

breadth (𝑏) and depth (ℎ) is shown in the Figure 3.7 below. The beam is made up of 

isotropic material with Young’s modulus 𝐸. 𝐼 is the moment of inertia and 𝜇 is the mass 

per unit length.  

Figure 3.7 – Simply supported beam. 

The vertical displacement at any point 𝑥 in the nth mode of vibration can be expressed 

as:  

𝑤(𝑥) = 𝑎𝑛 cos(ζ𝑛𝑥) + 𝑏n sin(ζ𝑛𝑥) + 𝑐𝑛 cosh(ζ𝑛𝑥) + 𝑑n sinh(ζ𝑛𝑥) (3.6.1) 

where (𝑥) is the position along the length of the beam and 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, and 𝑑𝑛 are

parameters that depend upon boundary conditions and ζ𝑛 can be expressed as:
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ζ𝑛 =
1

 𝜆𝑛

  𝜆𝑛 is a non-dimensional frequency parameter, based on material properties and the

vibration mode (n) from the Eq. (3.4.4). 

The maximum strain energy 𝑈0 and kinetic energy 𝑇0 for the intact beam are expressed

in Eq.(3.6.2) and Eq. (3.6.3) respectively, where 𝑀(𝑥) is the bending moment at 

location 𝑥 and 𝜔0 is the natural frequency for the intact plate.

𝑈0 =
1

2𝐸𝐼
∫ 𝑀(𝑥)2𝑑𝑥
𝑙

0

(3.6.2) 

𝑇0 =
1

2
𝜇𝜔20∫ (𝑤(𝑥))

2
𝑑𝑥

𝑙

0

(3.6.3) 

After introducing a crack as a rotational spring shown in Figure 3.8 at the point 𝑥, there 

is a discontinuity of rotation (𝛿𝜃) across the crack.  

The natural frequency is reduced to 𝜔𝑐  so that the new maximum kinetic energy is:

𝑇𝑐 =
1

2
𝜇𝜔2𝑐∫ (𝑤(𝑥))

2
𝑑𝑥

𝑙

0

(3.6.4) 

Figure 3.8 – A simply supported beam with a crack is represented by a rotational 

spring. 

From the definition of compliance (𝐶). 

𝛿𝜃 = 𝐶(𝑀(𝑥)) 
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And the incremental strain energy associated with the discontinuous rotation 𝛿𝜃 in 

that portion is: 

𝑑𝑈𝑑 =
1

2
𝛿𝜃(𝑀(𝑥)) =

1

2
𝐶(𝑀(𝑥))

2

𝑑𝑈𝑑 =
1

2
𝐶(𝑀(𝑥))

2 (3.6.5) 

From the law of conservation of energy, we can express that for an intact beam: 

𝑇0 = 𝑈0 (3.6.6) 

and for the damaged beam. 

𝑇𝑐 = 𝑈0 − 𝑑𝑈𝑑 (3.6.7) 

From Eq. (3.6.6), we can express: 

𝑇0 − 𝑇𝑐 = 𝑑𝑈𝑑 (3.6.8) 

which can be further simplified and expressed in terms of natural frequencies. 

1

2
𝜇 (𝜔0

2 −𝜔𝑐
2)∫ (𝑤(𝑥))

2
𝑑𝑥 =

1

2
𝐶(𝑀(𝑥))

2
𝑙

0

(𝜔0
2 − 𝜔𝑐

2) =
(𝑀(𝑥))

2

𝑘𝑟
∗ 𝜇 ∫ (𝑤(𝑥))

2
𝑑𝑥

𝑙

0

(3.6.9) 

where, 

𝑘𝑟
∗ =

1

𝐶

(3.6.10) 

Now 𝑀𝑛(𝑥) = 𝐸𝐼𝑘𝑛(𝑥) where  𝑘𝑛(𝑥) represents the curvature at the location 𝑥 where

the crack is considered.  

𝛿𝑛 = (𝜔0
2 −𝜔𝑐

2) =
(𝐸𝐼)2(𝑘𝑛(𝑥))

2

𝑘∗𝑟 𝜇 ∫ (𝑤𝑛(𝑥))
2
𝑑𝑥

𝑙

0

(3.6.11) 

𝛿𝑛 can be expressed as a change between squares in the natural frequencies of intact

and damaged beams. 
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The above expressions assume that the mode shape of the vibration does not change 

after the crack is introduced. Damping is also ignored. In the next section 3.6.1, the 

application of the strain energy approach is demonstrated for a crack present in a beam 

with fixed end supports. 

3.6.1 Application of Strain Energy Approach for Beam Fixed at Both Ends. 

A beam with a length of L, fixed at both ends is considered shown in Figure 3.9. A node 

at the midpoint divides the beam into two parts. On the left-hand side of the beam, a 

crack is modelled with the help of a rotational spring.  

Figure 3.9 - A beam with concentrated crack at distance x from the left-hand fixed 

support. 

a) Symmetric modes of vibration. (Modes :1 and 3)

b) Antisymmetric mode of vibration. (Modes: 2 and 4)

Figure 3.10 - Modes of vibration. a) Symmetric and b) Anti-symmetric mode of 

vibrations 
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The symmetric and anti-symmetric modes of vibration are shown in Figure 3.10. For 

symmetric modes, the displacement becomes maximum at the midpoint node, and it is 

considered unity. Hence, rotation becomes zero. Vice versa for anti-symmetric modes, 

the rotation becomes maximum at the midpoint node, considered unity, and the 

displacement becomes zero. At the endpoints, because of the fixity, the values of the 

displacement and rotations are zero for all modes of vibration. Vertical displacement of 

the beam at a location (𝑥) can be expressed in two parts: B1 and B2 

𝑤𝑛𝐵𝑖(𝑥) = 𝑎𝑛𝐵𝑖 cos(ζ𝑛𝑥) + 𝑏𝑛𝐵𝑖 sin(ζ𝑛𝑥) + 𝑐𝑛𝐵𝑖 cosh(ζ𝑛𝑥)

+ 𝑑𝑛𝐵𝑖 sinh(ζ𝑛𝑥)

(3.6.12) 

where 𝑎, 𝑏, 𝑐 and 𝑑 denote the parameters for different modes of vibration and different 

beams. Also, ‘i’ denotes the part of beam i.e. B1, B2 as shown in Figure 3.10. These 

parameters can be obtained by solving Eq. (3.6.12) with the appropriate boundary 

conditions. 

For n = 1, for symmetric mode of vibration. 

At 𝑥 = 0, 

𝑤𝑛𝐵1(0) = 0, 𝜃𝑛𝐵1(0) = 0.

𝑤𝑛𝐵1(0) = 𝑎𝑛𝐵1 + 𝑐𝑛𝐵1 = 0 (3.6.13) 

𝜃𝑛𝐵1(0) = ζ𝑛(𝑏𝑛𝐵1 + 𝑑𝑛𝐵1) = 0 (3.6.14) 

At 𝑥 = 𝐿/2, 𝑤𝑛𝐵1(0) = 1, 𝜃𝑛𝐵1(0) = 0

 𝑤𝑛𝐵1(𝐿/2) = 𝑎𝑛1𝐵1 cos(ζ𝑛𝐿/2) + 𝑏𝑛𝐵1 sin(ζ𝑛𝐿/2) + 𝑐𝑛𝐵1 cosh(ζ𝑛𝐿/2)

+ 𝑑𝑛𝐵1 sinh(ζ𝑛𝐿/2) = 1

(3.6.15) 

 𝜃𝑛𝐵1(𝐿/2)  =  ζ𝑛(−𝑎𝑛1𝐵1 sin(ζ𝑛𝐿/2) + bnB1 cos(ζ𝑛𝐿/2)

+ 𝑐𝑛𝐵𝑖  sinh(ζ𝑛𝐿/2) + 𝑑𝑛𝐵1 cosh(ζ𝑛𝐿/2)) = 0

(3.6.16) 

Eqs. (3.6.13) to (3.6.16) can be expressed in the matrix form: 

{

1 0 1 0
0 1 0 1

cos(ζ𝑛𝐿/2) sin(ζ𝑛𝐿/2)  cosh(ζ𝑛𝐿/2) sinh(ζ𝑛𝑥)

− sin(ζ𝑛𝐿/2) cos(ζ𝑛𝐿/2) sinh(ζ𝑛𝐿/2) cosh(ζ𝑛𝐿/2)}
 

{

𝑎𝑛1
𝑏𝑛1
𝑐𝑛1
𝑑𝑛1

} = [

0
0
1
0

] 

(3.6.17) 
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After performing the matrix operations, the parameters 𝑎11, 𝑏11, 𝑐11, and  𝑑11 can be

obtained for 1st mode of vibration for the part B1. Similarly, the parameters can be 

obtained for the nth mode of vibration by considering displacements and rotations as 

per the symmetric or anti-symmetric mode of vibration. 

An expression for the rotation can then be obtained from the first differential of the 

vertical displacement with respect to location (𝑥). 

𝜃𝑛𝐵𝑖(𝑥) = (ζ𝑛)[−𝑎𝑛𝐵𝑖 sin(ζ𝑛𝑥) + 𝑏𝑛𝐵𝑖 cos(ζ𝑛𝑥) + 𝑐𝑛𝐵𝑖 sinh(ζ𝑛𝑥)

+ 𝑑𝑛𝐵𝑖 cosh(ζ𝑛𝑥)]

(3.6.18) 

 Further differentiation of Eq. (3.6.18) provides an expression for the curvature. 

𝑘𝑛𝐵𝑖(𝑥) = (𝜁𝑛)
2[−𝑎𝑛𝐵𝑖 cos(𝜁𝑛𝑥) − 𝑏𝑛𝐵𝑖 sin(𝜁𝑛𝑥) + 𝑐𝑛𝐵𝑖  cosh(𝜁𝑛𝑥)

+ 𝑑𝑛𝐵𝑖 sinh(𝜁𝑛𝑥)]

(3.6.19) 

Utilizing the parameters obtained from the matrix operations, the curvature for the nth 

mode of vibration can be obtained. The degradation in the square of the natural 

frequencies of intact and cracked beams can be obtained using Eq. (3.6.11). The 

denominator of Eq. (3.6.11) can be obtained by integrating the square of the 

displacement function over the length of the beam.

𝐽𝑛𝑖 = ∫ (𝑤(𝑥))2𝑑𝑥
𝑙

   0
(3.6.20) 

The integration operation in the Eq. (3.6.21) can be performed using the Symbolic 

computational toolbox available in MATLAB. However, to make the damage 

detection procedure more computationally efficient, this is not the preferred option. 

Integration is instead performed using conventional methods to increase 

computational efficiency. MATLAB codes for this section are provided in Appendix 

(C).  

Eq. (3.6.20) can be evaluated based on trigonometric and hyperbolic identities as 

per Eq. (3.6.21) 

Here, 𝜃 =(𝜁n) 𝑥 = 𝑥/ 𝜆𝑛 and 𝑑𝜃 = (𝜁𝑛) 𝑑𝑥 = 𝑑𝑥/ 𝜆𝑛
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𝐽𝑛𝑖 = ∫ (𝑤(𝑥))
2
𝑑𝑥

𝑙

0

=  𝜆𝑛 [(𝑎𝑛𝐵𝑖)
2  (
𝜃

2
+
sin 2𝜃

4
) + (𝑏𝑛𝐵𝑖)

2  (
𝜃

2
−
sin 2𝜃

4
)

+ (𝑐𝑛𝐵𝑖)
2  (
𝜃

2
+
sin 2𝜃

4
)+(𝑑𝑛𝐵𝑖)

2  (−
𝜃

2
+
sin 2𝜃

4
)

+ 𝑎𝑛𝐵𝑖𝑏𝑛𝐵𝑖 (
cos 2𝜃

2
)

+ 𝑐𝑛𝐵𝑖𝑑𝑛𝐵𝑖 (
cosh2𝜃

2
)+ (𝑎𝑛𝐵𝑖𝑐𝑛𝐵𝑖)(cos 𝜃sinh𝜃

+ sin𝜃cosh𝜃)+ (𝑎𝑛𝐵𝑖𝑑𝑛𝐵𝑖)(cos 𝜃cosh𝜃

+ sin𝜃cosh𝜃)+ (𝑏𝑛𝐵𝑖𝑐𝑛𝐵𝑖)(− 𝑐𝑜𝑠 𝜃𝑐𝑜𝑠ℎ𝜃

+ sin𝜃sinh𝜃)

+ (𝑏𝑛𝐵𝑖𝑑𝑛𝐵𝑖)(− 𝑐os 𝜃𝑠inh𝜃 + sin𝜃cosℎ𝜃) ]
𝐿𝜁𝑛

0

(3.6.21) 

The above expressions are a simplification of the strain energy approach. To determine 

the accuracy of the method with respect to the Newton-Raphson method, numerical 

examples and are considered in section 3.6.2. 

3.6.2 Numerical Example and Validation. 

An isotropic beam fixed at both ends has a Young’s modulus of 2.06 x 1011 N m-2 and 

a mass per unit length of 185.40 kg m-1. The beam has a length L = 3 m and breadth (b) 

and depth (h) of 198 mm and 122 mm, respectively. A single crack is modelled in this 

beam using Eq. (3.6.11). To ensure clarity, it is explicitly stated that only a single crack 

is considered in the analysis. This crack is individually placed at discrete intervals of 

0.01 m along the beam length, up to 1.5 m. For each crack location, the normalized 

changes in the natural frequencies of the first four vibration modes are calculated using 

the Newton-Raphson method combined with the strain energy approach. 

The results are plotted for crack depths of 0.01m and 0.05m in Fig. 3.11 and Fig.3.12 

respectively. Due to the symmetry of the problem only half the beam is considered.
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Figure 3.11 - Normalised natural frequencies vs location for d = 0.01m: a) n = 1, b) n =2, c) n = 3, d) n = 4. 
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Figure 3.12-Normalised natural frequencies vs location for d = 0.05m: a) n = 1, b) n = 2, c) n = 3, d) n = 4. 
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Normalised absolute difference (𝛿(̅𝑖=1,2,,,𝑛)) between the intact beam and the cracked

beam has been determined and plotted on the y-axis, with the crack location along the 

x-axis in figure 3.11 and 3.12.

From Figure 3.11 it can be observed that the results with smaller cracks, for example 

0.01 m depth, there is good agreement between the Newton-Raphson method and the 

strain energy approach. However, from Figure 3.12 it can be observed that when the 

crack becomes larger there is a more considerable difference of around 25 to 28 % in 

the between the two approaches.  

When considering the Newton-Raphson method, the mode shapes of the damaged 

structure are not assumed to be the same as those of the intact structure with rotation 

across the rotational spring considered. In the case of the strain energy approach, the 

mode shapes are assumed to be the same for intact and damaged structures. For smaller 

cracks, this effect is negligible, resulting in better agreement between the strain energy 

approach and the Newton-Raphson method with 5% to 6% relative error. 

3.7 Discussion. 

This chapter examines the degradation in natural frequencies using a numerical method 

based on the Newton-Raphson method. A function based on the non-dimensional 

frequency parameter is obtained from the determinant of the dynamic stiffness 

parameters, in which the crack is modelled as a rotational spring.  

Initially, the obtained results are validated against the Wittrick-Williams algorithm. 

Furthermore, the developed analytical solution based on the strain energy approach 

[35], in which a rotational spring has been used to represent the crack, is validated using 

the Newton-Raphson method. 

It is observed that the results obtained using the Newton-Raphson Method provide a 

close match with the strain energy approach for the small cracks as compared to the 

deeper ones. 

3.8 Conclusion. 

The degradation in the natural frequencies of beams containing cracks has been 

observed using a numerical method, the Newton Raphson method, and an analytical 
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solution based on the strain energy approach. In each case, a rotational spring is 

employed to model the effect of the crack.   

The Newton-Raphson method provides more accurate results for large cracks than the 

strain energy approach because it considers the changes in mode shape. However, the 

use of symbolic computation makes this method computationally inefficient for damage 

detection.  

On the other hand, the strain energy approach matches the results based on the Newton-

Raphson method for smaller cracks. The obtained analytical solution will not require 

any symbolic computation for damage detection method based on iterative or gradient-

based methods to solve the indirect problem.  

Chapter 4 explores damage quantification for a beam structure with a single crack. The 

strain energy method is considered for preparing the baseline model for quantifying 

single cracks in an isotropic beam to obtain computational efficiency.  
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4 Chapter 4: Single Crack Detection in Beams 

4.1 Introduction. 

This chapter is focused on finding the location and severity of a single crack in a beam. 

The formulations require a set of the first four to six natural frequencies of the cracked 

structure, which provides insight into crack quantification or inverse problem. The 

derived expression, based on strain energy and developed for solving the forward 

problem, is employed to address the inverse problem and calculate the pseudo-

experimental values of degradation in the natural frequencies of the considered beam 

structure. 

This chapter is divided into four sections. In section 4.2, the normalization of the 

degradations of a set of natural frequencies, to eliminate the crack severity parameters, 

is explained. In section 4.3, crack localization is achieved with the implementation of 

noise-free simulation of vector operations. In section 4.4, crack localization is obtained 

with noise-contaminated measurements. Upper and lower limits to the location 

coordinates are obtained by employing arithmetic intervals. In section 4.5, crack 

localization and severity are achieved simultaneously with the implementation of 

gradient-based optimization for noise-free pseudo experimental data using the 

FMINCON toolbox in MATLAB. 

Formulations based on the strain energy approach derived in Chapter 3 (Eq. (3.6.11)) 

are used for producing the data required for the damage detection procedure described 

in sections 4.2 to 4.5. 

4.2 Elimination of Crack Severity Parameter Through Normalization. 

In Eq. (3.6.11), the part of the denominator regarding the integration of vertical 

displacement from zero to the overall length of the beam is denoted as 𝐽𝑛 for the nth 

mode of vibration.  

𝛿𝑛(𝑥) =
(𝐸𝐼)2(𝑘𝑛(𝑥))

2

𝑘∗𝑟 𝜇 (𝐽𝑛)
=
𝐶(𝐸𝐼)2(𝑘𝑛(𝑥))

2

𝜇 (𝐽𝑛)

(4.2.1) 

After normalization of δn(x) for n = 1,2,3…. J, normalized degradation can be

expressed as: 
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𝛿�̅�(𝑥) =
𝛿𝑛(𝑥)

√∑ (𝛿𝑛(𝑥))
2𝑗

𝑛=1

(4.2.2) 

As material properties and geometry i.e. Young’s modulus (E), moment of inertia (I) 

and mass per unit length (𝜇) are all constants, they can be eliminated during 

normalization along with crack compliance (𝐶) which can be expressed as the 

reciprocal of the rotational spring (𝑘∗r).

In the denominator of Eq. (4.2.2), the summation can be extended over the total number 

of natural frequencies. The set of 𝛿�̅� can be regarded as a vector having maximum 

magnitude 1.0. For any mode of vibration, n = 1,2 ...J. 𝛿�̅� lies in the range 0 ≤ 𝛿�̅� ≤ 1. 

In the crack detection procedures for noise-free procedures and noise-contaminated 

measurements, normalized degradations in the natural frequency can be calculated for 

a discrete number of points. These formulations have been obtained using MATLAB 

and are provided in the Appendix. 

4.3 Localization of a Single Crack in a Beam: Using Noise-free Simulations. 

Noise-free data related to degradation in natural frequencies can be utilized for damage 

localization by using normalized values, which will remove the dependence on crack 

severity. 

A crack is modelled at a known location in the beam. Using Eq. (4.2.1) the degradation 

in the square of the natural frequencies of intact and damaged beams can then be 

evaluated. The set of normalized natural frequencies can be evaluated from Eq. (4.2.2). 

The data were obtained from these ‘pseudo experiments’ or ‘synthetic data’ is denoted 

𝛿�̅� - a vector of the degradations in the natural frequencies. 

For a beam, such vectors can be evaluated at discrete locations (x), denoted 𝛿�̅�(x). At 

this point, based on vector operations, the dot product of 𝛿�̅�and 𝛿�̅�(x) yields its 

maximum value. The reason for this is that the dot product between two parallel unit 

vectors where the angle between them (∅) tends to zero yields the maximum value of 

cosine.  

In Eq. (4.3.1), 𝑓(𝑥) is the objective function used for crack localization. 

𝛿�̅�. 𝛿�̅�(x) = |𝛿�̅�|| 𝛿�̅�(𝑥)|cos∅ 
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𝑓(𝑥) =  
𝛿�̅�. 𝛿�̅�(𝑥)  

 |𝛿�̅�|| 𝛿�̅�(𝑥)|
  =  𝑐𝑜𝑠∅ 

(4.3.1) 

4.3.1 Numerical Example. 

 

(a) 

 

 

(b) 

Figure 4.1: Beam with crack at (a) 0.3m, (b) 0.5m from the left-hand support. 

 

A beam fixed at both ends is shown in Figure 4.1 with a single crack. The material 

properties of the beam and the physical properties are provided in Table 4.1. 
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Table 4.1 – Properties of beam fixed at both ends with the crack shown in Figure 4.1 

Properties 

Young’s modulus (E) 2.06 x 1011 N m-2 

Mass per unit length () 185.40 kg m-1 

Breadth (b) 0.198 m 

Depth (h) 0.122m 

Crack depth (d) 0.05 m 

For damage localization, natural frequencies of the damaged structures (𝜔𝑐) are

required. These could be measured from a real structure. The natural frequencies of the 

damaged structure can be used to calculate the normalised degradation in the natural 

frequencies (𝛿�̅�) for first few modes of vibrations. For studies, 𝛿�̅� are calculated from 

simulations based on strain energy. This simulated data will be referred to as synthetic 

data. 

Consider a single crack located 0.3 m or 0.5 m from the left support having a depth of 

0.05 m. The degradations in the natural frequencies calculated using the strain energy 

approach are presented in Table 4.2 below. 

Table 4.2 - Degradation in natural frequencies (𝛿𝑚) for crack locations 0.3 m and 0.5m

for m = 1,2,3,4 

Mode Number (m) 1 2 3 4 

𝜹𝒎(𝒙 = 𝟎. 𝟑) rad2/sec2 17637.00 24023.08 4821.68 421616.00 

𝜹𝒎(𝒙 = 𝟎. 𝟓) rad2/sec2 3493.37 22369.06 505795.60 2122849.75 

These values can be normalized based on the Eq. (4.2.2) and then used for damage 

localization.  
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Table 4.3 – Normalised degradation (𝛿�̅�) in natural frequencies for crack locations 

0.3 m and 0.5m for m = 1,2,3,4 

Using Eq. (4.3.1) the dot product of the vector 𝛿�̅�  obtained from the measured 

natural frequencies and vectors 𝛿�̅�(x) calculated for trial values of x at intervals of 

0.01m can be plotted. 

Figure 4.2 - Noise-free crack localization at location 0.3 m. 

It can be observed Figure 4.2 that the function 𝑓(𝑥) yields a maximum value at 0.3m, 

which is the target crack location. A similar process based on a crack located at 0.5 m 

and shown in Figure 4.3 yields a maximum value for the objective function at 0.5 m, 

i.e. the target crack location. Appendix (D) presents the MATLAB codes developed for

the calculations in this section. 

Mode Number (m) 1 2 3 4 

(�̅�𝒎(𝒙 = 𝟎. 𝟑) 0.0423 0.1903 0.65402 0.7309 

(�̅�𝒎(𝒙 = 𝟎. 𝟓) 0.1089 0.0917 0.5400 0.8294 
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Figure 4.3 - Noise-free crack localization at location 0.5 m. 

4.3.2 Discussion. 

A method based on vector calculus is demonstrated for crack localization using noise-

free data obtained through simulations based on the strain energy approach. Because of 

the normalization performed on the natural frequencies, the crack severity is eliminated, 

reducing the dependency of the outcome on the crack depth.  

4.4 Localization of a Single Crack in the Beam:  Interval Arithmetic and Noise 

Contamination. 

4.4.1 Basic Operation of Interval Arithmetic: 

To get the narrow intervals between the two real numbers Moore et al.[142] developed 

a technique using interval arithmetic. Consider two real positive numbers 𝑋 and 𝑌 

which can take a range of values between a lower limit (LL) and an upper limit (UL). 
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Here, 𝑋𝐿𝐿 and 𝑋𝑈𝐿 are the lower and upper limits of 𝑋, and similarly  𝑌𝐿𝐿 and 𝑌𝑈𝐿 are

the lower and upper limits of 𝑌: 

𝑋 = [𝑋𝐿𝐿 , 𝑋𝑈𝐿],

𝑌 = [𝑌𝐿𝐿 , 𝑌𝑈𝐿]

Mathematical operations between  𝑋 and 𝑌 can be performed as: 

[𝑋 + 𝑌] = [ 𝑋𝐿𝐿 + 𝑌𝐿𝐿, 𝑋𝑈𝐿 + 𝑌𝑈𝐿]

(4.4.1) 

[𝑌 − 𝑋]  =  [ 𝑌𝐿𝐿 − 𝑋𝑈𝐿 , 𝑌𝑈𝐿 − 𝑋𝐿𝐿] (4.4.2) 

1

𝑋
 =  [

1

𝑋𝑈𝐿
,
1

𝑋𝐿𝐿
] 

(4.4.3) 

𝑌

𝑋
 =  [

𝑌𝐿𝐿
𝑋𝑈𝐿

,
𝑌𝑈𝐿
𝑋𝐿𝐿

] 
(4.4.4) 

The above interval arithmetic operations provide the narrowest possible interval. This 

technique is considered to incorporate the effect of noise in the measurements to obtain 

the range of damage localization.  

Consider Eq. (3.6.11), which expresses the difference between the squares of the natural 

frequencies between intact and cracked beams. For simplicity, we can consider the 

relative change in the natural frequencies and express it in the form of Eq. (4.4.5): 

𝑓(𝑥) = 𝛿𝑛𝑟(𝑥/𝑙) = 1 −
𝜔𝑛𝑐
𝜔𝑛𝑜

(4.4.5) 

Here, 𝜔𝑛𝑜 and 𝜔𝑛𝑐  are the natural frequencies of the intact and cracked beam

respectively. Subscript n denotes a vibration mode, and r denotes a relative change in 

the natural frequency. 𝑥 is the location of the crack. After the addition of noise (e), 

[𝜔𝐿
𝑛𝑜
, 𝜔𝑈𝑛𝑜] = [𝜔𝑛𝑜 − 𝑒,𝜔𝑛𝑜 + 𝑒]

[𝜔𝐿
𝑛𝑐
, 𝜔𝑈𝑛𝑐] = [𝜔𝑛𝑐 − 𝑒,𝜔𝑛𝑐 + 𝑒]

 } 
(4.4.6) 
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𝜔𝑛𝑜 and 𝜔𝑛𝑐 lie in the range [𝜔𝐿
𝑛𝑜
, 𝜔𝑈𝑛𝑜] and [𝜔𝐿

𝑛𝑐
, 𝜔𝑈𝑛𝑐] respectively. Here,

superscripts L and U denote lower and upper limits, respectively. 

After applying interval arithmetic to Eq. (4.4.5), the upper and lower limits of the 

relative changes in the natural frequencies (𝛿𝑛𝑟) Can be expressed as:

𝛿𝐿𝑛𝑟 = 1 −
𝜔𝑈𝑛𝑐
𝜔𝐿𝑛𝑜

(4.4.7) 

𝛿𝑈𝑛𝑟 = 1 −
𝜔𝐿𝑛𝑜
𝜔𝑈𝑛𝑐

(4.4.8) 

The interval arithmetic operations provide the range of intervals in which the relative 

change in natural frequency lie e.g. 𝛿𝐿𝑛𝑟 ≤ 𝛿𝑛𝑟 ≤ 𝛿
𝑈
𝑛𝑟. In the case of closely spaced

values of uncracked and cracked natural frequencies, it is possible that the numeric 

value of the lower limit of the original natural frequency can be less than the numeric 

value of the upper limit of the cracked natural frequency (𝜔𝐿𝑛𝑜  <  𝜔
𝑈
𝑛𝑐). In this

contex Eq. (4.4.7) may yield a negative value for the lower limit of the relative change 

in natural frequencies (𝛿𝐿𝑛𝑟). In such instances, the value of  𝛿𝐿𝑛𝑟 can be considered

zero when applying this technique for damage localization. 

To eliminate crack severity, normalised values of  𝛿𝑛𝑟 Eq. (4.2.2) can be used:

𝛿̅𝐿(𝑛=𝑖)𝑟 =
1

√1 +
∑ 𝛿𝑈(𝑛=𝑗)𝑟𝑖≠𝑗

𝛿𝐿(𝑛=𝑖)𝑟

(4.4.9) 

𝛿̅𝑈(𝑛=𝑖)𝑟 =
1

√1 +
∑ 𝛿𝐿(𝑛=𝑖)𝑟𝑖≠𝑗

𝛿𝑈(𝑛=𝑖)𝑟

(4.4.10) 

where subscripts i and j are the specified number of modes. 

For the ith normalized lower limit of the normalized relative change in natural frequency 

(𝛿̅𝐿
(𝑛=𝑖)𝑟

), the denominator of Eq. (4.4.9) uses the ith mode of the lower limit of relative

change in natural frequency along with a summation of the upper limits of the relative 

changes in natural frequencies . The upper limit relative change in natural frequency 
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for the ith mode is excluded from this summation. These operations result in the 

narrowest possible range for damage localization. 

A similar operation has been used for the calculation of  upper limit of the normalized 

relative change in natural frequency (𝛿̅𝑈(𝑛=𝑖)𝑟) with the normalized upper limit of 

relative change in natural frequency expressed in Eq. (4.4.10). 

These normalized upper and lower limit bounds for the selected mode can be plotted as 

horizontal lines along with f (x) from Eq. (4.4.5) calculated at discrete points of the 

beam for selected natural frequencies. This is illustrated in Figure 4.4, with the 

intersections of   𝛿�̅�𝑟 (𝑥/𝑙) with the horizontal lines (upper and lower bounds), 

providing the possible range of crack locations.  

 

 

Figure 4.4 - Damage localization with help of interval arithmetic. 

4.4.2 Numerical Example 

A beam presented in the numerical example in Section 4.3.1(Figure 4.1 (b)) is 

reconsidered for crack localisation with noise incorporated. The depth of the crack is 

0.05 m.  
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Table 4.4 - Cracked and uncracked natural frequencies for a beam with a crack located 

0.5m from the left-hand support. 

Mode (n) 1 2 3 4 

Uncracked natural frequency 

(𝜔𝑢𝑛) 𝑟𝑎𝑑/𝑠

448.10 1235.30 2421.70 4003.10 

cracked natural frequency 

(𝜔𝑐𝑛) 𝑟𝑎𝑑/𝑠

444.10 1226.20 2314.90 3728.50 

To obtain the upper [ωu
no, ωu

nc] and lower limit [ωL
no, ωL

nc] of the uncracked and 

cracked natural frequencies, a small amount of noise (𝑒) was added to the data 

presented in  Table 4.4. 

After performing the mathematical operations expressed in Eq. (4.4.9) and Eq.(4.4.10), 

the upper (𝛿̅𝑈𝑛𝑟) and lower limit ranges  (𝛿̅𝐿𝑛𝑟)  of the normalized relative change in

the natural frequencies were obtained for the randomly  chosen  noise.(𝑒). 

The results are presented in Figure 4.5,with  ±1 rad/s contaminated noise. 

(a)
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(b) 

 

(c) 
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(d) 

Figure 4.5 - Crack localization with noise  ∓ 1 rad/s : a) mode (n) = 1, b) mode (n) = 

2, c) mode (n) = 3, and d) mode (n) = 4. 

In Figure 4.5 the crack locations can be identified from the intersection of the function 

of the normalized relative change in the natural frequencies 𝑓(x) with the upper and 

lower limit bounds for the different natural frequencies. The target crack location at 

0.5m from the left-hand side of the beam is represented by the dashed red line. The 

lightly shaded regions indicate the detected ranges for each frequency, whereas the 

superimposition can provide combined ranges for all frequencies utilized. 

It can be observed that the intersection of the function with the upper and lower limit 

ranges for each mode of vibration determines the range within which the crack location 

is present. This range varies with respect to the mode of vibration and the level of noise. 

Table 4.5 presents the upper and lower limits, along with the associated errors, for the 

first four modes of vibration for the randomly selected noise in the simulations. In 

addition, Figure 4.6 represents the variation of error associated with the level of noise. 

The algebraic operations performed with the help of MATLAB. Appendix (E) presents 

the MATLAB codes for crack localisation using interval arithmetic method. 
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Table 4.5 - Upper and lower limit range for first four mode of vibrations. 

Noise Mode (i) Lower Limit 

(LL) 

Upper Limit 

(UL) 

Error 

(UL-LL) 

0.5 Hz 1 0.07882 0.1349 0.05608 

2 0.07895 0.10015 0.0212 

3 0.52854 0.5479 0.01936 

4 0.82651 0.8472 0.02069 

1 Hz 1 0.05161 0.1645 0.11289 

2 0.0686 0.1111 0.0425 

3 0.5211 0.5603 0.0392 

4 0.8193 0.8612 0.0419 

1.5 Hz 1 0.02456 0.1946 0.17004 

2 0.0584 0.1221 0.0637 

3 0.5134 0.5726 0.0592 

4 0.8117 0.875 0.0633 

2 Hz 1 0 0.2254 0.2254 

2 0.0484 0.1332 0.0848 

3 0.5054 0.5847 0.0793 

4 0.8034 0.8883 0.0849 

Figure 4.6  - Variation of error for first four modes of vibrations with respect to the 

added noise in the simulations. 
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4.4.3 Discussion 

In this chapter, interval arithmetic with randomly assumed noise is used for the damage 

quantification of beams. This approach is applied to simulated measurements based on 

the strain energy method for damage localization. 

With the noise-contaminated data for beams, an accurate range for damage localization 

has been shown. This range varies depending on the amount of contaminated noise. The 

range of possible damage location becomes larger with increase in noise. The crack 

severity is eliminated because of the normalization procedure, which simplifies the 

problem. The severity can also be obtained using a probability distribution with the 

ranges of the crack locations obtained [59]. This thesis does not focus on the severity 

calculation using probability distribution. A further section explores a gradient-based 

optimization technique to obtain both crack parameters (localization and severity) in 

the damage detection procedure. 
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4.5 Detection of the Single Crack using Gradient-based Optimization: MATLAB. 

A single crack in a beam has been modelled using the strain energy method in Chapter 

2. The developed expression for the corresponding changes in the natural frequency

depends upon the crack location and severity. The severity of the crack can be expressed 

in terms of the ratio of the depth of the crack to the depth of the beam, the crack-depth 

ratio. 

Based on Eq. (3.6.11) which provides the difference between the square of the natural 

frequencies of intact and damaged beams and the calculated or measured natural 

frequencies of the damaged beams, it is possible to develop an error function. 

This developed error function can be solved using gradient-based optimization with the 

help of FMINCON which is an optimization toolbox available in MATLAB. 

4.5.1 Methodology 

In this section, an objective function is developed using least square fit technique for 

minimization. To develop the objective function, Eq. (3.6.11) is rewritten by 

substituting the stiffness of the rotational spring (𝑘∗𝑟) with compliance (𝐶)  resulting in

Eq. (4.5.1). This equation has two variables, the location of the crack (𝑥) and the crack 

depth ratio (which is present in the formulation of the compliance (𝐶)). 

𝛿𝑖(𝑥, 𝑑/ℎ) =
𝐶(𝐸𝐼)2(𝑘𝑛(𝑥))

2

𝜇 ∫ (𝑊𝑛(𝑥))
2
𝑑𝑥

𝑙

0

(4.5.1) 

An objective function can then be defined in Eq.(4.5.2) to enable these two parameters 

(location and severity of crack) to be calculated through an optimization process (to 

minimise the error). Here, 𝛿i is the change in the square in the natural frequencies

between the intact and damaged beam for a crack located at distance 𝑥 from the end of 

the beam and having depth 𝑑 for the mode of vibration. 𝛿𝑖
𝑚 is the calculated change in

the square in the natural frequencies for an unknown crack location and severity.  

𝛿𝑖(𝑥, 𝑑/ℎ)  represent the function to obtain the difference between the square of the

natural frequencies of intact and cracked beam using the strain energy approach for the 

ith mode of vibration (i = 1, 2,….n). 𝛿𝑖
𝑚 are the set of difference between the square of

the natural frequencies of intact and cracked beam. 𝛿𝑖
𝑚 can be obtained by performing



Chapter 4: Single Crack Detection in Beams 

70 

experiments on real beam structures or from mathematical simulations. In the present 

study, values for 𝛿i
m are obtained using simulations based on Eq. (4.5.2)

𝛿i
s is the set of changes in the squares of the natural frequencies of the beam for the

known location and severity of the crack, which is used for normalization and scaling 

purposes. 

𝑓(𝑥, 𝑑/ℎ) = 𝑚𝑖𝑛∑{
𝛿𝑖(𝑥, 𝑑/ℎ) − 𝛿𝑖

𝑚

𝛿𝑖
𝑠 }

2

→ 0

𝑛

𝑖=1

(4.5.2) 

The search for crack locations is confined within the geometric boundaries of the beam. 

For a beam with length L along the x-axis and depth d along the y-axis, the potential 

crack positions are constrained such that the location along the x-axis satisfies 0 ≤ 𝑥 ≤

𝐿 The crack depth is expressed in terms of a crack-depth ratio, defined as the ratio of 

the crack depth to the total depth of the beam. This ratio is limited to the range 0 ≤ d/h 

≤ 0.9999, as the proposed analytical model is not valid for a fully through-depth crack. 

These constraints establish a feasible search space for the crack detection process. 

4.5.2 Background studies: Optimization toolbox FMINCON 

The optimization process was carried out using the MATLAB optimization toolbox 

FMINCON. This toolbox can be used to find maximum and minimum values for 

established objective functions with optimized parameters. The flowchart in Figure 4.7 

shows the workflow in FMINCON. The required input arguments are the objective 

function, equality and nonequality constraints, the search space, step size and tolerance. 

Some input arguments like equality and inequality constraints can be provided in terms 

of (expected values of optimized parameters) an upper and lower bound range. Based 

on the input arguments, a barrier function is created, and the gradient calculation is 

carried out by the solver using a customized step size. The gradient of the objective 

function can be provided in the input arguments to make the optimization process faster. 
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Figure 4.7 - Flowchart of optimization toolbox FMINCON. 

The output provided by the solver consists of the history of iterations, optimized 

parameters, final values of the objective function for each trial value, and data in terms 

of exit-flag which represents satisfied and unsatisfied conditions as per optimality 

criteria applied in the input arguments. 

4.5.3  Numerical Example and Results: 

The beam considered in section 4.4.2 is considered here to demonstrate the crack 

quantification. As shown in Figure 4.8, The crack is located at 0.6 m from the left-hand 

support with the crack depth 0.05m.  

Figure 4.8 – Beam fixed at both ends, crack location 0.6 m from the left-hand 

support.  



Chapter 4: Single Crack Detection in Beams 

72 

Eq. (4.5.2) represents the objective function where the target is the minimization of 

𝑓(𝑥, 𝑑/ℎ). A set of differences between the square of the intact and the damaged beams 

is shown in Table 4.6 and has been calculated using the strain energy approach (Eq. 

(4.5.1)). This data is referred to as synthetic data. 

Table 4.6- Obtained synthetic data for (𝛿𝑖
𝑚) and Figure 4.8 used for the optimization.

Modes (𝒊) (1) (2) (3) (4) 

�̅�𝒊(𝒓𝒂𝒅
𝟐𝒔−𝟐) 583.89 73296.15 157584.40 114929.50 

The data mentioned above is incorporated into Eq. (4.5.2)  to create the objective 

function. This function is solved using a gradient-based optimization technique. To use 

the FMINCON solver, a set of feasible trial values for the parameters needs to be input. 

In the case of the numerical example mentioned in this section, the location of the crack 

and the crack-depth ratio are the main parameters. To ensure that these trial values do 

not exceed the physical boundaries of the beam, a range is required to be fixed., The 

range of trial values used is presented in Table 4.7. Using more than one set of trial 

values increases the likelihood of finding a global rather than local solution. In this case, 

ten random sets of trial values are used. The trial values in those sets were selected 

using Latin hypercube samples. 

Table 4.7 - Range of trial values used to solve the inverse problem for a beam shown 

in Figure 4.8 

Parameters Location (𝐱) Crack-depth ratio (𝐂/𝐝) 

Upper Limit (UL) 1.5 0.9999 

Lower Limit (LL) 0 0 

Once the synthetic data  (mentioned in Table 4.6) are generated and the range for the 

trial values in the form  of  parameters of the crack (Table 4.7) in Eq. (4.5.2) are decided 

according to the geometry of the plate. An objective function can be developed for 

minimization using least square fit method. The random number of sets of trial values 

can be used as an input argument for the optimization. Each was converged to a 

particular value as per the convergence criteria. Tolerance of 10-6 is the criteria used for 

the convergence.  
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The results converged at global and local optima are present in Table 4.8. 

Table 4.8 - Final values of crack parameters and error function for each of the 10 trial 

values. 

Set location (x) d/h 𝒇(𝒙, 𝒅/𝒉) 

1 0.1 0.414 8.1920 

2 0.6 0.409 1.28 x 10−6

3 1.318 0.46 1.581 

4 0.1 0.414 8.192 

5 0.600 0.409 1.32 x 10−5

6 0.600 0.409 5.44 x 10−6

7 0.599 0.409 3.92 x 10−6

8 0.600 0.409 2.01 x 10−6

9 0.600 0.409 1.70 x 10−5

10 0.1 0.414 8.1925 

In  Table 4.8 we can see that sets 2,5,6,7,8 and 9 converged as per the required tolerance 

as compared to sets 1,3,4 and 10.  

Figure 4.9 - Optimized location of crack for each of the 10 trial values 

In  Figure 4.9, it is evident that sets 2,5,6,7,8 and 9 have converged to the expected 

target location indicated by the dashed red line at 0.6 m.  On the other hand, the final 
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values of the objective function for set numbers 1,3,4, and 10 are larger than the 

tolerance (10-6).Using this phenomenon, the provided thickness of the lines for each set 

of iterations presented in Figure 4.9 is inversely proportional to the final value of 

objective function 𝑓(𝑥, 𝑑/ℎ).This thickness variation indicates that the thicker lines 

converge with the expected value of the crack location. In addition, observed results in 

the solver indicate that the set numbers 2,5,6,7,8 and 9 converge with satisfying 

optimality criteria compared to the set numbers 1,3,4 and 10. Hence, those plots 

represent the likelihood of the actual damage location.  

In Figure 4.10 convergence on the crack-depth ratios for each set of trial values can be 

seen. It can be observed that the same sets which converged to the target locations in 

the Figure 4.9 converge to the target crack-depth ratio. The target crack depth ratio is 

presented by a dashed red line in at 0.410. As shown in Figure 4.10 in the converge of 

the sets of trial values, which converge to the target crack-depth ratio, are shown in 

bold. The function files are attached in the Appendix (F). 

Figure 4.10 - Convergence of crack depth-ratio crack depth vs iterations for 10 sets of 

trial values. 
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4.5.4 Discussion 

The gradient-based optimization used to obtain the crack parameters in the beam 

(location and severity) have been shown to provide accurate results. Using this 

technique, providing accurate input arguments (by selecting the trial values of the crack 

parameters without exceeding the geometrical boundaries of the plate) to the solver and 

defining key parameters, i.e., step size, tolerance, constraints, etc., can direct the 

outcome toward a global solution. This process can be made faster by providing the 

gradient of the objective function to the solver. In this piece of work, the gradient of the 

objective function is not provided due to simplicity of the problem. 

4.5.5 Conclusion  

In this chapter, the inverse problem is solved to determine the location and severity of 

a single crack in a beam. This is achieved in two stages, firstly localizing the crack and 

then assessing its severity. Two different approaches are used for the crack localization 

and the optimization is performed for the objective function created using least squares 

fit method to obtain the location and severity of the crack, followed by a numerical 

example. 

The first stage is crack localization. Normalized natural frequencies are first used to 

eliminate the crack severity to make the problem one-dimensional. Crack localization 

is then achieved through two methods. In the first method, vector operations are 

performed with noise-free simulated data regarding the first four natural frequencies. 

In the second method, interval arithmetic operations are performed to obtain the range 

of crack locations based on the first four noise-contaminated natural frequencies.  

The second part focuses on obtaining the crack location and severity in the beam 

(location and severity) using the gradient-based optimization techniques available in 

the solver FMINCON. The achieved results meet the defined targets for the damage 

detection procedure. 
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5 Chapter 5: Free Vibration Analysis of Intact and Damaged 

Plates. 

5.1 Introduction. 

Many studies related to the damage modelling of plates relate to the work on 

beams and have therefore already been discussed in literature review of Section 

2.4. These studies are based on numerical, analytical, and experimental methods. 

Free vibration analysis of an isotropic plate structure with simply supported 

boundary conditions using the strain energy approach will be addressed in this 

chapter. Cracks will be modelled parallel to the edges of the plate and in arbitrary 

orientations. A novel approach to model a crack in the plate structure will be 

presented with parametric studies along with validation through comparison with 

finite element analysis.  

5.2 Background Studies: Free Vibration Analysis of an Intact Plate. 

In dynamic analyses, structures can be considered as single or multi-degree-of-

freedom systems. However, plate structures are generally considered as 

continuous systems when obtaining their dynamic response. Using the Rayleigh-

Ritz method or Galerkin method the expression for the natural frequencies of the 

plate can be obtained. 

Consider a simply supported rectangular plate with length ‘a’, breadth ’b’, and 

thickness ‘h’, made of isotropic material with a Young’s modulus ’E’, density 

‘𝜌’, and Poisson’s ratio ‘𝑣’, as shown in Figure 5.1. It vibrates at a natural 

frequency 𝜔𝑚𝑛0.

Figure 5.1 - Simply supported intact plate. 
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The expression for the displacement of the simply supported plate can be 

expressed by solving the equation of motion [143]  where 𝑤𝑚𝑛 is the maximum

amplitude of the plate. For simplicity this can be considered as unity. 

𝑤(𝑥, 𝑦, 𝑡) = 𝑤𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 𝑠𝑖𝑛(𝜔𝑚𝑛0𝑡)

(5.2.1) 

Here, m and n are the number of half wavelengths in the x and y directions 

respectively. When ωt = nπ the displacement is zero, the strain energy is zero 

and the kinetic energy takes its maximum value. The expression for the kinetic 

energy for an intact plate can be presented as: 

𝑇0 =
1

2
𝜌ℎ∫ ∫ (

𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡
)

2

𝑑𝑦
𝑏

0

𝑎

0

𝑑𝑥 
(5.2.2) 

𝑇0 =
1

2
𝜌ℎ𝜔𝑚𝑛0

2 𝑤𝑚𝑛
2  𝑐𝑜𝑠(𝜔𝑚𝑛0𝑡)∫ ∫ 𝑠𝑖𝑛2 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦

𝑏
) 𝑑𝑦

𝑏

0

𝑎

0

𝑑𝑥 
(5.2.3) 

Under harmonic excitation, the maximum kinetic energy occurs when the cosine 

term reaches its peak value of one. Therefore, the expression for the maximum 

kinetic energy can be expressed as:  

𝑇0 =
1

2
𝜌ℎ𝜔𝑚𝑛0

2 𝑤𝑚𝑛
2  ∫ ∫ 𝑠𝑖𝑛2 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦

𝑏
) 𝑑𝑦

𝑏

0

𝑎

0

𝑑𝑥 
(5.2.4) 

When 𝜔𝑡 = (𝑛 +
1

2
) 𝜋, the kinetic energy is zero and the strain energy takes its 

maximal value. The strain energy for the plate can be expressed as: 

 𝑈0 =
𝐷

2
∫ ∫ [(

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

2𝑏

0

𝑎

0

− 2(1 − 𝑣) {
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
− (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

}] 𝑑𝑦 𝑑𝑥 

(5.2.5) 

Here, 

 𝐷 =
𝐸ℎ3

12(1 − 𝜈2)

(5.2.6) 

For a simply supported plate, twisting effects can be ignored since the boundary 

conditions result in zero twisting moments and the twisting is minimal due to the 
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decoupled nature of the bending. The presented Eq. (5.2.5) for the strain energy 

can then be adopted as: 

 𝑈0 =
𝐷

2
∫ ∫ [(

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

2

] 𝑑𝑦
𝑏

0

𝑎

0

𝑑𝑥 
(5.2.7) 

Here D is the flexural rigidity of the plate. Eq. (5.2.7) can be expanded 

employing the following terms 

𝜕2𝑤

𝜕𝑥2
= −𝑤𝑚𝑛 (

𝑚𝜋

𝑎
)
2

sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)

𝜕2𝑤

𝜕𝑦2
= −𝑤𝑚𝑛 (

𝑛𝜋

𝑏
)
2

sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)
}

(5.2.8) 

 and the total strain energy for an intact plate can be expressed using Eq. (5.2.9). 

 𝑈0 =
1

2
𝐷𝑤𝑚𝑛

2 𝜋4 (
𝑚2

𝑎2
+
𝑛2

𝑏2
)

2

∫ ∫ 𝑠𝑖𝑛2 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦

𝑏
)𝑑𝑦

𝑏

0

𝑎

0

𝑑𝑥 

(5.2.9) 

Conservation of energy requires that 𝑇0 = 𝑈0 , which provides the equation for

the natural frequencies of the simply supported plate modes of vibration 

corresponding to m and n half sine waves in the x and y directions. 

𝜔𝑚𝑛0 = √
𝐷𝜋4

𝜌ℎ
(
𝑚2

𝑎2
+
𝑛2

𝑏2
)

2 (5.2.10) 

5.3 Free Vibration Analysis of a Cracked Plate: Strain Energy Approach. 

In this section an expression for the relative changes in the natural frequencies 

(RCNF) of the intact and the cracked plate is derived. Two cases are examined. 

The first is a crack parallel to the edge of the plate which is illustrated by a 

numerical example. The second is a crack in an arbitrary direction which is 

solved using an axis transformation and again illustrated by a numerical 

example. 
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5.3.1 Case I: Crack Parallel to Edge of the Plate 

From the literature review it has been observed that the use of a line spring model 

helps to improve the computational efficiency of obtaining the natural 

frequencies of a cracked plate. In Section 3.3 a rotational spring for a beam 

structure was used for cases where the crack runs all-through-the-width of the 

beam. Caddemi and Calio [32] provided a formulation for the non-dimensional 

compliance of a rotational spring containing a crack.  Labib et al.[35] utilized 

this expression for modelling damage in a beam structure. 

For the beam shown in Figure 5.2  the expression for the compliance can be 

calculated from Eq. (3.3.1) to Eq. (3.3.4). 

Figure 5.2 - Beam with the all-through-thickness crack. 

Luo et al.[20] utilized a similar approach for plates, again using a rotational 

spring. In Figure 5.3 a crack running along the length of the plate can be 

considered analogous to a crack running all the way across a beam width.  
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Figure 5.3 - Plate with all-through-length crack. 

By analogy, the stiffness of a rotational spring representing a through-the-length 

crack in a plate is expressed in Eq. (5.3.1). 

𝐾𝑥 =
𝐷𝑎

ℎ𝐶(𝑑/ℎ)

(5.3.1) 

 A small portion of the crack with length 𝑑𝑥 running parallel to the x-axis is 

shown in Figure 5.4. The expression for the stiffness per unit length of the 

rotational spring is expressed in Eq.  (5.3.2) 

Figure 5.4 - Portion of crack parallel to the length. 
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𝐾∗𝑥 =
𝐷

ℎ

1

𝐶(𝑑 ℎ⁄ )

(5.3.2) 

Compliance (𝐶x) can be expressed as the reciprocal of the stiffness of the

rotational spring (𝐾∗𝑥).

𝐶𝑥 =
ℎ

𝐷
 𝐶(𝑑 ℎ⁄ ) 

(5.3.3) 

The formulation provided for the compliance per unit length will be the same for 

cracks in any orientation. This quantity can be denoted as 𝐶y for a crack along

the y-axis. The notation 𝐶𝑛 will be considered to represent the compliance per

unit length for cracks in any arbitrary orientations in the subsequent sections. 

5.3.1.1 Methodology 

A plate is considered with a crack running from (𝑥1, 𝑦1) to (𝑥2, 𝑦2) with 𝑦1 =

𝑦2, i.e.in an orientation parallel to the edge of the plate (Figure 5.5).

Figure 5.5 – Simply supported plate with a crack parallel to the x-axis. 

The effect of the crack can be introduced using the compliance defined in Eq. 

(5.3.2). The length of the crack orientated parallel to the x-axis (𝜑 = 00) of the

crack can be given by, 

𝑙 = 𝑥2 − 𝑥1 (5.3.4) 

Let a typical point (𝑥, 𝑦) somewhere along the crack be identified by its 

position 𝑑𝑥 where 0 ≤ 𝑑𝑥 ≤ 𝑙 given by : 

𝑥 = 𝑥1 + 𝑑𝑥  ,  𝑦 = 𝑦1 = 𝑦2 (5.3.5) 
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Consider a small portion of the crack of length 𝑑𝑥, where the bending moment 

about the crack direction is 𝑀𝑥 per unit length and the discontinuity of the

rotation across the crack is  

𝛿𝜃𝑦 = (𝐶𝑥/𝑑𝑥)(𝑀𝑦𝑑𝑥) = 𝐶𝑥𝑀𝑦 (5.3.6) 

The incremental strain energy associated with the discontinuous rotation in that 

portion of the crack is 

𝑑𝑈𝑑 =
1

2
𝛿𝜃𝑦(𝑀𝑦𝑑𝑥) =

1

2
𝐶𝑥(𝑀𝑦

2𝑑𝑥)
(5.3.7) 

where 𝑀𝑥 and 𝑀𝑦 are the longitudinal and transverse bending moments per

unit length, respectively, and 𝑀𝑥𝑦 is the twisting moment which gets nullified

due to the longitudinal direction of the crack.  

𝑀𝑥𝑦 = −𝐷(1 − 𝑣) (
𝜕2𝑤

 𝜕𝑥𝜕𝑦
) 

𝑀𝑥 = −𝐷 (
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
)  𝑀𝑦 = −𝐷 (𝜈

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) 

(5.3.8) 

Substituting Eq. (5.3.8) into Eq. (5.3.7) gives the incremental strain energy as 

𝑑𝑈𝑑 =
1

2
𝐶𝑥𝑤𝑚𝑛

2 𝐷2𝜋4 (𝑣
𝑚2

𝑎2
+
𝑛2

𝑏2
)

2

{𝑠𝑖𝑛2 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦1

𝑏
) 𝑑𝑥} 

(5.3.9) 

The strain energy associated with the discontinuous rotation for the whole 

crack is, therefore. 

𝑈𝑑 =
1

2
𝐶𝑥𝑤𝑚𝑛

2 𝐷2𝜋4 (𝑣
𝑚2

𝑎2
+
𝑛2

𝑏2
)

2

 ∫ {𝑠𝑖𝑛2 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦1
𝑏
) 𝑑𝑥}

𝑙

0

 

(5.3.10) 

The integration in Eq. (5.3.10) can be simplified to give, 
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∫ {𝑠𝑖𝑛2 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦1
𝑏
) 𝑑x}

𝑙

0

=
1

2
sin2 (

𝑛𝜋𝑦1
𝑏
)∫ (1 − cos (

2𝑚𝜋𝑥

𝑎
))

𝑥2

𝑥1

𝑑𝑥 

 =
1

2
sin2 (

𝑛𝜋𝑦1
𝑏
) [𝑥 −

𝑎

4𝑚𝜋
sin (

2𝑚𝜋𝑥

𝑎
)]
𝑥1

𝑥2

 =  sin2 (
𝑛𝜋𝑦1
𝑏
) [
𝑥2 − 𝑥1
2

−
𝑎

4𝑚𝜋
[sin (

2𝑚𝜋𝑥2
𝑎

) − sin (
2𝑚𝜋𝑥1
𝑎

)]] 

(5.3.11) 

Let  𝑥0  and 𝑦0  represent the midpoint of the crack. When the crack in the plate

is parallel to the x-axis, the midpoint can be expressed as: 

 𝑦1 = 𝑦2 = 𝑦0

𝑥2 − 𝑥1
2

=    𝑥0 =
𝑙

2

After integrating the strain energy for a finite part of the crack from zero to the 

overall length of the crack, the total change in strain energy can be expressed 

as: 

𝑈𝑑 =
1

2
𝐶𝑥𝑤𝑚𝑛 

2 𝐷2𝜋4 (𝑣
𝑚2

𝑎2
+
𝑛2

𝑏2
)

2

 𝑠𝑖𝑛2 (
𝑛𝜋𝑦0
𝑏
) [𝑙 −

𝑎

2𝑚𝜋
𝑐𝑜𝑠 (

2𝑚𝜋𝑥0
𝑎

) 𝑠𝑖𝑛 (
𝑚𝜋𝑙

𝑎
)] 

(5.3.12) 

The available mechanical strain energy at peak displacement for the cracked 

plate is 

𝑈𝑐 = 𝑈0 − 𝑈𝑑 (5.3.13) 

The cracked plate vibrates with a reduced natural frequency 𝜔𝑚𝑛𝑐 and at zero

displacement has kinetic energy: 

𝑇𝑐 =
1

2
𝜌ℎ𝜔𝑚𝑛𝑐

2 𝑤𝑚𝑛
2 ∫ ∫ 𝑠𝑖𝑛2 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦

𝑏
)𝑑𝑦

𝑏

0

𝑎

0

𝑑𝑥 
(5.3.14) 

Conservation of energy requires that 𝑇𝑐 = 𝑈𝑐 and so
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𝑇𝑐 − 𝑇0 = 𝑈𝑐 − 𝑈0 = −𝑈𝑑 (5.3.15) 

1

2
𝜌ℎ(𝜔𝑚𝑛𝑐

2 −𝜔𝑚𝑛0
2 )𝑤𝑚𝑛

2 ∫ ∫ 𝑠𝑖𝑛2 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦

𝑏
)𝑑𝑦

𝑏

0

𝑎

0

𝑑𝑥

= −𝑈𝑑

(5.3.16) 

Here, algebraic operations can be performed and difference between the square 

of the natural frequencies of the intact and cracked plate structures can be 

denoted by 𝛿𝑚𝑛, as expressed in  Eq. (5.3.17) .

𝜔𝑚𝑛𝑐
2 = 𝜔𝑚𝑛0

2 − 𝛿𝑚𝑛 (5.3.17) 

The difference between the square of the natural frequencies of the intact and 

cracked plate can be provided using Eq. (5.3.18). 

𝛿𝑚𝑛 =
{

𝐶𝑛𝐷
2𝜋4 (𝑣

𝑚2

𝑎2
+
𝑛2

𝑏2
)
2

𝑠𝑖𝑛2 (
𝑛𝜋𝑦1
𝑏
) [
𝑙
2
−

𝑎
2𝑚𝜋

𝑐𝑜𝑠 (
2𝑚𝜋𝑥0
𝑎

) 𝑠𝑖𝑛 (
𝑚𝜋𝑙
𝑎
)]

}

𝜌ℎ ∫ ∫ 𝑠𝑖𝑛2 (
𝑚𝜋𝑥
𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦
𝑏
)𝑑𝑦

𝑏

0

𝑎

0
𝑑𝑥

(5.3.18) 

Note the double integral in the denominator of Eq. (5.3.18) is over the whole 

area of the plate and takes the value (𝑎𝑏 4⁄ ). 

Similarly, the difference between the squares of the natural frequencies of a 

cracked and uncracked plate for a crack parallel to the y-axis can be expressed 

as: 

𝛿𝑚𝑛 =

{
𝐶𝑛𝐷

2𝜋4 (
𝑚2

𝑎2
+ 𝑣

𝑛2

𝑏2
)
2

𝑠𝑖𝑛2 (
𝑚𝜋𝑥1
𝑎

) [
𝑙
2
−

𝑏
2𝑛𝜋

𝑐𝑜𝑠 (
2𝑛𝜋𝑦0
𝑏

) 𝑠𝑖𝑛 (
𝑛𝜋𝑙
𝑏
)]

} 

𝜌ℎ ∫ ∫ 𝑠𝑖𝑛2 (
𝑚𝜋𝑥
𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦
𝑏
) 𝑑𝑦

𝑏

0

𝑎

0
𝑑𝑥

(5.3.19) 

where 

𝑦2 − 𝑦1
2

=    𝑦0 =
𝑙

2
 𝑎𝑛𝑑  𝑥1 = 𝑥2 = 𝑥0
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5.3.1.2 Numerical Example. 

This section explores the effects of a crack running parallel to either the x or y 

axis of the plate on the degradation of natural frequencies through a numerical 

example. The findings have been validated against prior research in the literature 

that employs Finite Element Analysis [20]. 

An isotropic square plate made of titanium has been considered for this 

demonstration as shown in Figure 5.6 The dimensions and the material properties 

are defined as: length (𝑎) = 0.1m;  width (𝑏) = 0.1m; Young’s modulus (E) = 

110 x 109 Nm-2; mass density  (𝜌) = 4480kgm−3;

Two cases of cracks have been considered to observe the degradation in the 

natural frequencies in the plate. Case 1 (Figure 5.6 (a)) considers a crack running 

parallel to the y-axis from (𝑥1, 𝑦1) = (0.075,0.05) to  (𝑥2, 𝑦2) = (0.075,0.1),

i.e. along the quarter line of the plate. Similarly, case 2 considers the cracked

plate presented in Figure 5.6 (b) which has a crack again running parallel to the 

y-axis but in this case located at the mid-line of the plate.

In both scenarios, crack depths vary between 10% and 60% of overall plate 

thickness. The difference between the squares of natural frequencies of the intact 

and cracked plate have been considered to conduct comparative studies. These 

results have been validated against findings from the advanced finite element 

method presented in earlier literature [20]. This earlier literature considered non-

dimensional results regarding natural frequencies. For convenience of 

comparison, the obtained natural frequencies of the cracked plate have been 

converted into non-dimensional values using Eq. (5.3.20).   

�̅�𝑚,𝑛 = 𝜔𝑚,𝑛𝑎
2 √

𝜌ℎ

𝐷
(5.3.20) 

For comparison with respect to the finite element analyses performed, the 

relative change in natural frequencies (RCNF) has been employed. Relative 

changes in natural frequencies (𝛿𝑟(𝑚,𝑛)) can be obtained using Eq. (5.3.21).

𝛿𝑟(𝑚,𝑛) =  1 − (
𝜔𝑜(𝑚,𝑛)

𝜔𝑐(𝑚,𝑛)
) (5.3.21) 



Chapter 5: Free Vibration Analysis of Intact and Damaged Plates. 

86 

Figure 5.6 - An isotropic plate with a crack at, a) (𝑥1,𝑦1) = (0.075,0.05)

and(𝑥2,𝑦2) = (0.075,0.1) b) (𝑥1, 𝑦1) = (0.05,0.05) 𝑎𝑛𝑑 (𝑥2, 𝑦2) = (0.05,0.1).

5.3.1.3 Results 

Table (5.1) displays the non-dimensional natural frequencies for the plate 

illustrated in Figure 5.6 which features a crack extending along the quarter line 

of the plate.  

Table (5.2) provides relative changes in natural frequencies between the intact 

and cracked plates (𝛿𝑟(𝑚,𝑛)) resulting from the presence of this crack. Figure

(5.7) shows the comparative analysis related to the finite element method. 
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Table 5.1 - non-dimensional natural frequencies of the cracked plate shown in 

Figure 5.6 (a) 

Table 5.2 – 𝛿𝑟(𝑚,𝑛) for partially through the depth of the crack for plate shown

in Figure 5.6 (a) 

d/h 

Mode 

(1,1) 

Mode 

(2,1) 

Mode 

(1,2) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 19.739 49.348 49.348 78.956 98.696 98.696044 

0.1 19.733 49.30 49.081 78.913 98.640 98.687 

0.2 19.726 49.233 49.078 78.852 98.562 98.674 

0.3 19.715 49.136 49.075 78.7637 98.448 98.656 

0.4 19.697 48.986 49.072 78.626 98.273 98.629 

0.5 19.669 48.735 49.064 78.398 97.9821 98.5833 

0.6 19.617 48.271 49.0534 77.977 97.443 98.498 

d/h 

Mode 

(1,1) 

Mode 

(2,1) 

Mode 

(1,2) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 0 0 0 0 0 0 

0.1 0.00027 0.00096 0.00003 0.0005 0.000563 0.00008 

0.2 0.00066 0.00231 0.00007 0.001321 0.00135 0.00021 

0.3 0.0012 0.00428 0.0001 0.00244 0.0025 0.00039 

0.4 0.00208 0.00733 0.00021 0.004181 0.00428 0.0006 

0.5 0.00352 0.012404 0.0003 0.00706 0.007233 0.00114 

0.6 0.00618 0.0218 0.0005 0.0123 0.01269 0.00199 
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(a) (c) 
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Figure 5.7 - Comparison of ‘ 𝛿𝑟(𝑚,𝑛)’ for a cracked plate shown in Figure 5.6 (a) with Finite Element analysis from the reference [20].

(a) Mode (1,1); (b) Mode (2,1) ;(c) Mode (1,2) ;(d) Mode (2,2) ;(e) Mode (3,1) ;(f) Mode (1,3).

(e) (f) 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
C

N
F

Depth ratio (d/h)

Mode(3,1)

Strain Energy Method Finilte Element Analysis

0

0.0005

0.001

0.0015

0.002

0.0025

0 0.2 0.4 0.6 0.8

R
C

N
F

Depth ratio (d/h)

Mode(1,3)

Strain Energy Method Finilte Element Analysis



Chapter 5: Free Vibration Analysis of Intact and Damaged Plates. 

90 

Mode (1,1) Mode (2,1) 

Mode (1,2) Mode (2,2) 

Mode (3,1) Mode (1,3) 

Figure 5.8 - Mode shapes for the plate shown in Figure 5.6 (a). 

Figure 5.8 shows the mode shapes for the plate depicted in Figure 5.6(a), where 

the crack is located along the quarter line of the plate. The results show a match 

of 95% to 98% with the finite element model for crack depth ratios between 0.1 

and 0.3. For crack depth ratios ranging from 0.4 to 0.6, this match varies between 

91% and 81%. 
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Table 5.3 presents the non-dimensional natural frequencies for the plate 

illustrated in Figure 5.6 (b), with a crack extending along the mid-line of the 

plate. Table 5.4 provides the 𝛿𝑟(𝑚,𝑛) resulting from the presence of the crack.

Table 5.3 - non-dimensional natural frequencies of the cracked plate shown in 

Figure 5.6 (b) 

d/h 

Mode 

(1,1) 

Mode 

(1,2) 

Mode 

(2,1) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 19.739 49.348 49.348 78.956 98.696 98.696 

0.1 19.728 49.335 49.348 78.956 98.584 98.678 

0.2 19.713 49.318 49.348 78.956 98.429 98.653 

0.3 19.690 49.292 49.348 78.956 98.201 98.617 

0.4 19.656 49.253 49.348 78.956 97.849 98.562 

0.5 19.599 49.188 49.348 78.956 97.262 98.470 

0.6 19.494 49.068 49.348 78.956 96.1765 98.301 

Table 5.4 - ‘𝛿𝑟(𝑚,𝑛)’for partially through the depth of the crack for plate shown in

Figure 5.6 (b). 

d/h 

Mode 

(1,1) 

Mode 

(1,2) 

Mode 

(2,1) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 0 0 0 0 0 0 

0.1 0.0005 0.0002 0 0 0.0011 0.00017 

0.2 0.0013 0.0006 0 0 0.0027 0.00042 

0.3 0.0024 0.0011 0 0 0.0050 0.00079 

0.4 0.0041 0.0019 0 0 0.0085 0.0013 

0.5 0.0070 0.0032 0 0 0.01452 0.0022 

0.6 0.0123 0.0056 0 0 0.0255 0.0039 



Chapter 5: Free Vibration Analysis of Intact and Damaged Plates. 

92 

(a) (c) 

(b) (d) 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.2 0.4 0.6 0.8

R
C

N
F

Depth-ratio (d/h)

Mode(1,1)

Strain Energy Approach Finite Element Analysis

0

0.001

0.002

0.003

0.004

0.005

0.006

0 0.2 0.4 0.6 0.8

R
C

N
F

Depth-ratio (d/h)

Mode(2,1)

Strain Energy Approach Finite Element Analysis

0

0.001

0.002

0.003

0.004

0.005

0.006

0 0.2 0.4 0.6 0.8

R
C

N
F

Depth-ratio (d/h)

Mode(1,2)

Strain Energy Approach Finite Element Analysis

0

0.002

0.004

0.006

0 0.2 0.4 0.6 0.8

R
C

N
F

Depth-ratio (d/h)

Mode(2,2)

Strain Energy Approach Finite Element Analysis



Chapter 5: Free Vibration Analysis of Intact and Damaged Plates. 

93 

Figure 5.9 Comparison of RCNF for a cracked plate shown in Figure 5.6 (b) with Finite Element Model generated by  [20], 

(a) Mode (1,1); (b) Mode (1,2); (c) Mode (2,1); (d) Mode (2,2); (e) Mode (3,1); (f) Mode (1,3).
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Mode (1,1) Mode (2,1) 

Mode (1,2) Mode (2,2) 

Mode (3,1) Mode (1,3) 

Figure 5.10  - Mode shapes for the plate shown in Figure 5.6 (b). 
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Figure (5.9) compares the strain energy approach and the finite element model 

results for a crack positioned along the mid-line of the plate. Figure 5.10 shows 

the mode shapes for the plate depicted in Figure 5.6(a), where the crack is located 

along the quarter line of the plate. The crack aligns precisely with the nodal line, 

resulting in no change in rotation, which in turn leads to no change in strain 

energy and negligible 𝛿𝑟(𝑚,𝑛) for modes (2,1) and (2,2).

The findings indicate a match of approximately 96% to 98% for crack depth 

ratios between 0.1 and 0.2. For crack depth ratios ranging from 0.3 to 0.5, the 

results show a variation of around 94 % to 86 %. 

5.3.1.4 Discussion 

This section has examined the degradation of natural frequencies in a square 

isotropic simply supported plate using the strain energy approach. The linear 

crack analysed here is partially through the depth and oriented parallel to the 

edge of the plate.  

The obtained results were compared with prior research employing finite 

element analysis [20]. These studies revealed a significant correlation, with 

agreement levels ranging from 80% to 98% in terms of crack depth. However, 

an analytical approach to determining the degradation in natural frequencies 

offers a better match for crack depth ratios up to 0.4. 

In the following Section, 5.3.2, a crack oriented in an arbitrary direction will be 

considered for modelling, along with parametric studies. 
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5.3.2 Case II – Arbitrary Oriented Crack. 

5.3.2.1 Strain Energy Approach  

In the previous Section 5.3.1, the case of a partial through-the-depth crack in an 

isotropic, simply supported plate, where the crack was parallel to the edges of 

the plate, was studied. An analytical solution was presented that provided the 

difference between the squares of the natural frequencies of the uncracked and 

cracked plates. 

In earlier research studies [20], when modelling cracks using finite element 

analysis, for the case of an arbitrarily oriented crack, the effect was considered 

as a superposition of two cracks running parallel to the edges with the twisting 

moment being neglected. 

This section presents the case of arbitrarily oriented, partially through-the-

thickness crack, with the inclusion of the twisting effect in an analytical solution. 

(a) (b) 

Figure 5.11  - a) Plate with an arbitrarily oriented crack. b) Axis transformation 

according to crack orientation. 
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. 

An isotropic plate is considered with length a, breadth b, and thickness h as 

shown in Figure 5.11 (a). 

A crack of depth d runs from the centre point of the plate with initial and final 

coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2) respectively. ′𝑙′ denotes the length of the crack.

The transformation of the crack to axes normal and tangential to the crack is 

shown is figure 5.10 (b). 

The length of the crack and the orientation with respect to the x - axis can be 

calculated using Eq. (5.3.22) and (5.3.23). 

𝑙 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 (5.3.22) 

𝜑 = 𝑡𝑎𝑛−1 (
𝑦2 − 𝑦1
 𝑥2 − 𝑥1

) (5.3.23) 

If 𝑀𝑛 and 𝑀𝑡 represent the bending moments per unit length across and along

the crack respectively, from Eq. (5.3.6) the change in rotation across the crack 

δ𝜃𝑛 for a small length of the crack (𝑑𝑠) can be represented by Eq. (5.3.24).

𝛿𝜃𝑛 = (𝐶𝑛)(𝑀𝑛) (5.3.24) 

Here, 𝐶𝑛 represents the compliance per unit length of the arbitrarily oriented

crack. Similarly from  Eq. (5.3.7) the change in strain energy for a small part of 

the crack ‘𝑑𝑠’ can be expressed as Eq. (5.3.25) 

𝑑𝑈𝑑 =
1

2
𝛿𝜃𝑛(𝑀𝑛𝑑𝑠) =

1

2
𝐶𝑛(𝑀𝑛

2𝑑𝑠)
(5.3.25) 

Here, 𝑀𝑛 can be expressed as: 

𝑀𝑛 = 𝑀𝑥(𝑐𝑜𝑠𝜑)
2 +𝑀𝑦(𝑠𝑖𝑛𝜑)

2 + 2𝑐𝑜𝑠𝜑 𝑠𝑖𝑛 𝜑𝑀𝑥𝑦 (5.3.26) 

The change in the strain energy can be obtained for a unit length 𝑑𝑠 by 

substituting Eq. (5.3.26) into Eq. (5.3.25). 
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𝑑𝑈𝑑

=
1

2
𝐶𝑛𝑤𝑚𝑛

2 𝐷2𝜋4

[[

(
𝑚2

𝑎2
+ 𝜈

𝑛2

𝑏2
) (𝑐𝑜𝑠𝜑)2 +

(𝜈
𝑚2

𝑎2
+
𝑛2

𝑏2
) (𝑠𝑖𝑛𝜑)2

]

𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)𝑑𝑠

+ 2(1 − 𝑣)𝑐𝑜𝑠𝜑 𝑠𝑖𝑛 𝜑
𝑚𝑛

𝑎𝑏
𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
)𝑑𝑠

] (5.3.27) 

The strain energy associated with the discontinuous rotation over the whole 

crack is, therefore 

𝑈𝑑 =
1

2
𝐶𝑛𝑤𝑚𝑛

2 𝐷2𝜋4

∫

[

[

(
𝑚2

𝑎2
+ 𝜈

𝑛2

𝑏2
) (cos𝜑)2

+(𝜈
𝑚2

𝑎2
+
𝑛2

𝑏2
) (sin𝜑)2

]

sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) 𝑑𝑠

+

2(1 − 𝑣)cos𝜑 sin𝜑
𝑚𝑛

𝑎𝑏
cos (

𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
) 𝑑𝑠 ]

𝑙

0

(5.3.28) 

While integrating Eq. (5.3.28), 𝑥 and 𝑦 can be substituted as: 

𝑥 = 𝑥1 + 𝑠(cos𝜑)  , 𝑦 = 𝑦1 + 𝑠(sin𝜑) (5.3.29) 

and 

𝛼𝑥 =
𝑚𝜋(𝑥1 + 𝑠 cos𝜑)

𝑎
, 𝛼𝑦 =

𝑛𝜋(𝑦1 +  sin𝜑)

𝑏

(5.3.30) 

where, 𝑥1 and 𝑦1 are the starting points of the crack. Hence, the total strain

energy due to the crack can be expressed as: 
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𝑈𝑑 =
1

2
𝐶𝑛𝑤𝑚𝑛

2 𝐷2𝜋4

∫

{

[

(
𝑚2

𝑎2
+ 𝜈

𝑛2

𝑏2
) cos2 𝜑

+(𝜈
𝑚2

𝑎2
+
𝑛2

𝑏2
) sin2 𝜑

]

sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) 𝑑𝑠

+2(1 − 𝑣)cos𝜑 sin𝜑
𝑚𝑛

𝑎𝑏
cos (

𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
) 𝑑𝑠}

𝑙

0

2

(5.3.31) 

Using Eq. (5.3.30), Eq. (5.3.31) can be modified as: 

𝑈𝑑

=
1

2
𝐶𝑛𝑤𝑚𝑛

2 𝐷2𝜋4 { [(
𝑚2

𝑎2
+ 𝜈

𝑛2

𝑏2
) cos2𝜑

+ (𝜈
𝑚2

𝑎2
+
𝑛2

𝑏2
) sin2𝜑]

2

∫ sin2 𝛼𝑥sin
2𝛼𝑦

𝑙

0

𝑑𝑠

+ (2(1 − 𝑣)cos𝜑 sin𝜑
𝑚𝑛

𝑎𝑏
)
2

∫ cos2 𝛼𝑥cos
2𝛼𝑦

𝑙

0

𝑑𝑠 

+ 4 [(
𝑚2

𝑎2
+ 𝜈

𝑛2

𝑏2
) cos𝜑 + (𝜈

𝑚2

𝑎2
+
𝑛2

𝑏2
) sin𝜑]  2(1

− 𝑣)cos𝜑 sin𝜑
𝑚𝑛

𝑎𝑏
 ∫ sin 𝛼𝑥sin𝛼𝑦 cos 𝛼𝑥cos𝛼𝑦

𝑙

0

𝑑𝑠} 

(5.3.32) 

Using similar operations as performed from Eq.  (5.3.12) to Eq. (5.3.17) the 

relationship for the difference between the squares of the natural frequencies of 

intact and cracked plates can be expressed in the form of Eq. (5.3.33). 

Simplification of integral terms has been presented in Appendix (A) and the 

function files are attached in the Appendix (G). 
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𝛿𝑚𝑛  =

𝐶𝑛𝐷
2 𝜋4

{

 [(
𝑚2

𝑎2
+ 𝜈

𝑛2

𝑏2
) 𝑐𝑜𝑠2𝜑 + (𝜈

𝑚2

𝑎2
+
𝑛2

𝑏2
) 𝑠𝑖𝑛2𝜑]

2

∗ ∫ 𝑠𝑖𝑛2 𝛼𝑥𝑠𝑖𝑛
2𝛼𝑦

𝑙

0
𝑑𝑠 +

(2(1 − 𝑣)𝑐𝑜𝑠𝜑 𝑠𝑖𝑛 𝜑
𝑚𝑛
𝑎𝑏
)
2
∗

∫ 𝑐𝑜𝑠2 𝛼𝑥𝑐𝑜𝑠
2𝛼𝑦

𝑙

0
𝑑𝑠 +

4 [(
𝑚2

𝑎2
+ 𝜈

𝑛2

𝑏2
) 𝑐𝑜𝑠2𝜑 + (𝜈

𝑚2

𝑎2
+
𝑛2

𝑏2
) 𝑠𝑖𝑛2𝜑]

∗  2(1 − 𝑣)𝑐𝑜𝑠𝜑 𝑠𝑖𝑛 𝜑
𝑚𝑛
𝑎𝑏

∗

 ∫ 𝑠𝑖𝑛 𝛼𝑥𝑠𝑖𝑛𝛼𝑦 𝑐𝑜𝑠 𝛼𝑥𝑐𝑜𝑠𝛼𝑦
𝑙

0
𝑑𝑠 }

𝜌ℎ ∫ ∫ 𝑠𝑖𝑛2 (
𝑚𝜋𝑥
𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦
𝑏
)𝑑𝑦

𝑏

0

𝑎

0
𝑑𝑥 (5.3.33) 

5.3.2.2 Modelling of Cracked Plate in ABAQUS 

ABAQUS is a widely used commercial finite element analysis (FEA) software across 

various engineering fields. This section outlines a methodology for developing a 

cracked isotropic plate model using ABAQUS. The key purpose of these models is to 

validate the results obtained from a strain energy-based approach for analysing the 

degradation of natural frequencies due to arbitrarily oriented cracks in the plate for 

which there are no previous results in the literature [21]. 

In this study, the ABAQUS model uses homogeneous S4 shell elements to represent a 

simply supported isotropic rectangular plate. The model determines the vibration 

parameters, such as natural frequencies and mode shapes, of the plate. The plate can 

have a predefined crack that can be oriented either horizontally or vertically and 

positioned at any location on the plate, with varying crack depths. The mesh size and 

number of elements may vary depending on the meshing approach used. The ABAQUS 

model assigns six degrees of freedom to each node, but the analysis focuses only on the 

out-of-plane behaviour, suppressing the in-plane degrees of freedom. The study 

examines the first six natural frequencies of the cracked plate simply supported at the 

edges. 

5.3.2.2.1 Intact and Cracked Plate Modelling in ABAQUS 

While modelling the crack in a shell, there are many potential options. In this case the 

shell is divided in two parts with the division positioned to align with the crack. These 
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two parts are then joined together using two different methods corresponding to the 

intact and cracked parts of the shell along the join.  

To model an intact plate using two separate parts, the interface nodes (or surfaces) are 

connected using tie constraints to ensure displacement compatibility and simulate 

perfect bonding between the parts. These constraints force all degrees of freedom of the 

nodes connected to be equivalent. So for example, the illustration in Figure 5.12 

corresponds to two plates joined together using tie constraints which then behaves as a 

single plate. To validate the use of the tie constraint an intact square plate simply 

supported along all four edges is modelled with the obtained results compared with the 

previous studies for a perfect plate based on its non-dimensional natural frequencies. 

(Eq. (5.3.19)). 

Figure 5.12 – Modelling of intact plate with two parts and tie constraints. 

Table 5.3 - Comparison of non-dimensional natural frequencies of isotropic square 

plate simply supported at all ends with previous studies. 
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For a plate with length a = 0.1m; width b = 0.1m; thickness h = 0.001m; modulus of 

elasticity E = 110 x 109 N m-2; density ρ = 4480 kg ∙ m-3 and Poisson’s ratio ν = 0.3, a 

comparison of natural frequency results is shown in Table 5.3. It can be seen that the 

non-dimensional natural frequencies match closely with the previous studies. Hence, 

the ABAQUS model is validated and can be used to model cracked plates, 

To model the cracked part of the plate, two constraints are used. The first is a coupling 

constraint which restrains the rotation and displacements, with the exception of the 

rotation about the crack as shown in Figure 5.13. 

Figure 5.13 - a) Coupling Constraints and Rotational Spring model. 

The second is a rotational spring as used by previous researchers [20], [35], [113]. The 

stiffness of the rotational spring can be obtained using Eq. (5.3.34). 

𝐾𝑆𝑃 =
𝐷 𝑙𝑒
ℎ 𝐶(𝑑/ℎ)

(5.3.34) 

Here, D is the flexural rigidity of the plate; 𝑙𝑒 is the length of the element; ℎ is the

thickness of the plate and 𝐶(𝑑/ℎ) is the non-dimensional compliance which can be 

obtained using Eq. (3.3.4). 

5.3.2.2.2 Mesh convergence studies  

Different mesh sizes have been considered for an intact square plate to select an 

appropriate mesh size for validation purposes. The relative change in natural 

frequencies (RCNF) has been calculated with respect to the natural frequencies 

obtained using the strain energy approach. A plate examined in section 5.3.2.2.1 has 

been used for mesh convergence studies. 
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Table 5.4 presents the natural frequencies of an intact plate using the analytical method 

(Eq. (5.2.10)) and FEM (ABAQUS) with four different mesh densities. Additionally, 

Table 5.5 presents the RCNF with respect to the analytical solution for plates modelled 

using ABAQUS. 

Table 5.4 - Natural frequencies (Hz) of an intact plate using analytical

solution and ABAQUS with different mesh sizes.  

Table 5.5  -  RCNF with respect to analytical solution from Table 5.4. 

A bar chart presented in Figure 5.14 illustrates the relative

errors in the natural frequencies compared to the analytical solution 

for an intact square plate with four different mesh densities. 
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(c) 

(d) 
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(e) 

(f) 

Figure 5.14 – Bar charts for mesh convergence studies: a) Mode (1,1), b) Mode (2,1), 

c) Mode (1,2), d) Mode (2,2), e) Mode (3,1), and f) Mode (1,3),

From Table 5.5 and Figure 5.14 , It can be observed that the  average relative error for 

mesh sizes 10 x 10  and 15 x 15  varies from 5.14 % to 2.07 %.  This percentage error 

has been further reduced to 1% using mesh sizes 20 x 20 and 25 x 25. The following 

section provides comparative studies and validation of the strain energy approach for 

modelling an arbitrary crack in simply supported square and rectangular plate 

structures.  Mesh sizes 20 x 20  and 24 x 20 have been chosen from the references in 

Table 5.5 and Figure 5.14 for validation purpose. 
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5.3.2.3 Numerical Example and Validations 

In this section, two numerical examples have been considered to demonstrate the effect 

of an arbitrary oriented crack on the natural frequencies of the plate. The material 

properties of the plates are as follows: Modulus of elasticity E = 110 x 109 N ∙ m-2; 

density ρ = 4480 kg ∙ m-3; Poisson’s ratio ν = 0.3. Both square and rectangular plates 

are considered for the comparison with those obtained from the ABAQUS model.  

In both examples, the ratio of the depth of crack to the thickness of the plate varies from 

0.1 to 0.6 in a discrete manner. The first six vibration modes are considered. Relative 

changes in natural frequencies (RCNF) with respect to a intact plate have been 

employed. 

5.3.2.3.1 Numerical Example: Square Plate 

The square plate presented in Figure 5.15 ,with length 𝑎 = 0.1m, width 𝑏 = 0.1, and 

thickness ℎ = 0.001m is studied. A crack represented by the red line with initial 

coordinates (𝑥1, 𝑦1) = (0.058,0.0553), and final coordinates (𝑥2, 𝑦2) = (0.1,0.078) is

introduced. 

Figure 5.15 - Square isotropic simply supported cracked plate. 
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Table 5.6 presents the natural frequencies of the cracked plate, with respect to the 

change in depth of the crack. Table 5.7 presents the relative change in the natural 

frequencies with respect to a intact plate. Data represented in both tables is obtained 

using the proposed strain energy approach.  

Table 5.6 - Natural frequencies of the cracked plate shown in Figure 5.15 using the 

proposed strain energy approach.  

d/h 

Mode 

(1,1) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 471.081 1884.32 2355.40 2355.40 

0.1 470.93 1883.64 2354.90 2354.76 

0.2 470.73 1882.68 2354.21 2353.87 

0.3 470.44 1881.29 2353.19 2352.56 

0.4 469.9 1879.13 2351.62 2350.55 

0.5 469.24 1875.56 2349.01 2347.21 

0.6 467.85 1868.96 2344.21 2341.05 

Table 5.7 - RCNF for a plate shown in Figure 5.15 using strain energy approach. 

d/h 

Mode 

(1,1) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 0 0 0 0 

0.1 0.000305 0.000363 0.000212 0.000271 

0.2 0.000731 0.00087 0.000508 0.000651 

0.3 0.001354 0.001611 0.00094 0.00120 

0.4 0.002313 0.002753 0.001606 0.0020 

0.5 0.003906 0.00465 0.002712 0.0034 

0.6 0.006846 0.008152 0.004751 0.00609 

The same cracked plate has been modelled using ABAQUS. Table 5.8 and 5.9 present 

the natural frequencies and relative change in natural frequencies with respect to intact 

plate based on this model. 
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Table 5.8 - Natural frequencies of a cracked plate shown in Figure 5.15 using 

ABAQUS. 

d/h Mode (1,1) Mode (2,2) Mode (3,1) Mode (1,3) 

0 471.2 1899.9 2364.4 2362.5 

0.1 470.9 1899.1 2363.8 2361.8 

0.2 470.48 1897.9 2363 2360.8 

0.3 469.89 1896.4 2361.9 2359.4 

0.4 469.01 1894 2360.3 2357.2 

0.5 467.66 1890.4 2358.1 2354 

0.6 465.42 1884.3 2354.6 2348.9 

Table 5.9 - RCNF for a plate shown in Figure 5.15 using ABAQUS. 

d/h Mode (1,1) Mode (2,2) Mode (3,1) Mode (1,3) 

0 0 0 0 0 

0.1 0.000637 0.000421 0.000254 0.000296 

0.2 0.001528 0.001053 0.000592 0.00072 

0.3 0.00278 0.001842 0.001057 0.001312 

0.4 0.004648 0.003105 0.001734 0.002243 

0.5 0.007513 0.005 0.002665 0.003598 

0.6 0.012267 0.008211 0.004145 0.005757 

The analytical solution and ABAQUS results do not match for modes (1,2) and (2,1) 

when a crack is present. This discrepancy arises because the location of the crack forces 

introduces an alternative mode shape, altering the RCNF and making a direct 

comparison invalid. As a result, these modes are excluded from the comparative 

analysis. This phenomenon is further illustrated in Figure 5.16, which shows how the 

presence of the crack influences the mode shapes, highlighting the limitations of both 

methods in capturing consistent results for these specific cases. This explanation is 

provided after introducing the tables for the energy method and ABAQUS results, as it 

directly addresses the challenges associated with these modes.
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Figure 5.16 - Comparison of RCNF for a cracked plate shown in Figure 5.15 with Finite Element Model generated by ABAQUS (a) 

Mode (1,1); (b) Mode (2,2);(c) Mode (3,1);(d) Mode (1,3). 
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Figure 5.17 – Mode shapes of square cracked plate shown in Figure 5.14 using 

ABAQUS. 

Figure 5.17  represents the first six mode shapes for a square cracked plate obtained 

from ABAQUS. Due to discrepancies observed in modes (1,2) and (2,1) when a crack 

is present beyond a crack depth ratio of 0.2, these modes have been excluded from the 

comparative studies with the strain energy approach. The effect of the crack on the 

mode shapes for a range of vibration modes are shown including for the mode shapes 

for the second and third natural frequencies which do not correspond to any 

combination of m and n in the shape function used to represent the plate displacement 

in the analytical solution.  

Mode (1,1) Mode (2,1) 

Mode (1,2) Mode (2,2) 

Mode (1,3)  Mode (3,1) 
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It is noted that in Figure 5.17, the displacement appears different on either side of the 

crack. This variation is not physical, but rather a result of shading and nodal averaging 

effects during post-processing. The actual displacement field remains consistent with 

the expected behaviour across the crack.  

To provide a further example for validation of the analytical solution for which the 

modes corresponding to the full range of values of m and n, a rectangular plate has been 

considered in the next section. 

5.3.2.3.2 Numerical Example: Rectangular Plate  

 A rectangular plate is considered in this section with the same material properties used 

in Section 5.3.2.3.1. The plate has a length a of 0.12 m, a width b of 0.1 m, and a 

thickness h of 0.001 m. The crack is represented by the red line with initial coordinates 

(𝑥1, 𝑦1) of (0.03088, 0.02995) and final coordinates (𝑥2, 𝑦2) of (0.03699, 0.06985),

shown in Figure 5.18. 

Figure 5.18 - Rectangular isotropic simply supported cracked plate. 

Table 5.10 shows the natural frequencies of the plate, with the frequencies varying 

depending on the depth of the crack. Additionally, Table 5.11 presents the relative 

change in the natural frequencies compared to the intact (uncracked) plate. The data 

shown in both Table 5.10 and Table 5.11 was obtained using the strain energy approach. 
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Table 5.10 - Natural frequencies of a cracked plate shown in Figure 5.18 using strain 

energy approach.  

d/h 

Mode 

(1,1) 

Mode 

(2,1) 

Mode 

(1,2) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 399.11 889.82 1105.73 1596.44 1707.67 2283.43 

0.1 398.98 888.98 1105.65 1596.08 1707.20 2283.29 

0.2 398.80 887.81 1105.54 1595.59 1706.55 2283.10 

0.3 398.54 886.097 1105.38 1594.86 1705.59 2282.82 

0.4 398.14 883.45 1105.14 1593.75 1704.12 2282.38 

0.5 397.47 879.045 1104.73 1591.90 1701.68 2281.67 

0.6 396.24 870.87 1103.98 1588.48 1697.18 2280.34 

Table 5.11 - RCNF for a plate shown in Figure 5.18 using strain energy approach. 

d/h 

Mode 

(1,1) 

Mode 

(2,1) 

Mode 

(1,2) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 0 0 0 0 0 0 

0.1 0.00032 0.000941 0.0000707 0.000222 0.000273 0.0000605 

0.2 0.000768 0.002259 0.000169 0.000533 0.000656 0.000145 

0.3 0.001422 0.004184 0.000314 0.000986 0.001214 0.000268 

0.4 0.002429 0.007158 0.000536 0.001685 0.002074 0.000458 

0.5 0.004103 0.012109 0.000904 0.002845 0.003503 0.000774 

0.6 0.007191 0.021289 0.001583 0.004984 0.006138 0.001354 

A similar crack has been modelled using ABAQUS. Table 5.12 presents the natural 

frequencies obtained using ABAQUS. Additionally, Table 5.13 presents the relative 

change in the natural frequencies with respect to intact plate. Figure 5.19 shows 

validation between strain energy approach and results obtained using ABAQUS. 
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Table 5.12 - Natural frequencies of a cracked plate shown in Figure 5.18 using 

ABAQUS. 

d/h 

Mode 

(1,1) 

Mode 

(2,1) 

Mode 

(1,2) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 399.14 893.23 1114.7 1604.5 1730.9 2335.9 

0.1 399 892.3 1114.6 1604 1730.4 2335.8 

0.2 398.8 891.03 1114.5 1603.4 1729.8 2335.6 

0.3 398.52 889.22 1114.3 1602.6 1729 2335.3 

0.4 398.09 886.57 1114 1601.5 1727.7 2334.9 

0.5 397.43 882.45 1113.6 1599.7 1725.7 2334.3 

0.6 396.32 875.72 1113 1597 1722.6 2333.3 

 

Table 5.13 - RCNF for a plate shown in Figure 5.18 using ABAQUS. 

d/h 

Mode 

(1,1) 

Mode 

(2,1) 

Mode 

(1,2) 

Mode 

(2,2) 

Mode 

(3,1) 

Mode 

(1,3) 

0 0 0 0 0 0 0 

0.1 0.000351 0.001041 0.0000897 0.000312 0.000289 0.0000428 

0.2 0.000852 0.002463 0.000179 0.000686 0.000636 0.000128 

0.3 0.001553 0.004489 0.000359 0.001184 0.001098 0.000257 

0.4 0.002631 0.007456 0.000628 0.00187 0.001849 0.000428 

0.5 0.004284 0.012069 0.000987 0.002992 0.003004 0.000685 

0.6 0.007065 0.019603 0.001525 0.004674 0.004795 0.001113 
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Figure 5.19 – Comparison of RCNF for a cracked plate shown in Figure 5.18 with Finite Element Model generated by ABAQUS (a) Mode (1,1); 

(b) Mode (2,1);(c) (1,2);(d) Mode (2,2);(e)Mode (3,1).(f) Mode (1,3). 
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Figure 5.20 – Mode shapes of rectangular cracked plate shown in  Figure 5.18, using 

ABAQUS. 

Figure 5.20 shows the first six mode shapes for the plate, using ABAQUS. The mode 

shapes remain close to the uncracked plate. In contrast to those for the rectangular 

square plate presented in Figure 5.17. 

Mode (1,1) Mode (2,1) 

Mode (1,2) Mode (2,2) 

Mode (1,3) Mode (3,1) 
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5.3.2.4 Discussion 

Comparing the analytical and ABAQUS results for the square plates, it is observed that 

even for an intact plate, the natural frequencies do not match precisely, likely due to 

meshing inaccuracies. For the cracked plate the correlation is good with 2.32% error, 

up to a crack depth of 0.6 after which the difference between the analytical solution and 

the ABAQUS results gradually increases. This is due to the fact that we assume no 

change in mode shape due to the crack in the analytical solution whereas the crack 

clearly does have an effect (as seen in Figure 5.16 and Figure 5.19) which becomes 

more significant as it becomes deeper. This was also found by previous authors [20]. 

More significantly, the crack causes a complete change in modes 1,2 and 2,1 which 

realign such that the nodal line runs along the crack. However, for a crack less than 0.5 

of the thickness the remainder of the modes correlate well with the ABAQUS model. 

In the case of rectangular plates, the nodal lines do not shift to correspond to the 

direction of the crack. This may be attributed to the removal of any symmetry between 

the geometry and the orientation of the crack. These findings highlight a potential 

limitation of the energy method which is not able to model modes not corresponding to 

integers of m and n. 

5.3.3 Parametric Studies. 

To utilize the significant efficiency of the developed analytical expression, parametric 

studies are carried out to explore the effect of different crack parameters on the natural 

frequencies. 

The degradation of the natural frequencies for an isotropic simply supported square 

plate with crack at centre of the plate with an orientation varying from 00 to 1800 will

now be explored.  

A square plate with the same material properties used in Section 5.3.2 is considered in 

this Section. From Figure 5.21 it can be seen that, the starting point of the crack is 

considered to be the centre of the plate, and the effects of the crack with discrete 

clockwise orientations for this crack will now be obtained. The length of the crack is 

0.0283 m and the crack-depth ratio 0.2. 
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Table 5.14 - Degradation of the natural frequencies 𝛿𝑚,𝑛(𝐻𝑧
2)  vs orientation (𝜑).

𝝋 𝟎𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 4𝟎𝟎 𝟒𝟓𝟎

𝜹(𝟏,𝟏) 514.2114 506.9277 488.983 469.450 457.201 455.552 

𝜹(𝟏,𝟐) 0 255.0035 846.731 1411.9 1690.988 1709.304 

𝜹(𝟐,𝟏) 1057.508 1108.76 1256.887 1471.001 1664.935 1709.3048 

𝜹(𝟐,𝟐) 0 301.3337 1015.200 1744.93 2176.477 2233.012 

𝜑 1000 1100 1200 1300 1350 1400 

𝜹(𝟏,𝟏) 506.927 488.98 469.450 457.201 455.552 457.201 

𝜹(𝟏,𝟐) 1108.76 1256.88 1471.001 1664.93 1709.305 1690.98 

𝜹(𝟐,𝟏) 255.0035 846.731 1411.9 1690.989 1709.305 1664.93 

𝜹(𝟐,𝟐) 301.333 1015.201 1744.93 2176.478 2233.012 2176.47 

𝝋 𝟓𝟎𝟎 𝟔𝟎𝟎 𝟕𝟎𝟎 𝟖𝟎𝟎 𝟗𝟎𝟎

𝜹(𝟏,𝟏) 457.2013 469.4502 488.983 506.927 514.211 

𝜹(𝟏,𝟐) 1664.936 1471.001 1256.884 1108.760 1057.507 

𝜹(𝟐,𝟏) 1690.989 1411.9 846.731 255.003 0 

𝜹(𝟐,𝟐) 2176.478 1744.93 1015.200 301.33 0 

𝝋 𝟏𝟓𝟎𝟎 𝟏𝟔𝟎𝟎 𝟏𝟕𝟎𝟎 𝟏𝟖𝟎𝟎

𝜹(𝟏,𝟏) 469.4502 488.98 506.9277 514.2114 

𝜹(𝟏,𝟐) 1411.9 846.731 255.0035 0 

𝜹(𝟐,𝟏) 1471.001 1256.88 1108.76 1057.508 

𝜹(𝟐,𝟐) 1744.93 1015.201 301.3337 0 
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Figure 5.21 - Crack orientations. 
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(d) 

Figure 5.22 – Degradation in the square of the natural frequencies (𝛿𝑚,𝑛 ) vs

orientation (𝜑). (a)Mode (1,1) ;(b) Mode (2,1); (c) Mode (1,2); (d) Mode (2,2). 

Table 5.14 and  Figure 5.22 presents the variation of the degradation in the square of 

the natural frequencies between intact and damaged plates with respect to the 

orientation with angle. Cracks located at symmetric locations as would be expected 

have the same level degradation in the natural frequencies. For example, cracks with 

orientations 0°, 10°, 20°, 30°, and 40° have the same amount of degradation in the 

natural frequencies as cracks with orientations 90°, 80°, 70°, 60°, and 50° contribute, 

respectively. 
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5.3.4 Conclusion  

The numerical examples provided in this study demonstrate a strong agreement 

with results from prior research. For cracks aligned in arbitrary orientations, 

where comparable research is scarce, a model has been developed using the finite 

element software ABAQUS which shows good agreement with the analytical 

results further validating the proposed methodology. 

Overall, the analytical solution for degradation in natural frequencies serves as a 

foundational approach for damage quantification in isotropic plate structures. 

This framework is further employed in the following Chapter as the basis for a 

damage identification technique. Here the benefits of the significantly increased 

computational efficiency are particularly apparent since the problem requires a 

large number of calculations to be completed to converge on a solution. 

For example, while the ABAQUS model can take several hours to simulate a 

single case, the analytical solution produces results within seconds. Moreover, 

the analytical method eliminates the need to create a new model for each 

individual case. Instead, users can simply input the plate dimensions and crack 

location, making the process faster and more practical. This computational 

efficiency is especially important for handling complex problems or large 

datasets. 
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6 Chapter 6: Crack Identification in Plate Structures. 

6.1 Introduction 

In the past, different methodologies have been adapted for damage detection in plate 

structures. Different damage detection methods can be classified as model-based 

approaches or as response-based approaches. Along with that, consideration of different 

domains can further differentiate the use of vibration analysis in damage identification 

procedures. 

In Section 2.5, the importance of identifying damage in plate structures was discussed. 

For isotropic beams, locating damage is more straightforward because it is a one-

dimensional problem. Damage localization in beam structures can be achieved using a 

single parameter (i.e. location of crack). However, for plate structures, the challenge 

becomes two-dimensional when it comes to crack localization. To identify a crack in 

an isotropic plate, four coordinates: two for the start point and two for the endpoint of 

the crack or the two start point coordinates, the angle and the length are needed. The 

depth of the crack can be considered as a fifth parameter to measure the severity of the 

damage caused by the crack. 

In this chapter, the identification of the crack parameters of an isotropic simply 

supported square plate has been demonstrated using a gradient-based optimization 

procedure. A similar demonstration has been provided for obtaining the 2 parameters 

for a beam structure in Section 4.5. In this chapter, the problem has been set up to obtain 

the 5 crack parameters using the sum of least squares technique. 

6.2 Methodology  

Eq. (5.3.33) of chapter 5, can be used to model a crack in any arbitrary direction, 

including cracks parallel to the edges of the plate. It was derived to model the changes 

in natural frequencies of plates due to cracks in any arbitrary direction, including cracks 

parallel to the edges of the plate. This equation can be employed to calculate the 

difference in the square of the natural frequencies between an intact and a cracked, 

simply supported, isotropic plate. 

For simplicity Eq. (5.3.33) can be expressed in the form of Eq. (6.2.1) 
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𝛿𝑚𝑛  =  
2𝑈𝑑

𝜌ℎ ∫ ∫ 𝑠𝑖𝑛2 (
𝑚𝜋𝑥
𝑎
) 𝑠𝑖𝑛2 (

𝑛𝜋𝑦
𝑏
)𝑑𝑦

𝑏

0

𝑎

0
𝑑𝑥

(6.2.1) 

where 𝑈𝑑 is the change in the strain energy due to the presence of the crack based on

compliance (𝐶𝑛), the initial location of the crack (𝑥1, 𝑦1), and the final location (𝑥2, 𝑦2)

of the crack.  

For an isotropic plate that is simply supported at all edges, the presence of a crack 

degrades the natural frequencies of the plates. The notation 𝛿𝑀𝑚𝑛 can be used to

represent the difference between the square of the natural frequencies of the intact and 

cracked plates. The superscript 'M' denotes the measured natural frequencies, while the 

subscripts m and n define the number of half-wavelengths along the x and y axes of the 

plate, respectively. 

𝑓(𝑥, 𝑦, 𝑑) = 𝑚𝑖𝑛 ∑{
𝛿𝑚𝑛 − 𝛿

𝑀
𝑚𝑛

𝛿𝑀𝑆𝑚𝑛
}

𝑚,𝑛

2

→ 0

(6.2.2) 

Section  5.3 highlights that cracks at different locations affect the degradation of natural 

frequencies in varying ways. For instance, cracks along the nodal lines do not cause 

any degradation in the natural frequencies. To address this, considering the first six or 

more modes of vibration can help achieve a unique solution. 

In Eq. (6.2.2) , 𝛿𝑚𝑛 represents the difference in the square of the natural frequencies

between the intact and cracked plate for each set of trial crack parameters. This value 

is calculated using Eq. (6.2.1). A trial set consists of five parameters: the start (𝑥1, 𝑦1)

and end coordinates (𝑥2, 𝑦2)  of the crack (four parameters) and the crack depth ratio

(𝑑/ℎ - 5th parameter). Multiple sets of trial values can be used. Based on these, an 

optimization problem is formulated using the least squares difference between  𝛿𝑚𝑛 and

the measured difference 𝛿𝑀𝑚𝑛 from the real cracked plate structure. This approach

helps to identify the crack parameters effectively. The formulated function presented in 

Eq. (6.2.2) can be minimised using optimization toolbox. 
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The data for the first six  differences in the squares of the natural frequencies (𝛿𝑀𝑚𝑛)

for cracks with a known set of parameters can be utilised to set up an optimization 

problem based on the error function in Eq. (6.2.2) . 

To implement the optimization procedure,δmn can be defined in the form of function

file in MATLAB. It can produce the data as per the sets of the crack parameters. To 

perform optimization. The set of 𝛿𝑀𝑚𝑛 needs to be provided. To consider the noise free

simulation, the set of 𝛿𝑀𝑚𝑛 has been obtained using Eq. (5.3.33) for the known crack

parameters (𝑥1, 𝑦1, 𝑥2, 𝑦2, and , 𝑑/ℎ). The data can be referred as synthetic data.

For this kind of noiseless simulation, due to the higher numerator, the computational 

time is high. To reduce its computational time, a scaling factor has been added in the 

denominator (𝛿𝑀𝑆𝑚𝑛). This factor can be obtained using Eq. (5.3.33) for any arbitrary

crack in the plate. The purpose of the scaling factor is only to scale the numerator of 

Eq. (6.2.2). 

To implement the optimization procedure, 𝛿𝑚𝑛 is defined as a function file in

MATLAB, allowing it to generate data based on various sets of crack parameters. To 

perform optimization, a set of 𝛿𝑀𝑚𝑛 values is required. For noise-free simulation, these

values are generated using Eq. (5.3.33) for known crack parameters (𝑥1, 𝑦1, 𝑥2, 𝑦2, and

d/h), referred to as synthetic data. 

To address the high computational time caused by the large numerator in Eq. (6.2.2) a 

scaling factor, (𝛿𝑀𝑆𝑚𝑛),  is introduced in the denominator. This factor is calculated for

known arbitrary crack parameters using Eq. (5.3.33). It ensures that no particular 

natural frequency dominates the optimization problem by scaling the numerator 

appropriately. Without affecting the overall procedure.  

The optimization is carried out using the optimization toolbox, FMINCON in 

MATLAB which was explained in Section 4.5.2.  

To perform the optimization process, constraints must be defined. In this case, the 

geometrical boundaries of the plate are used as constraints for the identification of the 

crack localization and severity. For a plate having a length a and width b, the search 

area for the crack location can be defined by constraining the parameters (𝑥1, 𝑦1, 𝑥2, 𝑦2)

between 0 and a, and 0 and b, respectively. In terms of the crack depth the crack-depth 

ratio (𝑑/ℎ) is theoretically constrained between 0 and 1, with 0 being the lower limit 
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and 1 being the upper limit. However, the model presented in Eq. (5.3.33) is not valid 

for cracks that extend fully through the depth of the plate, so an upper limit of 0. 9999 

is used instead. These constraints ensure that the optimization process can accurately 

identify both the crack location and severity. 

The optimisation is initialised using random values as trials for the crack parameter. For 

example, if the parameters of the cracks are, 𝑥1, 𝑦1, 𝑥2, 𝑦2, and crack-depth ratio 

(𝑑/ℎ).The range for the random trial value for each parameter is given in Table 6.1. 

Table 6.1 - Values of upper and lower limit for the Latin hypercube sample to produce 

trial values for optimization. 

Parameters 𝒙𝟏 𝒚𝟏 𝒙𝟐 𝒚𝟐 𝒅/𝒉 

Upper limit 𝑎 𝑏 𝑎 𝑏 0.9999 

Lower limit 0 0 0 0 0 

In the next two sections, numerical examples demonstrating the parameter 

quantification for a parallel crack and an arbitrary crack will be reported. 

6.3 Numerical Example: Crack location and Characterization. 

In the following examples, changes in the natural frequencies due to two different 

cracks in two distinct plates are calculated using Eq. (5.3.33) and subsequently used as 

test data to solve the inverse problem, i.e., to determine the crack parameters. 

6.3.1 Crack Parallel to the Edges 

Consider an isotropic simply supported isotropic square plate made of titanium as 

shown in Figure 6.1. The dimensions and the material properties are defined as: 

length (𝑎) = 0.1m;  width (𝑏) = 0.1m; Young’s modulus (E) = 110 x 109 Nm-2; 

mass density  (𝜌) = 4480kgm−3;

The crack parameters are: Start  (𝑥1 = 0.02, 𝑦1 = 0.02); End point (𝑥2 = 0.02, 𝑦1 =

0.04); Crack-depth ratio (𝑑/ℎ) = 0.3. 
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Figure 6.1 – Isotropic plate with a crack parallel to edge. 

The differences between the squares of the natural frequencies of intact and cracked 

plate are the input along with the constraints for crack detection. For optimization 

purpose, this data were generated using Eq. (6.2.1) and is referred as a synthetic data in 

this chapter.  

Table 6.2 - Obtained synthetic data for ( �̅�𝑚𝑛) the plate shown in the Figure 6.1, used

for the optimization. 

Synthetic data presented in Table 6.2 is employed in Eq. (6.2.1) to develop an error 

function using modes of vibration from (𝑚, 𝑛) = (1,1) , (1,2)…..(3,1). 

To provide the trial values for the crack parameters to initialise the optimization, Latin 

hypercube sampling is utilised to choose parameters between the upper and lower limits 

shown in Table 6.3 

Table 6.3 - Range for the trial values of the crack parameters. 

Parameters 𝒙𝟏 𝒚𝟏 𝒙𝟐 𝒚𝟐 𝒅/𝒉 

Upper limit 0.1 0.1 0.1 0.1 0.9999 

Lower limit 0 0 0 0 0 

Modes (𝒎, 𝒏) (1,1) (1,2) (2,1) (2,2) (1,3) (3,1) 

�̅�𝒎𝒏(𝒓𝒂𝒅
𝟐𝒔−𝟐) 7625.841 27315.42 218430.5 399525.4 28359.98 1021744 
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After providing the ranges for the trial values followed by the search space and a 

tolerance of 10−6, the crack parameters can be determined using the gradient-based

optimization approach available in the FMINCON toolbox, which is part of the 

MATLAB software. 

The decision to use ten independent chains was made to improve the robustness of the 

optimization process. Using multiple trial values helps reduce the impact of poor initial 

guesses, which often converge to local minima instead of the global minimum. This 

increases the likelihood of accurately identifying the crack parameters. 

The error function may have several local minima, making it difficult to converge to 

the global minimum. When the initial guesses are close to the true parameters, the 

optimization is more likely to succeed. However, if the initial guesses are far from the 

solution, they may fail to converge to the correct values. 

 From Table 6.4 it can be observed that, set number 4,7 and 8 converged with much 

lower values of the error function 𝑓(𝑥, 𝑦, 𝑑) than set numbers 1,2,3,5,6,9, and 10. 

Table 6.4 - Converged values of crack parameters and error function for 10 sets of trial 

values for the plate shown in Figure 6.1. 

Set No. 𝒙𝟏 𝒚𝟏 𝒙𝟐 𝒚𝟐 𝒅/𝒉 𝒇(𝒙, 𝒚, 𝒅) 

1 0.0798 0.0149 0.0798 0.0850 0.1185 0.577905 

2 0.0201 0.0149 0.0201 0.0850 0.1185 0.577905 

3 0.0798 0.0850 0.0798 0.0149 0.1185 0.577905 

4 0.0799 0.06 0.08 0.08 0.2999 1.08 x 10-6 

5 0.0798 0.0149 0.0798 0.0850 0.1185 0.577905 

6 0.020 0.01499 0.0201 0.085 0.1185 0.577905 

7 0.08 0.02 0.08 0.04 0.3 5.95 x 10-6 

8 0.0199 0.04 0.02 0.02 0.3 8.45 x 10-6 

9 0.0201 0.0149 0.0201 0.085 0.1185 0.577905 

10 0.0798 0.0850 0.0798 0.014 0.1185 0.577905 

For crack localization, the first four converged crack parameters (x1, x2, y1, y2), for each 

of the sets are plotted in Figure 6.2. 
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Set number 8 converges at the exact crack location, where set numbers 4 and 7 converge 

at symmetric locations to the crack. However, set numbers 1,2,3,5,6,9, and 10 do not 

converge at either the exact location of the crack or any of the symmetric locations. 

The thickness of the lines in Figure 6.2 is inversely proportional to the final error value. 

Consequently, the results which converge with lower error values are represented by 

higher thickness lines. 

Figure 6.2 - Optimized crack location for 10 sets of trial values. 

The convergence of the crack depth ratios derived from the optimization of each of the 

10 sets of trial values is illustrated in Figure 6.3. The 'Target depth' represents the crack 

depth ratio for the modelled crack. In this graph, it is evident that several sets of trial 

values have converged according to the optimality criteria, specifically those that also 

converged based on location parameters (sets 4, 7 and 8). The data that align with the 

actual crack depth ratio (0.3) are highlighted with thick lines. 
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Figure 6.3 - Converge of crack depth-ratio crack depth vs iterations for 10 set of trial 

values for plate shown in Figure 6.1. 

6.3.2 Crack in an Arbitrary Direction 

In this section, a similar crack identification method is considered for an arbitrarily 

oriented crack as was used for the parallel crack. The same plate is used with the same 

material property. The parameters of crack shown in Figure 6.4 are: start point (𝑥1 =

0.023, 𝑦1 = 0.027); end point (𝑥2 = 0.043, 𝑦1 = 0.04); Crack-depth ratio (𝑑/ℎ) =

0.3. 

Figure 6.4 – Arbitrarily oriented crack in a square isotropic plate. 
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Table 6.5 - Obtained synthetic data for ( �̅�𝑚𝑛) the plate shown in Figure 6.4, and used

in the optimization. 

Table (6.5) presents synthetic data obtained using Eq. (6.2.1) to develop an error 

function based on modes of vibration from (𝑚, 𝑛) = (1,1) , (1,2)…..(3,1). 

Table 6.6 summarizes the crack parameters after the optimization process was 

completed. Examination of both Figure 6.4 and Figure 6.5 reveals that crack 

parameter sets 1, 3,5 and 8 converged with lower error values compared to sets 

2,4,6,7,9, and 10. Furthermore, set number 1 converged precisely at the actual crack 

location, while sets 3,5, and 8 converged at symmetric locations. This is due to the 

fact that symmetric cracks have a similar effect on the degradation of natural 

frequencies, depending on frequencies compared. 

Table 6.6 : Converged values of crack parameters and error function for 10 set of trial 

values for the plate shown in Figure 6.4. 

Set No. 𝒙𝟏 𝒚𝟏 𝒙𝟐 𝒚𝟐 𝒅/𝒉 𝒇(𝒙, 𝒚, 𝒅) 

1 0.043 0.047 0.023 0.027 0.3 3.31 x 10-6 

2 0.0548 0.0025 0.0768 0.0459 0.225 3.53 x 10-1 

3 0.0229 0.073 0.043 0.053 0.30 8.55 x 10-6 

4 0.0734 0.0403 0.0742 0.0401 0.849 1.32 x 10-1 

5 0.0569 0.047 0.077 0.027 0.299 8.06 x 10-6 

6 0.0267 0.059 0.0255 0.059 0.8112 1.32 x 10-1 

7 0.0267 0.059 0.025 0.059 0.8112 3.53 x 10-1

8 0.0769 0.073 0.057 0.053 0.2999 4.12 x 10-6 

9 0.0999 0.0742 0.0756 0.098 0.3589 6.16 x 10-1 

10 0.0231 0.0459 0.0451 0.0025 0.225 3.53 x 10-1

Modes (𝒎, 𝒏) (1,1) (1,2) (2,1) (2,2) (1,3) (3,1) 

�̅�𝒎𝒏(𝒓𝒂𝒅
𝟐𝒔−𝟐) 22895.9 146094 189709 286910 303291 293621 
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Figure 6.5 - Optimized location of crack for 10 sets of trial values for Figure 6.4. 

 

Figure 6.6 - Convergence of crack depth-ratio for 10 sets of trial values for the plate 

shown in Figure 6.4. 
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From Table 6.6 and Figure 6.5 it can be observed that, set numbers 4,7, and 8 converge 

with much lower values of the error function 𝑓(𝑥, 𝑦, 𝑑) than se numbers 1,2,3,5,6,9 and 

10. 

Figure 6.6 presents the convergence of the crack depth parameter. Crack parameter sets 

1, 3, 5, and 8 converge at the target crack-depth ratio of 0.3. The same set numbers also 

converged at the target location and at the symmetric locations of the crack. On the 

other hand, set numbers 2, 4, 6, 7, 9, and 10 do not converge at the target depth or 

locations. The function files are attached in the Appendix (H). 

6.4 Discussion 

The numerical examples presented in the Section 6.3 demonstrate that crack location 

and characterisation can be achieved using the proposed analytical solutions, 

specifically Rayleigh's quotient, and gradient-based optimization procedures, 

implemented in MATLAB. Increasing the number of sets of trial values and adding 

more mode shapes could enhance the probability of converging to the expected crack 

parameters.  

Furthermore, the data were obtained from the optimization process can be leveraged as 

a prior in a Bayesian approach to develop a robust crack identification algorithm. 

The framework used for crack identification is the strain energy approach, which 

assumes that the mode shapes of cracked plate structures are the same as those of intact 

plates. A similar plate with a crack aligned parallel to the edges is shown in Figure 5.6. 

Therefore, the mode shapes of the plate structures illustrated in Figures 6.1 and 6.4 

are similar to those shown in Figures 5.8 and 5.10. 

6.5 Conclusion 

In this chapter, a strain energy-based method combined with a gradient-based 

optimization process is used to find and describe cracks. An analytical solution was 

used to create a framework for modelling and detecting cracks, allowing the calculation 

of changes in natural frequencies. This method improved computational efficiency, with 

the simulation taking around 50–55 seconds. The efficiency is due to using an analytical 

solution; if a numerical method were used instead, the time could range from several 

minutes to hours, depending on the complexity of the problem.  
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This method holds promise for further improvement and expansion. It could be 

extended to address plates with different boundary conditions, as well as plate 

assemblies. Additionally, the incorporation of experimental noise should be considered 

as part of the future research scope. This would improve the reliability of the crack 

detection and quantification approach by enabling it to better handle real-world 

complexities and uncertainties. 

The results yield three additional possible crack locations due to the geometric 

symmetry of the square plate and the symmetric boundary conditions, with all edges 

simply supported. The solution obtained through optimization can serve as a 

preliminary estimate of the crack location, thereby reducing the need for exhaustive 

inspection across the entire plate and narrowing the search area. However, in real-world 

scenarios, it is often impractical to have plates with simply supported conditions along 

all edges. When the structure features non-symmetric boundary conditions, the 

phenomenon of multiple equivalent solutions in crack localization is significantly 

reduced, enabling more accurate and unique identification of damage locations. 

The ability to accurately model crack-induced changes in natural frequencies, and the 

implementation of optimization techniques to obtain crack characteristics, represents a 

valuable contribution to the field of structural health monitoring. Continued 

improvements of this approach, including the considerations mentioned, could lead to 

more reliable and practical tools for the non-destructive evaluation of cracked 

structures.  
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7 Chapter 7 - Conclusions and suggestion for future work. 

7.1 Conclusions 

Structural damage, such as cracks, can lead to catastrophic failure, resulting in 

significant economic losses and potential loss of life. Developing methods to 

detect cracks in structures is essential for assessing the severity of damage and 

predicting the remaining lifespan of the structure. 

In beam structures, both through-width and partial-depth cracks have been 

modelled using rotational springs. Natural frequencies were determined using 

both analytical and numerical methods. The simplicity of the developed 

analytical solution based on the strain energy approach enhances computational 

efficiency. This analytical solution has also served as a framework for solving 

inverse problems in beams for crack localization and quantification. The inverse 

problem was addressed using vector calculus, interval arithmetic, and gradient-

based optimization methods. 

Building on the validated results from the beam studies, an analytical solution 

was developed to determine the degradation in natural frequencies due to cracks 

in plate structures. Partial-depth cracks were modelled using rotational springs, 

and both arbitrarily oriented cracks and those parallel to the plate edges were 

considered in the numerical studies. The results for edge-parallel cracks were 

validated against existing literature, while the results for arbitrarily oriented 

eccentric cracks were validated using a finite element model developed in 

ABAQUS. Furthermore, the developed solution was extended as a framework 

for inverse problems in plates using gradient-based optimization. 

The proposed methods demonstrate high efficiency and offer a promising tool 

for damage detection, particularly in preliminary analyses. The outcomes of each 

part of the study are presented chapter-wise, as outlined below. 

Chapter 3 demonstrated the application of the Newton-Raphson method to 

determine the eigenvalues of a cracked beam by solving the dynamic stiffness 

matrix. The results obtained were validated against previous research using the 

Wittrick-Williams algorithm. An alternative method based on the strain energy 
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approach was also explored. A comparative study of the cracked beam 

highlighted the accuracy of the Newton-Raphson method, particularly for deeper 

cracks, as it accounts for significant changes in the beam's mode shapes caused 

by presence of cracks. Conversely, for shallow cracks, the strain energy approach 

provides a reliable match with the Newton-Raphson method. Considering 

computational efficiency and potential applications in damage detection for 

beams, the strain energy approach was further emphasized. 

In Chapter 4, simulations involving both noise-free and noise-contaminated data 

were examined for single-crack detection in isotropic beam structures. For noise-

free simulations, vector analysis and gradient-based optimization were 

successfully employed. In the case of noise-contaminated simulations, interval 

arithmetic operations were utilized to estimate a range of crack locations. 

Additionally, gradient-based optimization, combined with an error function 

developed using the least squares method, proved efficient for crack 

characterization based on noiseless data. These findings serve as an effective 

reference for extending crack detection methods to isotropic plate structures. 

Chapter 5 investigated the free vibration analysis of cracked isotropic plates 

using a strain energy approach. A novel method, developed as part of this 

research, leverages the strain energy approach to derive analytical solutions that 

demonstrate the degradation in the natural frequencies of a plate due to the 

presence of cracks. Results were validated against finite element analysis 

methods documented in previous literature. For scenarios lacking comparative 

studies, a cracked plate model was developed in ABAQUS. The developed 

method exhibited an exceptionally accurate match with finite element analysis 

results for crack depth ratios up to 0.4. However, a key limitation of this approach 

is the assumption that the mode shapes of cracked plates are identical to those of 

intact plates. Despite this limitation, the proposed method offers a significant 

advancement and provides a robust framework for developing crack detection 

techniques. 

Chapter 6 focused on the use of the least squares method to formulate an error 

function for crack parameter estimation. Gradient-based optimization techniques 
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were employed to minimize the error function and optimize crack parameters 

using the MATLAB optimization toolbox FMINCON. 

7.2 Future Scope 

Several areas in the work presented offer opportunities for further development 

and refinement of the proposed techniques. Building upon the methods 

introduced in this thesis, future research can explore advanced approaches to 

enhance the accuracy, efficiency, and applicability of crack detection 

methodologies in structural analysis 

The methodologies presented in Chapter 5 for calculating shifts in the natural 

frequencies of plates using analytical solutions can be extended to composite and 

functionally graded plates under various boundary conditions. Incorporating the 

effects of damping and the changes in mode shapes caused by the presence of 

cracks could further enhance the accuracy of the developed approach. In future 

work, this method can be applied to structures composed of plate assemblies, 

enabling broader application to more complex and practical structural 

configurations. 

The results of the direct problem, presented in Chapters 3 and 5 and obtained 

using the strain energy approach for beam and plate structures, need to be 

validated through experimental analysis in future work. The discrepancies 

between the experimental data and the developed analytical solution may serve 

as a basis for formulating a more robust inverse problem solution that 

incorporates varying levels of noise. 

In this thesis, a crack quantification method proposed for plate structures using 

gradient-based optimization and an error function developed by integrating the 

analytical solution with synthetic data representing shifts in natural frequencies 

for known crack parameters in Chapter 6 showed promising results. However, 

incorporating noise due to environmental conditions, sensor inaccuracies, or 
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human errors into the analytical solution remains a critical area for improvement. 

To address these practical challenges, experimental data will be required.  

On other hand, for a more comprehensive approach, Gaussian noise could be 

introduced into the error function. This modification would make the method 

more robust and suitable for real-world scenarios, facilitating experimental 

validation in future studies. Additionally, the current method focuses on single 

crack detection. Future work could explore its applicability to multiple cracks or 

interacting defects in both beam and plate structures. 
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Appendices  

Appendix (A): Algebraic operations (Chapter 5) 

The integrals from Eq. (5.3.32) are provided in this section. 

∫ 𝑠𝑖𝑛2 𝛼𝑥𝑠𝑖𝑛
2𝛼𝑦

𝑙

0

𝑑𝑠 =
1

4
∫ (1 − 𝑐𝑜𝑠2𝛼𝑥)(1 − 𝑐𝑜𝑠2𝛼𝑦)
𝑙

0

𝑑𝑠 
(A1) 

Further simplification can be provided in Eq. A2 

=
1

4
∫ [1 − cos2𝛼𝑥 − cos2𝛼𝑦

𝑙

0

+
1

2
(cos(2𝛼𝑥 − 2𝛼𝑦) + cos(2𝛼𝑥 + 2𝛼𝑦))] 𝑑𝑠

=
1

4
[𝑠 −

sin2𝛼𝑥
2𝛽𝑥

−
sin2𝛼𝑦
2𝛽𝑦

+
1

2
(
sin(2𝛼𝑥 − 2𝛼𝑦)

2(𝛽𝑥 − 𝛽𝑦)
+
sin(2𝛼𝑥 + 2𝛼𝑦)

2(𝛽𝑥 + 𝛽𝑦)
)]

0

𝑙

=
𝑙

4
−
sin (

2𝑚𝜋𝑥2
𝑎

) − sin (
2𝑚𝜋𝑥1
𝑎

)

8𝛽𝑥
−
sin (

2𝑛𝜋𝑦2
𝑏

) − sin (
2𝑛𝜋𝑦1
𝑏

)

8𝛽𝑦

+
sin (

2𝑚𝜋𝑥2
𝑎

−
2𝑛𝜋𝑦2
𝑏

) − sin (
2𝑚𝜋𝑥1
𝑎

−
2𝑛𝜋𝑦1
𝑏

)

16(𝛽𝑥 − 𝛽𝑦)

+
sin (

2𝑚𝜋𝑥2
𝑎

+
2𝑛𝜋𝑦2
𝑏

) − sin (
2𝑚𝜋𝑥1
𝑎

+
2𝑛𝜋𝑦1
𝑏

)

16(𝛽𝑥 + 𝛽𝑦) (A2) 

Here, 

𝛽𝑥 =
𝑑𝛼𝑥

𝑑𝑠
=

𝑚𝜋

𝑎
𝑐𝑜𝑠𝜑  , 𝛽𝑦 =

𝑑𝛼𝑦

𝑑𝑠
=

𝑛𝜋

𝑏
𝑠𝑖𝑛𝜑 (A3) 

𝑥0 =
𝑥1+𝑥2

2
 , 𝑦0 =

𝑦1+𝑦2

2
(A4) 

𝑙𝑥 = 𝑥2 − 𝑥1 = 𝑙 𝑐𝑜𝑠𝜑,  𝑙𝑦 = 𝑦2 − 𝑦1 = 𝑙 𝑠𝑖𝑛𝜑 (A5) 

After modification, Eq. (A2) Can be expressed in the form of Eq. (A6) 
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∫ 𝑠𝑖𝑛2 𝛼𝑥𝑠𝑖𝑛
2𝛼𝑦

𝑙

0

𝑑𝑠

=
𝑙

4
−
𝑐𝑜𝑠 (

2𝑚𝜋𝑥0
𝑎 ) 𝑠𝑖𝑛 (

𝑚𝜋𝑙 𝑐𝑜𝑠𝜑
𝑎 )

4𝛽𝑥

−
𝑐𝑜𝑠 (

2𝑛𝜋𝑦0
𝑏

) 𝑠𝑖𝑛 (
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
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𝑎 −
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𝑏
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𝑏
)

8(𝛽𝑥 + 𝛽𝑦)
 

 

 

 

 

 

 

 

 

(A6) 

 Integral expressed in Eq. (A6) are further updated for two different cases.  

CASE 1: When the crack oriented +450, 𝛽𝑥 = 𝛽𝑦 

∫ sin2 𝛼𝑥sin
2𝛼𝑦

𝑙

0

𝑑𝑠

=
𝑙

4
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) sin (
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𝑏
)
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CASE 2: When the crack oriented -450, 𝛽𝑥 = −𝛽𝑦 

∫ sin2 𝛼𝑥sin
2𝛼𝑦

𝑙

0

𝑑𝑠

=
𝑙

4
−
cos (

2𝑚𝜋𝑥0
𝑎 ) sin (

𝑚𝜋𝑙 𝑐𝑜𝑠𝜑
𝑎 )

4𝛽𝑥

−
cos (

2𝑛𝜋𝑦0
𝑏

) sin (
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

4𝛽𝑦

+
cos (

2𝑚𝜋𝑥0
𝑎 −

2𝑛𝜋𝑦0
𝑏

) sin (
𝑚𝜋𝑙 𝑐𝑜𝑠𝜑

𝑎 −
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

8(𝛽𝑥 − 𝛽𝑦)

+ cos [
2𝑚𝜋𝑥1
𝑎

+
2𝑛𝜋𝑦1
𝑏

] 
(A8) 

Similarly, ∫ cos2 𝛼𝑥cos
2𝛼𝑦

𝑙

0
𝑑𝑠   are expressed for arbitrary orientation of crack 

with Case 1 and Case 2 in Eq. A9, A10, and A11 respectively 

∫ cos2 𝛼𝑥cos
2𝛼𝑦

𝑙

0

𝑑𝑠

=
𝑙

4
+
cos (

2𝑚𝜋𝑥0
𝑎 ) sin (

𝑚𝜋𝑙 𝑐𝑜𝑠𝜑
𝑎 )

4𝛽𝑥

+
cos (

2𝑛𝜋𝑦0
𝑏

) sin (
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

4𝛽𝑦

+
cos (

2𝑚𝜋𝑥0
𝑎 −

2𝑛𝜋𝑦0
𝑏

) sin (
𝑚𝜋𝑙 𝑐𝑜𝑠𝜑

𝑎 −
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

8(𝛽𝑥 − 𝛽𝑦)

+
cos (

2𝑚𝜋𝑥0
𝑎 +

2𝑛𝜋𝑦0
𝑏

) sin (
𝑚𝜋𝑙 𝑐𝑜𝑠𝜑

𝑎 +
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

8(𝛽𝑥 + 𝛽𝑦) (A9) 
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CASE 1: When the crack oriented +450, 𝛽𝑥 = 𝛽𝑦 

∫ cos2 𝛼𝑥cos
2𝛼𝑦

𝑙

0

𝑑𝑠

=
𝑙

4
+
cos (

2𝑚𝜋𝑥0
𝑎 ) sin (

𝑚𝜋𝑙 𝑐𝑜𝑠𝜑
𝑎 )

4𝛽𝑥

+
cos (

2𝑛𝜋𝑦0
𝑏

) sin (
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

4𝛽𝑦
+
1

8
𝑐𝑜𝑠 (

2𝑚𝜋𝑥1
𝑎

−
2𝑛𝜋𝑦1
𝑏

)  

+
cos (

2𝑚𝜋𝑥0
𝑎 +

2𝑛𝜋𝑦0
𝑏

) sin (
𝑚𝜋𝑙 𝑐𝑜𝑠𝜑

𝑎 +
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

8(𝛽𝑥 + 𝛽𝑦)
(A10) 

CASE 2: When the crack oriented -450, 𝛽𝑥 = −𝛽𝑦 

∫ cos2 𝛼𝑥cos
2𝛼𝑦

𝑙

0

𝑑𝑠

=
𝑙

4
+
cos (

2𝑚𝜋𝑥0
𝑎 ) sin (

𝑚𝜋𝑙 𝑐𝑜𝑠𝜑
𝑎 )

4𝛽𝑥

+
cos (

2𝑛𝜋𝑦0
𝑏

) sin (
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

4𝛽𝑦

+
cos (

2𝑚𝜋𝑥0
𝑎 −

2𝑛𝜋𝑦0
𝑏

) sin (
𝑚𝜋𝑙 𝑐𝑜𝑠𝜑

𝑎 −
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

8(𝛽𝑥 − 𝛽𝑦)

+ cos [
2𝑚𝜋𝑥1
𝑎

+
2𝑛𝜋𝑦1
𝑏

] 
(A11) 

Integral ∫ sin(𝛼𝑥) cos(𝛼𝑥) sin(𝛼𝑥) cos(𝛼𝑦) 𝑑𝑠  
𝑙

0
simplified in Eq.  (A12). Case 1 and 

2 further expressed in Eq. (A13) and (A14). 
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∫ sin(𝛼𝑥) cos(𝛼𝑥) sin(𝛼𝑥) cos(𝛼𝑦) 𝑑𝑠  
𝑙

0

= 
1

8

[
 
 
 
 
 
 2𝑐𝑜𝑠 (

2𝑚𝜋 𝑥0
𝑎 −

2𝑛𝜋𝑦0
𝑏

) 𝑠𝑖𝑛 (
𝑚𝜋𝑙𝑐𝑜𝑠𝜑

𝑎 −
𝑛𝜋𝑙𝑠𝑖𝑛𝜑

𝑏
)

2(𝛽𝑥 − 𝛽𝑦)

−  
2𝑐𝑜𝑠 (

2𝑚𝜋𝑙 𝑥0
𝑎

+
2𝑛𝜋𝑦0
𝑏

) 𝑠𝑖𝑛 (
𝑚𝜋 𝑙 𝑐𝑜𝑠𝜑

𝑎
+
𝑛𝜋 𝑙 𝑠𝑖𝑛𝜑

𝑏
)

2(𝛽𝑥 + 𝛽𝑦)
 
]
 
 
 
 
 
 

 

 

 

 

 

(A12) 

 

CASE 1: When the crack oriented +450, 𝛽𝑥 = 𝛽𝑦 

∫ sin(𝛼𝑥) cos(𝛼𝑥) sin(𝛼𝑥) cos(𝛼𝑦) 𝑑𝑠  
𝑙

0

=  

 

=
𝑙

8
𝑐𝑜𝑠 (

2𝑚𝜋𝑥1
𝑎

−
2𝑛𝜋𝑦1
𝑏

)

−
1

8
 [
2𝑐𝑜𝑠 (

2𝑚𝜋𝑥0
𝑎 +

2𝑛𝜋𝑦0
𝑏

) 𝑠𝑖𝑛 (
𝑚𝜋 𝑙 𝑐𝑜𝑠𝜑

𝑎 +
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

2(𝛽𝑥 + 𝛽𝑦)
] 

 

 

 

 

 

 

(A13) 

 

CASE 2: When the crack oriented -450, 𝛽𝑥 = −𝛽𝑦 

∫ sin(𝛼𝑥) cos(𝛼𝑥) sin(𝛼𝑥) cos(𝛼𝑦) 𝑑𝑠  
𝑙

0

=  

 

=
1

8
 [
 2𝑐𝑜𝑠 (

2𝑚𝜋 𝑥0
𝑎

 −  
2𝑛𝜋𝑦

0

𝑏
) 𝑠𝑖𝑛 (

𝑚𝜋 𝑙 𝑐𝑜𝑠𝜑
𝑎

−
𝑛𝜋𝑙 𝑠𝑖𝑛𝜑

𝑏
)

2((𝛽
𝑥
 − 𝛽

𝑦
)

] 

−
𝑙

8
𝑐𝑜𝑠 (

2𝑚𝜋𝑥1
𝑎

+
2𝑛𝜋𝑦1
𝑏

) 

 

 

 

 

 

 

(A14) 
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Appendix (B): Free vibration analysis in cracked beam structures using Newton-

Raphson Method (Chapter 2). 

• MATLAB codes to obtain function (Eq. (3.4.7)) to further use Newton-Raphson 

Method with the help of symbolic toolbox available in MATLAB. 

 
syms A 
k = 2.3696e+08;% Stiffness of the rotational spring  
E=2*(10^11);% Modulus of elasticity  
I = 0.198*((0.122)^3)/12; % Moment of inertia 
l1=1.0; %1st Element   
l2=2.0; % 2nd Element  
lamda1=A*(l1);% A is the factor associated with the eigen % 
values  
lamda2=A*(l2); 
% part 1 of tge beam 
hyC1 = cosh(lamda1); 
c1 = cos(lamda1); 
hyS1 = sinh(lamda1); 
s1 = sin(lamda1); 
D1 = 1 - (hyC1*c1); 
alpha1 = A* E*I * (hyC1*s1-hyS1*c1)/D1; 
beta1 = A*E*I * (hyS1-s1)/D1; 
v1 = ((A)^2)*E*I* hyS1*s1/D1; 
delta1 = (A)^2*E*I*(hyC1-c1)/D1; 
gama1 = (A)^3*E*I*( hyC1*s1 + hyS1* c1)/D1; 
 
% part 2 of the beam % 
hyC2 = cosh(lamda2); 
c2 = cos(lamda2); 
hyS2 = sinh(lamda2); 
s2 = sin(lamda2); 
D2 = 1 - (hyC2*c2); 
alpha2 = A*E*I * (hyC2*s2-hyS2*c2)/D2; 
beta2 = A*E*I * (hyS2-s2)/D2; 
v2 = (A)^2*E*I*hyS2*s2/D2; 
delta2 = (A^2)*E*I*(hyC2-c2)/D2; 
gama2 = (A^3)*E*I*( hyC2*s2 + hyS2* c2)/D2; 
f1 = (gama1+gama2)*((alpha1+k)*(alpha2+k)-k^2); 
f2 = v1*((k*v2)-v1*(alpha2+k)); 
f3 = v2*((k*v1)-v2*(alpha1+k)); 
f = f1 + f2 + f3 
df = diff(f) 
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Appendix (C): Stran energy approach for beams (Chapter 3). 

• MATLAB Function file to calculate degradation in natural frequencies due to 

crack in an isotropic beam fixed at both ends: Using Strain energy approach. 

(Section 3.6.1) 

 
function   DELTA = beamfunc_deltaVec(X) 
fa = X(1) 
x  = X(2) 
 
L = 1.5; 
E = 2*10^11; 
b = 0.198; 
h = 0.122; 
I = 0.198*((0.122)^3)/12; 
% d =0.01; 
kr = E*I*((fa)-1)^2/(h*fa*(2-(fa))) 
 
mu = 184.4;  
cc = (E*I)^2/(kr*mu); 
 
Wu  = 1.0e+03*[0.4481   1.2353   2.4217 … 4.0031];%Undamaged 
natural frequencies. 
%Wu = 1.0e+03*(0.4481); 
l(1)= 1.5; % 1st beam 
l(2)= 1.5; % second beam 
factor = (E*I)/(kr*mu); 
 
constant1 = zeros(4,4); 
constant2 = zeros(4,4); 
curvature = zeros(1,4); 
J = zeros(1,4); 
A = zeros (1,4); 
 
Rdelta = zeros(1,4); % (W0^2- Wc^2) 
 
for n =1:length(Wu); 
       W = Wu(n); 
       lamda = (E*I/(mu*W^2))^0.25; 
       zeta = 1/lamda; 
       g1= l(1)*(zeta); 
       g2= l(2)*(zeta); 
       mat1 = [1 0 1 0;0 1 0 1;cos(g1) sin(g1) cosh(g1) 
sinh(g1);-sin(g1) cos(g1) sinh(g1) cosh(g1)]; 
       mat2 = [1 0 1 0;0 1 0 1;cos(g2) sin(g2) cosh(g2) 
sinh(g2);-sin(g2) cos(g2)  sinh(g2) cosh(g2)]; 
 
            if rem(n,2)==0 
                dis1  = [0; 0; 0; 1]; 
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                dis2 = [0;1;0;0];% anti symeric modes  
            else  
                dis1  = [0; 0 ; 1; 0]; % symetric modes  
                 dis2 = [1; 0; 0; 0]; 
            end  
 
            con1 = inv(mat1)*dis1; 
            con2 = inv(mat2)*dis2; 
            a1 = con1(1,1); 
            b1= con1(2,1); 
            c1 = con1(3,1); 
            d1 = con1(4,1); 
 
            a2 = con2(1,1); 
            b2 = con2(2,1); 
            c2 = con2(3,1); 
            d2= con2(4,1); 
 
            cona = [a1  b1  c1  d1]; 
            constant1(n,:) = cona; 
 
            conb = [a2  b2  c2  d2]; 
            constant2(n,:) = conb; 
 
end 
% in constant 1,all rows are the values of  the constats 
a,b,c,d for first memeber ,for first 4 
% natural frequencies  
% in constant 2,all rows are the values of  the constats 
a,b,c,d for second memeber ,for first 4 
% natural frequencies  
constant1; 
constant2; 
A = zeros (1,4); 
% the constants has cheacked and verified. 
 
for  n = 1:length(Wu); 
    W = Wu(n); 
     lamda = (E*I/(mu*W^2))^0.25; 
         k = constant1(n,:); 
         j = constant2(n,:); 
 
             a1 = k(1); 
             b1 = k(2); 
             c1 = k(3); 
             d1 = k(4); 
 
             a2 = j(1); 
             b2 = j(2); 
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             c2 = j(3); 
             d2 = j(4); 
 
t1 = l(1)/lamda; 
 
i1 = (a1)^2*((t1/2)+(sin(2*t1)/4)) + (b1)^2*(((t1/2)-
sin(2*t1)/4)) +... 
    (c1)^2*((t1/2)+(sinh(2*t1)/4)) + (d1)^2*((-
t1/2)+(sinh(2*t1)/4))+... 
    (a1)*(b1)*(-(cos(2*t1)/2)) + ((c1)*(d1)*(cosh(2*t1)/2)) 
+... 
    (a1)*(c1)*((cos(t1)*sinh(t1)) + (sin(t1)*cosh(t1)))+... 
    (a1)*(d1)*((cos(t1)*cosh(t1)) + (sin(t1)*sinh(t1)))+... 
    (b1)*(c1)*(-cos(t1)*cosh(t1) + sin(t1)*sinh(t1))+... 
    (b1)*(d1)*(-cos(t1)*sinh(t1) + sin(t1)*cosh(t1)); 
 
t2 = 0; 
     
i2 =  (a1)^2*((t2/2)+(sin(2*t2)/4)) + (b1)^2*(((t2/2)-
sin(2*t2)/4)) +... 
    (c1)^2*((t2/2)+(sinh(2*t2)/4)) + (d1)^2*((-
t2/2)+(sinh(2*t2)/4))+... 
    (a1)*(b1)*(-(cos(2*t2)/2)) + ((c1)*(d1)*(cosh(2*t2)/2)) 
+... 
    (a1)*(c1)*((cos(t2)*sinh(t2)) + (sin(t2)*cosh(2)))+... 
    (a1)*(d1)*((cos(t2)*cosh(t2)) + (sin(t2)*sinh(t2)))+... 
    (b1)*(c1)*(-cos(t2)*cosh(t2) + sin(t2)*sinh(t2))+... 
    (b1)*(d1)*(-cos(t2)*sinh(t2) + sin(t2)*cosh(t2)); 
 
J1 = (lamda)*(i1-i2) ; 
 
t3 = l(2)/lamda; 
ii1 =  (a2)^2*((t3/2)+(sin(2*t3)/4)) + (b2)^2*(((t3/2)-
sin(2*t3)/4)) +... 
    (c2)^2*((t3/2)+(sinh(2*t3)/4)) + (d2)^2*((-
t3/2)+(sinh(2*t3)/4))+... 
    (a2)*(b2)*(-(cos(2*t3)/2)) + ((c2)*(d2)*(cosh(2*t3)/2)) 
+... 
    (a2)*(c2)*((cos(t3)*sinh(t3)) + (sin(t3)*cosh(t3)))+... 
    (a2)*(d2)*((cos(t3)*cosh(t3)) + (sin(t3)*sinh(t3)))+... 
    (b2)*(c2)*(-cos(t3)*cosh(t3) + sin(t3)*sinh(t3))+... 
    (b2)*(d2)*(-cos(t3)*sinh(t3) + sin(t3)*cosh(t3)); 
 
t4 = 0; 
     
ii2 =  (a2)^2*((t4/2)+(sin(2*t4)/4)) + (b2)^2*(((t4/2)-
sin(2*t4)/4)) +... 
    (c2)^2*((t4/2)+(sinh(2*t4)/4)) + (d2)^2*((-
t4/2)+(sinh(2*t4)/4))+... 
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    (a2)*(b2)*(-(cos(2*t4)/2)) + ((c2)*(d2)*(cosh(2*t4)/2)) 
+... 
    (a2)*(c2)*((cos(t4)*sinh(t4)) + (sin(t4)*cosh(t4)))+... 
    (a2)*(d2)*((cos(t4)*cosh(t4)) + (sin(t4)*sinh(t4)))+... 
    (b2)*(c2)*(-cos(t4)*cosh(t4) + sin(t4)*sinh(t4))+... 
    (b2)*(d2)*(-cos(t4)*sinh(t4) + sin(t4)*cosh(t4)); 
 
J2 = (lamda)*(ii1-ii2) ; 
AJ = J1+J2; 
 
            J(n) = AJ; 
            AA = 1/(AJ*W^2); 
          A(n) = AA ; 
        
end  
J; % verified 
A; % verified 
 
   for  n = 1:length(Wu) 
  W = Wu(n); 
  lamda = (E*I/(mu*W^2))^0.25; 
   zeta = 1/lamda; 
                    
   k = constant1(n,:); 
   j = constant2(n,:); 
   a1 = k(1); b1 = k(2); c1 = k(3);d1 = k(4); 
   a2 = j(1);b2 = j(2);c2 = j(3);d2 = j(4); 
 one = [a1 b1 c1 d1];% no direct use of one and two 
two = [a2 b2 c2 d2];% just to see the values of a,b,c,d.    kk 
= (zeta)^2*((-a1)*cos(zeta*x)-
(b1)*sin(zeta*x)+(c1)*cosh(zeta*x)+(d1)*sinh(zeta*x));% 
verified 
      ddelta = cc*A(1,n)*(kk)^2 
 Rdelta(1,n) = ddelta 
    end 
 
  for m = 1:length(Wu) 
 WC = (Wu(1,m)*sqrt(1-Rdelta(1,m))) ; 
 Wc(1,m) = WC 
  end  
  
DELTA = zeros(1,4) 
for  ii = 1:length(Wu) 
    sqdiffw = (Wu(1,ii))^2-(Wc(1,ii))^2; 
    DELTA(1,ii) =  sqdiffw 
end                
end  
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Appendix (D): Crack localisation with Vector operations (Chapter 4). 

• MATLAB codes for damage localisation with noise-less simulation, using 

Vector operations. (Section 4.3) 

 

clear all; 
clc; % provide any name to the file and save i.e. 
 % DeltaVec.m 
kr = 2.3624e+07;% stiffness of rotational spring 
% Due to normalisation procedure we can use it for any %crack depth  
L = 1.5; 
E = 2*10^11 % Young’s Modulus;b =0.122 %width; h = 0.122 % depth of beam  
I = b*((d)^3)/12;% moment of inertia 
mu = 184.4; % mass density  
cc = (E*I)^2/(kr*mu); 
Wu = 1.0e+03*[0.4481   1.2353   2.4217  4.0031];%Undamaged %natural 
frequencies. 
%Wu = 1.0e+03*(0.4481); 
l(1)= 1.5; % 1st beam 
l(2)= 1.5; % second beam 
factor = (E*I)/(kr*mu); 
 loc = [0:0.01:1.5];% location 
maxiter=20; 
constant1 = zeros(4,4);constant2 = zeros(4,4);curvature = zeros(1,4); 
J = zeros(1,4);A = zeros (1,4); 
% Mv is the vector contains noramailised delta Eq.4.2.1 from %thesis, for 
demonstration the values in the matrix are for %crack location 0.5 
MV =  [0.108939247  0.0917893   0.54003686  0.829498134];%  
Crckloc = 0.5;% lOctaion of crack 
kprime = zeros(1,4); 
kdoublepr = zeros(1,4); 
Rdelta = zeros(1,4); % Relative delta 
wdsq = zeros(1,4); % Damaged natural frequencies 
delta = zeros(1,4); 
deltaprime = zeros(1,4); 
deltadoublepr = zeros(1,4); 
alldeltabar = zeros(4,length(loc)); 
alldeltadoublebar = zeros(4,length(loc)); 
floc = zeros(1,length(loc)); 
fderiv = zeros(1,length(loc)); 
f2deriv = zeros(1,length(loc)); 
Y = zeros(1,length(loc)); 
 for m = 1:length(loc) 
%x=xtrial 
% for m = 1:maxiter 
    x = loc(m); 
for n =1:length(Wu); 
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       W = Wu(n); 
       lamda = (E*I/(mu*W^2))^0.25; 
       zeta = 1/lamda; 
       g1= l(1)*(zeta); 
       g2= l(2)*(zeta); 
       mat1 = [1 0 1 0;0 1 0 1;cos(g1) sin(g1) cosh(g1) sinh(g1);-sin(g1) cos(g1) sinh(g1) 
cosh(g1)]; 
       mat2 = [1 0 1 0;0 1 0 1;cos(g2) sin(g2) cosh(g2) sinh(g2);-sin(g2) cos(g2)  sinh(g2) 
cosh(g2)]; 

 if rem(n,2)==0 
 dis1  = [0; 0; 0; 1]; 
 dis2 = [0;1;0;0];% anti symeric 

 else 
 dis1  = [0; 0 ; 1; 0]; % symetric 
 dis2 = [1; 0; 0; 0]; 

 end 
       con1 = inv(mat1)*dis1;con2 = inv(mat2)*dis2; 

  a1 = con1(1,1);b1= con1(2,1);c1 = con1(3,1);d1 = con1(4,1); 
  a2 = con2(1,1);b2 = con2(2,1);c2 = con2(3,1);d2= con2(4,1); 

 cona = [a1  b1  c1  d1]; 
 constant1(n,:) = cona; 
 conb = [a2  b2  c2  d2]; 
 constant2(n,:) = conb; 

end 
% in constant 1,all rows are the values of  the constats a,b,c,d for first memeber ,for 
first 4 
% natural frequencies  
% in constant 2,all rows are the values of  the constats a,b,c,d for second memeber 
,for first 4 
% natural frequencies  
constant1; constant2; 
A = zeros (1,4); 
% the constants has cheacked and verified. 
for  n = 1:length(Wu); 
    W = Wu(n); 
     lamda = (E*I/(mu*W^2))^0.25; 

     k = constant1(n,:); 
     j = constant2(n,:); 
    a1 = k(1);b1 = k(2);c1 = k(3);d1 = k(4);a2 = j(1); 

        b2 = j(2);c2 = j(3);d2 = j(4); 
t1 = l(1)/lamda; 
i1 = (a1)^2*((t1/2)+(sin(2*t1)/4)) + (b1)^2*(((t1/2)-sin(2*t1)/4)) +... 
    (c1)^2*((t1/2)+(sinh(2*t1)/4)) + (d1)^2*((-t1/2)+(sinh(2*t1)/4))+... 
    (a1)*(b1)*(-(cos(2*t1)/2)) + ((c1)*(d1)*(cosh(2*t1)/2)) +... 
    (a1)*(c1)*((cos(t1)*sinh(t1)) + (sin(t1)*cosh(t1)))+... 
    (a1)*(d1)*((cos(t1)*cosh(t1)) + (sin(t1)*sinh(t1)))+... 
    (b1)*(c1)*(-cos(t1)*cosh(t1) + sin(t1)*sinh(t1))+... 
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    (b1)*(d1)*(-cos(t1)*sinh(t1) + sin(t1)*cosh(t1)); 
t2 = 0;    
i2 =  (a1)^2*((t2/2)+(sin(2*t2)/4)) + (b1)^2*(((t2/2)-sin(2*t2)/4)) +... 
    (c1)^2*((t2/2)+(sinh(2*t2)/4)) + (d1)^2*((-t2/2)+(sinh(2*t2)/4))+... 
    (a1)*(b1)*(-(cos(2*t2)/2)) + ((c1)*(d1)*(cosh(2*t2)/2)) +... 
    (a1)*(c1)*((cos(t2)*sinh(t2)) + (sin(t2)*cosh(2)))+... 
    (a1)*(d1)*((cos(t2)*cosh(t2)) + (sin(t2)*sinh(t2)))+... 
    (b1)*(c1)*(-cos(t2)*cosh(t2) + sin(t2)*sinh(t2))+... 
    (b1)*(d1)*(-cos(t2)*sinh(t2) + sin(t2)*cosh(t2)); 
J1 = (lamda)*(i1-i2) ; 
t3 = l(2)/lamda; 
ii1 =  (a2)^2*((t3/2)+(sin(2*t3)/4)) + (b2)^2*(((t3/2)-sin(2*t3)/4)) +... 
    (c2)^2*((t3/2)+(sinh(2*t3)/4)) + (d2)^2*((-t3/2)+(sinh(2*t3)/4))+... 
    (a2)*(b2)*(-(cos(2*t3)/2)) + ((c2)*(d2)*(cosh(2*t3)/2)) +... 
    (a2)*(c2)*((cos(t3)*sinh(t3)) + (sin(t3)*cosh(t3)))+... 
    (a2)*(d2)*((cos(t3)*cosh(t3)) + (sin(t3)*sinh(t3)))+... 
    (b2)*(c2)*(-cos(t3)*cosh(t3) + sin(t3)*sinh(t3))+... 
    (b2)*(d2)*(-cos(t3)*sinh(t3) + sin(t3)*cosh(t3)); 
t4 = 0;    
ii2 =  (a2)^2*((t4/2)+(sin(2*t4)/4)) + (b2)^2*(((t4/2)-sin(2*t4)/4)) +... 
    (c2)^2*((t4/2)+(sinh(2*t4)/4)) + (d2)^2*((-t4/2)+(sinh(2*t4)/4))+... 
    (a2)*(b2)*(-(cos(2*t4)/2)) + ((c2)*(d2)*(cosh(2*t4)/2)) +... 
    (a2)*(c2)*((cos(t4)*sinh(t4)) + (sin(t4)*cosh(t4)))+... 
    (a2)*(d2)*((cos(t4)*cosh(t4)) + (sin(t4)*sinh(t4)))+... 
    (b2)*(c2)*(-cos(t4)*cosh(t4) + sin(t4)*sinh(t4))+... 
    (b2)*(d2)*(-cos(t4)*sinh(t4) + sin(t4)*cosh(t4)); 
J2 = (lamda)*(ii1-ii2) ; 
AJ = J1+J2; 
            J(n) = AJ; 
            AA = 1/(AJ*W^2); 
          A(n) = AA ;      
end  
J; % verified 
A; % verified 
            for  n =1:length(Wu) 
                     W = Wu(n); 
                     lamda = (E*I/(mu*W^2))^0.25; 
                     zeta = 1/lamda; 
k = constant1(n,:);j = constant2(n,:);a1 = k(1);b1 = k(2);c1 = k(3);d1 = k(4);a2 = j(1);b2 
= j(2);c2 = j(3);d2 = j(4); 
one = [a1 b1 c1 d1]; % no direct use of one and two 
two = [a2 b2 c2 d2]; % just to see the values of a,b,c,d. 
           kk = (zeta)^2*((-a1)*cos(zeta*x)-
(b1)*sin(zeta*x)+(c1)*cosh(zeta*x)+(d1)*sinh(zeta*x));% verified 
                kkprime = (zeta)^3*((a1)*sin(zeta*x)-
(b1)*cos(zeta*x)+(c1)*sinh(zeta*x)+(d1)*cosh(zeta*x)); 
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kkdoublepr=zeta^4*((a1)*cos(zeta*x)+(b1)*sin(zeta*x)+(c1)*cosh(zeta*x)+(d1)*sinh(
zeta*x)); 

     ddelta = A(1,n)*(kk)^2 
    % Awdsq = sqrt(W^2*(1-ddelta)); 
     ddeltaprime = 2*A(1,n)*kk*kkprime; ddeltadoublepr = 2*A(1,n)*( 

(kkprime)^2 + (kk*kkdoublepr)); 
 curvature(n) = kk; 
 kprime(n)=  kkprime; 
 kdoublepr(n) =kkdoublepr ; 
 Rdelta(n) = ddelta 
 %wdsq(n) = Awdsq; 
 deltaprime(n) = ddeltaprime; 
 deltadoublepr(n) =  ddeltadoublepr; 
 end 

   G  = cc*Rdelta; 
 Wc = (Wu -(G.*Wu))'; 
 sk = sqrt(sum(Rdelta.*Rdelta)); 
 p  = sum(Rdelta.*deltaprime); 
 skprime = p/sk; 

    X = sum(deltaprime.*deltaprime); 
    Y = sum(Rdelta.*deltadoublepr); 
    skdoublepr = (X+Y-((skprime)^2))/sk;     
 deltaBAR = zeros(1,4); 
 deltaBARprime = zeros(1,4); 
 deltadoubleBARprime = zeros(1,4); 

       for n = 1:length(Wu) 
       Adeltabar = Rdelta(n)/sk; 
       Adeltabarprime = (deltaprime(n)/sk) - (Rdelta(n)*skprime/(sk)^2); 
       Adeltadoublebarprime = (deltadoublepr(n)/sk)-

(2*(deltaprime(n)*skprime/(sk)^2))-... 
 (Rdelta(n)*skdoublepr/(sk)^2)+ ((2*Rdelta(n)*(skprime)^2)/(sk)^3); 

       deltaBAR(1,n)=Adeltabar ;     
       deltaBARprime(1,n)= Adeltabarprime ; 
       deltadoubleBARprime(1,n) =Adeltadoublebarprime ; 

       end 
alldeltabar (1:4,m) =deltaBAR' 
 alldeltadoublebar(1:4,m) = deltaBARprime'; 

 f = sum(MV.*deltaBAR);% used formulation for vector operations 
 fprime = sum(MV.*deltaBARprime); 
 fdoublepr = sum(MV.*deltadoubleBARprime); 
 YY =(sum(MV.*deltaBAR)-1)*sum(MV.*deltaBARprime); 
   floc(m) = f; 
   fderiv(m) = fprime; 
  f2deriv(m) =  fdoublepr; 

    Y(m) = YY; 
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         result = [floc;fderiv]; 
        end 
 plot(loc,floc,'-b','LineWidth',2); 
         hold on 
         xline(Crckloc,'--r', 'LineWidth',1) 
         hold off 
         title('Noise free simulation for crack ,0.3 meters') 
         xlabel('location in meters','FontSize',12) 
         ylabel('f(X)','FontSize',12) 
         xlim([0 1.5]) 
         ylim([0 1]) 
         grid off 
%                
 
 
 
 

Appendix (E): Crack localisation using interval arithmetic method (Chapter 4). 

• MATLAB codes for Damage localisation in beam with noise with interval 

arithmetic operations, From Section (4.4). 
 
clear all; 
clc; 
DeltaVec; 
 wo =  1.0e+03*[0.4481   1.2353   2.4217  4.0031];% Natural 
frequencies of intact beam. 
% Wc Natural frequencies of cracked beam. 
wc = [444.184910676421 1226.21246976088 2314.91582628476
 3728.53320419325];% Location  = 0.5,depth of crack =0.05; 
 
e = 0.5;% Error  
n = length(wo); 
 wol = [wo(1)-e ,wo(2)-e, wo(3)-e, wo(4)-e] ; 
 wou = [wo(1)+e ,wo(2)+e, wo(3)+e, wo(4)+e] ; 
 wcl = [wc(1)-e ,wc(2)-e, wc(3)-e, wc(4)-e] ; 
 wcu = [wc(1)+e ,wc(2)+e, wc(3)+e, wc(4)+e] ; 
 DL  = zeros(1,4); 
 DU  = zeros(1,4); 
 DLBAR = zeros(1,4);% lower limit for normalised natural 
%frequencies  
 DUBAR = zeros(1,4); );% Upper limit for normalised natural 
%frequencies  
 for i = 1:n  
dl = 1 - (wcu(i))/(wol(i)); 
du = 1 - (wcl(i))/(wou(i)); 
DL(1,i) = dl; 
DU(1,i) = du; 
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 end 
 DLsq = DL.^2; 
 DUsq = DU.^2; 
 SL = sum(DLsq); 
 s = sqrt(SL); 
 SU = sum(DUsq); 
 q = sqrt(SU) 
 epsi = DUsq - DLsq 
  
 for i =1:n 
      DLB = DL(i)/sqrt(SU-epsi(i)) 
      if DLB < 0; 
          dlbar =0; 
      else  
          dlbar = DLB; 
      end 
     dubar = DU(i)/sqrt(SL-epsi(i)) 
 
     DLBAR(i) = dlbar; 
     DUBAR(i) = dubar; 
 end 
 
 figure() 
  for  i =1:4 
    subplot(2,2,i) 
xloc = alldeltabar(i,:);%change mode 
 plot(loc,xloc,'-b','LineWidth',1.5); 
xlabel('location (m)','FontSize',20,'FontName','Times new 
Roman') 
 grid off 
 ylabel(' (f(x/l)','FontSize',20,'FontName','Times new Roman') 
 hold on 
  yline(DUBAR(1,i),'LineWidth',1.3)% chnage mode 
 hold on 
 yline(DLBAR(1,i),'LineWidth',1.3)%change mode 
 hold on 
xline(0.5,'--r', 'LineWidth',1.5) 
 hold on 
 str1 = {' Upper Limit'}; 
 str2 = {' Lower Limit'}; 
text(0.75,0.5,str1,'FontSize',17,'FontName','Times new Roman') 
text(0.75,0.2,str2,'FontSize',17,'FontName','Times new Roman') 
hold on  
legend(' f(x)',' U.L.',' L.L.',' Target 
Location','FontSize',17,'FontName','Times new Roman') 
hold off 
 xlim([0 1.5]) 
  ylim([0 1]) 
  end 
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Appendix (F): Inverse problem in beam structures using gradient based 

optimisation (Chapter 4). 

 

• MATLAB Function file to calculate the error function which employed for 

minimisation using FMINCON for beam structure. 
 

function errVal = beaminversequations(X,deltaSyn,deltaScale) 
% Cy = X(1); 
deltaVal = beamfunc_deltaVec(X); % vector eith 4 elements 
errVal = norm((deltaVal - deltaSyn)./deltaScale); 
end 
 

• MATLAB codes for the inverse problem: beam structure using gradient based 

optimisation.   
clc; 
clear; 
close all; 
P = 10 % Number of sample points 
N = 2 % Number of dimensions 
lb = [0  0]; % lower bounds for crack depth ratio and location 
ub = [1  1.5]; 
Y  = lhsdesign(P,N,'criterion','correlation'); 
M0 = bsxfun(@plus,lb,bsxfun(@times,Y,(ub-lb))); 
 
loc = 0.6;% Target location  
deFac = 0.4098;% Target depth of crack/thickness 
 
 
deltaSyn = [583.78 73282.40 737558.419… 1758286.76877513];% 
Synthetic data  
% obtained using ‘beamfunc_deltaVec(X)’ with target % location 
and target crack depth ratio  
 
deltaScale  =[17637.0041984586 24023.0825807091
 4821.68261841498 421616.003938783]; 
% Scaling factor employed to scale the numerator and 
% obtained for any random crack location and crack -depth % 
ratio using ‘beamfunc_deltaVec(X)’. Strictly for  
% scaling purpose  
 
XSOL = zeros(P,N) 
  Options = 
optimoptions('fmincon','Display','iter','Algorithm','interior-
point','PlotFcn',... 
    'optimplotfvalconstr', 'OutputFcn',@outfun); 
  options = optimoptions(options,'StepTolerance',1e-50); 
  options = optimoptions(options,'ConstraintTolerance',1e-40); 
%   edit optimplotfval 
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%   set(gca, 'YScale', 'log'); 
%   options = optimset(options,'PlotFcns',{… @optimplotlogfval 
} 
fval = zeros(1,P); exitflag = zeros(1,P); output = {}; 
display = {}; 
for i = 1:P 
T0 = M0(i,:); 
A = []; 
b = []; 
Aeq = []; 
beq = []; 
nonlcon = []; 
lb = [0.015  0.1]; 
ub = [0.97  1.4]; 
% Set up shared variables with outfun 
global history searchdir 
history.x = []; 
history.fval = []; 
searchdir = []; 
[Xsol,fval(i),exitflag(i),output{i}] = fmincon(@(X) 
beaminversequations(X,... 
    deltaSyn,deltaScale), T0, 
A,b,Aeq,beq,lb,ub,nonlcon,options); 
XSOL(i,:) = Xsol; 
xhist{i} = history.x; 
fvalhist{i} = history.fval; 
searchdirhist{i} = searchdir; 
end 
colScale = -log10(fval./(max(fval)+1e-2)); 
colScale = colScale./max(colScale); 
 
figure () 
h = [128 128 128]/255; 
jj=1; 
        plot(xhist{1}(:,jj),'-','Color',... 
       h,'LineWidth',2*colScale(1)); 
         hold on 
        plot(xhist{2}(:,jj),'-','Color',... 
     [0.6350 0.0780 0.1840],'LineWidth',2*colScale(2)); 
         hold on 
          plot(xhist{3}(:,jj),'-','Color',... 
        h,'LineWidth',2*colScale(3)); 
         hold on 
          plot(xhist{4}(:,jj),'-','Color',... 
       h,'LineWidth',2*colScale(4)); 
         hold on 
          plot(xhist{5}(:,jj),'-','Color',... 
        [0 0 1],'LineWidth',2*colScale(5)); 
         hold on 
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          plot(xhist{6}(:,jj),'-','Color',... 
        [0.4660 0.6740 0.1880 ],'LineWidth',2*colScale(6)); 
         hold on 
          plot(xhist{7}(:,jj),'-','Color',... 
        [1 0 1],'LineWidth',2*colScale(7)); 
         hold on 
          plot(xhist{8}(:,jj),'-','Color',... 
       [0.9290 0.6940 0.1250],'LineWidth',2*colScale(8)); 
         hold on 
          plot(xhist{9}(:,jj),'-','Color',... 
        [0.4940 0.1840 0.5560],'LineWidth',2*colScale(9)); 
         hold on 
          plot(xhist{10}(:,jj),'-','Color',... 
        h,'LineWidth',2*colScale(10)) 
 hold on 
 yline(deFac,'--r','LineWidth',2.5);   
     hold off 
     alpha(0.1) 
     xlabel('iterations','FontSize',15,'FontName','Times new 
Roman'); 
     ylabel('d/h','FontSize',15,'FontName','Times new Roman'); 
     xt = [0.5]; 
     yt = [0.22]; 
str = {' Target depth'}; 
 
text(xt,yt,str,'FontSize',15,'FontName','Times new Roman') 
title('crack depth ratio  vs convergence set 
','FontSize',15,'FontName','Times new Roman') 
figure() 
jj=2; 
       plot(xhist{1}(:,jj),'-','Color',... 
       h,'LineWidth',2*colScale(1)); 
         hold on 
        plot(xhist{2}(:,jj),'-','Color',... 
     [0.6350 0.0780 0.1840],'LineWidth',2*colScale(2)); 
         hold on 
          plot(xhist{3}(:,jj),'-','Color',... 
        h,'LineWidth',2*colScale(3)); 
         hold on 
          plot(xhist{4}(:,jj),'-','Color',... 
       h,'LineWidth',2*colScale(4)); 
         hold on 
          plot(xhist{5}(:,jj),'-','Color',... 
        [0 0 1],'LineWidth',2*colScale(5)); 
         hold on 
          plot(xhist{6}(:,jj),'-','Color',... 
        [0.4660 0.6740 0.1880 ],'LineWidth',2*colScale(6)); 
         hold on 
          plot(xhist{7}(:,jj),'-','Color',... 
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        [1 0 1],'LineWidth',2*colScale(7)); 
         hold on 
          plot(xhist{8}(:,jj),'-','Color',... 
       [0.9290 0.6940 0.1250],'LineWidth',2*colScale(8)); 
         hold on 
          plot(xhist{9}(:,jj),'-','Color',... 
        [0.4940 0.1840 0.5560],'LineWidth',2*colScale(9)); 
         hold on 
          plot(xhist{10}(:,jj),'-','Color',... 
        h,'LineWidth',2*colScale(10)); 
 hold on 
     yline(loc,'--r','LineWidth',1.5);   
     hold off 
     alpha(0.1) 
     xlabel({'iterations'},'FontSize',15,'FontName','Times new 
Roman'); 
     ylabel({'location'},'FontSize',15,'FontName','Times new 
Roman'); 
     xt = [0.5]; 
     yt = [0.22]; 
str = {' Target location'}; 
 
text(xt,yt,str,'FontSize',15,'FontName','Times new Roman') 
title('Location  vs convergence set 
','FontSize',15,'FontName','Times new Roman') 
 

 

Appendix (G): Damage modelling in plate structures (Chapter 5). 

 

• MATLAB Function file to calculate degradation in natural frequencies due to 

crack in a simply supported isotropic plate.  

 
function DELTA = func_deltaVec(X) 
x1 = X(1);y1 = X(2);x2 = X(3);y2 = X(4);fa = X(5); 
E = 110e9; % Modulus of elasticity  
roe = 4480; % Weight density  
v = 0.3; % Poisson’s ratio  
a = 0.1; % length of crck  
b = 0.1; % width of crack 
h = 0.001; % thickness of plate 
D = E*h^3/(12*(1-v^2));% flexural rigidity  
M = [1 1 2 2 1 3]; % Number of half wavelengths in X-axis  
N = [1 2 1 2 3 1]; % Number of half wavelengths in Y-axis 
DELTA = zeros (1, length(M)); 
WO = zeros (1, length(M)); 
WC = zeros (1, length(M)); 
l = sqrt((x2-x1)^2 + (y2-y1)^2);% Crack length. 
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fi = atan((y2-y1)/(x2-x1)); 
d=fa*h; % Depth of crack  
 S = (d/h)*(2-(d/h))/(0.9*(1-(d/h))^2);%new 
Cy = (h*S/D);   % Compliance  
x0 = (x1+x2)/2 ;  y0 = (y1+y2)/2;Midpoint of the crack 
for i = 1:length(M) 
    m = M(i); n = N(i); 
% alphax = m*pi*(x1+(l*cos(fi)))/a; 
% alphay = n*pi*(y1+(l*sin(fi)))/b; 
Bx = (m*pi/a)*cos(fi); 
By = (n*pi/b)*sin(fi); 
BCASE1 = Bx-By; BCASE2 = Bx+By; 
t1 = ((m^2/a^2) + (v*(n^2/b^2)))*((sin(fi)^2)); 
t2 = ((v*(m^2/a^2)) + (n^2/b^2))*((cos(fi)^2)); 
d1 = (Cy*4/(roe*h*a*b)); 
A = l/4; 
B = cos(2*m*pi*x0/a)*sin(m*pi*l*cos(fi)/a)/(4*Bx); 
C = cos(2*n*pi*y0/b)*sin(n*pi*l*sin(fi)/b)/(4*By); 
if  abs(BCASE1)< 0.000000001; 
%    x1 = input('put value of x1 for +45 ='); 
%    y1 = input('put value of y1 for +45 ='); 
  De = (l/8)*(cos((2*m*pi*x1/a)-(2*n*pi*y1/b))); 
 else 
%
D1 = cos((2*m*pi*x0/a)-(2*n*pi*y0/b)); 
D2 = sin((m*pi*l*cos(fi)/a)-(n*pi*l*sin(fi)/b)); 
De = D1*D2/(8*(Bx-By)); 
 end 
if abs(BCASE2)<0.000000001%if crack have alignment 450 or 1350

%    x1 = input('put value of x1 for -45 ='); 
%    y1 = input('put value of y1 for -45 =');  
E = (l/8)*(cos((2*m*pi*x1/a)+(2*n*pi*y1/b))); 
else  
E1 = cos((2*m*pi*x0/a)+(2*n*pi*y0/b)); 
E2 = sin((m*pi*l*cos(fi)/a)+(n*pi*l*sin(fi)/b)); 
E = E1*E2/(8*(Bx+By)); 
end 

if abs(Bx)<0.000000001 
    finaldtr1 = 0; 
    d11 =(sin(m*pi*x0/a))^2; 
 d22 = ((l/2)-((b/(2*n*pi))*cos(2*n*pi*y0/b)*sin(n*pi*l/b))); 
 d2 = D^2*pi^4*((t1+t2)^2)*d11*d22; 
elseif abs(By)<0.000000001 
 finaldtr1 = 0; 
d2 = D^2*pi^4*((t1+t2)^2)*(sin(n*pi*y0/b))^2*((l/2)-
((a/(2*m*pi))*cos(2*m*pi*x0/a)*sin(m*pi*l/a))); 
else 
  d2 =  D^2*pi^4*((t1+t2)^2)*(A - B - C + De + E) ; 
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dtr1 = (2*D*pi^2*(1-v)*sin(fi)*cos(fi)*m*n/(a*b))^2; 
finaldtr1 = dtr1*(A+B+C+De+E); 
end 
if abs(Bx) < 0.0000000001 
    dtr2 = 0; 
    elseif abs(By) <0.00000001 
    dtr2 = 0; 
else 
    dtr2 = 4*D^2*pi^4*(t1+t2)*(1-v)*sin(fi)*cos(fi)*m*n/(a*b); 
end 
intdtr1 = (2*m*pi*x0/a); 
intdtr2 = (2*n*pi*y0/b); 
intdtr3 = m*pi*l*cos(fi)/a; 
intdtr4 = n*pi*l*sin(fi)/b; 
if abs(BCASE1)<0.0000001 
%    x1 = input('put value of x1 for +45  ='); 
%    y1 = input('put value of y1 for +45  ='); 
   term1 = l*(cos((2*m*pi*x1/a)-(2*n*pi*y1/b)));    
term2 = 
(2*cos(intdtr1+intdtr2)*sin(intdtr3+intdtr4))/(2*(Bx+By)); 
finaldtr2 = (dtr2)*(1/8)*(term1-term2); 
elseif abs(BCASE2)<0.0000001 
%   x1 = input('put value of x1 for -45 ='); 
%   y1 = input('put value of y1  for -45 =');  
  term1 = (2*cos(intdtr1-intdtr2)*sin(intdtr3-
intdtr4))/(2*(Bx-By));   
term2 = l*cos((2*m*pi*x1/a)+(2*n*pi*y1/b)); 
finaldtr2 = (dtr2)*(1/8)*(term1-term2); 
else  
    term1 = (2*cos(intdtr1-intdtr2)*sin(intdtr3-
intdtr4))/(2*(Bx-By)); 
   term2 = 
(2*cos(intdtr1+intdtr2)*sin(intdtr3+intdtr4))/(2*(Bx+By)); 
    finaldtr2 = dtr2*(1/8)*(term1-term2); 
end 
delta = d1*( d2 + finaldtr1 - finaldtr2); % BY SING NOTS  
wo = sqrt((D*pi^4*((m^2/a^2)+(n^2/b^2))^2)/(roe*h)); 
wcsq =(wo^2-delta); 
wc = sqrt(wcsq) 
edelta = wo^2 - wc^2; 
DELTA(1,i) = edelta 
 WO(i)=wo; 
 WC(i)=wc; 
end 
% CH1 = WO'; 
% CH2 = WC'; 
% CH3 = DELTA'; 
% check = [CH1 CH2 CH3]; 
% REUSE = CH3' 
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 end 
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Appendix (H): Inverse problem in plat structures using gradient based 

optimisation (Chapter 6). 

• MATLAB Function file to calculate the error function which employed for

minimisation using FMINCON.

function errVal = inversequations(X,deltaSyn,deltaScale) 
% Cy = X(1); 
deltaVal = func_deltaVec(X);% vector with 5 elements 
errVal = norm ((deltaVal - deltaSyn)./deltaScale); 
end 

• MATLAB codes for the inverse problem : plate structure.
clear; 
close all; 
P = 10  % Number of sample points 
N = 5;   % Number of dimensions 
lb = [0 0 0 0 0]; %lower bounds for x1,y1,x2,y2 
ub = [0.1 0.1 0.1 0.1 0.98]; % Upper bounds for % 
x1,y1,x2,y2 

Y  = lhsdesign(P,N,'criterion','correlation'); 
M0 = bsxfun(@plus,lb,bsxfun(@times,Y,(ub-lb))); 
XSYN = [0.023,0.027,0.043,0.047];% predermined values of % 
crack location [X1 Y1 X2 Y2] 
deFac = 0.3; % depth of crack/thickness 

deltaSyn =[22895.9059109555 146094.423694625 189708.704735365
286910.008300141 303291.384436828 293620.527092000] 

% Synthetic data generated using ASYN and deFac 

deltaScale=[13104.9504536692 173337.074126823
173337.074126823 455531.973975404 278677.448767910
278677.448767910]; 

% Data used for scaling purpose 

XSOL = zeros(P,N); 
options = optimoptions('fmincon','Display','iter',... 

'Algorithm','interior-point','PlotFcn',... 
    'optimplotfvalconstr', 'OutputFcn',@outfun); 

  options = optimoptions(options,'StepTolerance',1e-40); 
 options = optimoptions(options,'ConstraintTolerance',… 
1e-10); 

%   edit optimplotfval 
%   set(gca, 'YScale', 'log'); 
%   options = optimset(options,'PlotFcns',  { 
@optimplotlogfval }); 
fval = zeros(1,P); exitflag = zeros(1,P); output = {}; 
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display = {}; 
for i = 1:P 
T0 = M0(i,:); 
A = []; 
b = []; 
Aeq = []; 
beq = []; 
nonlcon = []; 
lb = [0.0   0.0   0.0    0.0   0.2]; 
ub = [0.1   0.1   0.1    0.1   0.98]; 
 
% Set up shared variables with outfun 
global history searchdir 
history.x = []; 
history.fval = []; 
searchdir = []; 
[Xsol,fval(i),exitflag(i),output{i}] = fmincon(@(X) 
inversequations(X,... 
    deltaSyn,deltaScale), T0, 
A,b,Aeq,beq,lb,ub,nonlcon,options); 
XSOL(i,:) = Xsol; 
 
xhist{i} = history.x; 
fvalhist{i} = history.fval; 
searchdirhist{i} = searchdir; 
end 
 figure() 
 for ii=1:P 
 semilogy(1:length(fvalhist{ii}), fvalhist{ii}); hold on 
 end 
 xlabel(['Itteration for ',num2str(P), ' sample ponits']); 
ylabel({'log(favl)'}); 
title('fval vs Itterations') 
 hold off 
figure() 
 for jj=1:N 
  subplot(2,3,jj) 
for ii=1:P 
 plot(1:length(fvalhist{ii}), searchdirhist{ii}(:,jj)); 
 hold on 
  xlabel('Itteration') 
ylabel({'Gradient w.r.t. varriable',num2str(jj)}); 
title('Gradient vs Itterations') 
end 
hold off 
 end 
figure() 
 for ii=1:P         
     subplot(2,5,ii) 
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     for jj = 1:length(fvalhist{ii}) 
        plot(xhist{ii}(jj,1:2:3), xhist{ii}(jj,2:2:4),... 
           'Color', [0 0 1 0.5]); 
         
        hold on 
     % scatter1 = 
scatter(xhist{ii}(jj,1:2:3),xhist{ii}(jj,2:2:4),'MarkerFaceCol
or','r','MarkerEdgeColor','k');  
 %scatter1.MarkerFaceAlpha = .05; 
        hold on 
 end 
     plot(mean(xhist{ii}(:,1:2:3),2), 
mean(xhist{ii}(:,2:2:4),2),'.-r') 
     plot(XSYN(1:2:3),XSYN(2:2:4),'-g','LineWidth',3) 
      
     hold off 
     alpha(0.1) 
     xlabel({'l(a = 0.1m)'}); 
     ylabel({'b(b = 0.1m)'}); 
     xt = [0.035]; 
     yt = [0.035]; 
str = {'\leftarrow Target'}; 
 
text(xt,yt,str) 
title('Target vs convergence set = ',num2str(ii)) 
 xlim([0 .1]);  ylim([0 .1]) 
 end 
%  figure() 
%  for ii=1:P 
% xvec = repmat(0.5,length(xhist{ii}(:,5)),1) 
%    subplot(2,5,ii) 
% yline(xhist{ii}(:,5)); hold on 
% plot(xvec,xhist{ii}(:,5),'.-r') 
%  yline(deFac,'-g','LineWidth',3)   
%  end 
%  hold off 
%   xlim([0 1]) 
%  ylim([0 1] 
%% 
colScale = -log10(fval./(max(fval)+1e-2)); 
colScale = colScale./max(colScale); 
figure() 
hold on 
for ii=[1:P] 
    plot(XSOL(ii,1:2:4),XSOL(ii,2:2:4),'-','Color',... 
        [0 0 1 ],'LineWidth',3*colScale(ii)) 
     xt = [0.002+sum(XSOL(ii,1:2:4))/2]; 
     yt = [sum(XSOL(ii,2:2:4))/2]; 
str = {ii}; 
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text(xt,yt,str) 
    end 
hold on 
plot(XSYN(1:2:end),XSYN(2:2:end),'--
r','LineWidth',1.5*colScale(1));  
xlabel({'length(a = 0.1m)'}); 
ylabel({'breadth(b = 0.1m)'}); 
hold off 
axis equal 
xlim([0, 0.1]) 
ylim([0, 0.1]) 
% figure() 
% yline(deFac,'--r','LineWidth',1); hold on  
% for JJ = 1:P 
% Y = yline(XSOL(JJ,size(N)),'-','Color',... 
%  [0 0 1],'LineWidth',3*colScale(ii)) 
% end 
% hold off 
% xlim([0, 1]) 
% ylim([0, 1]) 
% %  
LR = linspace(0.1,0.9,5); 
figure() 
 for ii=1:P         
      subplot(2,5,ii) 
      for jj =5 
        plot(xhist{ii}(:,jj),'Color', [0 0 1 LR(jj)]);   hold 
on 
  
     % scatter1 = 
scatter(xhist{ii}(jj,1:2:3),xhist{ii}(jj,2:2:4),'MarkerFaceCol
or','r','MarkerEdgeColor','k');  
 %scatter1.MarkerFaceAlpha = .05; 
%         hold on 
   end 
%      plot(mean(xhist{ii}(:,1:2:3),2), 
mean(xhist{ii}(:,2:2:4),2),'.-r') 
%      plot(XSYN(1:2:3),XSYN(2:2:4),'-g','LineWidth',3) 
     yline(deFac,'--r','LineWidth',4); hold on  
     hold off 
     alpha(0.1) 
     xlabel({'iterations'}); 
     ylabel({'d/h'}); 
     xt = [0.5]; 
     yt = [0.22]; 
str = {' Target crack'}; 
text(xt,yt,str) 
% title('depth ratio  vs convergence set =',num2str(ii)) 
 colScale = -log10(fval./(max(fval)+1e-2)); 
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colScale = colScale./max(colScale); 
 
figure() 
htmlGray = [128 128 128]/255; 
%  for ii=1:P         
%       subplot(2,5,ii) 
%       for jj =5 
jj=5; 
        plot(xhist{1}(:,jj),'-','Color',... 
   [0 0 1],'LineWidth',2.5*colScale(1)); 
         hold on 
        plot(xhist{2}(:,jj),'-','Color',... 
      [0 1 0],'LineWidth',2.5*colScale(2)); 
         hold on 
          plot(xhist{3}(:,jj),'-','Color',... 
      [0 0 1],'LineWidth',2.5*colScale(3)); 
         hold on 
          plot(xhist{4}(:,jj),'-','Color',... 
       [0 0.4470 0.7410],'LineWidth',2.5*colScale(4)); 
         hold on 
          plot(xhist{5}(:,jj),'-','Color',... 
 [0 0 1],'LineWidth',2.5*colScale(5)); 
         hold on 
          plot(xhist{6}(:,jj),'-','Color',... 
  [0.8500 0.3250 0.0980],'LineWidth',2.5*colScale(6)); 
         hold on 
          plot(xhist{7}(:,jj),'-','Color',... 
htmlGray,'LineWidth',2.5*colScale(7)); 
         hold on 
          plot(xhist{8}(:,jj),'-','Color',... 
     [0.4940 0.1848 0.5560],'LineWidth',2.5*colScale(8)); 
         hold on 
          plot(xhist{9}(:,jj),'-','Color',... 
   [0.4660 0.6740 0.1880],'LineWidth',2.5*colScale(9)); 
         hold on 
          plot(xhist{10}(:,jj),'-','Color',... 
    htmlGray,'LineWidth',2.5*colScale(10)); 
         
        hold on 
 yline(deFac,'--r','LineWidth',2.5);   
     hold off 
     alpha(0.1) 
     xlabel({'iterations'}); 
     ylabel({'d/h'}); 
     xt = [0.5]; 
     yt = [0.22]; 
str = {' Target crack'}; 
text(xt,yt,str) 
title('depth ratio  vs convergence set =',num2str(ii)) 
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%   end 
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