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Machine learning in Alzheimer’s disease
genetics

A list of authors and their affiliations appears at the end of the paper

Traditional statistical approaches have advanced our understanding of the
genetics of complex diseases, yet are limited to linear additive models. Here
we applied machine learning (ML) to genome-wide data from 41,686 indivi-
duals in the largest European consortium on Alzheimer’s disease (AD) to
investigate the effectiveness of various ML algorithms in replicating known
findings, discovering novel loci, and predicting individuals at risk. We utilised
Gradient Boosting Machines (GBMs), biological pathway-informed Neural
Networks (NNs), andModel-basedMultifactor Dimensionality Reduction (MB-
MDR) models. ML approaches successfully captured all genome-wide sig-
nificant genetic variants identified in the training set and 22% of associations
from larger meta-analyses. They highlight 6 novel loci which replicate in an
external dataset, including variants which map to ARHGAP25, LY6H, COG7,
SOD1 and ZNF597. They further identify novel association in AP4E1, refining the
genetic landscape of the known SPPL2A locus. Our results demonstrate that
machine learningmethods can achieve predictive performance comparable to
classical approaches in genetic epidemiology and have the potential to
uncover novel loci that remain undetectedby traditional GWAS. These insights
provide a complementary avenue for advancing the understanding of AD
genetics.

Genome-wide association studies (GWAS) have enabled huge progress
in identifying variants associated with the risk of developing Alzhei-
mer’s disease (AD)1. Polygenic risk scores (PRS) based on these variants
have greatly improvedprediction of disease status2. However, inherent
to GWAS and PRS are the assumptions that variants are independent
predictors, linearly associated with the outcome, and therefore com-
bine additively within and between loci3, with no interactions occur-
ring between variants, or between genes and other risk factors. While
such simplifying genetic assumptions have proved fruitful across a
range of diseases and disorders4,5, they are at odds with biological
evidence in AD that disease heterogeneity and responses from cells
such as microglia are dependent on APOE status6–9. Further, there is
genetic evidence suggesting that different variants are associated with
the disease depending on APOE status10–13 and age at diagnosis or
assessment14–16. As GWAS sample size increases and PRS approach
limits on predictive performance, alternative modelling approaches

are essential to maximise discoveries from existing data and enable a
deeper understanding of AD genetics.

The confluence of increasingly large genetic data17, readily avail-
able computational resources, and mature methodologies presents a
key opportunity for addressing this at scale by applying flexible data-
drivenmachine learning (ML)models. Several studies have appliedML
to the genetics of brain disorders and have been recently
summarised18,19. PreviousML attemptshavebeen impactedbyhigh risk
of bias20 and population stratification21, while AD studies in particular
have been hampered by low sample size18, leaving a gap for compre-
hensive, large-scale studies that rigorously apply ML to genome-wide
data. We conducted the largest genome-wide ML study in AD to date,
marking a pivotal moment in the field. Our study presents a repro-
ducible, bias-aware approach for ML model development, validation,
and confounder adjustment. We trained three of the most prominent
approaches in the field to compare predictive accuracy and uncover
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novel AD-associated risk loci which were not identified by tradi-
tional GWAS.

Results
Prediction
Gradient boosting, neural networks, MB-MDRC 1 d, and PRS models
were compared for discovery and prediction (Fig. 1). Prediction of AD
status between models was highly correlated in the test set, having
pairwise correlations between r = 0.80 and r =0.87 (Fig. 2). The highest
correlations were observed forGBM-NN (r =0.87) and GBM-MB-MDRC
1 d (r =0.86). The weakest correlations were between NNs and PRS
(r =0.80). PRS was most strongly correlated with GBMs (r = 0.84). For
discrimination between cases and controls, the highest AUC of 0.692
(95% CI: 0.683-0.701) was obtained with gradient boosting, and was
not significantly different to an AUC of 0.689 (0.679-0.698) for PRS
(Fig. 2, Supplementary Data 4). The AUCs remained within the 95% CI
when we excluded any imputed variants from the data, indicating no
risk of bias from their inclusion (GBMs: 0.683, NN: 0.674, and
MBMDRC-1d: 0.667 without imputed variants). Predictions remained
stable across repeats with different random train-test splits (Supple-
mentary Data 4) and across the cohorts in the data (Supplementary
Fig. 6). All models have a greater proportion of females in those pre-
dicted to be a case, reflecting the underling sex differences in the data
(59% female, 62% female in cases, 57% in controls), except for GBMs
which have a similar proportion in both cases and controls (Fig. 2i).

Identification of AD-associated loci
SNPs prioritized by ML approaches were required to appear in at least
two random train-test splits, ensuring more robust associations; they
include both known (Table 1) and novel variants (Table 2). Gradient
boosting machines correctly distinguished the APOE haplotypes
(Fig. 3a, showing distinct clusters). Figure 3b further highlights mod-
elling of the APOE region across methods, wherein GBMs and NNs
correctly identify causal SNPs. Known loci including CR1, BIN1, IDUA,
OTULIN, RASA1, RASGEF1C, CLU, ABCA1, MS4A*, PICALM, ABCA7, APOE,

andCASS4 (Table 1) are highlightedbyMLmodels (Fig. 3c). In addition,
several novel loci were identified with putative biological evidence for
association with AD (ARHGAP25, COG7, LINC00924/LOC105369212,
LY6H, SOD1 and ZNF597) which were replicated in Jansen et al.22

(Table 2). Association of an exonic missense variant was also high-
lighted in AP4E1, within 500 kb of the known SPPL2A locus (Table 2).
Neural networks (NN) detected known loci in APOE, BIN1, CYP27C1,
ABCA1 and ABCA7 (Fig. 3c) and an additional novel locus (SOD1), which
also replicated in Jansen et al.22 (Table 2). MB-MDR 1 d identified SNPs
in 24 genes, the majority of whichmap to the APOE region, for at least
two train-test splits. Of these, 20were identifiedbyevery possible split,
indicatinghighly stable results.MB-MDR 1 d identifiedSNP-SNPpairs in
theAPOE region gene consistently through every train-test split. Single
train-test splits also find genes outside of Chromosome 19 (Supple-
mentary Fig. 7). Themajority of candidate novel loci were identified by
GBMs, which find multiple loci with evidence for association with AD-
related traits such as cognition, pTau, AD age-at-onset and neurofi-
brillary tangles from previous GWAS (see Table 2 and Supplemen-
tary Data 5).

Since ML may identify non-linear SNP-SNP interactions, pairwise
interaction tests were performed for all top SNPs identified using
machine learning models (Tables 1 and 2). Of 17,205 SNP-SNP pairwise
interactions, 13 pairs were significant under a standard regression
framework (encoded as a multiplicative interaction) after accounting
for multiple testing and excluding pairs where both are within the
APOE region. The two SNP-SNP pairs with the strongest evidence for
associationwere between SNPs rs405509 and rs600550 (beta = 0.058,
pFDR= 6.8 × 10−5), and SNPs rs405509 and rs12421663 (beta = −0.056,
pFDR= 1.8 × 10−4), both of which involve SNPs in the APOE and MS4A*
regions (Supplementary Data 6, Supplementary section 2.5).

Overlap of genes associated with disease risk across
methodologies
Known lead variants in APOE and BIN1 were the most important
predictors in GBMs and NNs, with the SNPs used to derive APOE

Fig. 1 |Methods overview.Datawas separated into an initial balanced random split
before model selection (cross-validation and hyperparameter tuning) in the train-
ing split (a). All models were subsequently evaluated for association (annotation,
enrichment analysis, interaction testing and replication; b) and prediction (AUC
and correlations; c). Interaction tests report p-values from the Wald test in logistic

regression (two-sided) as standard, after correction for multiple testing The full
pipeline was run four times per model to assess robustness. For prediction, AUC
values, statistical tests, and correlation analyses are based on the initial train-test
split. For association, variants were prioritised if they appeared in the top SNP
selection in at least two repeats.
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Fig. 2 | Prediction from ML models in the test split for the most predictive
models trained with the APOE region included. The top two most predictive
approaches (GBM, PRS) were not significantly different by AUC, as measured by
DeLong’s test, though prediction fromMB-MDRC 1 d was significantly below other
methods (a). Bars show the AUC from a single test split for each model, where
whiskers are 95% CIs from the pROC package. Unadjusted p-values from tests (ns:
not significant, ****: p <0.0005) are annotated on panel a for DeLong’s two-sided
test for correlated ROC curve; see supplementary Data 3 for exact values. Model
predictions showed strong correlation, though correlation of the ranks is lower (b).
Distributions of covariate-adjusted predictions for the most predictive approaches

are similar but show amore distinct multimodal distribution for GBMs (c), NNs (d)
and MB-MDRC 1d (f) compared to PRS (e), illustrating stronger influence of APOE
risk alleles on predictions. Panel (g) shows the consistency across methods for
individuals’prediction scores,where theparticipants in the 5%extreme tails ofGBM
predictions are followed across predictions from NN, PRS and MB-MDRC 1 d.
Classifications metrics are given in (h). Model predictions broken down by cov-
ariates are shown in (i) and (j), where dark blue indicates predicted cases, and light
blue predicted controls. Box plots in (j) show themedian (center line), the 25th and
75th percentiles (box limits), and the whiskers which extend to 1.5 times the
interquartile range.

Table 1 | 18 known loci prioritised by machine learning models

Locus Band Model SNP Gene (Known Locus)

1 1q32.2 A, C rs6666604,rs1367068* CR1;CD55

2 2q14.3 A, B, C rs79527490,rs3754617* BIN1

3 4p16.3 A, C rs4690324,rs4690221* IDUA

4 5p15.2 C rs31930,rs11133794 OTULIN

5 5q14.3 A, C rs4141503 RASA1

6 5q35.3 A, C rs113706587 RASGEF1C

7 6p21.1 C rs9381040,rs3747742* TREML2;NFYA

8 6p21.32 A, C rs3135392,rs6931277* HLA-DQA2;HLA-DRB5

9 8p21.1 A, C rs7831810,rs10866859* EPHX2;CLU;SCARA3 (CLU)

10 8p23.1 C rs4731,rs1065712 FDFT1

11 9q31.1 B rs76996768,rs2777800* ABCA1

12 11q12.2 A, C rs983392,rs7232* MS4A6A;MS4A6E

13 11q14.2 A, C rs536841,rs471470* PICALM

14 14q32.12 C rs10498633,rs12590654 RIN3

15 15q21.2 A rs2306331 AP4E1

16 19p13.3 A, B, C rs11672916,rs3795065* ABCA7;CNN2

17 19q13.32 A, B, C, D rs7412, rs429358* APOE

18 20q13.31 A, C rs6069736,rs6127744 RTF2 (CASS4)

19 21q21.3 A rs2830500,rs2830520 ADAMTS1

Loci are definedas known if genome-wide significant inmajor ADGWAS (Supplementary Data 1) andcontaining at least oneSNP in the top variant list from anMLmodel (A: GBM, B:NN, C:MB-MDRC
1 d, D: MB-MDRC 2 d). Chromosomal bands use build GRCh38p.14 from Ensembl release 111 in BiomaRt. *SNP list curtailed at two rsids: see Supplementary Data 5 for full list.

Article https://doi.org/10.1038/s41467-025-61650-z

Nature Communications |         (2025) 16:6726 3

www.nature.com/naturecommunications


status (rs7412 and rs429358) identified and ranked as the
most important SNPs by both GBMs and NNs but not by a GWAS in
the training set (Fig. 3b). To compare the ML findings with GWAS
results, we included SNPs not only identified in the training set in our
study, but also all SNPs reported as genome-wide significant by larger
meta-analyses (Supplementary Data 1) and applied the same gen-
e annotation strategy as for the top variants from ML models
(see “functional annotation and enrichment analysis”). In total, 130
genes were annotated, where more than one gene may be annotated

to the same locus, and the same gene may be annotated to several
independent loci. These genes correspond to 86 distinct loci repor-
ted in previous publications23–25. Of these, 19 loci were implicated by
at least one ML methodology (Supplementary Fig. 8). APOE was
found by all methods, seven loci (PICALM, IDUA, RASGEF1C, CLU, CR1,
RTF2, RASA1) were found by GBMs and MB-MDRC 1 d, and two
(ABCA7, BIN1) by MB-MDRC 1 d, GBMs and NNs. ABCA1 was only
detected by NNs, and two (SPPL2A, ADAMTS1) only by GBMs
(Table 1).

Table 2 | 34 putative novel loci prioritised from machine learning models

Locus Band Model SNP Gene Replication
p-value

Summarised GWAS Catalogue Traits

1 2p13.3 A rs80275456 ARHGAP25 0.0116† Blood count, Psychiatric disorders, Lipid
metabolism

2 3p21.1 A rs3774423 CACNA1D 0.7828 CVD, Sleep, Cognition, Adiposity, Smoking

3 3p24.1 B rs2371108,rs9828781 EOMES 0.6256 Inflammation, Arthritis, Blood count

4 3p25.1 A rs7636739 SH3BP5 0.781 Smoking, Alcohol

5 3p25.2 A rs7645264 RPL32 0.9424 Adiposity

6 4q21.22 B rs17005633 HNRNPDL 0.4745

7 4q27 A rs75623120 TRPC3 0.2129 Inflammation

8 4q34.3 A rs1363592,rs2546251 LINC00290 0.4379 AD in APOE-e4, CSF AB1-42 levels, CAA x APOE-e4,
Psychiatric disorders

9 6p21.33 A rs12210887 LSM2 0.933 Psychiatric disorders, Inflammation, Infection

10 6p22.2 A rs9393777 BTN3A1 0.6977 Diabetes, Psychiatric disorders, Cognition,
Adiposity

11 7p15.3 A rs11770728 CCDC126 0.0832 Liver, Cardiovascular function

12 7p21.2 A rs10486769,rs16878585 MEOX2 0.0564 CVD, Lipid metabolism, Brain volume,Adiposity

13 8p12 A rs76461905,rs11780927 RNF122;DUSP26 0.4174 Sleep, BMI, Pulse pressure

14 8p23.2 A rs11136920 CSMD1;LOC100287015 0.4383 AD, CVD, Inflammation, Sleep, Diabetes, Psychiatric
disorders, Smoking, Lipid metabolism

15 8p23.3 A rs1550948,rs73175035 FBXO25 0.0617 Inflammation, Alcohol, Moyamoya disease

16 8q21.13 A rs11778492 ZC2HC1A 0.2123 Depression, Inflammation, Weight

17 8q21.13 A rs11987678 TPD52 0.6003 Inflammation, Diabetes, Sleep

18 8q24.3 A rs7013750 LY6H 0.0449† Smoking, Diabetes, Cognition

19 13q14.13 A rs9567575 SIAH3 0.8082 NFTs, Clusterin levels, Diabetes, Cortical surface
area, Cardiovascular function

20 13q33.1 A rs1333277 DAOA-AS1;LINC01309 0.0992 Smoking, Diabetes, Cognition, CSF TREM-2, PHF-
tau, Adiposity

21 14q11.2 A rs1107390 DAD1;ABHD4 0.991 Inflammation, liver function

22 14q32.33 A rs7143644 C14orf180;TMEM179;INF2 Inflammation, Psychiatric disorders

23 15q21.1 A rs498976 SEMA6D 0.9661 Cognition, Psychiatric disorders, Sleep, Longevity,
Smoking, Anthropometric traits

24 15q26.2 A rs117354036,rs4247092 LINC00924;LOC105369212 0.0345† Cognition in MCI, Inflammation, Smoking, CVD

25 15q26.2 A rs12911308 MCTP2 0.0788 CSF pTau in AD, CVD, Inflammation, Diabetes,
Psychiatric disorders

26 15q26.3 A rs12901450,rs8035839 TARS3 0.7071

27 16p12.2 A rs250583 COG7 0.001† Cholesterol x fenofibrate

28 16p13.3 A rs4786422 ZNF597 0.0227†

29 17p13.1 C rs11078722 KCNAB3 0.2143 Smoking, Blood pressure

30 18q12.2 A rs17561693,rs1941955 MIR4318;MIR924HG;CELF4 0.349 Smoking, Obesity, Diabetes, Psychiatric dis-
orders, Sleep

31 18q21.33 A rs694419,rs17729530 ZCCHC2 0.2432 PHF-Tau, Sleep, Psychiatric disorders, Inflamma-
tion, Cognition, Adiposity

32 20q11.22 A rs910873 ASIP 0.942 AD AAO, Skin cancer, Smoking

33 21q22.11 B rs4998557,rs4816407* SOD1 0.0147† ALS, Globulin-levels

Toppredictors frommachine learningmodelswithin 500 kbofeachotherweremergedusingbedtools v2.27.1, or if functionally orpositionally annotatedwith the samegene.Weprioritise the34 loci
which have support frommore than one split in amachine learningmodel (A: GBM, B: NN, C:MB-MDRC 1 d, D:MB-MDRC 2d) or replication in an external dataset (Jansen et al., 201922), defined as at
least one SNP from the listed rsIDs in that row of the table which is present at p ≤0.05 in publicly available summary statistics. Chromosomal bands were extracted for GRCh38p.14 from Ensembl
release 111 using BiomaRt; gene annotation methodology is described in the methods section. The direction of effect is not included here as for ML approaches no single direction is obtained:
different subgroupsmay have varying associationswith the outcome for a given SNP. Consequently, direction of effect is not as informative as in standardGWAS replication studies. Traits related to
AD and dementia which were annotated from the GWAS catalogue and summarised; a full list of traits from past GWAS and corresponding PubMed IDs is given in Supplementary Data 5. *SNP list
curtailed at two rsids: see Supplementary Data 5 for full list. †Nominally significant in the replication. Putative novel loci (emphasised) are discussed in the manuscript.
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Motivated by published evidence suggesting that different var-
iants are associated with the disease depending on APOE status, ML
models were compared when trained with and without the APOE
region in the same train-test split. Remarkably, GBMswithout theAPOE
region foundmore known AD risk genes than when trained with APOE
(see Supplementary section, 2.6), but with lower AUCs (Supplemen-
tary Fig. 9).

When the list of SNPs is limited to those which could be iden-
tified in the current data (using a GWAS in the corresponding
training splits), all GWAS-significant SNPs were prioritised by at
least one ML approach (Fig. 4). Furthermore, ~84% at the suggestive
significance level (p ≤ 10−5) were retrieved by at least one ML
approach.

Enrichment of ML findings in biologically relevant gene sets
The SNPs prioritised by ML (Tables 1 and 2) showed significant
enrichment in microglial (p =0.0024) and astrocytic regions
(p =0.0083), but not synaptic regions (p =0.117). All 68 genes from 52
loci reported inTables 1 and 2were further analysed for protein-protein
interaction scores using the online tool STRING (Supplementary

Fig. 10). Pathway analyses demonstrated enrichment in various gene-
ontology (GO) pathways (Fig. 3d, Supplementary Data 7). As expected,
GO pathways yielded a number of biological processes of interest to
Alzheimer’s disease, including regulation of amyloid beta formation
(pFDR =0.0014) and regulation of amyloid precursor protein catabolic
process (pFDR =0.00023, Fig. 3d).

Discussion
In leveraging the largest genotyped case-control AD dataset, this study
demonstrates that the current scale of data has reached a threshold
whereML can achieve similar predictive accuracy to classical methods
and uncover novel genetic insights into AD. Gradient boosting, neural
networks, andmultifactor dimensionality reduction were selected due
to their prominence in the field, demonstrated performance, and
complementary strengths. These methods offer distinct advantages:
highly performant tree ensembles (GBMs), flexible networks incor-
porating prior knowledge (NNs), and detection of SNP-SNP interac-
tions (MB-MDR)26. Here they were applied to identify novel genes not
detectable via GWAS, and to compare ML prediction accuracies
with PRS.

Fig. 3 | Association in ML models. Uniform Manifold Approximation and Projec-
tion (UMAP)of raw (unscaled) SHAPvalues forGBMhits highlights thatAPOEalleles
are identified and drive prediction (a). Neural networks and gradient boosting both
rank the SNPs required to derive the e2 and e4 allele status for APOE as highest,
unlike traditional GWAS (b). Values for neural networks andGBMs are not based on
p-values, as described below, while p-values in (b,c) (GWAS) are from a logistic
regression in the training split, using a logistic regression and p-values from a two-
sided Wald test as standard. Manhattan plots are given for top hits only from

gradient boosting (mean absolute SHAP values), neural networks (normalised
network layer weights) and MB-MDRC 1 d (−log10 p-values), where hits from dif-
ferent random splits of the models are shown in different colours, and all
variants from a single GWAS on the train split are shown in greyscale for compar-
ison (right hand y-axis) (c). p-values for MB-MDRC 1 d in (b, c) are derived from a
two-sided permutation-based test as implemented in MDMDR61,62. Hits from
machine learning models (see Table 2) are enrichment for known Alzheimer’s dis-
ease processes (d).

Article https://doi.org/10.1038/s41467-025-61650-z

Nature Communications |         (2025) 16:6726 5

www.nature.com/naturecommunications


ML methods correctly identified the lead SNPs used to calculate
the APOE haplotype, rs7412 and rs429358, as having the greatest
impact on the model, in contrast to classical univariable linear models
(traditional GWAS) which do not distinguish between top variants by
p-value, and rank rs7412 lower (Fig. 3c). PRS for AD risk prediction
perform best when modelled with two predictors: PRS calculated
without theAPOE region and a separately codedweighting of theAPOE
e2 and e4 alleles27. Here, we demonstrate that ML approaches can
accurately identify APOE clusters and achieve comparable prediction
accuracy without including the derived APOE variable as a second
predictor. ML approaches further detected the lead SNPs identified in
large meta-analyses GWAS for several key genes, including BIN1
(rs6733839), PICALM (rs3851179),ABCA7 (rs3752246, a coding variant),

CASS4 (rs6069736) and CR1 (rs4844610). More broadly, ML high-
lighted SNPs in around 22% of genes identified by larger meta-analysis
GWAS23–25, while comparison to a GWAS undertaken on the same
(EADB-core) split that was used to train machine learning models,
showed that 100% of genome-wide significant SNPs (p ≤ 5 × 10−8) were
retrieved by ML approaches. This demonstrates that the majority of
findings expected under a linear additive GWAS paradigm can be
prioritised using flexible machine learning models. Though strides
have been made in ML-based prediction of AD from genetic data, for
example28, to our knowledge we present the first well-powered,
genome-wide ML-based gene discovery study detecting nearly a
quarter of known genes found in larger GWASmeta-analyses from the
literature which contain around twenty times the sample size, while

Fig. 4 | UpSet plot showing the overlap between ML and GWAS significant
findings fromthe trainpart of the train-test split. a Genes mapped by the SNPs
highlighted by each ML approach separately. Both ML approaches and GWAS
significant SNPs were identified in the same training split. b Genes that are
shared among at least two train-test splits. All GWAS genome-wide significant
(p ≤ 5×10−8) SNPs in the train split were also identified by ML approaches.

For simplicity, genes within 500 kb of a known locus or with at least one
overlapping gene with the region were annotated only by the locus, including
MS4A6A, CSTF1, EPHX2, CNN2, TOMM40/NECTIN2/CLPTM1/BCL3/BCAM/
APOC1/APOC2/APOC4 and DGKQ/FAM53A, which were mapped to MS4A*,
CASS4, CLU, ABCA7, APOE and IDUA regions, respectively. Subplots were
created using ComplexUpset version 1.3.3.
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also identifyingmultiple putative regions with credible associations to
AD biology, marking an important benchmark for these methods.

Putative novel genes which replicate in an independent GWAS
consist of ARHGAP25, COG7, LINC00924/LOC105369212, LY6H, SOD1
and ZNF597, which have potential relevance to AD. ARHGAP25 encodes
the Arhgap25 protein which is expressed in macrophages where it
affects phagocytosis29 throughmodulation of the actin cytoskeleton30.
Wu et al.31 demonstrated that Ly6h is among the proteins competing to
bind to α7 subunits of nicotinic acetylcholine receptors (nAChRs),
which are expressed throughout the brain and enable fast cholinergic
transmission at synapses. These proteins function collectively to
maintain the optimal α7 assembly required for neuronal function and
viability. This delicate balance is disrupted during Alzheimer’s disease
due to Aβ-driven reduction in Ly6h. Notably, an increase in Ly6h in
humancerebrospinalfluid correlateswith elevatedAlzheimer’s disease
severity31.

COG7 (Component of Oligomeric Golgi Complex 7) encodes a
protein integral to Golgi apparatus function, which is essential for
protein glycosylation and trafficking. Disruptions in Golgi function
have been implicated in various neurodegenerative disorders, includ-
ing Alzheimer’s disease. Mutations in COG7 are associated with Con-
genital Disorders of Glycosylation (CDG)32, which frequently manifest
with neurological impairments. Abnormal glycosylation processes
have been implicated in Alzheimer’s disease pathology, particularly
affecting tau protein processing and amyloid precursor protein (APP)
metabolism33.

ML hits which replicate also include the missense variant
rs2306331 (AP4E1). This is within the known locus of SPPL2A (max-
imum r2 0.32, minimum distance 177 kb with rs2306331 and GWAS
catalogue hits for SPPL2A), but may be an independent signal with the
region. The AP4E1 gene encodes the ε subunit of adaptor protein
complex-4 (AP-4), which facilitates the transport of amyloid precursor
protein (APP) from the trans-Golgi network to endosomes. Disruption
of the APP-AP-4 interaction enhances γ-secretase-catalysed cleavage of
APP to amyloid-β peptide, suggesting that AP-4 deficiency may con-
stitute a potential risk factor for Alzheimer’s disease34.

We alsonote thatML-derived hits in the know loci IDUA andDGKQ
(rs4690324, linked via sQTLs in GTEX to splicing of IDUA in the brain35)
are also related to heparan sulfate metabolism36, in addition to multi-
ple brain diseases37, traits38, and lipid metabolism39. Neural networks
also highlight a new potential AD-relevant locus. All GO-derived
pathways, independent of association to AD, were used in the neural
network analysis as hidden layers. This approach highlighted SNPs
mapping to SOD1 (cytogenic band 21q22.11), found in the region ofAPP
(21q21.3), with lead SNPs fromNNs around 5Mb away from the closest
NN-based hits in APP. SOD1 has been widely investigated for its role in
antioxidant defense system, showing impaired expression in AD
patients40,41, but is currently primarily implicated in ALS.

In our study, we adopted an MB-MDR approach to detect both
SNPmain effects and pair-wise SNP-SNP interactions. Themethod is an
improvement over classical pair-wise statistical interaction approaches
as it can detect more complex interactions. However, it implements a
somewhat conservative strategy for variant discovery, as interaction
studies are hampered by several factors that can increase the number
of false positives including, but not limited to, LD and interference of
major loci, whichmay contribute to phantomepistasis. To address this
limitation, we opted for a model-based (MB) form of MDR, though the
results did not highlight novel loci.

Comparing individual scores, ML predictions achieved correla-
tions of 0.8-0.84 with PRS, indicating ML models give predictions
which are broadly consistent with well-established approaches. It also
shows that identification of novel signals through flexiblemodelling of
complex effects will introduce deviations from the predictions of a
simple linear additive model. Disease risk prediction from ML, as
assessed by AUC, was higher (but not significantly) than PRS. Similar

results have been reported in psychiatry21 and coronary artery
disease42. This is likely to be due to several reasons. First, SNPs in
general are (at best) only correlated with the causal variants, making it
particularly difficult to detect nonlinear effects and interactions, which
are the main potential advantages of ML over PRS. Second, genetic
predictors are weak as compared to some other predictors (e.g.
biomarkers43), and the upper bound for AUC in complex trait genetics
in practice falls substantially below 144. Weak predictor-response rela-
tionships are an inherent challenge to finding patterns with flexible
models, and complexmodelsmay at-present still be under-powered to
achieve a clear improvement in AUC. Third, large GWAS discover and
replicate SNPs, which in the resulting summary statistics show small
association effect sizes. The effect sizes may however be higher in
more homogenous samples. For example, the OR for APOE is around
3.4 in samples of mean age 72−73 years45 but is reduced in samples
over 90 years46. In pathologically-confirmed samples, which are also
generally older than clinical samples, some of the GWAS-derived SNP
effect sizes are higher than reported in clinically-assessed AD GWAS47.
In more homogenous samples in terms of age, population, and cog-
nitive scores (such as The Alzheimer’s Disease Neuroimaging Initiative
(ADNI)48), the AD PRS AUC are higher than that in clinical samples49,50.
Thus, summary statistics from large GWAS meta-analyses enable PRS
which predict with moderate AUC in any data set, but which do not
achieve high accuracy as effect sizes are averaged across many studies
with slightly different features such as recruitment criteria and out-
come definitions, and therefore genetic architectures, rather than
being specific to a particular one.

A similar situation affects variant discovery from flexible models
which can detect interactions: nuanced relationships between pre-
dictors are notoriously difficult to replicate51, a situation further
complicated by varying LD between tagged and causal variants. Such
SNPs may nonetheless represent important loci which impact disease
risk in specific contexts without being consistently associated across
enough studies and circumstances to reach genome-wide significance
under linear models in meta-analyses. While machine learning models
here do not show signs of overfitting, and top SNP rankings by SHAP
values are consistent in both the train and test splits, many SNPs
identified do not replicate in an external dataset, which is also the case
for standard GWAS. In particular, in PRS approaches using different
priors (for Bayesian models) or LD pruning parameters (in clumping
and thresholding approaches), the resulting set of SNPs and their
estimated effects will differ27,52. Similarly, when effects of SNPs are
jointly estimated in sparse, high-dimensional ML models, either
simultaneously or in a stage-wise manner (as in gradient boosting),
different top associations and predictions are expected. Despite these
caveats, we show that the novel findings suggest SNPs which are bio-
logically relevant to AD.

This study has a number of limitations. First, our study attempted
to run and compare reasonably diverse methods for predicting AD
risk, with the advantageof implementing them in aunifieddataset. As a
result, we found that the PRS and ML prediction showed a similar
prediction performance based upon ranking individuals according by
their prediction scores. The predictions from ML and PRS, however,
were highly correlated, explaining the similarity of the prediction
accuracies and reducing the likelihood that an ensemble of the dif-
ferent methods would improve prediction. Second, the methods used
for selection of top SNPs in interpreting model results reflect inherent
differences in how the ML approaches work, and no standard thresh-
olds exist at the moment for identifying important features across
these distinct frameworks. This methodological variability, which is a
broader challenge in the field, likely contributes to the incomplete
overlap between the top SNPs identified by different ML approaches,
making replication in external summary statistics a critical step to
ensure robust findings. Third, the influence of APOE status on model
outcomes is a key component of all models in the study. While APOE
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SNPs were included as predictors, we did not conduct analyses stra-
tified by APOE carrier status, especially ε3/ε3, ε3/ε4, or ε4/ε4 carriers.
Future work should explore whether predictive accuracy and asso-
ciations differ meaningfully across these strata. Finally, although our
post-hoc analyses indicate that cohort or genotyping centre effects do
not drive associations or predictions, alternative machine learning
approaches such as federated learning (FL) may improve modelling
where underlying predictor distributions diverge53, while also allowing
formodelswhich include data frommore cohorts without diminishing
privacy. Indeed, within a central learning paradigm, current best
practices for data harmonisation involve merging datasets based on
shared high-quality SNPs that have undergone rigorous quality con-
trol, ensuring high imputation accuracy, reasonably large minor allele
frequencies (MAF), and othermetrics in each separate study. However,
these QC steps alone do not guarantee that differences arising from
ancestry, clinical assessment criteria, and genotyping chips or batches
used to generate the data are fully accounted for. Applying flexibleML
within an FL framework leverages the advantages of client-specific
data, which is often more homogeneous as it is typically generated
locally, within the same population, using similar clinical assessments
and the same genotyping chip. Results from each “client” can then
inform analyses for other clients by tuning parameters (e.g., increasing
or decreasing neural network weights for variants in specific genomic
regions), creating a more flexible and adaptive analysis framework.

In conclusion, this study demonstrates that machine learning can
uncover both known and novel genetic loci for AD, providing a pow-
erful complement to traditional GWAS while still achieving competitive
predictive performance. Though replication challenges remain, ML
successfully prioritised established risk loci and identified biologically
relevant novel associations, including variants in ARHGAP25, COG7,
LY6H, and SOD1. These findings highlight ML’s potential to refine our
understanding of AD beyond additive genetic effects and expand the
toolkit available for maximising discovery from available data. With
expanding datasets and computational advances, ML could further
enhance risk prediction and gene discovery, particularly through fed-
erated learning andmulti-omic integration. This studymarks a key step
toward leveraging ML for deeper insights into AD genetics.

Methods
Data
Datawereobtained from the EuropeanAlzheimer &Dementia Biobank
(EADB) consortium which combines genetic and clinical data from 16
countries and has been described previously23. All study protocols
were reviewed and approved by the respective institutional review
boards overseeing the cohorts (see supplementary information for
details). Individuals were genotyped at three centres. Data were
accessed after quality control procedures and data harmonisation
were applied to give the EADB-core sample. All participants are unre-
lated individuals of European ancestry, encompassing 20,013 clinically
defined AD cases and 21,673 control, after excluding participants
present in Kunkle et al.45. 59% of the sample is female, split as 62% in
cases and 57% in controls, with a median age at baseline of 73
(IQR= 14). Data and splitting procedures are described further in
Supplementary section 1.1. Informed consent was obtained in writing
from all study participants. For individuals with significant cognitive
impairment, consent was secured from a caregiver, legal guardian, or
other authorized proxy.

Quality control (QC)
Analyses used directly genotyped (non-imputed) variants to ensure
highdata quality. To avoid excluding key knownAD loci not covered in
the genotyped data, we also included 67 imputed variants in pre-
viously reported genome-wide significant loci23–25 (Supplementary
Fig. 1) which were not already present in the genotyped data, con-
verting the imputed dosages to the most probable (probability ≥ 0.9)

genotypes, and applying further quality control as described
previously23. Data were further filtered for a minor allele frequency of
5%, to ensure variants were common enough to reliably observe
interactions. SNPs were clumped (R2 = 0.75 following Joiret et al.54,
window = 1Mb) using stage 1 summary statistics from Kunkle et al.45,
after removing individuals common between the summary statistics
and the genotyped data. Out of 81 SNPs previously reported as
genome-wide significant, 52 survivedminor allele frequency (MAF) and
clumping procedures (Supplementary Fig. 1; Supplementary Data 1),
giving a combined 215,193 SNPs (Supplementary section 1.1). Analyses
were also run without inclusion of the previously reported 67 imputed
variants to confirm that their inclusion did not artificially inflate per-
formance estimates.

Statistics and reproducibility
No statisticalmethodwas used to predetermine sample size, as there are
no standardised calculations for machine learning. For consistency, all
implemented approaches were evaluated using the same QC and ran-
dom train-test splits of the data (Fig. 1) which were well balanced for
case-control status, age-at-baseline or assessment, sex, genotyping
centre, and the distribution of all principal components (Supplementary
Fig. 2). Participants were randomly separated into 70–30% train-test
splits, with the same split applied to all algorithms, resulting in 29,180
individuals in the training set (14,006 cases; 15,174 controls) and 12,506
for testing (6007 cases; 6499 controls), each with 215,193 predictors
after quality control procedures. MLmodels were built with andwithout
SNPs from the APOE region (Chr19:44.4–46.5Mb). In training ML and
PRS models, analyses were adjusted for covariates comprising
genetic sex, 20 principal component (PCs), and genotyping centre.
The adjustment method was altered to be appropriate for each
modelling approach: covariates were included in the final layer for
NNs, with predictions and importance scores taken from non-
covariate nodes (see Supplementary Fig. 3); for GBMs and MB-
MDR, covariates were z-transformed and then regressed-off from the
data before modelling. All reported area under the receiver operator
characteristic curve (AUC) values are calculated on the predicted
probabilities frommodels (without thresholding) and adjusted again
for confounders in the test split. We utilise penalisation and cross-
validated random (GBMs) or grid-based (NNs and MB-MDR) hyper-
parameter search to reduce the likelihood of overfitting. Details for
training and covariate adjustment are given in Supplementary sec-
tions 1.2-1.4. To ensure robust results, stability was assessed by re-
running all models on three additional random 70–30% train-test
splits of the data.

Gradient boosting machines (GBMs)
GBMs were trained using version 1.7.6 of the XGBoost package55, an
efficient implementation of regularised gradient boosting, and the
dask package56, version 2023.1.1, which allows for distributed training
ofMLmodels acrossmultiple nodes in a high-performance computing
(HPC) cluster. Hyperparameters for learning rate, tree depth, and
column sampling fraction were tuned on a random subsample of the
training set using random search (Supplementary section 1.2). Impor-
tance of all predictors in GBMs was assessed using SHapley Additive
exPlanatory (SHAP) values57,58.

Neural networks (NNs)
NN models were built with GenNet59, which uses a biologically-driven
configuration in which the connections between the input layer,
representing SNPs, and the first hidden layer, representing genes, are
defined using knowledge available in annotation databases. NN archi-
tectures were built with nine hidden layers, including an initial SNP-to-
gene layer annotating all SNPs to the nearest gene using annotations
from ANNOVAR60, followed by layers defined from the hierarchy of
terms from the Gene Ontology consortium (GO terms), where
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connections between layers progress from local pathways to more
general ones as they move deeper through the network, using all
available pathway annotations (Supplementary Fig. 3, Supplementary
Data 2). Model hyperparameters for batch size, learning rate (LR) and
L1 (default) penalization were tuned during training (Supplementary
section 1.3).

Model based multifactor dimensionality reduction (MB-MDR)
A multi-dimensional reduction strategy was implemented using the
MB-MDR methodology61,62 with MBMDR 4.4.1 software. An approx-
imation routine was used to accelerate permutation-based sig-
nificance assessment and multiple testing63, when searching for
disease-susceptibility multi-locus genotypes, adjusted for con-
founders. Single and interacting variants under various pair-wise
and higher order epistasis models were combined to create multi-
locus risk scores (MB-MDRC) and estimate an individual’s suscept-
ibility to a trait with the MBMDRClassifieR package available in R64.
SNPs and SNP-SNP interactions were included in the MB-MDR risk
score if they passed the permutation-based multiple testing cor-
rected threshold that had the best performance in the train split
(Supplementary section 1.4).

Polygenic risk scores (PRS)
PRS were calculated with LDAK-Bolt-Predict from the LDAK package,
the most predictive heritability and linkage disequilibrium-informed
PRS when individual genotypes are available65. LDAK-Bolt-Predict
reweights variants using Gaussian priors informed by heritability
models, shrinking effect sizes without the need for p-value
thresholding65. To give the same information to both PRS and all
machine learning models, PRS were derived using summary statistics
which were generated in the training set by running a genome-wide
association study (GWAS), adjusting for the same confounders in
PLINK v2.00a3.3LM66 (Supplementary section 1.5).

Selection of top predictors
The top SNPs identified by machine learning were selected by the
permutation-based p-value threshold defined above for MB-MDR
(padj < 1), empirically by taking the extreme tail of the distribution for
SHAP values (μ | SHAP | > 0.0005) in gradient boosting (Supplemen-
tary Fig. 4), summed weights (padj <0.05) for neural networks (Sup-
plementary Fig. 5), and by applying the Boruta algorithm67 (gradient
boosting models only). Only SNPs which were present in top SNPs for
at least two train-test random data splits of a given method were
prioritised. Details on predictor selection are given in Supplementary
sections 1.6 and 2.2-2.4.

Replication of top predictors
The prioritised loci were reported as novel if they were identified with
more than one split of a machine learning model, replicated at
p ≤0.05 significance level in an external independent dataset (Jansen
et al.22) and had no genome-wide hits from AD summary statistics in
the GWAS catalogue. The direction of effect for ML approaches is not
available as different subgroups may have varying associations with
the outcome for a given SNP, and consequently it is not directly
reportable as in standard GWAS.

Functional annotation and enrichment analysis
Publicly available tools were used for further annotation: SNPs were
annotated with dbSNP build 15668. SNPs were initially positionally
mapped to genes using ANNOVAR60 version 2020-06-07 and Gencode
v40, and then reannotated using functional evidence from the Open
Targets Genetics portal where available69. Genome coordinates use
build GRCh38.p14. Pathway analysis and protein-protein interaction
from the consensus annotated genes were determined using STRING
v12.070 (Supplementary section 1.7).

The list of top SNPs within each ML analysis was tested for
enrichment in the list of genes expressed in microglia (n = 761)71,
astrocytes (n = 757)72, and synapses (n = 1535)73, with a window size
of 35 kilobase (kb) upstream and 10 kb downstream of regions to
include regulatory elements. To account for non-independent SNPs
in the genomic regions, enrichment p-values were derived using a
bootstrap approach (Supplementary section 1.8) and presented
without correction for multiple testing for the number of cell types
tested.

Statistical interactions
The ML methods used may include interactions but not explicitly test
for them. The top SNPs from all ML approaches (Tables 1 and 2) were
therefore formally tested for pair-wise interactions in the whole data-
set under a regression framework, assuming a multiplicative relation-
ship between SNPs, i.e. logit(y) = β0 + β1SNP1 + β2SNP2 + β3SNP1*SNP2,
where SNPs are coded additively (0, 1, 2) with zero-count compensa-
tion, and covariates are included in the model. Pairs were assessed by
the p-value for the interaction term after adjusting for multiple com-
parisons using a false discovery rate (FDR) Benjamini-Hochberg
(p = 0.05) threshold for significance (Supplementary section 1.9).
Putative SNP interactions were visualized in python using shap 0.4158,
statsmodels 0.13.574, matplotlib 3.7.175, and seaborn 0.12.276. The
overall workflow is presented in Fig. 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawdata are protected and are not publically available due to data
privacy laws. They can be accessed by application to the EADB con-
sortium. The data generated in this study are provided in the Supple-
mentary Information file.

Code availability
Code for running biologically-informed neural networks via GenNet
andTensorflow is already published and available (https://github.com/
ArnovanHilten/GenNet). Code used for running distributed gradient
boosting using dask and XGBoost (DAXOS v0.1.0) with covariate
adjustment, preprocessing of genotypes, and applying distributed
Boruta-SHAP feature selection has been made publicly available
(https://github.com/seafloor/daxos)77. Pathway annotation and
enrichment tests are also available on GitHub (https://github.com/
seafloor/escott-price-lab-pipelines/tree/main/workflows/pathways).
We use MBMDR version 4.4.1 (http://bio3.giga.ulg.ac.be/index.php/
software/mb-mdr).
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