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1. Methods 
1.1 Data 

 
Data consist of the European Alzheimer & Dementia Biobank (EADB) consortium core 

sample (EADB-core) which was previously harmonised and made available to collaborators 

in the EADB consortium (1). Ethical approval for the EADB-core data was obtained 

separately for each cohort, in accordance with national and institutional requirements. All 

participants, or their legal guardians, provided written informed consent prior to inclusion. 

Ethical approval is given in detail by Bellenguez et al (1) – the reported approvals for the 

EADB-core are summarised below. 

 

EADB-France 

• Belgium: approved by the ethics committees of Antwerp University Hospital and the 

participating neurological centres within the BELNEU consortium, as well as by the 

University of Antwerp. 

• Czech Republic: The Czech Brain Aging Study (CBAS) and CBAS+ were approved by 

the local ethics committee. 

• Denmark: approval obtained as part of The Copenhagen General Population Study 

(CGPS). 

• Finland: 

o ADGEN cohort: Approved by the ethics committee of Kuopio University 

Hospital (Reference: 420/2016). 

o FINGER study: Approved by the Coordinating Ethics Committee of the 

Hospital District of Helsinki and Uusimaa (Approval numbers: 

94/13/03/00/2009 and HUS/1204/2017). 
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• France: 

o BALTAZAR study: Approved by the Paris Ethics Committee (Comité de 

Protection des Personnes Ile de France IV, Saint Louis Hospital). 

o MEMENTO study: Approved by the Comité de Protection des Personnes Sud-

Ouest et Outre Mer III (Approval number: 2010-A01394-35). 

o CNRMAJ-Rouen study: Approved by the CPP Ile de France II. 

• Italy: Ethics approval is obtained for contribution centres: Brescia, Cagliari, Florence, 

Milan, Rome, Pertugia, San Giovani Rotondo and Torino 

• Spain (France Node): Samples comply with Law 14/2007 and Royal Decree RD 

1716/2011. 

• Sweden: 

o Uppsala University Hospital: Approved by the ethical committee at Karolinska 

Institutet or the regional ethical review board. 

o SNAC-K: Approved by the same boards above, with consent obtained from 

participants or next of kin. 

• United Kingdom: 

o MRC Centres (Cardiff, London, Cambridge) and associated sites (SOTON, 

Nottingham, Manchester, KCL, PRION, CFAS Wales, UCL-DRC): Approved by 

the respective independent ethics committees of the involved institutions. 

EADB-Germany Node 

• Germany:  

o Technische Universität München: Approved by the Ethics Committee of the 

Technical University of Munich, School of Medicine (Approval number: 347-

14). 
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o Göttingen Universität: Approved by the local ethics committee at the 

University Medical Centre Göttingen. 

o German Dementia Competence Network (DCN): Approved by the respective 

ethics committees of the 14 participating university hospitals. 

o AgeCoDe Study: Approved by local ethics committees in six German cities. 

o Ethical approval obtained separately for additional contributing studies: 

DELCODE, VOGEL, Heidelberg/Mannheim, PAGES. 

• Greece: 

o HELIAD study: Approved by local ethics authorities; participants provided 

written informed consent. 

• Portugal: 

o Lisbon study: Approved by the local ethics committee. 

• Spain (Germany Node): 

o DEGESCO sites (e.g., Fundació ACE, Hospital Clínic IDIBAPS): Conducted under 

the framework of DEGESCO, which adheres to Spanish biomedical research 

legislation. 

• Switzerland & Austria: 

o Lausanne Study: Approved by the Department of Psychiatry, Geneva 

University Centre. 

o VITA Study (Austria): Approved by the Ethics Committee of the City of Vienna. 

 

EADB-Netherlands Node 

• Netherlands: All studies were approved by the Medical Ethics Committees (METC) of 

the participating local institutes. Specific cohorts include: 
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o Erasmus Medical Center: Ethics approval from the local METC. 

o Amsterdam Dementia Cohort (ADC): Ethics approval from the VU University 

Medical Center METC. 

 

Briefly, data from 63 participating cohorts, distributed across 16 countries, were genotyped 

in three centres, and underwent centralised processing on the EADB University of Lille’s 

Intensive Scientific Computing Mesocentre cluster for quality control. Directly typed variants 

were used preferentially in our analyses to mitigate potential information loss compared to 

imputed variants, which can introduce additional noise that may be crucial for sensitive 

machine learning models. However, known genome-wide significant index variants (see 

Figure S1, Supplementary Data 1) were taken from imputed data where not present in the 

genotyped data, to ensure the strongest signals from known loci were present. 

 

Variants were imputed using the TOPMed reference panel, as described previously (1). A 

final list of 81 genome-wide significant SNPs were extracted using bcftools version 1.14 and 

the “--regions-file” command. Imputed variants were checked against standard thresholds: 

Hardy-Weinberg equilibrium (HWE) at 1x10-6, minor allele frequency (MAF) at 1%, 

imputation quality at R2 > 0.4, and variant missingness at 2%. All 81 variants passed the MAF 

filter, having be pre-selected as common variants (see Figure S1 for details), in addition to 

variant missingness and imputation quality. Two variants failed strict HWE filtering: 

rs429358 (APOE, HWE p = 3.00e-52), and rs7908662 (PLEKHA1, HWE p = 3.14e-08). Both 

were still included in the analysis, as the p-values are still within commonly-used looser 

HWE p-value thresholds (e.g. (2)), and both SNPs pass a strict HWE threshold run separately 

in cases (rs429359 p = 1.98e-05; rs7908662 p = 0.0023), and controls (rs429359 p = 0.17; 
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rs7908662 p = 0.0043), indicating deviations from HWE are mostly explained by differences 

between cases and controls and therefore acceptable. We note that while the e4-related 

APOE SNP (rs429358) is imputed, rs7412 (APOE e2-related) was directly typed, and 

clinically-derived APOE status is available for the majority of participants. Final counts of 

participants account for 455 individuals which were excluded due to overlap with data in 

Kunkle et al (3). For all results which directly assess APOE, shown in Figure 3A and 3B, we 

additionally exclude all participants for whom clinically-derived APOE status and imputed 

APOE status (derived from the TOPMed imputed variants only) disagree. 

 

Predictors used as covariates comprise imputed sex, genotyping centre and principal 

components. Genotyping centre was dummy encoded prior to use as a covariate. The train-

test splitting performed prior to analysis was also checked for differences in age-at-baseline 

between splits and missingness in age-at-baseline. Additional age-related variables were not 

checked due to high levels of missingness (age at death), availability only in cases (age at 

last exam), or because they are a mix of age at diagnosis and age at onset (age at onset, also 

only available in cases) and would not be as informative for ascertaining the suitability of 

the random split. After the initial random train-test split for internal validation, machine 

learning models underwent hyperparameter tuning and model selection on the train split 

using either 4-fold cross-validation (gradient boosting), a further training-validation split of 

the train set (neural networks), or apparent validation (MB-MDR). Specific procedures for 

tuning and model selection for each classifier are described in the following sections. 
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1.2 Gradient boosting machines (GBMs) 

Gradient boosting machines (GBMs) fit a forward stage-wise additive model (4), here using 

shallow trees as weak learners, which are added sequentially to create a strong ensemble 

learner. A gradient boosting model was fit to the train set and evaluated on the test set. 

Models were fit using version 1.5.2 of the XGBoost package (5), and the dask package, 

version 2023.1.1 (6), which allows for distributed training of machine learning models across 

multiple nodes in a high-performance computing (HPC) cluster. For faster computation, 

genotypes were pre-shuffled and stored as chunked dask arrays in HDF5 files before 

handing-off to dask and XGBoost for distributed training. Hyperparameters were tuned on 

5000 random participants from the training set using 50 iterations of random search. 

Number of boosted trees was fixed to 1000 and subsampling-by-tree to 0.7; values for 

learning rate were drawn from a log-uniform distribution, while max depth and col-sample-

by-tree were drawn from a uniform distribution. The GBM was refit to the full training data 

using the best-performing hyperparameters, and then refit again using only the subset of 

predictors which had been included in the previous model. This allowed for a reduced 

predictor space and for computation of importance scores, described below, for all 

predictors included in the model, which was otherwise unfeasible given available RAM. 

 

To account for covariates in training GBMs, sex and 20 PCs were regressed-off from 

predictors and the outcome before training models, as recommended in random forests (7). 

Importance of predictors was assessed using SHapley Additive exPlanatory (SHAP) values 

(8,9), a game theory-based approach using Shapley values which seek to optimally assign 

“credit” to predictors. SHAP values are obtained as a single value per individual, per 

predictor, meaning predicting on an n*p matrix of genotypes results in an n*p matrix of 
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shap values, where each value represents the impact of the SNP on predictions from the 

model in that individual. The sum of the SHAP values for a single individual gives the 

predicted value from the GBM model for that individual. Here we report the mean absolute 

SHAP values as a summary of the overall impact of a feature on prediction. We note that 

while SHAP values from a gradient boosted model trained on a binary outcome would 

normally be interpreted as changes in the log(odds) of the outcome, here they are instead 

changes in the covariate-adjusted outcome (the residuals after regressing-off confounders), 

and hence values should not be taken as an exact change in predicted log(odds). 

 

For predictor selection, parsimonious GBM models were sought empirically using the Boruta 

algorithm (10). The Boruta feature selection algorithm is a common approach to feature 

selection which combines the raw data with ‘shadow features’, permuted versions of the 

original predictors. We apply the approach using the SHAP summary statistics, which 

performs well compared to alternative SHAP-based approaches (11). Here we re-implement 

the Boruta-SHAP approach to allow for distributed XGBoost training on dask arrays. Variants 

which were labelled as important by Boruta-SHAP and passed a 0.0005 threshold for mean 

absolute SHAP values were taken forward. 

 

1.3 Neural networks (NNs) 

To construct neural networks for genetic data analysis, we employed GenNet (12), a 

command line tool based on Tensorflow (13). GenNet uses a biologically driven 

configuration in which the connections between the input layer, representing SNPs, and the 

middle layer, representing genes, are defined using knowledge available in annotation 
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databases (12). The tool is versatile, supporting various SNP-to-gene connections, and uses 

ANNOVAR as the default annotation database. 

 

A strength of GenNet is that it allows for insertion of covariates directly into the framework, 

on the last layer, and hence for a joint prediction of the phenotype from covariates and 

SNPs (Figure S3). During training, network weights are updated with respect to output from 

the last layer, which predicts disease status by combining the contributions from genetic 

data and from the covariates. During prediction in test data, final predictions are further 

adjusted for covariates to, to capture only the contribution of genetic data. The model’s 

weights are therefore adjusted for covariates during training, but give genetic predictions 

which are distinct from covariates at run time. For training neural networks, the original 

train split, which is identical to that used for other methods, was further divided into 

validation and training, respectively 30% and 70% of the original training set, as iterative k-

fold cross-validation is unfeasible given the computation times for deep learning models.  

After tuning hyperparameters on the new training and validation splits, the most 

performant runs had the following hyperparameters:  

- Hidden layer architecture: GO terms-based pathways 

- Batch size: 64 

- Learning rate: 10-3 

- L1 penalization: 0.08. 

 

For the hidden layers, SNPs were first assigned to genes using ANNOVAR annotations. Every 

SNP was annotated to exactly one gene, the closest one, as this is the default behaviour in 

GenNet, except 706 SNPs that were not mapped to any genes and were thus excluded. We 
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investigated pathways from the Gene Ontology (GO terms) consortium, where pathways are 

represented hierarchically. Neural network architectures were built with 9 hidden layers, 

including an initial SNP-to-gene layer, followed by 8 layers where connections between 

layers progress from local pathways to more general ones as they move deeper through the 

network. Model hyperparameters for batch size, learning rate (LR) and L1 (default) 

penalization were tuned during training. To interpret the contribution of each SNP to the 

model, we estimated importance scores from the network weights. By starting from the 

prediction layer and going backwards, step-by-step to the SNP and gene layers, we 

calculated the importance as the product of the edge weights of each node, both on the 

SNP and gene level. A SNP influences the prediction through multiple paths, given that the 

gene to which the SNP is mapped is linked to multiple pathways, and each is connected to 

various (higher-level) pathways. To summarize the SNP’s importance in a given path, we 

calculated the product of each edge’s weight in the path. Then, we took the sum of the 

importance for each path which involved the target SNP as the SNP’s overall importance 

(Figure S3). A more in-depth explanation of the importance score calculation is in 

Supplementary section 1.6, in the Neural Network subsection. By starting the calculation on 

the gene layer, it is also possible to calculate the importance of each gene.  

 

1.4 Model based multifactor dimensionality reduction (MB-MDR) 

The MB-MDR method reduces dimensionality in large-scale genetic interaction studies by 

pooling multi-locus genotypes together according to their association patterns with the 

phenotype under study (binary, continuous, survival-type). For 2D analyses, it exhaustively 

explores associations between each pair of SNPs and the phenotype using available-case 

principles. Three association patterns are identified during dimensionality reduction: low-
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risk, high-risk, and indeterminate risk categories of multi-locus genotypes. The final MB-

MDR test includes contrasting high and low-risk groups of individuals, per SNP pair. To 

correct for data snooping and multiple testing, significance is assessed by permutations 

using a fast implementation of the maxT algorithm (14). The latter has been shown to 

provide a significance test algorithm that adequately controls the family-wise error rate 

(FWER) during simultaneous hypothesis testing. MBMDR 4.1.1 runs were parallelized to 

further speed up analyses. In our analyses, several pre-specified FWER thresholds were 

compared on the train split {0.05, 0.15, 0.25, 0.5, 0.75, 0.8, 0.95, 1}, with most the FWER 

threshold giving the highest AUC during training being padj < 1 (i.e., MB-MDR multiple testing 

adjusted p-values were thresholded to 1, with those below the threshold classed as 

significant). 

 

The MB-MDR method is non-parametric in the sense that it does not assume specific modes 

of interaction inheritance. The model-based part of the MB-MDR methodology allows 

adjusting multi-locus testing for lower-order effects. In particular, 2-locus interaction testing 

between SNPs A and B are by default model-based, i.e., adjusted for or conditional on 

possible effects of the component single variants SNP A and SNP B. Singular effects can be 

modeled via 1 or 2 degrees of freedom, with the latter codominant adjustment being the 

default so as to remove interference from main effects as much as possible. 

 

Currently, MBMDR software does not accommodate conditional analyses on non-

categorical extra covariates. Covariates were therefore regressed off the phenotype and 

residuals were presented as new phenotype values for MB-MDR analysis. As an association 

detection strategy, MB-MDR does not readily provide risk predictions for study individuals. 
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Extraneous routines can be applied with MB-MDR such as described in Gola et al. (15) 

(MBMDRC) and Le et al. (16) (MRS). MBMDRC takes, on the training set, the significant SNP 

pairs and SNP. Then, in each cell of the 3*3 matrix (or 3*1 vector for single SNP), calculates 

the phenotype's mean (or the proportion case/control in the binary case) of all the 

individuals in the train set with that particular SNP-SNP configuration. Furthermore, on the 

test set, for each individual, MBMDRC calculates the risk score as the average of the 

phenotype’s mean in the cell of the 3*3 matrix (3x1 for MB-MBDR 1d) for the various cells 

the individual is part of. We used the approach outlined in Gola et al. (15) in all analyses. 

 

1.5 Genome-wide association study (GWAS) and polygenic risk scores (PRS) 

To allow for fair comparison between machine learning approaches and standard 

GWAS/PRS methods, a GWAS was performed on the train-split of the EADB-core dataset 

(29,180 individuals comprising 14,006 cases and 15,174 controls). Linear additive models 

were fit using the --glm option in PLINK2 (v2.00a3.3LM) with sex (binary), genotyping centre 

(3 categories) and 20 principal components as covariates. Covariates were standardised 

using --covar-variance-standardize, with genotyping centre handled as a categorical 

covariate using “--split-cat-pheno omit-most covar-01 genotyping_center”.  

 

PRS were generated with summary statistics from the train-set GWAS, to ensure 

comparability with machine learning approaches, using the Bolt-Predict method 

implemented in LDAK version 5.2, as this is recommended as the best-performing option in 

LDAK (supplementary Table 1) when raw genotypes are available for the training data (17). 

LDAK Bolt-Predict was implemented using standard settings recommended in the 
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documentation (18). The procedure was run separately to generate PRS with and without 

the APOE region, e.g.: 

Step Commands 

Pre-processing - Liftover bed/bim/fam files to GRCh37 using the UCSC genome 
browser liftover function, and change from rsids to chr:pos IDs 

- Convert summary statistics to “Predictor, A1, A2, n, Z” format 
- Write a random shuffle of 5k individual IDs for use in training using 

“shuf” and “awk” 
Get annotations 
 

- wget --no-check-certificate https://genetics.ghpc.au.dk/doug/bld.zip 
- unzip bld.zip 

Get weightings 
 

- ldak5.2.linux --cut-weights sections --bfile without_apoe_for_ldak --
no-thin YES 

- ldak5.2.linux --calc-weights-all sections --bfile without_apoe_for_ldak 
--max-threads 5 

- mv sections/weights.short bld65 
Get taggings 
 

- ldak5.2.linux --calc-tagging bld.ldak --bfile without_apoe_for_ldak --
ignore-weights YES --power -.25 --annotation-number 65 --
annotation-prefix bld --window-kb 1000 --save-matrix YES --max-
threads 5 --keep ../random_5k_subsample_for_h2matrix.txt 

- Note that --keep is used as the docs note: “Note that if you are 
analysing individual-level data for tens of thousands of samples, it is 
not necessary to use all of these when calculating the tagging file and 
heritability matrix. Instead we suggest using --keep <keepfile> to 
specify 5000 randomly-selected samples, which will substantially 
reduce computational demands.” 

Get SNP 
heritability 
 

- ldak5.2.linux --sum-hers bld.ldak --tagfile bld.ldak.tagging --summary 
../grc37_sumstats_for_ldak.txt --matrix bld.ldak.matrix --max-threads 
5 

Get effect sizes 
 

- ldak5.2.linux --bolt bolt --pheno without_apoe_for_ldak.pheno --bfile 
without_apoe_for_ldak --ind-hers bld.ldak.ind.hers --cv-proportion .1 
--max-threads 5 

 
Calculate PRS 
 

- ldak5.2.linux --scorefile bolt.effects --bfile without_apoe_for_ldak --
power 0 --calc-scores without_apoe_for_ldak_test --max-threads 5 

 
 
Supplementary Table 1: LDAK pipeline commands. 
 
1.6 Selection of top predictors 

For all ML methods, the top SNP selection process outlined below was applied to the initial 

train-test split. The same numerical cut-off of number of SNPs was then applied to all other 
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random splits, with the exception of MB-MDR, for which the p-value threshold was applied 

to all. 

 
Gradient boosting 
Top predictors were chosen empirically by selecting the right tail of the distribution of mean 

absolute SHAP values, following the “elbow method” to visually identify a hinge point in the 

distribution. There is no pre-determined threshold at which SHAP values can be taken as 

meaningful (9), though cut-offs such as the top 1% have been used. Here we use a 

combination of graphically checking the right tail of the distribution, and Boruta-based 

feature selection (10) to highlight SNPs which have the greatest impact on model 

predictions. 

 

Boruta-based feature selection was performed using a distributed implementation of the 

Boruta-SHAP method, which can be found at https://github.com/seafloor/daxos. Briefly, 

this entails inserting unassociated “shadow” features into the data and determining 

whether, on average, genuine predictors are more important to the model than these noise 

variables. Importance to the model is determined here by mean absolute SHAP value. While 

an implementation of this is available (Boruta-SHAP, https://github.com/Ekeany/Boruta-

Shap), it uses a non-distributed scikit-learn based API, which would not compute on 

available memory for this dataset on our servers. Furthermore, it does not implement the 

adapted BorutaPy method (https://github.com/scikit-learn-contrib/boruta_py) which 

includes corrections for multiple testing which are likely to be more useful in high-

dimensional biological data. Here we adapt the BorutaPy approach from Daniel Homola to 

handle distributed training in dask and use of the mean absolute SHAP value in feature 

selection. Our distributed Boruta-SHAP approach, applied to gradient boosting trained with 
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the APOE region, was run with default parameters, 10 iterations, the default two-step 

multiple testing procedure, and using the 99th percentile of the shadow features to 

determine importance. Results showed 937 SNPs as important, which included all 108 SNPs 

from the extreme tail of the distribution of mean absolute SHAP values, and 435 tentative 

SNPs. Only SNPs marked as “important” were taken forward. 

 

Neural networks 
The network is composed of the SNP input layer, a gene layer, and 8 layers of biological 

pathways, extracted from GO. The selected GO terms are not limited to the biological 

process, but include molecular function, biological process, and cellular components. 

Moreover, all GO terms were considered, not only the AD-specific ones.  

 

GO terms directly influenced by genes (i.e., local pathways) constitute the first biological 

pathway layer. Genes are mapped to the local pathways, and an extra node on the pathway 

layer is created to group all the genes that are not mapped to any local pathway. Moreover, 

the weights of the connections between genes and pathways are randomly initialized and 

learned from the data, thus not influenced by previous research.  

Finally, 214,487 SNPs constituted the input feature set (out of 215,193 in total), barring only 

706 SNPs that the default ANNOVAR model could not map to any gene. Hence, there is no 

bias toward exonic variants.   

 

To calculate the importance scores, we used a recursive procedure. Firstly, we calculated 

the importance of the second-to-last layer, i.e., the last pathway layer. We define the 

importance for a generic node 𝑖	in the second-to-last layer as 𝐼𝑆!
 #$% . 
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Said 𝐼𝑆!
 #$% is the absolute value of the edge (link) between the pathway and the prediction, 

namely  𝐼𝑆!
 #$% = 1𝑒!%

(#$%)1 , connecting the 𝑖-th pathway to the prediction (the final layer has 

only one node: the prediction node). Then, for a generic node in the third-to-last layer, 

representing a local pathway in GO approaches, we calculated the importance of the node 

as follows:    

 

𝐼𝑆!
 #$( = Σ):+!"($%&), -

1𝑒!)
(#$() ⋅ 𝐼𝑆)

#$%1 . 

 

With 𝑒!)
#$(, the link between nodes 𝑖	of the 𝑝 − 2	layer and node 𝑗	of the 𝑝 − 1	 layer. 

Hence, the IS is the weighted sum of the importance of all the pathways to whom the target 

node is connected, with the edge weight as weight. Finally, the last step of the recursive 

procedure calculates the importance of each SNP as the weighted sum of the importance of 

all the genes the SNP is connected to. Hence, in formula, for a generic SNP 𝑖: 𝐼𝑆! % =

Σ):+!"((),-
1𝑒!)
(%) ⋅ 𝐼𝑆) (1 . Moreover, to better visualize the 𝐼𝑆 and without losing generality, we 

scaled the 𝐼𝑆s in the SNP layer, such that the SNP with the higher importance has an 𝐼𝑆 of 1.   

 

To identify the relevant hits, we estimate a Gaussian distribution based on the importance 

scores of all the SNPs. We are interested in the importance scores (hence in the SNPs) that 

are outliers in the estimated distribution, I.e., that are too high (hence, the right tail) to fit 

into the same distribution as all the SNPs.  For a target SNP, we tested the null hypothesis 

that the importance come from the Gaussian distribution estimated on all the SNPs: 

𝐻-:  𝐼𝑆!% ∼ 𝑁=𝐸(𝐼𝑆%); 𝑆𝐷(𝐼𝑆%)C. Hence, the p-value we calculated represents how unlikely 

it is that the target importance score comes from that distribution.  
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MB-MDR 
Significant MB-MDR SNPs (MB-MDR 1D) and SNP pairs (MB-MDR 2D) were based on 

maintaining the adjusted p-value (padj) < 1, for each dimension (1D and 2D). Several MB-

MDR p-value cut-offs were considered {0.05, 0.15, 0.25, 0.5, 0.75, 0.8, 0.95, 1} when 

constructing MB-MDRC 1d and MB-MDRC 2d, with larger cut-offs leading to more terms in 

the respective scores. The final prediction reported comes from the most lenient threshold 

(padj < 1). 

 

1.7 Protein-protein interaction and GO pathway enrichment 

The publicly available tool STRING v12.0 (19) was used to determine protein-protein 

interaction and gene ontology pathway enrichment for the top annotated genes from the 

hits obtained by GBMs, MB-MDR and NNs. Settings for this analysis included: full STRING 

network with interaction sources determined using default options; thresholding for a 

minimum required interaction score of medium confidence, 0.4 (Figure S9). In total, 53 

edges were found, more than a four-fold increase from the expected number of edges (13).  

 

1.8 Enrichment tests 

Formal enrichment tests were performed using microglial (21), astrocytic (22), and synaptic 

(23) regions. Astrocyte regions are described in Endo et al. (22) as genes showing 

enrichment in astrocytes across brain regions in mice. After mapping to human genes using 

ensembl’s BioMart server and restricting to unique ensemble IDs, we obtained a list of 757 

astrocyte-enriched genes. For the synapse, genes were obtained from the SynGo portal (23). 

These include 1,535 genes annotated to the synapse. For microglial regions, data taken from 
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Gosselin et al. (21); we obtained a list of 761 genes enriched in microglia. Lists of genes can 

be found at https://github.com/seafloor/escott-price-lab-

pipelines/tree/main/output/pathways. Code for processing gene lists directly from 

publications can be found at https://github.com/seafloor/escott-price-lab-

pipelines/tree/main/workflows/pathways. 

 

For all genes, gene boundaries were obtained by querying ensembl using the R biomaRt 

package, and all regions to be searched were then expanded to include 35kb upstream and 

10kb downstream of the gene. To obtain p-values, a bootstrapping approach was 

undertaken. Here, for a given list of SNPs from a machine learning analysis, the observed 

number of matches to regions was first calculated. Then, regions of equal number and size 

to those in the search list were randomly selected from the genome, and the number of 

matches calculated. This procedure was performed 10,000 times to generate a null 

distribution. Finally, the proportions of top SNPs in the randomly selected regions were 

compared with the proportion of top SNPs in the actual microglia and astrocytes gene lists. 

The number of times when the proportion of top SNPs in the bootstrapped regions was 

higher than in the actual gene lists were counted, then divided by the number of 

simulations, and reported as p-values for enrichment.  

 

1.9 Interaction testing 
Interactions were tested between all SNPs reported in Tables 1 and 2. Taking all pairwise 

combinations between top SNPs within models, 17,205 unique logistic regression models 

with main effects and interactions terms were fit, including sex, genotyping centre and 

principal components as covariates. Reported p-values are for the interaction term in the 
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regression model. Results are adjusted for multiple testing using a Benjamini-Hochberg FDR 

correction (at p = 0.05). 

 

2. Results  

2.1 Data splitting 

Data were exported to additively encoded raw files from PLINK2 (--export A) before being 

randomly shuffled and then split into train and test data. Splits were evaluated for 

similarities across standard demographic information which was available in the data 

(Figure S2). Tests of categorical variables (chi-square) between the train and test split, as 

well as for missingness in age-at-baseline variables, also showed no significant differences 

between the two splits (data not shown). 

 

2.2 Selection of top predictors in gradient boosting 

See section 1.6 for a description of how predictor selection was applied across train-test 

splits. After visual inspection of the distribution of mean absolute values we investigated a 

0.0005 threshold (around 1.3%) as this denoted the extreme tail of the distribution (Figure 

S4a). All 108 of the SNPs meeting this threshold were labelled as important by the Boruta 

method. By comparison, a less extreme threshold of 5% (Figure S4b) would include a larger 

set of 406 variants, but only around 85% of these were marked as important by Boruta 

feature selection. The 0.0005 threshold therefore marks a reasonable cut-off for top SNPs 

which can be taken forward for further investigation. The same threshold was applied to 

XGBoost models trained with and without the APOE region. 
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2.3 Selection of top predictors in neural networks 

In Neural networks, we utilized the default ANNOVAR annotations present in the GenNet 

package to link SNP-genes. 214,487 SNPs SNPs were used in selection of top predictors (out 

of 215,193 in total) including all SNPs mapped to a gene in ANNOVAR. 706 SNPs were not 

mapped to genes in the initial SNP-to-gene layer and could not be used in the model or 

calculation of importance scores.   

We considered SNPs as top predictors if they have a Bonferroni adjusted p-value lower of 

0.05, meaning that they are extremely unlikely to be modelled by the Gaussian distribution 

estimated on all the importance scores (Figure S5). 

 

2.4 Selection of top predictors in MD-MDR 

Exploring different significance thresholds for SNPs inclusion using grid search {0.05, 0.15, 

0.25, 0.5, 0.75, 0.8, 0.95, 1} in the train split only, the prediction accuracy performance, as 

measured by AUC, suggested a slight improvement by loosening the padj-value threshold, 

with the best performance attained with a threshold of padj < 1. Thus, we considered SNPs 

with an adjusted p-value lower than	1 as top predictors. 

The significant SNP-SNP interaction found by MB-MDR are depicted in Figure S7. An edge 

means that there is at least one significant SNP-SNP interaction between SNPs that map to 

those genes, while the node size is proportional to the degree of the node. Self-loops 

represent significant SNP-SNP interaction between SNPs of the same gene.  In panel S5A, we 

grouped all the genes in the APOE region (depicted in blue), showing no interaction 

between those genes and the rest. At the same time, on panel S5B, we decomposed the 

interactions in the APOE region into the various genes.  
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2.5 Pair-wise interaction tests 
From 17,205 unique pairwise SNP-SNP interaction tests, 13 were significant after Benjamini-

Hochberg FDR correction (at p = 0.05) for multiple testing and removal of all 137 SNP-SNP 

pairs which involved SNPs which were both located within the APOE region. Association 

with the APOE region is likely due to the high linkage disequilibrium between variants in the 

region. Taking the initially significant interaction between rs429358 and rs72654473 (pFDR = 

1.36e-6) within the APOE region as an example, we note that while rs429358 and 

rs72654473 are in approximate LE in our data (r2 = 0.03, D` = 0.26), rs72654473 is in 

moderate to high LD with rs7412 (r2 = 0.52, D` = 0.99), and an extended logistic regression 

model which also includes rs7412 as a main effect in the model (i.e. y ~ rs429358  + 

rs72654473 + rs7412 + rs429358:rs72654473 + covariates) shows no significant effects for 

an interaction between rs429358 and rs72654473 (p = 0.91). 

 

13 SNP-SNP pairs which passed significance thresholds (BH-FDR p = 0.05) involved at least 

one SNP outside the APOE region. Of these, only 2 survived more stringent correction for 

multiple testing (FDR p = 0.01), or a severe Bonferroni correction. Both pairs correspond to 

SNPs in the APOE and MS4A* regions, as do many of the 13 SNP pairs which passed FDR (p = 

0.05) correction. 

 

2.6 Comparison of the results with and without APOE region in the same train-test split  

ML models were compared when trained with and without the APOE region on the initial 

train-test split, allowing for direct comparison across approaches. As noted in the main text, 

models trained with APOE were both highly correlated (between r=0.80 and r=0.87) and 

highly performant (maximum AUC from gradient boosting, AUC=0.692). Correlations and 
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AUCs were markedly lower for models trained without the APOE region, as expected; 

distributions of predictions from these models were unimodal and did not stratify by APOE 

status (Figure S9). 

 

GBM trained without the APOE region highlighted additional known loci at MME and TPCN1. 

Neural networks (NN) highlighted known loci in APOE, BIN1, CYP27C1, ABCA7, APP, CLU, and 

EGFR. In this train-test split, four additional novel loci identified by NNs were potentially 

associated with AD: THBS1, SOD1, and PCSK9. SNPs prioritised by GBMs showed significant 

enrichment in microglial regions when trained with the APOE region (n = 108 SNPs; 

p=0.0007) and without (n = 140 SNPs; and p=0.015). SNPs identified by gradient boosting 

without the APOE region had slightly stronger evidence for enrichment in astrocytes than 

the with-APOE model (p=0.006 and p=0.011 respectively). GBMs and MB-MDRC 1d showed 

significant microglial enrichment (p=0.015, p=0.046 respectively) without the APOE region, 

while only NNs and MBMDRC 1d, both with APOE included, were enriched for synaptic 

regions (p=0.03, p=0.03 respectively; see Supplementary Table 2, and Supplemental Figure 

S11). 

 
Supplementary Table 2: Bootstrap enrichment analysis for genes enriched in astrocytes, 
microglia and synapses, with 10,000 repetitions. 
Method Astrocyte Microglia Synapse    
MBMDR APOE 2d 0.0330 0.0183 0.0650    
MBMDR APOE 1d 0.0312 0.0063 0.0286    
MBMDR noAPOE 1d 0.0149 0.0457 1.0000    
GenNet APOE 0.0012 0.0068 0.0281    
XGB APOE 0.0111 0.0007 0.3730    
XGB noAPOE 0.0060 0.0148 0.4140    
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The top SNPs from GBMs trained without the APOE region showed a greater enrichment in 

astrocytes and had a greater overlap with the previously reported GWAS hits than the 

model including the APOE region. The enrichment of the SNPs prioritised by GBM in 

astrocytes in the model without the APOE region may suggest a different disease 

development mechanism in the absence of APOE-e4 related risk. However, we note that 

comparisons here are restricted to a single train-test split. In addition, Supplemental Figure 

S11:A presents a clustermap of scaled SHAP values from GBMs run on this train-test split 

(including APOE region). In this figure each row is an individual and each column is a SNP, 

where each column is separately scaled. The figure clearly highlights clusters of individuals 

characterised by different sets of SNPs. 
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4. Figures 

 

 

Figure S1: pipeline for processing genotyped and imputed data. 81 variants which have 

been previously reported as genome-wide significant in large meta-analyses were extracted 

from imputed data and merged with the genotype data before QC, where 14 variants of the 

GWS SNPs were already present in the genotyping data. *40 Known variants taken from 

Table 1 of the review by Andrews et al. (24), where a random variant was select from each 

locus where multiple GWS SNPs have been reported in high LD with each other. **7 novel 

variants were extracted from Table 1 in Wightman et al. (25).  †43 novel variants were 

extracted from Table 2 in Bellenguez et al. (1), excluding rs871269 (TNIP1), which is present 

in Wightman et al. ‡9 variants were removed before merging with the genotyped data, 7 of 



 30 

which were due to low allele frequency (MAF < 0.01 in 1000 genomes Europeans subset): 

rs141749679 (SORT1), rs143080277 (NCK2), rs184384746 (HESX1), rs187370608 (TREM2), 

rs7185636 (IQCK), rs114360492 (CNTNAP2), rs113020870 (AGRN). A further 2 were 

removed due to being part of a pair of SNPs in LD, where the SNP with the lowest reported 

p-value was kept:  rs708382 (GRN) removed, rs5848 (GRN) retained; rs5011436 

(TMEM106B) removed, rs13237518 (TMEM106B) retained. After merging and QC, 52 

variants from the previously-reported GWS SNP list were present, 45 of which were added 

from imputed data, and 7 of which were already present in the genotyping data. 
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Figure S2: Distribution of demographic variables across a single (the initial) train-test split. 

Bars and density plots for the train split are shown in blue, and for the test split in red. All 20 

principal components are shown unstandardised. Similar consistency for train and test data 

is visible across additional random splits. 
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Figure S3: The structure of the GenNet neural network is showcased. SNPs are mapped 

through ANNOVAR to the closest gene; then, genes are involved in multiple local pathways 

(based on GO annotations) that are associated with higher-order pathways. Finally, said 

pathways, together with the confounders, predict Alzheimer's status. A generic 𝑒!)
(.) 

represents the edge weight connecting node 𝑖 of the 𝑘 layer to node 𝑗 of the 𝑘 + 1 layer. 

The importance score of the first gene is calculated in the figure as the sum of the product 

of each path, highlighted in different colour for visualization purposes.  
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Figure S4: Distribution of mean absolute SHAP values for gradient boosting models trained 

with all SNPs, including the APOE region, showing (a) the top 1% threshold and a decrease in 

mean absolute SHAP values at around 0.0005 (~1.3% of the top SNPs), resulting in 108 SNPs 

selected, and (b) a looser 5% threshold which would have included a significantly larger 

number of variants. Visualisation shown for a single initial train-test split. 

  

a 

b 



 34 

 

 

Figure S5: The distribution of importance scores for Neural Networks. The tail of the 

distribution was selected to give the extreme end of importance scores (137 SNPs selected). 

Scores are shown (a) as the full distribution, and (b) as a zoom plot to show the selected cut-

off more clearly. Visualisation shown for a single initial train-test split. 
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Figure S6: Distributions of adjusted model predictions from gradient boosting, neural 

networks, PRS and MBMDRC 1d trained on all SNPs, including the APOE region. Predictions 

from models show heavily overlapping multimodal distributions across constituent studies 

in the test split of the EADB-core, where peaks within a distribution are driven by APOE 

alleles. Distributions are coloured by the study within the EADB-core sample (legend not 

shown due to the large number of studies). 

 

 

 

 

 

 

 

 



 36 

 

Figure S7: MB-MDRC 2d SNP-SNP interaction in a), with the node size proportional to the 

node degree. The same SNP can be mapped to multiple genes and thus the single SNP pairs 

can be shown as multiple gene pairs. In b), the SNPs in the APOE region are analyzed in 

detailed and mapped to the closest gene.  
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Figure S8: UpSet plot showing the overlap between ML and genome-wide significant 

findings from major AD GWAS (Supplementary Data 1). (a) Genes mapped by the SNPs 

highlighted by each ML approach separately. Both ML approaches and GWAS significant 

SNPs were identified in the same training split. (b) Genes that are shared among at least two 

train-test splits. 

  



 38 

 
 

 
Figure S9: Test set predictions for models trained without the APOE region. Predictions are 

not significantly different between GBM and PRS (A); MB-MDRC 1d performed significantly 

worse than PRS (DeLong’s test for two correlated ROC curves, p = 0.0018). Pairwise 

(Pearson’s r) correlation show weak-to-moderate correlation between adjusted test set 

model predictions (B). Distributions of adjusted test-set predictions (C-E) do not differ by 

APOE status, as expected. Results for neural networks are not shown as prediction was not 

significantly better than chance. Prediction is only shown for the best-performing MB-MDR 

model (MB-MDRC 1d). All results are for a single initial train-test split; bars (A) represent a 

single value. 
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Figure S10: STRING networks for the 68 genes resulting from NNs, GBMs, MB-MDR 1d and 

MB-MDR 2d obtained with STRING. Only edges with moderate confidence (>=0.400, default 

setting) are shown. The line colour indicates the type of interaction evidence; known 

interactions are depicted in sky blue if from curated datasets, and violet if from 

experimentally determined data; predicted interactions are in green for gene 

neighbourhood, red for gene fusions and blue for gene co-occurrence. Other edges 

represent text mining (yellow), co-expression (black) and protein homology (grey).  
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Figure S11: A clustermap of scaled SHAP values from GBMs run on the four train-test splits 

(described in detail in Supplemental Material, Section 2.6). Each row is an individual and 

each column is a SNP, highlights groups of individuals and SNPs which are collectively 

impactful in predictions. Subplots A through D show the clustermap of SNPs from tables 1 

and 2 which were present in the stability split. 

 
 


