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A B S T R A C T

Biochar, a material whose properties are critically defined by its elemental composition, has been promoted as a 
sustainable way to treat various biomass wastes, including agricultural residues. However, considerable vari-
ability in these compositions across studies necessitates precise predictive techniques. This research followed the 
PRISMA rules for data collection and study selection, compiling data on feedstock properties and pyrolysis pa-
rameters from 38 published studies. A novel Feature-oriented Imputation method was established and employed, 
utilizing K-Nearest Neighbours (KNN) or Random Forest (RF) imputer to fill in missing values for features with 
differing characteristics. The reprocessed data were then fed into six distinct datasets and analyzed using a 
Gradient Boosting Regression model to predict the contents of carbon (C), hydrogen (H), oxygen (O), nitrogen 
(N), phosphorus (P), and potassium (K) in biochar. The rigorous machine learning process yielded excellent 
accuracy rates: C (R2 = 0.9088, RMSE = 4.0614), H (R2 = 0.9068, RMSE = 0.4180), O (R2 = 0.9172, RMSE =
2.6475), N (R2 = 0.8950, RMSE = 0.3416), P (R2 = 0.9699, RMSE = 0.0244), and K (R2 = 0.9464, RMSE =
0.3842). A comprehensive analysis of feature importance revealed that feedstock properties generally hold more 
significance in determining the elemental composition of biochar compared to pyrolysis parameters. The highest 
heating temperature (HHT) emerged as the most influential parameter for the content of H and O, while the 
contents of N, P, and K were predominantly determined by their respective levels in the feedstock. From these 
insights, optimal pyrolysis parameters were derived to tailor biochar with different elemental compositions for 
various applications. The developed models offer a robust framework for predicting the elemental compositions 
of biochar derived from various agricultural biomass, thereby eliminating the need for complex and resource- 
intensive laboratory trials.

Abbreviation and Nomenclature

Food and Agriculture Organisation: FAO Isolation Forest: IF
carbon: C feedstock fixed carbon content: 

FC_F
hydrogen: H feedstock volatile matter 

content: VM_F
oxygen: O feedstock ash content: AC_F
nitrogen: N feedstock carbon content: C_F
phosphorus: P feedstock hydrogen content: H_F
potassium: K feedstock oxygen content: O_F
cation exchange capacity: CEC feedstock nitrogen content: N_F
electrical conductivity: EC feedstock phosphorous content: 

P_F
highest heating temperature: HHT feedstock potassium content: 

K_F

(continued on next column)

(continued )

residence time: RT feedstock cellulose content: 
Cel_F

heating rate: HR feedstock hemicellulose content: 
Hem_F

volatile matter: VM feedstock lignin content: Lig_F
ash content: AC feedstock particle size: PS_F
fixed carbon: FC Random Forest Imputer: RFI
Machine learning: ML K-Nearest Neighbours Imputer: 

KNNI
artificial intelligence: AI SHapley Additive exPlanations: 

SHAP
Gradient Boosting Regression: GBR Partial Dependency Plots: PDP
SHapley Additive exPlanations: SHAP Pearson correlation coefficient: 

PCC
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(continued )

Random Forest: RF Gradient Boosting Decision Tree: 
GBDT

Artificial Neural Networks: ANN eXtreme Gradient Boosting: 
XGBoost

Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses: PRISMA

Multiple Linear Regression: MLR 
Decision Tree: DT

dataset predicting biochar C content: Dt_C Support Vector Machine: SVM
dataset predicting biochar H content: Dt_H k-Nearest Neighbours: KNN
dataset predicting biochar O content: Dt_O Rough Set Machine Learning: 

RSML
dataset predicting biochar N content: Dt_N Linear Regression: LR
dataset predicting biochar S content: Dt_S Multilayer Perceptron Neural 

Network: MLP-NN
dataset predicting biochar P content: Dt_P Adaptive Neuro-Fuzzy Inference 

System: ANFIS
dataset predicting biochar K content: Dt_K ​

1. Introduction

The global production of agricultural residues, e.g. sugarcane 
bagasse, rice stalks, corn stalks, wood waste, is substantial each year, 
and addressing the reuse and appropriate disposal of these is of para-
mount importance [1]. For instance, the Food and Agriculture Organi-
sation (FAO) reports a global production of 1208 million tons of corn in 
2021, of which 205.87 million tons were burned, resulting in the release 
of 14.14 kilotons of N2O and 545.36 kilotons of CH4 to the atmosphere 
[2]. This practice contributes significantly to climate change, under-
scoring the need for sustainable waste management solutions to support 
global net-zero targets. Consequently, the production of biochar using 
agricultural residues has become a promising solution to promoting 
carbon neutrality and waste utilisation [3].

Biochar is a black solid product produced through pyrolysis in an 
oxygen-limited or anaerobic environment. Under high-temperature 
conditions above 250 ◦C [4], agricultural residues undergo a process 
where water and volatile contents escape, while the lignocellulosic 
composition gradually decomposes, degrades, and carbonises. This 
process ultimately yields biochar characterised by rich carbon (C) con-
tent and high porosity [5]. Alongside C, biochar comprises primarily 
hydrogen (H), oxygen (O), and nitrogen (N), and some minor elements 
such as phosphorus (P) and potassium (K). These elements contribute to 
the formation of biochar structure and diverse functional groups, 
thereby influencing various physical and chemical properties of biochar, 
including aromaticity, cation exchange capacity (CEC), electrical con-
ductivity (EC), and alkalinity [6]. Leveraging these characteristics, 
agricultural residues derived biochar has gained widespread adoption 
across multiple environmental domains. Its capacity for carbon 
sequestration has been demonstrated through both structural charac-
terisation [6] and CO2 adsorption studies [7]. In the soil system, biochar 
can improve soil quality [8] and influence soil biota and nutrient dy-
namics [9]. In addition, it has been used to enhance soil productivity 
[10] and demonstrated sustainable performance in wastewater treat-
ment applications [11].The elemental composition of biochar plays a 
critical role in determining its properties and effectiveness for various 
applications. As the most abundant element in biochar, C forms the 
backbone of biochar structure, linking with other elements to create 
functional groups. Inorganic C contributes to biochar’s alkalinity and 
buffering capacity [12], thereby regulating soil pH, while the aromatic 
structures formed by C are highly effective in adsorbing soil and water 
pollutants [13]. H in biochar provides active functional groups and plays 
a critical bridging role in the adsorption of ionisable molecules [6]. A 
high O content is associated with greater hydrophilicity and porosity, 
which enhances soil water retention and nutrient holding capacity, 
neutralises soil acidity, promotes microbial activity, and effectively 
adsorbs pollutants [14]. Other elements in biochar like N, P, and K 
directly or indirectly impact soil nutrient levels [15], and activities of 

soil microorganisms and enzymes [9] in soil health improvement. 
Therefore, quantifying and optimising the elemental composition of 
biochar has practical significance in biochar applications. In this 
context, six elemental components - C, H, O, N, P, and K - were selected 
for investigation, as they are among the most functionally important and 
widely reported elements in biochar. C, H, and O form the primary 
framework of biochar’s physical and chemical structure, whereas N, P, 
and K are essential nutrients influencing soil fertility and microbial ac-
tivity. This selection enables a holistic evaluation of both structural and 
agronomic value of biochar across applications such as soil amendment, 
carbon sequestration, and pollution mitigation.

Studies increasingly reveal significant variations in biochar’s 
elemental composition. It has been reported the elemental composition, 
such as major (C, H, O) [8] and nutrient elements (N, P, K, Ca, Mg) [16], 
of biochar derived from different biomass sources vary remarkably 
under identical pyrolysis conditions. Even within the same plants, Intani 
et al. [17] observed that maize stalk and cob produced biochar with 
different properties, while Liu et al. [18] confirmed this variability 
among different parts of pecan residues.Such differences directly influ-
ence the efficacy of biochar applications across various fields. To 
elucidate the factors underlying these variations in biochar’ elemental 
composition, researchers have examined the influence of pyrolysis 
conditions, such as highest heating temperature (HHT), residence time 
(RT), and heating rate (HR). Generally, higher HHT promotes a more 
complete carbonisation reaction in lignocellulosic biomass, resulting in 
increased C content and ash, with more volatile materials lost as biogas 
[19]. Consequently, H, O, and N contents in biochar exhibit negative 
correlations with HHT, whereas C content shows a positive correlation 
[20]. Zhang et al. [21] further validated this trend by analysing biochar 
produced from multiple crop residues at 300–600 ◦C. Additionally, RT, 
HR, and biomass particle size exert varying impacts on biochar prop-
erties, though drawing precise conclusions remains challenging. How-
ever, beyond these controllable pyrolysis conditions, the inherent 
differences in agricultural residues’ type entail relatively uncontrollable 
disparities in biomass components and compositions, significantly 
influencing biochar properties. Agricultural residues predominantly 
exhibit a pronounced lignocellulosic structure, distinguishing them from 
other feedstocks like manure, human waste and sludge. Wijitkosum [22] 
observed that Krachid tree, with higher lignin content, exhibited 
elevated C content (85.78 %), while rice husk, containing lower lignin 
content, displayed a much lower C content (47.67 %) in their respective 
biochar products. The reason is that lignin has a complex structure 
comprising benzene rings and polymers with high thermal stability. 
Moreover, the original proximate (i.e., volatile matter VM, ash content 
AC, and fixed carbon FC) and elemental composition of biomass influ-
ence biochar’s elemental content to varying degrees. Therefore, drawing 
precise conclusions on how various factors and their interactions influ-
ence biochar’s elemental composition remains challenging, despite a 
large number of experimental studies having been reported.

Machine learning (ML) is a subcategory of artificial intelligence (AI) 
that utilises algorithms to efficiently learn and analyse relationships and 
patterns within multidimensional data. ML is instrumental in processing 
both classification and regression problems. Due to the intricate nature 
of biochar research, the application of ML offers novel perspectives and 
insights into comprehending and addressing biochar-related challenges 
[23]. In contrast to traditional statistical methods, ML enables the 
simultaneous consideration of crucial factors associated with the target 
variable while uncovering complex linear and non-linear correlations. 
Various ML models have been developed to predict biochar properties 
across different feedstocks and pyrolysis conditions. For instance, 
ensemble models such as Random Forest (RF), Gradient Boosting Deci-
sion Tree (GBDT), eXtreme Gradient Boosting (XGBoost), and AdaBoost 
[24], along with traditional models like Multiple Linear Regression 
(MLR), Decision Tree (DT), Support Vector Machine (SVM), and 
k-Nearest Neighbours (KNN) [25], have been applied to predict biochar 
yield. Zhu et al. [26] specifically employed RF to predict biochar yield 
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and carbon content. For surface characteristics prediction, Rough Set 
Machine Learning (RSML) was applied by Ang et al. [27], while Leng 
et al. [28] used RF and Gradient Boosting Regression (GBR). In pre-
dicting the biochar proximate composition, studies have used models 
such as Linear Regression (LR), AdaBoost, and Boosted Regression Trees 
(BRT) [29], as well as more complex ones like the Multilayer Perceptron 
Neural Network (MLP-NN) and Adaptive Neuro-Fuzzy Inference System 
(ANFIS) [30]. In addition, the prediction of prediction biochar heating 
value has been addressed using RSML [31], and a variety of regression 
models [32]. However, there is still limited understanding of specifically 
how agricultural residues influence the elemental composition of bio-
char under different pyrolysis conditions and how ML can help to 
optimise specific elements in biochar for more effective uses. For 
example, Li et al. [30] used neural networks to predict the C, H, O and N 
content of biochar, yet incorporated agriculture residues, food waste 
and poultry litter into the dataset, overlooking the inherent differences 
between feedstock types. Furthermore, as key components that affect 
soil fertility, the P and K contents cannot be disregarded. Similarly, Jiang 
et al. [33] explored deep neural network and light gradient boosting 
machine for biochar surface area prediction, without incorporating 
elemental composition as the target. While these studies demonstrated 
the feasibility of ML techniques, they often lacked broad feedstock di-
versity, detailed process variables, or interpretable model outputs. 
Moreover, they typically focused on a single or few output properties. In 
contrast, interpretable models were developed in this study to predict six 
key elemental components (C, H, O, N, P, K), using agricultural residues 
targeted and curated datasets, thus improving both prediction accuracy 
and practical relevance. Moreover, many previous studies have relied on 
conventional data preprocessing pipelines, which may overlook the 
impact of missing values on model performance and generalisability. To 
address this, a novel imputation strategy was proposed that is tailored to 
the characteristics of pyrolysis-related datasets, improving data 
completeness and model robustness. This methodological refinement 
contributes to a more rigorous application of ML in the biochar domain, 
ensuring that predictions are based on a more reliable and representa-
tive dataset.

In this work, characteristics of agricultural residues and pyrolysis 
conditions were examined as inputs and developed the GBR models to 
predict biochar’s elemental (C, H, O, N, P, and K) contents. GBR models 
are adopted in this study due to its superior predictive performance, 
robustness to multicollinearity, and ability to capture complex nonlinear 
interactions while maintaining good interpretability through feature 
importance and SHapley Additive exPlanations (SHAP) analysis (sup-
plementary material). Compared to RF, GBR yields better accuracy by 
minimizing bias through sequential model improvements [34]. 
Furthermore, it avoids the “black-box” nature of Artificial Neural Net-
works (ANN), allowing for clearer interpretation of model outputs—an 
essential consideration for practical biochar optimisation.

The aim of this study is to quantify the contributions of various 
factors affecting biochar elemental contents, identify their influencing 
patterns, and offer guidelines for pyrolysis parameters to optimise bio-
char production. This comprehensive analysis provides a robust frame-
work for the development of tailored biochar prototypes, advancing 
understanding of the interplay between feedstock characteristics, py-
rolysis conditions, ad biochar elemental composition, ultimately opti-
mising its application across various environmental and agricultural 
domains. The findings of this study can significantly contribute to 
improving biochar design for specific applications and enhancing sus-
tainability in agricultural waste management. Additionally, the use of 
ML models offers a valuable tool for refining biochar production pro-
cesses, leading to more efficient resource utilisation. While this study 
primarily focused on lignocellulosic agricultural feedstocks, incorpo-
rating a broader spectrum of biomass sources - including industrial and 
forestry residues - could further enhance model generalisability in future 
applications.

2. Methodology

2.1. Data collection and preprocessing

The dataset for this study was gathered the PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) guidelines 
by searching from Web of Science, Scopus and PubMed with “biochar” 
or “bio-char,” “pyrolysis,” “feedstock” or “biomass” in titles, abstracts, 
and keywords as search terms. After deleting duplicates (Fig. 1), article 
titles and abstracts were screened based on following criteria: (1) Only 
studies that employed agricultural residues biomass as the feedstock 
were included to focus on the most relevant biomass sources in biochar 
production. Studies using non-agricultural residues feedstocks (e.g., 
manure, food waste) were excluded; (2) Studies that employed pyrolysis 
as the biochar production method were selected. Studies using alter-
native methods (e.g., gasification, hydrothermal carbonisation) were 
excluded; (3) Studies that focused on biochar that had undergone 
modifications such as activation or loading of additional chemicals were 
excluded. This ensured that the biochar in the dataset reflected its nat-
ural characteristics from pyrolysis, without external alterations that 
could affect its elemental composition. Papers that met the criteria were 
selected as the source of the initial datasets after a rigorous screening 
process of the full text. Data from text were recorded manually, while 
those from figures were collected by plotdigitizer. Ultimately, 38 articles 
were selected with 332 instances in the initial dataset.

The initial dataset comprised 34 variables in the data collection 
process, including those pertaining to the paper meta information, 
feedstock characteristics, pyrolysis parameters, and experimental con-
ditions (Table 1), as well as elemental composition of the biochar pro-
duced. The values and information of these variations are collected as 
complete as possible by going through all the content in the 38 study 
papers.

However, not all the variables listed in Table 1 are used as features 
for further ML. First, variables related to paper meta information were 
excluded, as they are not applicable for targeted numerical regression 
modeling. Second, features with a high proportion of missing values 
were filtered out to maintain dataset quality and model reliability. 
Specifically, any variable with more than 30 % missing data in sub- 
datasets was discarded. This threshold is commonly adopted in related 
studies [30]. Features discarded for this reason are indicated with an 
asterisk in Table S1.

High missingness in some features is likely attributable to practical 
and methodological limitations in biochar studies. For instance, ex-
tractives content is rarely reported independently, as it refer to the rest 
soluble part in biomass except for lignin, cellulose, and hemicellulose 
[35,36]. So, it is often omitted in studies that report those primary 
constituents. S content in biomass is often very low (e.g., 0.18–0.85 % in 
wood chips; [37]), requiring specialized instrumentation for accurate 
measurement, which may explain its absence in many studies. While 
these features may hold potential value for understanding biochar 
composition, their limited availability in the literature constrains their 
current utility in data-driven modeling.

Despite the need to exclude some features, their scientific relevance 
is not necessarily diminished. For example, carrier gas flow rate has been 
shown to affect biochar yield, particularly in fluidized bed and TGA 
pyrolysis systems [38]. Future expansions of the dataset with more 
comprehensive reporting may enable the inclusion of such features, 
enhancing model interpretability and generalisability.

Following feature selection, the left features in the dataset were 
further divided into two categories: (1) feedstock characteristics (2) 
pyrolysis process parameters. Subsequently, six separate datasets were 
created for each element of biochar (Dt_C, Dt_H, Dt_O, Dt_N, Dt_P and 
Dt_K) (Table 2). Features with a missing rate of less than 30 % were 
retained in each dataset to maintain the quality of the datasets. To 
reduce the negative impact of outliers on the model robustness, the 
Isolation Forest (IF, contamination = 0.1) in the scikit-learn library was 
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employed to remove them from the datasets.
To address the missing values, a novel feature-oriented imputation 

method was applied in this study, which strategically aligns imputation 
techniques with the inherent characteristics of different feature types. 
Specifically, we categorized the features into two groups based on their 
statistical information and practical implications: (i) feedstock proper-
ties, includes FC_F, VM_F, AC_F, C_F, H_F, O_F, N_F, P_F, K_F, Cel_F, 
Hem_F, Lig_F, which are continuous variables generally following a 
normal distribution, and (ii) pyrolysis parameters, includes RT, HR, 
HHT, PS_F, which are discrete by nature and often constrained by 
experimental design. For features reflecting the nature of the feedstock, 
Random Forest Imputer (RFI) was used. RFI is an integrated learning 
technique based on multiple decision trees through bootstrapping and 
random feature selection and aggregates their outputs to predict missing 
values. This algorithm can effectively deal with complex nonlinear re-
lationships among features [39]. Here, the applied RFI utilised the 
correlation between feedstock features to predict missing values, which 
maintained the intrinsic structure and dependencies of the data, thereby 
improving the prediction accuracy of the subsequent models. On the 
other hand, for discrete features such as pyrolysis parameters artificially 

Fig. 1. Literature searching and data collection flowchart.

Table 1 
Features and targets in the initial dataset with units and abbreviations.

Features Targets

Feedstock characteristics (%) Pyrolysis parameters Biochar’s 
elemental content 
(%)

Moisturea, Fixed Carbon 
(FC_F), Volatile Matter 
(VM_F), Ash Content (AC_F), 
C (C_F), H (H_F), O (O_F), N 
(N_F), P (P_F), K (K_F), 
Cellulose (Cel_F), 
Hemicellulose (Hem_F), 
Lignin (Lig_F), Extractivea

Drying Temperature (◦C), 
carrier gasa, carrier gas flow 
rate (m3/min)a, Residence 
Time (min) (RT), Heating 
Rate (◦C/min) (HR), 
Highest Heating 
Temperature (◦C) (HHT), 
Feedstock Particle Size 
(mm) (PS_F), Vessel 
Dimensions (cm)a, Vessel 
Volume (L)a

C (C_B), H (H_B), 
O (O_B), N (N_B), 
P (P_B), K (K_B)

a Features not included in the further 6 datasets because of data missing 
proportion higher than 30 % in all datasets.
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set based on the experimental design, the K-Nearest Neighbours Imputer 
(KNNI) was selected for data imputation. The KNNI works by identifying 
the K nearest (n_neighbors = 5) known points to the missing values in 
the data space, and then estimating the missing values based on the 
values of these neighbours. This method is well-suited for analysing 
discrete and relatively independent features [40]. This approach is 
particularly effective for preserving realistic, experimentally observed 
values, and avoids the introduction of nonphysical or excessively gran-
ular data points that could arise from inappropriate imputation of 
inherently discrete variables.

Previous studies in biochar research have often overlooked the het-
erogeneity of feature types during imputation. For example, several 
works employed a single imputation algorithm - such as RFI [41] or 
KNNI [42] - across all variables without differentiating between 
continuous and discrete data. Such approaches could risk introducing 
bias or reducing the interpretability of model outputs.

This novel feature-oriented imputation strategy employed in this 
study offers a more tailored, statistically grounded strategy that en-
hances both the fidelity and quality of the imputed dataset and the 
robustness of the subsequent ML models. This method ensures that the 
data preprocessing process aligns with both the statistical nature and 
practical constraints of the input features, thereby laying a more solid 
foundation for downstream prediction tasks.

Finally, each dataset was randomly split into training and testing 
datasets in a ratio of 8:2. To ensure that each model received the same 
dataset, each dataset was split only once and then used in turn to train 
the models. The StandardScaler from the scikit-learn library was 
employed to perform feature standardisation for all the datasets, facili-
tating better interpretation and visualisation of ML models.

2.2. Model development and interpretation

In this study, GBR was employed to predict the elemental composi-
tion of biochar. GBR is a tree-based model refers to a class of models 
based on decision trees in ML models. This type of model is suitable for 
small-scale datasets, has stronger interpretability, and is suitable for 
high-dimensional data [43]. GBR is an integrated learning algorithm 
that employs decision trees as the base learners. Each of these decision 

trees is constructed based on a correction of the residuals of the previous 
decision trees to minimise the loss function (Eq. (1)) [44]. This approach 
improves the model’s generalisation ability, reducing overfitting and 
boosting its performance on unseen data. 
∑N

i=1
L((yi, ŷm− 1)+ fm(Xi)) (1) 

where N is the instance number of the training dataset, yi is the actual 
output of the instance xi, ŷ is the predicted output from 
(m − 1)th base learner, fm(xi) refers to the predicted value of the sample 
Xi from the mth learner.

A grid search was employed with 5-fold cross validation to identify 
the optimal hyperparameters combination for each model. The n_esti-
mators was set from 1 to 50 for all the GBR models, which regulates the 
number of decision trees. The learning rate from 0.01 to 0.3 was used 
which controls the contribution of each decision tree in an iteration.

After ML model development, the performance of models was 
assessed by various techniques including Feature Importance Analysis, 
SHapley Additive exPlanations (SHAP), 1-way Partial Dependency Plots 
(1-way PDP) and 2-way Partial Dependency Plots (2-way PDP). Feature 
Importance Analysis assesses the importance of each feature by calcu-
lating its contribution to the prediction, providing an intuitive view for 
identifying the features that have the greatest impact on the prediction 
results. SHAP value analysis is an advanced feature interpretation 
method based on game theory, aiming to quantify the contribution of 
each feature to each prediction [45]. It provides a detailed view of the 
influence and direction of action of each input feature to the model. 
1-way PDP is used to visualise the impact of a feature on the predicted 
target while other features are held constant, while 2-way PDP assesses 
the impact of two interacting features on the predicted results. The 
combined use of these methods enhances the explainability and trans-
parency of the model, which is crucial to ensure the impartiality and 
scientific validity of the model. And the use of these interpretation 
methods will identify key features, elucidate the relationship between 
each feature and the target, and optimise biochar pyrolysis parameters.

2.3. Performance evaluation

After constructing all the models, their training and generalisation 
performance is evaluated by the coefficient of determination (R2) and 
the root mean squared error (RMSE). The R2 statistic (Eq. (2)) is a 
measure relative to the model (Y = X), which explains the degree of 
error between predicted and true values. It ranges from 0 to 1, with 
values closer to 1 indicating less error between the predicted and true 
values and so a more valid model. The RMSE is a measure of the pre-
diction error and how well the model fits the observations (Eq. (3)), so 
the smaller the RMSE, the better the model performs. 

R2 =1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (2) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2
√

(3) 

where yi is the real target value of the ith sample, ŷi is the predicted 
target value, and y is the average of the actual value of the target in all n 
samples.

3. Results and discussion

3.1. Dataset imputation and statistical analysis

For each dataset (see Table 2), features with missing values are 
imputed by the feature-oriented imputation method as detailed in Sec-
tion 2.1 (Fig. 2). For instance, in Dt_C, features FC_F, VM_F, Cel_F, 
Hem_F, Lig_F, O_F, RT and HR have missing data with proportions of 

Table 2 
Pre-processed datasets information. The meaning of the abbreviations are shown 
in Table 1.

Dataset Number of 
Instances

Number 
of 
Features

Feedstock 
Features

Pyrolysis 
Features

Target

Dt_C 229 13 FC_F, VM_F, AC_F, 
C_F, H_F, O_F, N_F, 
Cel_F, Hem_F, 
Lig_F

RT, HR, 
HHT

C_B

Dt_H 284 14 FC_F, VM_F, AC_F, 
C_F, H_F, O_F, N_F, 
Cel_F, Hem_F, 
Lig_F

RT, HR, 
HHT, PS_F

H_B

Dt_O 270 14 FC_F, VM_F, AC_F, 
C_F, H_F, O_F, N_F, 
Cel_F, Hem_F, 
Lig_F

RT, HR, 
HHT, PS_F

O_B

Dt_N 258 14 FC_F, VM_F, AC_F, 
C_F, H_F, O_F, N_F, 
Cel_F, Hem_F, 
Lig_F

RT, HR, 
HHT, PS_F

N_B

Dt_P 75 14 FC_F, VM_F, AC_F, 
C_F, H_F, O_F, N_F, 
P_F, K_F, Cel_F, 
Hem_F, Lig_F

RT, HHT P_B

Dt_K 98 15 FC_F, VM_F, AC_F, 
C_F, H_F, O_F, N_F, 
P_F, K_F, Cel_F, 
Hem_F, Lig_F

RT, HR, 
HHT

K_B
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9.22 %, 9.22 %, 2.84 %, 2.84 %, 2.84, 1.42 %, 20.21 % and 13.12 %, 
respectively (Table S1). Statistical analysis illustrated in Fig. 2 reveals 
some degree of skewness in features such as RT and HR, and the data for 
these features tend to cluster around a few values. For example, the HR 
of 10 ◦C/min is commonly used in pyrolysis studies, and RT is frequently 
adopted as 30 or 60 min. This occurs because these parameters are 
experimental variables that researchers chose empirically or followed 
from previous studies. Moreover, these features typically consist of 
integer data. Consequently, employing RF for imputation is unsuitable 
for these parameters as it could introduce noise and generate unrealistic 
data points, including decimal values. Therefore, KNN imputation 
method was employed as it effectively preserved the original range and 
distribution patterns of the data, ensuring that no additional skewness 
was introduced post-imputation (Fig. 2). For features such as Cel_F, 
Hem_F, and Lig_F, the bar charts display significant overlaps between 
the original and imputed data, indicating that RF imputation is effective 

without introduction of biases or distortions. This is because these 
feedstock properties are inherently more variable and less influenced by 
experimental settings, and the RF method captured the correlations 
between these features successfully.

Fig. 2 also illustrates the range of properties inherent to agricultural 
residues, including elemental composition, proximate components, and 
lignocellulosic constituents. Specifically, it demonstrates that agricul-
tural residues, rich in cellulose, hemicellulose and lignin but with min-
imal non-combustible minerals, typically exhibit lower ash content and 
higher volatile matter content, which is also noted by Aller [46]. The 
high volatile matter content is due to the propensity of cellulose and 
hemicellulose to degrade and decompose readily during the pyrolysis 
process [47].

The violin plots in Fig. 3(a) depicts the distributions of the prediction 
targets in the 7 datasets, The shaded part shows the probability density 
distribution of the data. The wide part indicates that the data points are 

Fig. 2. Comparison of statistical distributions of features in the dataset Dt_C before and after imputation. Dt_C: dataset for predicting the biochar’s carbon content. 
The back layer blue bars show the statistical distributions of the original unimputed data, and transparent light red bars visualise those of the imputed features. The 
overlapped regions are shown as pink colour.
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concentrated, and the narrow part indicates that the data points are 
sparse. The black bars in the middle are box plots, showing the mean and 
the first and third quartiles of the data. It shows that the contents of C, H, 
O, N, P, and K are 39.78 %–97.04 %, 0 %–6.35 %, 0.65 %–42.56 %, 0.16 
%–4.21 %, 0.0043 %–0.4152 %, and 0.14 %–0.27 %, respectively. The C 
content shows a wide distribution with significant occurrences at 
extremely low or high percentages, indicating its large variability across 
different biochar samples. For O, N, and K, a pronounced peak near the 
lower range suggests their low contents in the majority of samples. The 
distributions of N and O are clearly skewed towards lower concentra-
tions with a long tail towards higher concentrations, reflecting the 
heterogeneity of the data.

The linear correlations between biochar’s elemental composition 
and the influencing factor in each dataset are shown in Fig. 3 (b) by the 
Pearson correlation matrix. The carbon content in the feedstock (C_F) 
shows the strongest positive correlation (Pearson correlation coefficient 
(PCC) = 0.57) with the biochar’s C content (C_B), whereas the ash 
content of the feedstock (AC_F) negatively correlated with it (PCC =

− 0.66). HHT exhibits a significant negative correlation with both H 
(PCC = − 0.68) and O (PCC = − 0.61) contents of biochar. The elements 
of N, P, and K in biochar are primarily derived from those in feedstocks 
and hence significantly correlated with N_F (PCC = 0.76), P_F (PCC =
0.62), and K_F (PCC = 0.76), respectively.

These observations suggest complex interactions and variability be-
tween the composition of agricultural residue-derived biochar, the 
characteristics of the feedstock and the pyrolysis parameters. Under-
standing these complexities and predicting the elemental composition of 
biochar is essential for optimising its application in the environment.

3.2. Model development and performance evaluation

GBR models were developed for each pre-processed dataset. In the 
hyperparameter tunning process, the grid search with a 5-fold cross- 
validation method was used to find the optimal model parameters. 
Finally, the optimised models achieving highest R2 in this grid search 
process were chosen for subsequent prediction and interpretations. 

Fig. 3. Distribution of the targets and Pearson correlation matrix between targets and features in each dataset.
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Fig. 4 illustrates the heat map of each dataset in the grid search, the 
arrows point to the locations of best-performing model parameters.

Fig. 5 presents the scatter plots showing the predicting performance 
of the GBR models for each element’s content. Each panel displays the 
scatter plots of the predicted versus actual values, with separate markers 
denoting training and testing data. The linear fits, along with the 95 % 
confidence and prediction intervals, are depicted to assess the model 
accuracy and prediction reliability. The detailed R2 and RMSE values for 
each model are listed in each plot. The training scores reflect the models’ 
ability to learn from the training datasets, whereas testing scores assess 
their generalisation capabilities on the testing datasets. For instance, the 
GBR model demonstrated excellent predictive performance for biochar 
C content with R2 of 0.9713 in training and 0.9088 in testing. The 
relatively low RMSE of 2.1572 in training and 4.0614 in testing suggests 
a robust model with strong predictive capabilities and reasonable gen-
eralisability to unseen data. The overall performance of the GBR model 
across all elemental content predictions, i.e., C, H, O, N, P, K, demon-
strates its strong robustness and reliability as a predictive tool. In 
particular, the high R2 values and relatively low RMSE across both 
training and testing datasets indicate that the model is highly accurate 
and generalises well to unseen data. This suggests that such models can 
serve as valuable estimators for researchers seeking to predict biochar 
composition before conducting actual experiments. By providing high- 
accuracy predictions, these models have the potential to guide experi-
mental designs, optimise conditions, and reduce the need for extensive 
trial-and-error in laboratory settings.

3.3. Feature importance and SHAP analysis

The feature importance values were calculated from the attributes of 
GBR models shown above to evaluate the contribution of each feature in 
predicting the target. Fig. 6 presents a model-based feature importance 
analysis for predicting the elemental composition of biochar. It com-
prises 6 sub-figures, each corresponding to a different target predicted 
from the best performing GBR model and highlighting the relative 
importance of pyrolysis parameters and feedstock characteristics.

The results in Fig. 6 show that in most cases, feedstock characteristics 
have a more substantial impact in determining the elemental composi-
tion of biochar. This could be attributed to the fact that the most of el-
ements, particularly N, P and K, are directly derived from the biomass 

and are incorporated into the biochar in forms that are relatively stable 
and less affected by the pyrolysis process. These elements are typically 
bound in the feedstock and do not undergo significant loss or trans-
formation during pyrolysis, making feedstock characteristics the domi-
nant factor in predicting their presence in the final biochar [39]. In fact, 
elements such as N, P, and K show exceptionally high feature importance 
values, with their contributions being 93.5 %, 95.3 %, and 97.0 %, 
respectively, as indicated by our models. However, the contents of H 
exhibit a different pattern where pyrolysis parameters, particularly 
HHT, play a more influential role with an overall 67 % contribution, 
which is consistent with the PCC values shown in Fig. 2. This aligns with 
the findings in Li et al. [30] that thermal conditions can alter the 
chemical structure and composition of the resulting biochar, particu-
larly affecting more volatile elements such as H and O under high 
temperatures. At higher temperatures, the decomposition of biomass 
components releases volatile compounds, leading to a reduction in H 
and O content.

This comparison between the influences of feedstock and pyrolysis 
illustrates the complex interplay between the inherent characteristics of 
feedstocks and the pyrolysis treatment during biochar production. 
Feedstock’s characteristics play a key role in determining the concen-
tration of essential elements such as N, P, and K, which are critical for 
biochar applications in soil fertility and nutrient cycling. On the other 
hand, pyrolysis conditions, especially temperature, are crucial for 
adjusting the biochar’s properties related to volatile elements, such as H 
and O, that influence biochar’s role in carbon sequestration and 
pollutant adsorption.

These findings underscore the importance of selecting the appro-
priate agricultural residues for producing biochar with specific 
elemental compositions. The control of pyrolysis conditions can further 
fine-tune biochar’s characteristics, depending on the desired applica-
tion, such as nutrient-rich soil amendments or high-carbon biochar for 
carbon sequestration.

Fig. 7 illustrates the results of the SHAP analysis, providing a more 
nuanced perspective on how various features influence the model’s 
predictions, the detailed mathematical mechanisms of SHAP can be 
found in supplementary material. The magnitude of the SHAP value 
signifies the extent of the feature’s influence on the target, with larger 
absolute values indicating a greater impact. The sign of the SHAP value 
indicates whether the influence is positive or negative. Each data point 

Fig. 4. Hyperparameter tuning heatmap of GBR model on each dataset for predicting biochar’s C, H, O, N, P and K contents.

Y. Fu et al.                                                                                                                                                                                                                                       Renewable Energy 256 (2026) 124071 

8 



in the dataset is represented by the horizontally distributed point, where 
the color denotes the magnitude of the data point’s value. A dense 
clustering of points at varying locations on the SHAP value scale reflects 
the variability in the influence that specific features exert on the model 
output. Tightly clustered points suggest that a feature consistently af-
fects predictions, whereas widely spread points indicate significant 
variability in impacts across observations.

The feature importance analysis illustrated in Fig. 6 compares the 
overall importance of each feature, while the SHAP analysis provides 
deeper insights by revealing how individual data points contribute to the 
predicted elemental composition of biochar. For example, features such 
as higher AC_F exhibit lower SHAP values (Fig. 7(a)) when it has the 
highest feature importance as a whole (Fig. 6(a)) in predicting biochar C 
content. This quantification allows for a deeper understanding of which 
features are most influential in shaping the model’s outputs and which 
features may have marginal effects. These insights are crucial for prac-
titioners who aim to optimise pyrolysis conditions for specific biochar 
properties.

Additionally, the variability in SHAP values across the dataset sug-
gests that certain features may have differing effects depending on the 
input data or experimental conditions. For example, higher HHT will 

negatively decrease the H content in biochar, and lower HHT will pro-
mote higher H retention in biochar. Combining Figs. 6 and 7 offers a 
comprehensive analysis of the influencing factors and their contribu-
tions in predicting the elemental composition of biochar and in tailoring 
the expected biochar in future experiments.

Fig. 6(a) suggests that HR and RT contribute minimally to predicting 
the biochar C content. This is because the lignocelluloses especially 
hemicellulose and cellulose in agricultural biomass are easily degraded 
in relatively low pyrolysis temperatures. Keiluweit et al. [5] studied the 
dynamic change of plant biomass in pyrolysis and found that the cel-
lulose and hemicellulose begin to volatilise and decompose at ~200 ◦C, 
with the carbonisation process proceeding more rapidly than other types 
of feedstocks, such as manure and sludge. The top three important 
influencing factors are AC_F, HHT, and C_F (Figs. 6(a) and 7(a)), 
showing that higher temperatures and higher feedstock C content lead to 
higher C content in the biochar, while feedstock ash content is nega-
tively correlated.

Similarly, the HHT has dominating contributions in both biochar H 
and O content predictions (Fig. 6(b) and (c)), and there are clear nega-
tive correlations between HHT and H or O (Fig. 7(b) and (c)). The other 
two most important factors for biochar H content retention are H_F and 

Fig. 5. Best-performing GBR models for each dataset in predicting biochar elemental compositions. (a) C_B; (b) H_B; (c) O_B; (d) N_B; (e) P_B; (f) K_B.
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HR, which show positive and negative influences individually. For 
biochar O content, the N content and fixed carbon content in feedstocks 
are the other two critical factors. N_F has a positive influence on biochar 
O content, while FC_F has a negative influence. Normally, the H element 
in biomass has relatively lower stabilisation than the O element and 
escapes in the gas phase in pyrolysis [48]. Hence, lower HR is better for 
retaining more H in biochar. The strong correlation between N_F and 
biochar O content may be related to the formation of the nitrate func-
tional groups [49] which is supported by the strong correlation between 
in O_F and biochar N content in Fig. 6(d). Unfortunately, there are no 
clear trends detected in O_F in Fig. 7(d) may be because of limited data 
points and narrow data distribution.

For predicting more N, P, and K content in biochar, the results from 
Fig. 6(d)–(f) and Fig. 7(d)–(f) show that the N, P, and K content in 
biomass feedstocks are most important factors, and pyrolysis parameters 
have relatively lower influence and hence choosing the appropriate 
feedstock is key for developing nutrient-rich biochar for soil 
applications.

By analysing the characteristics of the feedstock and the conditions 
of the pyrolysis process, these predictive models will enable more pre-
cise control of biochar’s elemental composition and more efficient use of 
biochar in different applications. This approach not only maximises the 

environmental benefits of biochar, but also improves the efficiency of 
biochar production and application processes.

3.4. Pyrolysis parameters optimisation

Fig. 8 presents the 1-way PDP for HHT which is the most influential 
pyrolysis parameter across different models and for most elements (see 
Fig. 6). It should be noted that the trends observed could be related to 
the data density (shown as the ticks on the x-axis). In some instances, 
despite the absence of data, changes in trends are still observed because 
the model predictions are based on the overall data distribution learned 
during the training phase. Therefore, the model is capable of making 
informed estimates for data points that were not directly observed 
during training, allowing it to provide predictions for intervals within 
the feature values where data might be sparse or completely absent. For 
biochar’s C content, an increase in HHT initially has a positive effect, 
peaking at ~600 ◦C, suggesting thermal decomposition or volatilisation 
at higher temperatures. In contrast, increasing HHT from 300 ◦C to 
800 ◦C significantly reduces the H content. Fig. 8 (c) and 8 (d) exhibit 
many peaks and troughs, indicating that O and N contents are highly 
sensitive to HHT, with certain temperatures favoring O and N retention 
or loss. Similar patterns also exist for P, and K contents, thought the 

Fig. 6. GBR model-based feature importance analysis in predicting biochar’s elemental composition. (a) Dt_C; (b) Dt_H; (c) Dt_O; (d) Dt_N; (e) Dt_P; (f) Dt_K.

Y. Fu et al.                                                                                                                                                                                                                                       Renewable Energy 256 (2026) 124071 

10 



trendlines are smoother indicating their lower sensitivity to HHT.
The selected 2-way PDPs presented in Fig. 9 explore the interactions 

between pyrolysis parameters and reveal the variations of biochar’s 
element contents with two different pyrolysis parameter variables. 
These plots utilize contour lines to demarcate zones of varying colors for 
enhanced clarity. The numbers marked on these contour lines represent 
the threshold values of the predicted target variables, which aid in 
identifying the conditions favorable for maximising specific elemental 
contents in biochar. For C_B, at shorter RT, an increase in HHT results in 
higher C content. As RT increases, the positive effect of HHT on C_B 
becomes more pronounced. This indicates that to maximize C_B, a 
shorter RT should be paired with a higher HHT, whereas with a longer 

RT, the required HHT can be reduced. Conversely, for H_B, the inter-
action between HHT and RT shows the opposite trend. For P_B, an in-
crease in RT consistently decreases P_B. Thus, at appropriate 
temperatures, a shorter RT is preferable to maximize biochar phos-
phorus content.

The optimal conditions were derived to obtain the maximum con-
tents of various elements in biochar (Table 3). The selection and range of 
these parameters were determined based on the heatmap and contour 
lines depicted in the 2-way PDP in Fig. 9. It should be noted that Table 3
only listed the optimal ranges of parameters that exert consistent im-
pacts on the targeted elements from the PDP plots to ensure clarity and 
precision in the recommendations.

Fig. 7. GBR Model-based SHAP analysis in predicting biochar’s elemental composition. (a) Dt_C; (b) Dt_H; (c) Dt_O; (d) Dt_N; (e) Dt_P; (f) Dt_K.
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The identification of optimal parameter ranges not only provides 
valuable guidance for producing biochar with desired elemental profiles 
but also aids biochar producers in achieving target properties without 
the need for extensive experimental trials. This approach ensures that 
biochar production is both efficient and aligned with specific environ-
mental and agricultural needs. For instance, biochar with enhanced C 
content can sequester and store more carbon in soils, contributing to soil 
health and climate change mitigation. Biochar with higher H and O 
contents could possess more surface functional groups, which can 
improve soil fertility by enhancing nutrient retention and water holding 
capacity [14]. Biochar rich in N, P, and K is particularly beneficial for 
enriching the nutrient content of agricultural soils, supporting the 
growth of nutrient-demanding crops such as corns, onions, beans, and 
potatoes [6].

PDP analysis elucidates the relationships between pyrolysis param-
eters (HHT, RT, HR) and the elemental composition (C, H, O, N, P, K) of 
biochar derived from agricultural residues. These insights not only 
enhance the understanding of process–property linkages but also pro-
vide a practical foundation for optimising pyrolysis conditions to target 
specific biochar compositions.

By integrating feedstock properties and controllable pyrolysis set-
tings, the developed GBR models can serve as predictive tools to guide 
experimental design prior to empirical testing. Practitioners can utilize 
the model to simulate expected elemental compositions of biochar 
produced from specific agricultural residues under varying pyrolysis 
conditions, thereby enabling more efficient planning of experiments and 
resource allocation.

A pertinent case is the producing biochar from Brewer’s spent grain 
(BSG) reported by Ref. [50]. Their study demonstrated that pyrolysis 
temperature significantly influences the biochar’s properties, affecting 
its suitability for energy applications and plant growth enhancement. 
Applying our model to such feedstocks allows researchers to predict the 
elemental composition outcomes across different pyrolysis regimes, 
supporting the selection of conditions that optimise energy content (via 
high C concentration) or plant growth potential (via elevated N, P and K 
levels).

In this way, the proposed GBR-based prediction framework not only 
facilitates data-driven insights but also provides a decision-support 
mechanism for tailoring biochar production to specific application 
needs - whether for energy recovery, carbon sequestration, or soil 
fertility enhancement.

4. Conclusions

This study evaluates the efficacy of GBR machine learning model in 
predicting the elemental composition of biochar derived from agricul-
tural residues, specifically focusing on C, H, O, N, P, and K contents. The 
results shows that the GBR model achieved robust preformation in both 
learning and generalisation stages with training R2 from 0.9226 to 
0.9989 and testing R2 from 0.8950 to 0.9699. The interactions between 
input features and each target were extensively analyzed using feature 
importance analysis and SHAP methods. Based on the insights derived 
from 1-way and 2-way PDPs, optimal pyrolysis parameters were iden-
tified, facilitating production of biochar with desirable elemental 

Fig. 8. One-way PDP for HHT in each dataset in predicting biochar elemental composition content. (a) Dt_C; (b) Dt_H; (c) Dt_O; (d) Dt_N; (e) Dt_P; (f) Dt_K.
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profiles. This comprehensive analysis not only assists researchers and 
practitioners in developing prototypes of optimally tailored biochar for 
different applications but also advanced our understanding of the in-
terrelationships among feedstock characteristics, pyrolysis parameters, 
and the resultant biochar’s elemental composition. This study, there-
fore, provides a robust framework for advancing biochar technology and 
optimising its application in various environmental and agricultural 
domains.

5. Limitations and future research

While this study demonstrates the potential of machine learning in 
predicting biochar elemental composition, several limitations remain.

Firstly, the dataset, although substantial, was constrained by incon-
sistent reporting across the literature. Features such as feedstock particle 
size, feedstock P content, and gas flow rate were often excluded due to 
high missing rates of the data, limiting the model’s comprehensiveness. 
Standardised data reporting in future studies will be essential to address 
this gap.

Secondly, the study focused on common lignocellulosic agricultural 
residues feedstocks, whereas alternative sources such as aquatic 
biomass, food waste, and industrial by-products - now gaining interest in 
biochar research - were underrepresented. Including these in future 
work would enhance model generalisability across feedstock types.

Lastly, environmental and post-pyrolysis conditions (e.g., humidity, 
storage time) were not considered due to data scarcity. These factors can 
significantly influence biochar properties and should be integrated into 
future models for more realistic predictions.

Future research should therefore focus on improving data quality, 
expanding feedstock diversity, and incorporating environmental vari-
ables to strengthen model robustness and applicability.

Fig. 9. Selected two-way PDPs showing the optimal pyrolysis parameters to maximize specific elements in biochar.

Table 3 
Optimal pyrolysis parameters from 2-way PDP analysis to produce biochar with 
the maximum elemental content.

Target 
element

Optimal pyrolysis parameters

Carbon 600 ◦C < HHT <1000 ◦C, 30min < RT < 90 min
Hydrogen 150 ◦C < HHT <300 ◦C, RT < 40min, HR < 15 ◦C/min
Oxygen 300 ◦C < HHT <800 ◦C, 20 min < RT < 70min, 

HR < 10 ◦C/min, PS_F < 5 mm
Nitrogen 600 ◦C < HHT <700 ◦C, 25 ◦C/min < HR < 35 ◦C/min
Phosphorus 200 ◦C < HHT <500 ◦C, 500min < RT
Potassium 200 ◦C < HHT <250 ◦C, 50min < RT < 100min, 7.5 ◦C/min < HR 

< 25 ◦C/min

Y. Fu et al.                                                                                                                                                                                                                                       Renewable Energy 256 (2026) 124071 

13 



CRediT authorship contribution statement

Yao Fu: Writing – original draft, Visualization, Validation, Meth-
odology, Investigation, Formal analysis, Data curation, Conceptualiza-
tion. Peter Cleall: Writing – review & editing, Supervision. Fei Jin: 
Writing – review & editing, Validation, Supervision, Investigation, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.renene.2025.124071.

Data availability

The data that support the findings of this study are available from the 
corresponding author upon reasonable request.

References

[1] A. Sheer, et al., Trends and social aspects in the management and conversion of 
agricultural residues into valuable resources: a comprehensive approach to counter 
environmental degradation, food security, and climate change, Bioresour. Technol. 
394 (Feb. 2024) 130258, https://doi.org/10.1016/j.biortech.2023.130258.

[2] Faostat. https://www.fao.org/faostat/en/#data. (Accessed 16 November 2024).
[3] J. Lehmann, et al., Biochar in climate change mitigation, Nat. Geosci. 14 (12) (Dec. 

2021) 883–892, https://doi.org/10.1038/s41561-021-00852-8.
[4] J. Lehmann, S. Joseph, Biochar for environmental management: an introduction, 

in: Biochar for Environmental Management, second ed., Routledge, 2015.
[5] M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of 

plant biomass-derived black carbon (Biochar), Environ. Sci. Technol. 44 (4) (Feb. 
2010) 1247–1253, https://doi.org/10.1021/es9031419.

[6] X. Xiao, B. Chen, Z. Chen, L. Zhu, J.L. Schnoor, Insight into multiple and multilevel 
structures of biochars and their potential environmental applications: a critical 
review, Environ. Sci. Technol. 52 (9) (May 2018) 5027–5047, https://doi.org/ 
10.1021/acs.est.7b06487.

[7] A. Creamer, B. Gao, M. Zhang, Carbon dioxide capture using biochar produced 
from sugarcane bagasse and hickory wood, Chem. Eng. J. 249 (Aug. 2014) 
174–179, https://doi.org/10.1016/j.cej.2014.03.105.

[8] J.H. Windeatt, A.B. Ross, P.T. Williams, P.M. Forster, M.A. Nahil, S. Singh, 
Characteristics of biochars from crop residues: potential for carbon sequestration 
and soil amendment, J. Environ. Manag. 146 (Dec. 2014) 189–197, https://doi. 
org/10.1016/j.jenvman.2014.08.003.

[9] J. Lehmann, M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, D. Crowley, 
Biochar effects on soil biota – a review, Soil Biol. Biochem. 43 (9) (Sep. 2011) 
1812–1836, https://doi.org/10.1016/j.soilbio.2011.04.022.

[10] H. Singh, B.K. Northup, C.W. Rice, P.V.V. Prasad, Biochar applications influence 
soil physical and chemical properties, microbial diversity, and crop productivity: a 
meta-analysis, Biochar 4 (1) (Dec. 2022), https://doi.org/10.1007/s42773-022- 
00138-1.

[11] M. Kamali, L. Appels, E.E. Kwon, T.M. Aminabhavi, R. Dewil, Biochar in water and 
wastewater treatment - a sustainability assessment, Chem. Eng. J. 420 (Sep. 2021) 
129946, https://doi.org/10.1016/j.cej.2021.129946.

[12] J.-H. Yuan, R.-K. Xu, H. Zhang, The forms of alkalis in the biochar produced from 
crop residues at different temperatures, Bioresour. Technol. 102 (3) (Feb. 2011) 
3488–3497, https://doi.org/10.1016/j.biortech.2010.11.018.

[13] M. Qiu, et al., Biochar for the removal of contaminants from soil and water: a 
review, Biochar 4 (1) (Mar. 2022) 19, https://doi.org/10.1007/s42773-022- 
00146-1.

[14] Z. Chen, X. Xiao, B. Chen, L. Zhu, Quantification of chemical States, dissociation 
constants and contents of oxygen-containing groups on the surface of biochars 
produced at different temperatures, Environ. Sci. Technol. 49 (1) (Jan. 2015) 
309–317, https://doi.org/10.1021/es5043468.

[15] Y. Ding, et al., Biochar to improve soil fertility. A review, Agron. Sustain. Dev. 36 
(2) (May 2016) 36, https://doi.org/10.1007/s13593-016-0372-z.

[16] Y. Sun, et al., Effects of feedstock type, production method, and pyrolysis 
temperature on biochar and hydrochar properties, Chem. Eng. J. 240 (Mar. 2014) 
574–578, https://doi.org/10.1016/j.cej.2013.10.081.

[17] K. Intani, S. Latif, Z. Cao, J. Müller, Characterisation of biochar from maize 
residues produced in a self-purging pyrolysis reactor, Bioresour. Technol. 265 (Oct. 
2018) 224–235, https://doi.org/10.1016/j.biortech.2018.05.103.

[18] Z. Liu, et al., Comparative analysis of the properties of biochars produced from 
different pecan feedstocks and pyrolysis temperatures, Ind. Crop. Prod. 197 (2023), 
https://doi.org/10.1016/j.indcrop.2023.116638.

[19] S. Wang, H. Zhang, H. Huang, R. Xiao, R. Li, Z. Zhang, Influence of temperature 
and residence time on characteristics of biochars derived from agricultural 
residues: a comprehensive evaluation, Process Saf. Environ. Prot. 139 (Jul. 2020) 
218–229, https://doi.org/10.1016/j.psep.2020.03.028.

[20] M. Rafiq, et al., Biochar amendment improves alpine meadows growth and soil 
health in Tibetan Plateau over a three year period, Sci. Total Environ. 717 (May 
2020) 135296, https://doi.org/10.1016/j.scitotenv.2019.135296.

[21] X. Zhang, P. Zhang, X. Yuan, Y. Li, L. Han, Effect of pyrolysis temperature and 
correlation analysis on the yield and physicochemical properties of crop residue 
biochar, Bioresour. Technol. 296 (Jan. 2020) 122318, https://doi.org/10.1016/j. 
biortech.2019.122318.

[22] S. Wijitkosum, Biochar derived from agricultural wastes and wood residues for 
sustainable agricultural and environmental applications, Int. Soil Water Conserv. 
Res. 10 (2) (Jun. 2022) 335–341, https://doi.org/10.1016/j.iswcr.2021.09.006.

[23] W. Wang, J.-S. Chang, D.-J. Lee, Machine learning applications for biochar studies: 
a mini-review, Bioresour. Technol. 394 (Feb. 2024) 130291, https://doi.org/ 
10.1016/j.biortech.2023.130291.

[24] Z. Dong, X. Bai, D. Xu, W. Li, Machine learning prediction of pyrolytic products of 
lignocellulosic biomass based on physicochemical characteristics and pyrolysis 
conditions, Bioresour. Technol. 367 (Jan. 2023) 128182, https://doi.org/10.1016/ 
j.biortech.2022.128182.

[25] A. Hai, et al., Machine learning models for the prediction of total yield and specific 
surface area of biochar derived from agricultural biomass by pyrolysis, in: 
Environmental Technology & Innovation, vol. 30, ELSEVIER, May 2023, https:// 
doi.org/10.1016/j.eti.2023.103071. Radarweg 29, 1043 NX Amsterdam, 
Netherlands.

[26] X. Zhu, Y. Li, X. Wang, Machine learning prediction of biochar yield and carbon 
contents in biochar based on biomass characteristics and pyrolysis conditions, 
Bioresour. Technol. 288 (Sep. 2019) 121527, https://doi.org/10.1016/j. 
biortech.2019.121527.

[27] J.C. Ang, et al., Development of predictive model for biochar surface properties 
based on biomass attributes and pyrolysis conditions using rough set machine 
learning, in: Biomass & Bioenergy, vol 174, Pergamon-Elsevier Science LTD, 
ENGLAND, Jul. 2023, https://doi.org/10.1016/j.biombioe.2023.106820. The 
Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb.

[28] L. Leng, et al., Machine learning predicting and engineering the yield, N content, 
and specific surface area of biochar derived from pyrolysis of biomass, BIOCHAR 4 
(1) (Dec. 2022), https://doi.org/10.1007/s42773-022-00183-w.

[29] A.T. Le, et al., Precise prediction of biochar yield and proximate analysis by 
modern machine learning and SHapley additive exPlanations, Energy Fuels 37 (22) 
(Nov. 2023) 17310–17327, https://doi.org/10.1021/acs.energyfuels.3c02868.

[30] Y. Li, R. Gupta, S. You, Machine learning assisted prediction of biochar yield and 
composition via pyrolysis of biomass, Bioresour. Technol. 359 (Sep. 2022) 127511, 
https://doi.org/10.1016/j.biortech.2022.127511.

[31] J. Tang, et al., Prediction model for biochar energy potential based on biomass 
properties and pyrolysis conditions derived from rough set machine learning, 
Environ. Technol. (Mar. 2023) 1–15, https://doi.org/10.1080/ 
09593330.2023.2192877.

[32] H. Yaka, M.A. Insel, O. Yucel, H. Sadikoglu, A comparison of machine learning 
algorithms for estimation of higher heating values of biomass and fossil fuels from 
ultimate analysis, in: FUEL, vol 320, Elsevier Sci Ltd, London, England, Jul. 15, 
2022, https://doi.org/10.1016/j.fuel.2022.123971, 125 London Wall.

[33] Z. Jiang, et al., Machine learning prediction of biochar-specific surface area based 
on plant characterization information, Renew. Energy 243 (Apr. 2025) 122633, 
https://doi.org/10.1016/j.renene.2025.122633.

[34] Y. Song, et al., Machine learning prediction of biochar physicochemical properties 
based on biomass characteristics and pyrolysis conditions, J. Anal. Appl. Pyrolysis 
181 (Aug. 2024) 106596, https://doi.org/10.1016/j.jaap.2024.106596.

[35] K.P. Shadangi, P.K. Sarangi, A.K. Behera, Chapter 3 - characterization techniques of 
biomass: physico-chemical, elemental, and biological, in: K.P. Shadangi, P. 
K. Sarangi, K. Mohanty, I. Deniz, A.R. Kiran Gollakota (Eds.), Bioenergy 
Engineering, Woodhead Publishing, 2023, pp. 51–66, https://doi.org/10.1016/ 
B978-0-323-98363-1.00022-3.

[36] C. Whittaker, I. Shield, Factors affecting wood, energy grass and straw pellet 
durability – a review, Renew. Sustain. Energy Rev. 71 (May 2017) 1–11, https:// 
doi.org/10.1016/j.rser.2016.12.119.
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