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SUMMARY

Weight loss through exercise and diet reduces the risk of type 2 diabetes, but the genetic regulation of gene 

expression and splicing in response to weight loss remains unclear in humans. We collected clinical data 

and skeletal muscle biopsies from 54 overweight/obese Asian individuals before and after a 16-week lifestyle 

intervention, which resulted in an average of ∼10% weight loss, accompanied by an ∼30% increase in insulin- 

stimulated glucose uptake. Improvements were observed in 118 of 252 clinical traits and six blood lipids. Tran-

scriptomic analysis of paired skeletal muscle biopsies identified 505 differentially expressed genes enriched in 

mitochondrial function and insulin sensitivity. Thousands of muscle-specific expression/splicing quantitative 

trait loci (e/sQTLs) were detected pre- and post-intervention, including hundreds of lifestyle-responsive 

e/sQTLs. Notably, approximately 4.2% of eQTLs and 7.3% of sQTLs showed Asian specificity. Joint analysis 

with genome-wide association study (GWAS) identified 16 putative metabolic risk genes. Our study reveals 

gene-by-lifestyle interactions and how lifestyle modulates gene regulation in skeletal muscle.

INTRODUCTION

Type 2 diabetes (T2D) is influenced by a complex interplay of ge-

netics, environment, and lifestyle factors. Genetic predisposition 

accounts for 25%–75% of susceptibility,1,2 and genome- 

wide association studies (GWASs) have identified thousands of 

genetic loci associated with T2D.3–6 While genetic predisposi-

tions are largely non-modifiable, lifestyle modifications as a 
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prevention or treatment for T2D are under active investigation.7

Obesity is a well-known risk factor for T2D, and substantial evi-

dence indicates that weight loss through a combination of exer-

cise and dietary adjustments is the most effective strategy for 

T2D prevention.8,9 These lifestyle interventions have shown 

marked improvements in β-cell function, insulin sensitivity, and 

fasting blood glucose.10,11 However, the effectiveness of lifestyle 

intervention varies across individuals, suggesting that genetic 

factors may modulate the response to lifestyle changes.12

Gene-by-lifestyle (GxL) interactions are critical in human health, 

shaping individual susceptibility and treatment responses to 

complex diseases like T2D.13–15 Previous human studies have 

revealed that genetic risk scores can predict individual re-

sponses to lifestyle interventions16 and interventions can influ-

ence gene regulation through epigenetic modifications,17 sug-

gesting a potential molecular mechanism through which 

lifestyle factors influence disease risk. However, the tissue-spe-

cific molecular mechanisms underlying GxL interactions, partic-

ularly in key metabolically active tissues that drive obesity and 

T2D pathogenesis, remain poorly understood.

The interactions between genetics and lifestyle have been 

explored in animal models such as rats and baboons, show-

casing the potential for understanding how exercise and diet 

might influence genetic regulation.18–21 Nair et al.18 studied 

the transcriptional impacts of an 8-week endurance exercise 

training program in Fischer 344 rats, providing insights into 

how controlled physical activity can affect gene expression 

and molecular traits within a homogeneous genetic back-

ground. However, the lack of genetic diversity in such models 

poses significant limitations on their applicability to the geneti-

cally diverse human population. Lin et al.21 investigated the ef-

fects of a 2-year high dietary fat and cholesterol intervention on 

genetic expression in baboons. Baboons offer a closer physio-

logical resemblance to humans, potentially making the insights 

gained more relevant to human health. However, despite this 

similarity, the translation of findings from baboons to humans 

is not straightforward due to species-specific differences in 

metabolism and genetic responses, as well as the complexity 

of human-environmental interactions.22 The current lack of hu-

man studies is partially due to difficulties in cohort collection. 

Two primary challenges remain. First, a substantial proportion 

of participants will drop out at various stages during the lifestyle 

intervention.23 Second, for participants who complete the 

study, unlike in captive animal studies, standardized exercise 

and dietary intervention on humans are confounded by low 

compliance and intrinsic variability in incumbent lifestyles.24

While there is a clear need to understand the molecular mech-

anisms underlying transcriptional changes, including gene 

expression and alternative splicing, in response to lifestyle 

modifications, these challenges have precluded such studies 

in humans.

Skeletal muscle plays a crucial role in insulin resistance, mak-

ing it a key tissue for understanding T2D pathophysiology.25,26 In 

this study, we utilize matched skeletal muscle biopsies from 

overweight or obese individuals before and after a 16-week life-

style intervention to investigate the effect of dietary and exer-

cise-induced weight loss on the skeletal muscle transcriptome. 

Paired with genotypes, we further investigate the effects of exer-

cise and diet on the genetic effects of molecular traits in skeletal 

muscles and link them to T2D GWAS signals. Following the inter-

vention, participants experienced ∼10% weight loss, accompa-

nied by ∼30% improvement in insulin-stimulated glucose up-

take. Significant changes were observed in 118 out of 252 

clinical traits. RNA-sequencing (RNA-seq) analysis revealed 

505 differentially expressed genes enriched in mitochondrial 

and insulin signaling pathways. In expression quantitative trait 

loci (eQTL) analysis, We identified 1,217 and 1,105 eGenes in 

the pre- and post-intervention conditions, of which 621 were 

shared, while 596 were pre-intervention-biased and 484 were 

post-intervention-biased. In splicing quantitative trait loci 

(sQTL) analysis, 547 and 347 sIntrons were identified in the 

pre- and post-intervention conditions, of which 263 were shared, 

284 were pre-intervention-biased, and 84 were post-interven-

tion-biased. Furthermore, we discovered dozens of Asian-spe-

cific e/sQTLs. Colocalization analysis between our e/sQTLs 

and metabolism-associated GWAS loci revealed 16 putative 

risk genes. Among these, we identified a pre-biased and 

Asian-specific eQTL for DHRS4L2 that showed strong colocali-

zation with T2D. The genetic effect of ANK1 on T2D susceptibility 

was substantially attenuated following intervention. Our findings 

provide insights into how lifestyle interventions modulate genetic 

regulation in skeletal muscle, with implications for personalized 

T2D prevention and treatment strategies.

RESULTS

The Singapore Adult Metabolism Study lifestyle 

intervention cohort

The Singapore Adult Metabolism Study – phase 2 (SAMS2) inter-

vention program recruited 265 overweight or obese individuals 

(BMI range: 23 to 35) of East Asian descent to study the effects 

of lifestyle modification on obesity (Figure S1). As BMI cutoffs for 

overweight and obesity differ across ethnic groups, we followed 

the classification for Asian populations (BMI ≥ 23 kg/m2 as over-

weight and ≥ 27.5 kg/m2 as obese) in our recruitment criteria.27

After initial screening, 189 eligible participants enrolled and 

completed baseline measurements. The study progressed 

through four phases: Phase 1 was a run-in period, during which 

participants were instructed to stabilize their physiological mea-

surements and reach baseline levels in daily activities. A total of 

152 participants remained after phase 1. Phase 2 was a 16-week 

diet and exercise intervention, after which 132 participants re-

mained. We took post-intervention assessments in phase 3, 

in which many participants dropped out due to aversion to 

repeated skeletal muscle biopsies, and 54 participants re-

mained. Phase 4 consisted of a 12-month weight maintenance 

period (n = 54). We performed comprehensive pre- and post- 

intervention clinical and molecular measurements on the 54 par-

ticipants who completed the entire program (Figure 1A): Clinical 

measurements included anthropometrics, 24-h food recalls, in-

direct calorimetry, fasting clinical evaluations, insulin response, 

magnetic resonance imaging (MRI)-based estimates of liver, 

muscle, abdominal fat, and dual-energy X-ray absorptiometry 

(DEXA) scans. Molecular measurements included RNA-seq 

profiling of skeletal muscle biopsies, genotyping, and lipidomics 

profiling from peripheral blood.
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During the 16-week intervention, participants attended an 

average of 37.3 ± 11.5 (out of 48) structured exercise sessions 

(Figure S2A). With dietary intervention, we observed a signifi-

cant decrease in energy, carbohydrate, cholesterol, and fat 

intake (Figure S2B; Table S1), without a significant change in 

protein intake (false discovery rate [FDR] = 0.098), consistent 

with our interventional objective to reduce weight while main-

taining muscle mass. We observed weight loss in 98% of partic-

ipants, with an 8.7% ± 4.4% loss (FDR = 4.47 × 10− 14; range: 

1.1%–23.6%) from their initial body weight, and 84% of partic-

ipants experienced improved insulin sensitivity (Figure 1B; 

FDR = 7.09 × 10− 8). MRI and DEXA imaging scan data revealed 

whole-body fat reduction from multiple fat depots, where the 

percentage decrease in liver fat was highest among all depots 

(Figure 1C). In contrast, lean muscle mass percentage signifi-

cantly increased across various body regions (FDR < 0.05). 

Consistent with MRI and DEXA scans, anthropometric mea-

surements, such as waist-hip ratio (WHR), also showed signifi-

cant decreases (FDR = 3.50 × 10− 6; Figure S3). The reduction 

in body weight can be attributed to the loss of whole-body 

fat (FDR = 1.64 × 10− 14), accounting for 65.4% ± 29.3% of total 

weight loss (Table S2; Figure S4). Additionally, the decrease in 

fat percentage, particularly liver fat, shows a significant negative 

correlation with the increase in insulin sensitivity index (FDR = 

7.05 × 10− 3; Figure S4). Overall, out of the 252 measured 

clinical traits, 118 showed significant differences before 

and after the intervention (FDR < 0.05; Table S2). During the 

12-month weight maintenance phase, the body weight 

(Figure S5A) and BMI (Figure S5B) of the 54 participants showed 

a slight regain but remained significantly lower than baseline 

A

B C D E
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Figure 1. Overview of SAMS2 study and its outcomes 

(A) SAMS2 participants underwent a 16-week lifestyle intervention program consisting of structured exercise sessions and diet restriction. Clinical traits, lipid 

profiles, skeletal muscle transcriptomics, QTL analysis, and colocalization were conducted both before and after the intervention. 

(B) Boxplots showing significant changes in body mass index (BMI) and insulin sensitivity index (ISI) due to the intervention. Boxplots indicate the median and 

interquartile range. Red boxplots represent the pre-intervention while blue boxplots represent the post-intervention. According to the Asian BMI classification, a 

BMI greater than 23 is considered overweight, and a BMI greater than 27.5 is classified as obese. These two thresholds are marked with red dashed lines. 

(C) Forest plot illustrating the changes in the percentage of fat depots and lean muscle mass across various body regions. Effect sizes and their 95% confidence 

intervals are shown. Significance is determined if the confidence interval does not cross zero. 

(D) Graphs displaying reductions in fasting glucose and insulin levels measured by an ad libitum meal challenge after the intervention. Bars represent mean ± 

standard deviation (SD). Open circles represent the pre-intervention condition, and solid triangles represent the post-intervention condition. 

(E) PCA plot displaying the separation of blood lipid profiles before (red) and after (green) the intervention. This analysis revealed a variance of 5.3% attributable to 

the intervention. 

(F) Volcano plot showing the differentially expressed lipid species pre- and post-intervention. Lipid species demonstrating significant upregulation or down-

regulation are highlighted with red and green to indicate changes in fatty acid and sphingolipid metabolism. Significance was defined as a p value < 0.05 and an 

absolute log2 fold change ≥ 1.2.
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(P < 1 × 10− 4; Figures S5C and S5D), which underscored the 

long-term efficacy of the program (Table 1).

Enhanced insulin sensitivity and metabolic health 

following lifestyle intervention

To further confirm the intervention’s effectiveness, we assessed 

glucose and insulin dynamics via an ad libitum meal test and 

hyperinsulinemic-euglycemic clamp. After intervention, partici-

pants showed significantly lower postprandial glucose and insu-

lin levels (FDR < 0.05; Figure 1D). Both the glucose disposition 

index (DI) and insulin sensitivity index (ISI; per kg lean muscle 

mass) increased significantly (FDR = 2.00 × 10− 7 and FDR = 

7.09 × 10− 8, respectively). Correspondingly, the Homeostasis 

Model Assessment of Insulin Resistance (HOMA-IR) decreased 

from 3.05 to 1.93 after intervention (FDR = 1.03 × 10− 5), indi-

cating enhanced insulin metabolism. Elevated plasma citrate 

levels (FDR = 1.56 × 10− 3) suggested enhanced triboxylic acid 

(TCA) cycle activity and mitochondrial energy output.28 This 

improved anaplerotic response likely reflects the adaptation to 

meet exercise-induced metabolic demands29 (Table S2).

Previous studies have demonstrated that dysfunctional 

lipid metabolism contributes to insulin resistance.30 Lipidomic 

profiling showed that 5.3% of the variances in blood lipids 

were attributed to the intervention (Figure 1E). Out of 201 lipid 

species analyzed, six were identified as differentially abundant 

(fold change ≥ 1.2, p < 0.05), three were upregulated, and three 

were downregulated (Figure 1F; Table S3). Upregulated lipids 

suggested improved lipid handling and reduced inflamma-

tion,31,32 while downregulated species indicated ceramide syn-

thesis, potentially reducing lipotoxicity.33,34

Lifestyle intervention-induced muscle transcriptional 

responses

Following quality control, we retained RNA-seq data from 108 

skeletal muscle paired samples (pre- and post-intervention) 

across 54 participants and 15,658 genes for downstream ana-

lyses (Figure S6). We identified 505 differentially expressed 

genes (DEGs, log2|foldchange| > 0.3 and FDR < 0.05) before 

and after intervention (Figure 2A; Table S4). Of these, 141 genes 

were downregulated, while 364 were upregulated post-interven-

tion. For example, ABCB5, involved in cellular energy homeosta-

sis,35 was significantly upregulated (log2FC = 2.12, FDR = 

6.77 × 10− 13), suggesting enhanced metabolic efficiency. In 

contrast, LEP, encoding leptin, which plays a key regulator of en-

ergy homeostasis,36 was significantly downregulated (log2FC = 

− 0.87, FDR = 0.015), consistent with fat mass reduction.37

Over-representation analysis (ORA) identified 20 biological 

pathways significantly enriched with the DEGs (FDR < 0.05; 

Table S5). These pathways in DEGs fall into five categories: insu-

lin signaling, metabolism, skeletal muscle, diet, and others 

(Figure 2B). Notably, within insulin signaling pathways, two 

glucose uptake pathways in skeletal muscle38,39 show distinct 

patterns: the insulin-independent AMPK pathway was enriched 

with downregulated DEGs. In contrast, the insulin-dependent 

Akt/PKB pathway, particularly via PI3K-Akt signaling, was en-

riched with upregulated DEGs. Activation of the PI3K-Akt 

pathway follows insulin receptor stimulation, leading to 

increased glucose uptake through GLUT4 translocation.40

This observation corresponds to increased insulin sensitivity 

and a lowered reliance on energy deprivation stress responses 

post-intervention.41,42 Additionally, genes related to insulin 

metabolism, such as insulin-like growth factors (IGFs) and their 

binding proteins (IGFBPs)43 were significantly upregulated 

(Table S5). Mitochondrial function and energy metabolism path-

ways were also enhanced, as reflected by notable upregulation 

of mitochondrial-related genes.

We further employed weighted gene co-expression 

network analysis (WGCNA)44 to identify gene co-expression 

patterns in response to the intervention. Among the identified 

modules (Figure S7A), the Module Eigengene Gray exhibited 

the strongest correlation with intervention (correlation = 0.57, 

P = 1 × 10− 10), showing a significant positive correlation with 

the post-intervention condition (Figure S7B). Network analysis 

of the Module Eigengene Gray revealed strong co-expression re-

lationships (edge weight > 0.2) among several mitochondrial 

genes, including MT-ND2, MT-ND5, MT-ND6, and MT-ATP8 

(Figure S7C; Table S6). These genes are essential components 

of the mitochondrial electron transport chain (ETC) complex I45

(Figure S8). They play a critical role in the oxidation of NADH to 

NAD+, facilitating the release of electrons necessary for driving 

ATP synthesis.46 Additionally, substantial evidence from the 

previous study indicated that increased levels of NAD+ are 

associated with enhanced insulin sensitivity and improved 

mitochondrial function.11

Table 1. Summary statistics of eight key phenotypes measured in 54 participants at three time points

Clinical variables

Pre Post Post WMP

Mean SD Mean SD Mean SD

Weight (kg) 86.81 8.06 79.14 9.00 83.42 10.42

BMI (kg/m2) 28.50 2.08 26.21 2.55 27.51 2.73

Fasting plasma glucose (mmol/L) 4.61 0.35 4.50 0.27 4.75 0.40

Insulin at 0 h (mU/L) 15.18 8.26 9.58 4.89 13.32 9.60

HOMA-IR 3.05 1.69 1.93 1.01 2.93 2.13

ISI clamps (/kg of lean muscle mass) 5.66 2.43 9.39 4.73 NA NA

Visceral adipose tissue (cm3) 2258.85 738.59 1518.68 697.51 1718.17 728.32

Total whole-body fat (%) 28.34 4.01 24.46 4.29 25.46 4.70

These clinical phenotypes are associated with the effects of a lifestyle intervention and reflect key metabolic and physiological responses. Values 

represent the mean and standard deviation (SD) for each phenotype at each time point.
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In addition to differential expression, we analyzed 

differential alternative splicing (AS) before and after interven-

tion. The analysis identified 17 significant AS events (FDR < 

0.05; Figure 2C; Table S7). Among these, MYHAS (chr17: 

10611945-10612459) and FNBP4 (chr11:47731561-47732537) 

exhibited larger changes in splicing patterns, with delta abso-

lute percent spliced in (|PSI|) values greater than 0.1. MYHAS 

encodes a muscle-specific antisense RNA that enables pri-

mary mRNA binding activity, which is important to be involved 

in response to muscle activity and skeletal fiber develop-

ment.47 Although the magnitude of change was moderate 

(ΔPSI = 0.11), the sashimi plot reveals a consistent 1.45-fold 

increase in the splice junction usage following the interven-

tion, specifically affecting the ENST00000585303 transcript 

abundance (Figure 2D). FNBP4 is involved in cytoskeletal 

regulation and cell migration,48 splicing changes in FNBP4 

may influence skeletal muscle function and adaptation, 

but further experimental validation is required. Additionally, 

we observed significant splicing changes in TNNT3 (chr11: 

1926709-1929810), which showed decreased inclusion after 

the intervention (FDR = 1.39 × 10− 12). As TNNT3 encodes 

fast skeletal muscle troponin T, a key regulator of muscle 

contraction, these splicing changes might reflect exercise- 

induced adaptations in muscle contractile properties.49

Interactions between genetic effects and lifestyle 

influence gene expression

We obtained genotypes for each individual using the 

InfiniumOm2-5Exome single-nucleotide polymorphism (SNP) 

array followed by imputation with 1000G Phase 3 as the refer-

ence panel50 (STAR Methods; Figure S9). To identify the gene 

expression alterations across genetic backgrounds in skeletal 

muscle transcriptomes, we utilized RASQUAL51 to identify cis 

genetic variants (minor allele frequency [MAF] > 5%) that are 

associated with gene expression. We leveraged gene-level and 

allele-specific count information to enhance discovery power, 

accounting for known covariates and latent sources of gene 

expression variability. Multiple hypothesis testing was conduct-

ed for both pre-intervention and post-intervention using a hierar-

chical procedure in TreeQTL.52 At FDR < 0.05, we found 1,217 

significant cis-eGenes pre-intervention (cis-eGenes were 

defined as a gene whose expression is regulated by a genetic 

variant within ±1 Mb of its transcription start site [TSS]) and 

1,105 cis-eGenes post-intervention (Table S8). Lead eSNPs 

were enriched near TSSs (Figure S10). To assess the reproduc-

ibility of our identified eQTLs, we conducted a replication 

analysis with GTEx skeletal muscle using the π1 statistic. The 

π1 estimates was 0.81 and 0.76 for the pre- and post-interven-

tion conditions, suggesting the SAMS2 cis-eQTLs replicated 

Figure 2. Gene expression changes in mitochondrial function and insulin signaling pre- and post-intervention 

(A) Manhattan plot displaying the distribution of differentially expressed genes (DEGs) across chromosomes in skeletal muscle samples after the intervention. 

Significant DEGs (log2|fold change| > 0.3, FDR < 0.05) are highlighted in red. 

(B) Bubble plot shows the top 20 significantly enriched pathways from ORA of differentially expressed genes identified in (A). Significance was determined using 

an FDR < 0.05. The pathways are categorized into insulin-related pathways, metabolism, skeletal muscle, diet, and others. 

(C) Volcano plot showing the relationship between statistical significance (− log10 [FDR]) and the magnitude of splicing changes (Delta PSI) across all detected 

splicing events. Gray dots represent non-significant events, while orange dots indicate splicing events with FDR < 0.05, and red dots indicate splicing events with 

FDR < 0.05 and |delta PSI| > 0.1. 

(D) Sashimi plot illustrating the alternative splicing pattern of MYHAS before and after exercise. The upper and lower panels show the junction reads in pre- and 

post-intervention, respectively. Numbers indicate junction read counts. The gene structure is shown at the bottom with exons represented as boxes and introns 

as lines. Genomic coordinates are displayed along the x axis.
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well. We further identify lifestyle-responsive genetic effects on 

gene expression by systematically classifying significant 

e/sQTLs based on their detection patterns across pre- and 

post-intervention conditions. Additionally, we applied a linear 

regression model incorporating a gene-by-lifestyle interaction 

term to further assess whether shared QTLs exhibited significant 

interaction effects. Using this approach, we discovered 621 

shared eQTLs, 596 pre-biased eQTLs, and 484 post-biased 

eQTLs (Figure 3A; Table S9).

Shared eQTLs were defined as genetic associations signifi-

cant both pre- and post-intervention (FDR < 0.05) and exhibited 

no significant interaction effects between condition and geno-

type. Their persistence across physiological states may indicate 

involvement in essential cellular processes or metabolic path-

ways, and their cis-regulatory elements may be unaffected by 

exercise and dietary weight loss interventions. Two notable ex-

amples of shared eQTLs are particularly insightful (Figure 3B). 

One example was found in the ERAP2 gene, which involves a 

shared eQTL (p = 6.95 × 10− 96 for pre-intervention and p = 

1.37 × 10− 86 for post-intervention) with the SNP rs1019503 

(chr5:96919113:G:A) previously identified in European popula-

tions.53,54 ERAP2 is known for its role in amino acid trimming 

for MHC class I presentation, and the variant rs1019503 has 

been linked to glycemic response, especially 2-h glucose level 

measured during an oral glucose tolerance test (OGTT) in previ-

ous GWAS studies,55,56 indicating its potential influence on post-

prandial glucose metabolism. Another significant shared 

eQTL for the ACTN3 (p = 2.99 × 10− 132 for pre-intervention 

A B
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Figure 3. Gene-by-lifestyle interactions reveal differential genetic regulation of gene expression in response to the intervention 

(A) The circular plot showing the position of significant eGenes identified pre-biased (red), post-biased (blue), and shared between both conditions (black). 

(B) Boxplots depict shared eQTLs in ERAP2 and ACTN3. Boxplots indicate the median and interquartile range. 

(C) A pre-biased eQTL in NEB. Boxplots indicate the median and interquartile range. 

(D) A post-biased eQTL in ATP2A1. Boxplots indicate the median and interquartile range. 

(E) Density plots illustrate European MAF distribution for eQTLs identified pre- and post-intervention. The plots categorize eQTLs based on the GTEx database, 

highlighting the Asian-specific eQTL.
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and p = 1.50 × 10− 96 for post-intervention), whose proxy 

SNP rs1815739 (linkage disequilibrium [LD] > 0.8 with the lead 

SNP, chr11:66560624:C:T) is exonic.57 The alternative allele of 

rs1815739 creates a stop-gained codon, leading to nonsense- 

mediated delay of this fast twitch fiber-specific gene.58 The 

R577X mutation in ACTN3 has been previously documented 

for its influence on skeletal muscle function and metabolism.59

Although ACTN3 expression significantly decreased after the 

intervention (p = 1.16 × 10− 5), the eQTL for this gene remains 

present both before and after the intervention with a consistent 

effect size. The variation rs1815739 in this gene affects muscle 

performance and has been widely studied in the context of 

muscle strength, highlighting its importance in muscle physi-

ology.60,61 We asked whether rs1815739 is correlated with 

lifestyle intervention outcomes. Initial analysis using an additive 

genetic model showed a trend toward genotype-dependent 

weight loss (p = 0.0673). Further investigation revealed that the 

association followed a recessive inheritance pattern, with the 

recessive model providing a better fit (p = 0.0202). Specifically, 

homozygous carriers of the X allele (TT genotype) showed signif-

icantly greater weight loss compared with both RR (CC) and RX 

(CT) carriers (TT vs. CC: − 4.42%, p = 0.0441; TT vs. CT: − 4.39%, 

p = 0.0304), and no significant difference was observed between 

RR and RX carriers (p = 0.9850) (Figure S11). This enhanced 

weight loss in TT carriers might be attributed to their altered mus-

cle metabolism, as the absence of α-actinin-3 has been associ-

ated with improved oxidative capacity,62 potentially facilitating 

more efficient fat utilization during exercise.

We further explored eQTLs that were biased toward either the 

pre- or post-intervention condition, defined as genetic associa-

tions that were significant in one condition but not the other 

(FDR < 0.05), or those that remained significant in both condi-

tions but exhibited significant genotype-by-lifestyle interaction 

effects, indicating a bias toward either the pre- or post-interven-

tion state. An example pre-biased eQTL (chr2:151731300:T:C, 

p = 1.2 × 10− 35) was found in the NEB gene (Figure 3C), which 

encodes nebulin and is essential for the proper function and 

structure of sarcomeres in skeletal muscle fibers.63 Mutations 

in this gene are often associated with various forms of myopa-

thies.64 Similarly, the NRAP eQTL (chr10:113657530:G:A, p = 

3.44 × 10− 34) is also biased toward the pre-intervention condi-

tion (Figure S12). The NRAP gene encodes the nebulin-related 

anchoring protein, which interacts with nebulin and is involved 

in myofibril assembly.65 Conversely, the emergence of post- 

biased eQTLs indicates that therapeutic lifestyle changes, 

including increased exercise and improved diet, could establish 

new gene expression regulation patterns (Figures 3D and S12). 

The ATP2A1 gene is particularly noteworthy, as it plays a 

critical role in calcium homeostasis within skeletal muscle.66

ATP2A1 expression was significantly downregulated following 

the weight-loss intervention (p = 1.37 × 10− 6), reflecting 

potential physiological adaptations in muscle tissue, such as 

enhanced efficiency and change in muscle mass. Its eQTL 

(chr16:27935099:T:C, p = 7.17 × 10− 7) emerged exclusively 

post-intervention, suggesting that the intervention activated 

cis-regulatory elements influencing ATP2A1 expression.

Existing skeletal muscle transcriptomic and QTL datasets are 

biased toward European populations.54,67,68 As such, we inves-

tigated the presence of Asian-specific QTLs among the signifi-

cant eQTLs identified by comparing our East Asian-derived 

eQTL results and those from the GTEx database, which predom-

inantly comprises European individuals. Our analysis identified 

46 Asian-specific eQTLs pre-intervention and 52 post-interven-

tion (Table S10). We hypothesized that these Asian-specific 

eQTLs might arise from elevated minor allele frequencies of 

certain SNPs in Asians relative to other populations. To test 

this hypothesis, we examined the MAF of East Asian-specific 

eQTLs in European populations using data from the 1000 Ge-

nomes Project.69 We observed that East Asian-derived eQTLs 

not replicated in the GTEx database exhibited the highest 

density at MAF < 0.05 in European populations (Figure 3E). 

Conversely, the MAFs of SNPs within eQTLs validated in the 

GTEx database correspond to levels typical of population-spe-

cific common SNPs. Both observations suggested that a major-

ity of East Asian-specific eQTLs not replicated in the GTEx data-

set could be attributed to allele frequency differences between 

Europeans and East Asian populations.

Genetic effects on alternative splicing in response to 

lifestyle intervention

Similar to eQTL analysis, we next explored the impact of genetic 

variation on alternative splicing in skeletal muscle both before 

and after the intervention. We employed QTLtools70 for mapping 

independent splicing quantitative trait loci (sQTLs) at the intron- 

cluster level. After adjusting for FDR < 0.05, we identified 547 cis- 

sIntrons (defined as an intron whose splicing is regulated by a 

nearby genetic variant) pre-intervention and 347 sIntrons post- 

intervention (Table S11). We identified 263 shared, 284 pre- 

biased, and 84 post-biased sQTLs (Figure 4A; Table S12). 

Lead sQTL SNPs were enriched near splice sites, introns, and 

splice regions (Figure S13). We assessed the reproducibility of 

our sQTLs by replicating within GTEx skeletal muscle sQTLs. 

The resulting π1 estimates were 1 pre-intervention and 0.91 

post-intervention, demonstrating high concordance and robust 

reproducibility of our sQTL findings for both conditions.

We identified several ATP-related sGenes (defined as a gene 

whose splicing is regulated by a genetic variant within ±1 Mb 

of the gene), including ATP5PF, ATP5MD, and ATP5MC2, which 

are key components of the mitochondrial ATP synthase complex 

(Figure 4B). These genes exhibited significant genetic effects on 

splicing regulation both before and after intervention (FDR < 

0.05, |β| > 1), suggesting their critical role in ATP metabolism 

and utilization in muscle tissue.71 Moreover, we also identified 

other shared sQTLs in muscle-relevant genes (Figure S14), 

including TRDN intron (chr6:123331929-123352539). TRDN en-

codes triadin, which is essential for excitation-contraction 

coupling in skeletal muscle through its regulation of calcium 

release from the sarcoplasmic reticulum.72 Among these shared 

sQTLs, we found sGene ANK1 to be particularly interesting 

(Figure 4B). ANK1 has been identified as a T2D risk locus in 

multiple GWAS studies.3–5 Through alternative splicing, ANK1 

generates tissue-specific isoforms, with long isoforms predomi-

nantly in erythrocytes and short isoforms abundant in muscle 

tissue.73 In muscle, the short isoforms represent the primary ex-

pressed form.74 While ANK1 showed consistently significant 

sQTLs across both pre- and post-intervention, the strength of 
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its genetic association was notably attenuated following the 

intervention (FDR = 0.018). Specifically, we identified that the 

sQTLs affect ANK1 intron usage (chr8:41655753-41661801) 

and further influence the abundance of ENST00000522543, a 

muscle-specific short isoform. Although the genetic effects of 

ANK1 splicing in muscle tissue have been reported,54,75 no 

studies have yet explored the dynamic changes in its genetic ef-

fect in response to lifestyle modifications. The sashimi plot for 

the pre-intervention highlights these variations in splicing event 

frequencies associated with the SNP mutation (rs6989203). Spe-

cifically, the mutation from G to A at rs6989203 led to a 2.5-fold 

increase in sequencing read across the affected intron. After 

intervention, the genetic effect of rs6989203 was notably 

reduced, leading to a 1.6-fold increase (Figure S15). The lead 

SNP rs6989203 of ANK1 sQTL is in high linkage disequilibrium 

(LD > 0.95) with several other SNPs. Fine-mapping with SuSiE 

suggested that rs508419 was the likely causal SNP for this 

sQTL (posterior inclusion probability [PIP] = 0.73) (Figure 4C). 

By examining ANK1 general expression changes pre- and 

post-intervention according to the genotype of rs508419, we 

found that individuals with the AG genotype exhibited a more 

pronounced response to the intervention compared with those 

with the GG genotype (ANOVA p = 0.01; Figure 4D).

In addition to shared sQTLs, we identified context-biased 

sQTLs that underscore the regulatory changes in skeletal 

muscle during the intervention (Figure S14). We observed a sig-

nificant pre-biased sQTL (p = 2.22 × 10− 9, β = 0.95) in ART3 

intron usage (chr4:7607914-76081824) with the lead SNP 

rs6816425. The splicing event affects an intron that modulates 

the mono-ADP-ribosyltransferase activity of ART3, which plays 

a crucial role in muscle metabolism and energy homeostasis.76

Following the intervention, we identified notable post-biased 

sQTLs. The lead SNP rs11129942 modulated TRAK1 intron us-

age (chr3:42115484-42125420; p = 3.77 × 10− 11, β = − 1.06). 

TRAK1 is essential for mitochondrial trafficking and dynamics, 

and this splicing affects its interaction with mitochondrial pro-

teins.77,78 The negative effect size indicates reduced splicing ef-

ficiency post-intervention, suggesting a regulated adjustment in 

mitochondrial dynamics to enhance energy metabolism effi-

ciency during exercise adaptation.

A B

C
D E

Figure 4. Dynamical sQTLs before and after the intervention 

(A) Circular plot showing significant sIntrons identified only pre-intervention, or only in post-intervention and both conditions. 

(B) Boxplots depict four shared eQTLs in ATP-related genes and ANK1 example. Boxplots indicate the median and interquartile range. 

(C) Fine-mapping analysis pinpointing the potential causal SNP rs508419 for the sQTL of the ANK1 gene. 

(D) These boxplots present the ANK1 expression levels across different genotypes of the causal SNP (rs508419). The comparison shows a significant difference in 

ANK1 expression between AG and GG genotypes, highlighting the gene-environment interaction effect. Boxplots indicate the median and interquartile range. 

Statistical significance was assessed using ANOVA. Asterisks denote significance, with p = 0.01. 

(E) Density plots illustrate European MAF distribution for sQTLs identified pre- and post-intervention. The plots categorize sQTLs based on the GTEx dataset, 

highlighting the Asian-specific sQTL.

Please cite this article in press as: Wang et al., Impact of polymorphisms on gene expression and splicing in response to exercise and diet-induced 

weight loss in human skeletal muscle tissues, Cell Genomics (2025), https://doi.org/10.1016/j.xgen.2025.100951

8 Cell Genomics 5, 100951, September 10, 2025 

Article
ll

OPEN ACCESS



A

B D

C

Figure 5. Colocalization of QTLs and metabolic traits or disease 

(A) This panel displays the colocalization results of QTLs and GWASs. The x axis represents QTLs under different contexts, and the y axis represents the 12 

metabolic traits or diseases. The size of the circles indicates the proportion of colocalized GWAS loci, while the color gradient (from purple to red) represents the 

number of significant colocalizations. Significance defined as colocalization posterior probability (PP4 ≥ 0.75). 

(B) This plot shows the LocusCompare of pre-biased eQTLs for the gene DHRS4L2 with the SNP rs12437434 from a T2D GWAS. The x axis represents the 

DHRS4L2 eQTL -log10(P), and the y axis represents T2D GWAS -log10(P). The linkage disequilibrium (LD) between SNPs and the target SNP is indicated by 

different colors, representing five levels of correlation. 

(legend continued on next page) 
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Finally, employing an analogous methodology to identifying 

Asian-specific eQTLs, we compared our sQTL results against 

those reported in the GTEx database. This revealed 35 Asian- 

specific sQTLs pre-intervention and 30 post-intervention. For 

sQTLs shared between SAMS2 and GTEx, the MAF of the 

sSNP tended to be higher in European populations. While for 

sQTLs significant in SAMS2 but not significant in GTEx, the 

MAF of the sSNP tended to be lower. (Figure 4E; Table S13).

Identifying putative risk genes for metabolism-related 

traits

To identify putative risk genes underlying metabolism-related 

diseases and traits, we performed QTL-based gene prioritization 

using GWAS signals from 12 metabolism-related disease/trait 

GWAS datasets derived from the East Asian population4,79,80

(Table S14). These datasets encompass metabolic diseases 

(T2D and coronary artery disease [CAD]), metabolic traits (gly-

cated hemoglobin levels [HbA1c], blood glucose levels, total 

cholesterol, high-density lipoprotein [HDL], low-density lipopro-

tein [LDL], and triglycerides [TG]), and anthropometric traits 

(BMI, body weight, waist circumference, and hip circumference). 

Using colocalization analyses to assess overlaps in GWAS and 

QTL signals (H4 > 0.75) in both pre- and post-intervention condi-

tions,81 generally, eQTLs exhibited more colocalization events 

than sQTLs (Figure 5A; Table S15). The e/sQTLs colocalized 

with metabolic diseases (CAD and T2D) and metabolic traits 

(such as body weight and HbA1c) (Figure 5A; Table S16). In total, 

we identified 16 putative target genes (Table 2).

Leveraging summary statistics from Asian T2D GWAS, we 

identified a significant eQTL-GWAS colocalization locus (H4 = 

0.92) involving the gene DHRS4L2 and lead SNP rs12437434, 

which is statistically significant only pre-intervention (FDR = 

4 × 10− 4) but not post-intervention (FDR = 0.1528; Figures 5B 

and S16). The lead SNP rs12437434 is in low LD with nearby 

SNPs, and fine-mapping analysis with SuSiE82 revealed 

that it is the most likely causal variant (PIP = 0.96). Notably, 

rs12437434 is an Asian-biased variant with a higher MAF in 

East Asian individuals (MAF[SAMS2] = 0.269; MAF[1KGEAS] = 

0.278) compared with other ethnicities and has an MAF of 

0.0109 for European populations (Figure 5C). While the func-

tional mechanism of the DHRS4L2 gene needs further experi-

mental validation, this finding underscores the importance of 

population-specific genetic variants in T2D GWAS interpretation 

and provides insights into the genetic architecture of T2D in 

Asian populations.

We also found a shared eQTL for FN3KRP (with lead SNP 

rs2256833) that remained significant across both conditions, 

but its genetic effects exhibited condition-dependent differ-

ences (FDR = 0.012). This shared eQTL also demonstrated 

stronger colocalization with HbA1c levels pre-intervention 

(H4 = 0.87) than post-intervention (H4 = 0.49; Figure S17), sug-

gesting that lifestyle modifications might modulate the genetic 

influence of FN3KRP on glycemic control. This SNP rs2256833 

has been linked to HbA1c across multiple ethnic groups and 

replicated in several GWASs.79,83 FN3KRP encodes the fructos-

amine-3-kinase-related protein, which plays a crucial role in pro-

tein deglycation and protection against protein damage caused 

by excess glucose.84 This protein deglycation system is particu-

larly relevant to T2D as it helps prevent the accumulation of gly-

cated proteins, which is a hallmark of chronic hyperglycemia.85

Conversely, we identified a post-biased eQTL for CRTC3 (with 

lead SNP rs8026714) that showed stronger colocalization with 

T2D. CRTC3 encodes the cAMP-responsive element binding 

protein (CREB)-regulated transcription coactivator 3, which 

functions as a critical regulator of energy homeostasis and 

glucose metabolism through its role in mediating cAMP-depen-

dent gene transcription.86 The involvement of CRTC3 in energy 

metabolism and glucose homeostasis makes it particularly rele-

vant to T2D pathogenesis through its role in insulin resistance 

and metabolic dysfunction. Another post-biased eQTL was iden-

tified for DOK7 (with lead SNP rs1203111) showing strong coloc-

alization with both TG (H4 = 0.84) and TC (H4 = 0.80) levels post- 

intervention. Although DOK7 is primarily known for its role in 

neuromuscular junction formation, it has also been previously 

associated with blood lipid levels.87 Our findings suggest a po-

tential link between DOK7 expression and lipid metabolism in 

response to exercise intervention.

Similarly, we observed several sQTL-GWAS colocalization 

events. The sQTL of ANK1 showed strong colocalization (H4 = 

0.83) with East Asian T2D GWAS pre-intervention, consistent 

with previous findings in European populations.54 This colocali-

zation significantly reduced post-intervention (H4 = 0.48), 

suggesting that lifestyle intervention may modulate cis-regulato-

ry elements of ANK1 sQTL and impact its influence on T2D 

risk (Figure 5D). In contrast, a post-biased sQTL for YBX3 

(rs2886722) demonstrated stronger colocalization with CAD 

post-intervention (H4 = 0.98). YBX3 has been previously 

implicated in cardiovascular development. The stronger colocal-

ization following intervention may modulate YBX3 genetic 

regulation on splicing in skeletal muscle. As YBX3 is highly ex-

pressed in both heart and skeletal muscle tissues76 and has 

been previously implicated in cardiovascular development,88

this finding highlights a potential cross-tissue mechanism 

through weight loss-induced changes (Figure S18). Additionally, 

we observed a shared sQTL for ZBTB20 (rs6806156) that 

maintained significant colocalization with T2D GWAS both pre- 

intervention (H4 = 0.87) and post-intervention (H4 = 0.89) 

(Figure S18), indicating a stable genetic effect that persists 

regardless of lifestyle changes. ZBTB20 encodes the zinc finger 

and BTB domain-containing protein 20, a transcriptional 

repressor that plays important roles in glucose homeostasis 

and metabolic regulation.76 Its persistent colocalization sug-

gests that certain genetic effects on T2D risk may be indepen-

dent of environmental modifications. ZBTB20 has been shown 

(C) This histogram displays the MAF of rs12437434 in the SAMS2 dataset and various populations from the 1000 Genomes Project. The x axis represents 

populations from different datasets, and the y axis represents the MAF. The red dashed line marks the 0.05 threshold, distinguishing between common and rare 

SNPs. 

(D) The panel illustrates the colocalization of an sQTL for ANK1, with both the SNP and splicing intron located in the ANK1 gene. The x axis represents the genomic 

position, and the y axis represents − log10(P). The LD between SNPs and the target SNP is shown by the color gradient, indicating five levels of correlation.
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to regulate hepatic glucose homeostasis and insulin sensitivity 

through direct transcriptional control of metabolic genes,89 and 

its dysfunction has been linked to metabolic disorders in multiple 

studies. These findings illustrate the complex interplay between 

genetic and lifestyle factors in determining metabolic disease 

risks, underscoring the importance of considering both pre- 

and post-intervention to fully understand the genetic regulation 

of metabolic health.

DISCUSSION

Our study comprehensively characterizes the genetic regulatory 

mechanisms governing expression and splicing in response to 

lifestyle intervention combining diet and exercise in the skeletal 

muscle of an Asian male cohort. Unlike lifestyle intervention 

studies in captive rats and baboons,18,21 our study needed to 

overcome low compliance and high attrition inherent in human 

interventional studies, so we constructed an extensive clinical 

phenotype and paired skeletal muscle transcriptomics resource 

specifically for an East Asian population undergoing weight-loss 

intervention. After intervention, body weight and fat percentage 

significantly decreased, while lean mass percentage, blood 

glucose control, and insulin sensitivity improved. Despite some 

weight regain, body weight and BMI remained significantly bet-

ter than the baseline after 12 months, highlighting the lasting ef-

fects of the intervention. Paired skeletal muscle transcriptomes 

before and after intervention revealed changes in gene expres-

sion and splicing, highlighting improved insulin signaling and 

metabolic function. By mapping e/sQTLs in pre- and post-inter-

vention states, we identified genetic variants shaping muscle 

gene regulation, including dozens of Asian-specific e/sQTLs ab-

sent in GTEx. Importantly, unlike most QTL studies that focus on 

steady-state conditions, we captured hundreds of gene-by-life-

style interaction QTLs to reveal both shared and condition- 

biased regulatory mechanisms, demonstrating how genetic ef-

fects on muscle transcriptomic regulation are dynamically 

modulated by weight loss. Finally, colocalization with 12 meta-

bolism-associated Asian GWASs pinpointed 16 putative risk 

genes.

Our findings provide a foundation for future mechanistic in-

vestigations by identifying key genetic regulatory changes in 

skeletal muscle following the lifestyle intervention. Notably, 

we observed significant splicing alterations in FNBP4 and 

TNNT3, highlighting a rarely explored aspect of weight loss 

biology. Additionally, the association between the ACTN3 

R577X mutation and greater weight loss suggests potential 

Table 2. List of colocalizations between SAMS2 e/sQTLs and metabolic trait GWASs

e/sQTL Gene GWAS phenotype GWAS lead SNP

GWAS lead SNP 

position Risk allele AF Type Coloc PP4

eQTL RAB29 body weight rs823118 chr1:205754444:C:T T 0.51 both 0.76

eQTL DHRS4L2 type 2 diabetes rs12437434 chr14:24409164:C:T C 0.71 pre-biased 0.92

eQTL STIMATE body mass index rs1108842 chr3:52686064:A:C C 0.45 pre-biased 0.75

eQTL FN3KRP HbA1c rs2256833 chr17:82731791:C:T T 0.49 pre-biased 0.87

eQTL CRTC3 type 2 diabetes rs8026714 chr15:90979023:G:A A 0.51 post-biased 0.76

eQTL ECT2L type 2 diabetes rs9376382 chr6:138884249:T:C C 0.66 post-biased 0.81

eQTL PNMA8A type 2 diabetes rs11083824 chr19:46406873:C:G G 0.23 post-biased 0.75

eQTL MFSD13A coronary artery disease 

body mass index 

body weight

rs1926032 chr10:103069712:C:T T 0.28 post-biased

0.77 

0.77 

0.76

eQTL DOK7 total cholesterol rs59950280 chr4:3450618:G:A A 0.39 post-biased 0.8

eQTL DOK7 triglycerides rs4690098 chr4:3445429:C:T T 0.48 post-biased 0.84

sQTL ZBTB20 type 2 diabetes rs6806156 chr3:115249171:C:T T 0.57 both 0.89

sQTL RNF181 coronary artery disease rs2886722 chr2:85515174:A:G G 0.37 both 0.9

sQTL UQCC1 body weight rs6142378 chr20:35409488:T:A A 0.75 pre-biased 0.87

sQTL ANK1 type 2 diabetes rs6989203 chr8:41666227:G:A A 0.15 pre-biased 0.83

sQTL YBX3 coronary artery disease rs138046359 chr12:10718301:A:C C 0.49 pre-biased 0.99

sQTL KLHL24 body weight rs6770998 chr3:183627183:C:A A 0.49 pre-biased 0.85

sQTL MROH8 body weight rs58664618 chr20:36901572:C:T T 0.48 post-biased 0.48

This table summarizes loci showing evidence of colocalization between QTL signals identified in the SAMS2 skeletal muscle dataset and Asian GWAS 

signals for metabolic traits based on the COLOC method. A posterior probability for a shared causal variant (PP4) ≥ 0.75 was considered indicative of 

significant colocalization. Each column represents the following: e/sQTL (the type of identified QTL in the SAMS2 skeletal muscle database), gene (the 

target gene whose expression or splicing is associated with the QTL variant), GWAS phenotype (the metabolic traits linked to this intervention study); 

GWAS lead SNP (the lead SNP from the GWAS locus showing the strongest associated with the phenotype); GWAS lead SNP position (genomic co-

ordinate hg38 of the lead GWAS SNP); risk allele (the allele associated with increased risk or higher trait value in the GWAS); AF (the allele frequency of 

the risk allele); type (indicates whether the QTL is shared or condition-biased); coloc PP4 (posterior probability PP4 from COLOC representing the 

probability that both the QTL and GWAS signals share a single causal variant).
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muscle fiber type-driven adaptations to aerobic exercise, 

warranting further functional validation to establish causal-

ity.90 Through joint analysis with GWAS, we identified 16 

putative metabolic risk genes, 13 of which exhibited differen-

tial regulatory effects across pre- and post-weight loss 

states. Genes with consistent regulatory effects across both 

conditions, such as RAB29, ZBTB20, and RNF181, likely 

represent core metabolic regulators with stable effects.85,89,91

In contrast, pre-biased genes (e.g., DHRS4L2, ANK1, UQCC1) 

may contribute to obesity-associated metabolic dysfunction 

such as insulin resistance and impaired lipid handling 

that diminishes after weight loss.54,92,93 Among them, ANK1 

is a well-established T2D risk locus identified across multiple 

GWASs, and prior studies have also reported skeletal muscle- 

specific regulatory mechanisms involving this gene.4,55,73,75,79

However, our study demonstrated that the genetic regulation 

of ANK1 splicing is significantly attenuated following lifestyle 

intervention. This suggests that weight loss can dynamically 

modulate genetic effects at T2D-associated loci, providing a 

mechanistic link between lifestyle changes and the mitigation 

of inherited metabolic risk. Post-biased genes (e.g., FN3KRP, 

CRTC3, MFSD13A) appear to gain regulatory significance in 

the improved metabolic state, potentially reflecting enhanced 

glycemic control and insulin sensitivity in response to the 

intervention.79,86,94 These findings underscore the dynamic 

nature of gene-lifestyle interactions in metabolic regulation 

and emphasize the importance of considering ancestry-spe-

cific regulatory variants, particularly those enriched in Asian 

populations such as DHRS4L2. By capturing how genetic 

effects are modulated by lifestyle intervention, our study 

provides new insights for understanding the molecular 

mechanisms underlying obesity and T2D and may inform the 

development of precision strategies for metabolic disease 

prevention and treatment.

To better understand the long-term effects of lifestyle interven-

tions, future studies should adopt a more structured and moni-

tored approach during the weight maintenance phase, as the 

absence of exercise and dietary tracking may have influenced 

long-term outcomes. Incorporating single-cell RNA-seq will pro-

vide deeper insights into cell-type-specific responses,95 particu-

larly immune-muscle interactions that are masked in our bulk 

RNA-seq analysis. Expanding the study to include female partic-

ipants is crucial, as metabolic responses to lifestyle interventions 

differ significantly between sexes due to genetic and hormonal 

influences.96 This study serves as a proof of concept, and future 

research will be extended to women to explore sex-specific 

metabolic adaptations. Given that Asian individuals develop 

metabolic diseases at a lower BMI threshold compared with Eu-

ropean individuals and remain underrepresented populations in 

genetic studies,27 extending this research to more diverse Asian 

and other underrepresented populations will enhance our under-

standing of ancestry-specific genetic effects on intervention out-

comes. Together, these research directions will enhance the 

scale and diversity of intervention studies, improve our charac-

terization of complex tissue-specific disease-relevant effects, 

and facilitate better interpretation of GWAS signals across a 

wider array of complex traits, ultimately contributing to the devel-

opment of more targeted interventions and treatments.

Limitations of the study

Although we comprehensively characterize the genetic 

regulatory mechanisms in response to lifestyle intervention, 

our results should be interpreted within several limitations. 

The complexity of maintaining a 16-week intervention study 

and participants’ unwillingness to donate repeated muscle bi-

opsies led to a relatively small final cohort size, which limits 

our ability to detect associations, particularly those with 

smaller effect sizes.97 Additionally, our study cohort consisted 

exclusively of male participants, as is conventionally done in 

human exercise-based interventional studies.98 While this 

design minimized confounding effects from sex-specific 

metabolic variations, including menstrual cycle-related meta-

bolic fluctuations, it limits the generalizability of our findings 

to female populations. Dietary data in this study were based 

on self-reported food diaries, which are subject to recall 

bias and inaccuracies in portion estimation. These factors 

are commonly encountered in nutrition research and may 

affect the accuracy of caloric intake and nutrition research.99

Efforts were made to minimize these biases by providing 

detailed instructions on how to fill up the food diary accu-

rately. Moreover, we did not include lean individuals 

as controls, primarily because the study was initially 

designed as a longitudinal intervention study to assess 

within-individual regulatory changes before and after weight 

loss. Additionally, obtaining skeletal muscle biopsies from 

lean and healthy individuals is generally not compliant with 

institutional review board (IRB) regulations. Although our co-

localization analyses identified regulatory variants associated 

with metabolic traits, we acknowledge that colocalization 

does not establish causality, nor does it imply that these 

genes are the primary drivers of metabolic traits. Finally, we 

acknowledge that functional validation needs to be performed 

in future studies to confirm these results from our current 

study.
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Data and code availability

The SAMS2 study was registered at ClinicalTrials.gov under the identifier 

NCT01080378. All the bulk RNA-sequencing raw data and the processed file 

generated from this study have been submitted to the NCBI under the acces-

sion number GSE282733. The skeletal muscle e/sQTL data, both pre-interven-

tion and post-intervention, are deposited in Zenodo (doi: https://zenodo.org/ 

records/14040483). The nucleotide sequence of the GRCh38 primary genome 

assembly and gene annotation are available at https://www.gencodegenes. 

org/human/release_43.html. The GTEx e/sQTL summary statistics can be 

downloaded from the GTEx portal (https://gtexportal.org/home/downloads/ 

adult-gtex/qtl). The sources of the GWAS summary statistics used for the co-

localization analysis are outlined in Table S14. The source code for the muscle- 

QTL pipeline is available at GitHub (https://github.com/boxiangliulab/muscle- 

QTL) and archived on Zenodo for reproducibility: https://doi.org/10.5281/ 

zenodo.15683589. Genotype and clinical phenotypes are accessible through 

dbGaP under the accession number phs004078.
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J., Mägi, R., Strawbridge, R.J., Rehnberg, E., Gustafsson, S., et al. 

(2012). Large-scale association analyses identify new loci influencing gly-

cemic traits and provide insight into the underlying biological pathways. 

Nat. Genet. 44, 991–1005.

56. Sajuthi, S.P., Sharma, N.K., Chou, J.W., Palmer, N.D., McWilliams, D.R., 

Beal, J., Comeau, M.E., Ma, L., Calles-Escandon, J., Demons, J., et al. 

(2016). Mapping adipose and muscle tissue expression quantitative trait 

loci in African Americans to identify genes for type 2 diabetes and 

obesity. Hum. Genet. 135, 869–880.

57. Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. 

M., and Sirotkin, K. (2001). dbSNP: the NCBI database of genetic varia-

tion. Nucleic Acids Res. 29, 308–311.

58. Vincent, B., De Bock, K., Ramaekers, M., Van den Eede, E., Van Leem-

putte, M., Hespel, P., and Thomis, M.A. (2007). ACTN3 (R577X) genotype 

is associated with fiber type distribution. Physiol. Genomics 32, 58–63.

59. North, K.N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S., and 

Beggs, A.H. (1999). A common nonsense mutation results in α-actinin-3 

deficiency in the general population. Nat. Genet. 21, 353–354.

60. Seto, J.T., Roeszler, K.N., Meehan, L.R., Wood, H.D., Tiong, C., Bek, L., 

Lee, S.F., Shah, M., Quinlan, K.G.R., Gregorevic, P., et al. (2021). ACTN3 

genotype influences skeletal muscle mass regulation and response to 

dexamethasone. Sci. Adv. 7, eabg0088.

61. Kikuchi, N., Yoshida, S., Min, S.k., Lee, K., Sakamaki-Sunaga, M., Oka-

moto, T., and Nakazato, K. (2015). The ACTN3 R577X genotype is asso-

ciated with muscle function in a Japanese population. Appl. Physiol. 

Nutr. Metab. 40, 316–322.

62. Chan, S., Seto, J.T., MacArthur, D.G., Yang, N., North, K.N., and Head, S. 

I. (2008). A gene for speed: contractile properties of isolated whole EDL 

muscle from an α-actinin-3 knockout mouse. Am. J. Physiol. Cell Physiol. 

295, C897–C904.

63. Yuen, M., and Ottenheijm, C.A.C. (2020). Nebulin: big protein with big re-

sponsibilities. J. Muscle Res. Cell Motil. 41, 103–124.

64. Labeit, S., Ottenheijm, C.A.C., and Granzier, H. (2011). Nebulin, a major 

player in muscle health and disease. FASEB j. 25, 822–829.

65. Luo, G., Herrera, A.H., and Horowits, R. (1999). Molecular Interactions of 

N-RAP, a Nebulin-Related Protein of Striated Muscle Myotendon Junc-

tions and Intercalated Disks. Biochemistry 38, 6135–6143.

66. Jin, S., Kim, J., Willert, T., Klein-Rodewald, T., Garcia-Dominguez, M., 

Mosqueira, M., Fink, R., Esposito, I., Hofbauer, L.C., Charnay, P., and 

Kieslinger, M. (2014). Ebf factors and MyoD cooperate to regulate muscle 

relaxation via Atp2a1. Nat. Commun. 5, 3793.

67. GTEx Consortium (2017). The impact of rare variation on gene expression 

across tissues. Nature 550, 239–243.

68. GTEx Consortium (2020). The GTEx Consortium atlas of genetic regula-

tory effects across human tissues. Science 369, 1318–1330.

69. 1000 Genomes Project Consortium; Auton, A., Brooks, L.D., Durbin, R. 

M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, 

S., McVean, G.A., and Abecasis, G.R. (2015). A global reference for hu-

man genetic variation. Nature 526, 68–74.

70. Delaneau, O., Ongen, H., Brown, A.A., Fort, A., Panousis, N.I., and Der-

mitzakis, E.T. (2017). A complete tool set for molecular QTL discovery 

and analysis. Nat. Commun. 8, 15452.

71. Hood, D.A., Memme, J.M., Oliveira, A.N., and Triolo, M. (2019). Mainte-

nance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. 

Annu. Rev. Physiol. 81, 19–41.

72. Oddoux, S., Brocard, J., Schweitzer, A., Szentesi, P., Giannesini, B., Bro-
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

SAMS2 was an interventional study where hundreds of donors aged 21–45 were recruited to participate in a 16-week weight loss 

program. Study individuals selected (see below for more detailed selection standards) were sedentary (exercise 1 or fewer times 

a week), obese or overweight with a body fat mass greater than 24% and a BMI between 23 and 35 kg/m2. For this study, we adjusted 

BMI definitions for the Asian population based on WHO Consultation 2002.27 Therefore, the BMI cut-off for overweight is 23 kg/m2 

and 27.5 kg/m2 for obese. The weight loss program included a combination of dietary interventions, structured exercise sessions, 

and additional physical activity performed in participants’ own time. Energy and protein requirements were calculated based on 

each participant’s weight, height, and physical activity level, with the goal of achieving a 40% calorie deficit. Participants’ calorie 

intake was tracked using food recalls and questionnaires. Additionally, subjects attended structured exercise sessions at least three 

times per week, supervised by a coach. Each session consisted of 90 min of aerobic and strength training exercises, designed to burn 

approximately 500 kcal per session. To monitor daily physical activity, participants wore pedometers throughout the study. In total, 

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human skeletal muscle samples National University of Singapore; NUH 

Tissue Repository (NUH TR)

N/A

Deposited data

Clinical Phenotypes This paper dbGaP: phs004078

Genotype This paper dbGaP: phs004078

RNA-seq data This paper GEO: GSE282733

Clinical data This paper https://zenodo.org/records/14934808

e/sQTLs summary statistics This paper https://zenodo.org/records/14040483

GTEx data GTEx https://gtexportal.org/home/datasets

GWAS Catalog summary statistics NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/

Codes and Scripts This paper https://zenodo.org/records/15683589

Software and algorithms

PLINK v1.9 Chang et al. https://www.cog-genomics.org/plink/

FASTP Chen et al. https://github.com/OpenGene/fastp

STAR Dobin et al. https://github.com/alexdobin/STAR

featureCounts Liao et al. https://subread.sourceforge.net/

SHAPEIT4 Delaneau et al. https://odelaneau.github.io/shapeit4/

DESeq2 Love et al. https://github.com/thelovelab/DESeq2

WGCNA Langfelder et al. https://github.com/cran/WGCNA

MetaboAnalystR Pang et al. https://github.com/xia-lab/ 

MetaboAnalystR

QTLtools Delaneau et al. https://qtltools.github.io/qtltools/

RASQUAL Kumasaka et al. https://github.com/natsuhiko/rasqual

susieR Wang et al. https://stephenslab.github.io/susieR/ 

articles/finemapping.html

COLOC Wallace et al. https://chr1swallace.github.io/coloc/index. 

html

Locuscompare Liu et al. https://github.com/boxiangliu/ 

locuscomparer

qvalue Storey et al. https://www.bioconductor.org/packages/ 

release/bioc/html/qvalue.html

Analysis code generated for this study This paper https://github.com/boxiangliulab/muscle- 

QTL
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the exercise sessions (500 kcal per session) and daily physical activity (targeting an additional 500 kcal) were aimed at achieving a 

total caloric expenditure of 2000 kcal per week.

The following is a list of further exclusion criteria for study participants.

(1) Participants were excluded if they suffered from ischemic heart disease, epilepsy or insulin allergy, as part of the study 

involved using glucose clamps and insulin infusion protocols to avoid the risk of precipitating epileptic attacks or aggravating 

such underlying conditions.

(2) Participants with bleeding diathesis or inaccessible veins were excluded as phlebotomy and venipunctures for venous ac-

cess are required for the study.

(3) Participants on treatment for hypertension, dyslipidemia, and diabetes mellitus were excluded as the study’s purpose was to 

examine the degree of physiological and metabolic changes among an overtly healthy group, and being on treatment would 

interfere with the interpretation of these parameters. Participants with metabolic syndrome were included if they had not been 

treated for the abovementioned conditions. These participants were included as it is expected that a significant number of 

overweight and obese participants with metabolic syndrome may be asymptomatic and thus appear overtly healthy. 

Capturing such variations in the population would be useful for studying the effects of weight loss.

(4) Participants with significant recent changes in body weight or actively attempting to lose weight through dieting, bariatric 

surgery, or anti-obesity drugs were excluded, given the need to recruit participants with stable weight of a given narrow dis-

tribution of body mass index.

(5) Participants on glucocorticoids or any drugs known to alter insulin resistance (e.g., ACE inhibitors, protease inhibitors, met-

formin, etc.) were excluded to avoid confounding factors in the measurement of insulin sensitivity and insulin resistance 

required in this study.

(6) Participants on an investigational drug in the past 6 months were excluded as it would not be predictable if the agent affected 

insulin resistance.

(7) Participants with contraindications to Dual X-ray Absorptiometry (DEXA) and Magnetic resonance imaging (MRI) (e.g., Car-

diac pacemaker or metallic implants or suffering from claustrophobia) as the study entails the use of the DEXA and MRI.

(8) Participants with psychological, eating, or motivational disorders were excluded from the study to increase weight loss rates 

during the intervention.

(9) Participants whose birth records were unavailable or whose mothers are deceased and hence unable to provide accurate 

birth weight data.

(10) Participants from the extreme birthweight range (below the 5th percentile or above the 95th percentile) were excluded as 

extreme birth weights may impact the risk of diabetes.

METHOD DETAILS

Study design for assessment of weight loss outcomes

In the SAMS2 run-in phase, participants were instructed to maintain or discontinue specific behaviors to stabilize baseline physio-

logical measurements and prepare them for the intervention study. Strenuous physical activities, such as long-distance walking or 

swimming, were restricted for 3–7 days before the study to prevent effects on lipid levels. Participants completed a 3-day food diary 

and visited the study center for measurements. Pre-intervention baseline measurements were taken from the subjects. This included 

basic anthropometrics (weight, height, waist circumference, hip circumference), 24-h food recalls, and indirect calorimetry (for 

resting energy expenditure and a mixed meal tolerance test). DEXA, MRI, MRS and Tanita body composition analyzer (bio-

impedance) were used to measure the body composition. The euglycemic hyperinsulinemic glucose clamp was done to determine 

the insulin sensitivity index of the subjects. Tissue samples were taken, including fasting blood sample, urine samples, buccal smear, 

and a percutaneous skeletal muscle biopsy using a BioPince full core biopsy gun. The muscle biopsy was split into two parts; one was 

stored in PBS in a Falcon tube used for myoblast culture, while the additional 3–4 full cores were flash-frozen in liquid nitrogen Dewer 

flask for RNA extraction and sequencing. The same measurements and biopsies were taken post-weight loss to assess the out-

comes of the weight loss intervention. The Student’s t test for paired samples was used to assess the statistical significance of dif-

ferences in clinical data before and after the intervention.

Weight maintenance phase

After completing the weight loss intervention, participants who met the criteria were invited back for the 12-month weight mainte-

nance phase. During this phase, no interventions, exercise, or dietary modifications were implemented. Participants were followed 

up with visits every three months (at the 3-, 6-, 9-, and 12-month marks) to monitor their progress. At each visit, participants under-

went fasting clinical evaluations, including body composition assessments using Tanita and DEXA, as well as the MRI of the 

abdomen. Additionally, Magnetic Resonance Spectroscopy (MRS) was performed on the liver and muscle, and fasting glucose 

and insulin levels were measured. It is important to note that the clinical evaluations conducted during this phase represented a nar-

rowed subset of those performed at the pre- and post-intervention visits, and participants were not phenotyped as comprehensively 

as in the earlier stages of the study.
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Anthropometrics

The height and weight of subjects were measured using a wall-mounted stadiometer and digital scale respectively. Their BMI was 

then calculated using the subject’s weight (in kilograms) divided by the square of his height (in meters). We also measured waist 

circumference as the midpoint between the lower costal margin and iliac crest during mid-respiration. Hip circumference measure-

ments were taken around the widest part of the buttocks.

Dual-energy X-Ray absorptiometry (DXA)

Body composition was quantified using the Hological Discovery Wi DXA scanner. In the Hologic machine, subjects were positioned 

according to the standard protocol as they all fit within the measurement area. After measurement, three trained dual-energy X-ray 

absorptiometry technologists certified by the International Society of Clinical Densitometry (ISCD) conducted manual analyses to 

identify regional soft tissue demarcation.

Magnetic Resonance Imaging

Abdominal MRI was performed using Siemens Tim Trio 3T MR scanner. Axial images of the abdomen with 3 mm slice thickness, 

interslice gap of 0.6 mm, and an in-plane resolution of 1.25 × 1.25 mm were acquired using a two-point Dixon sequence (repetition 

time (TR) = 5.28 ms, echo time (TE)1 = 2.45 ms, TE2 = 3.68 ms) and body matrix coil after anatomical localization. The image slices 

covering the abdominal region between L1 and L5 vertebrae were acquired during a breath-hold of 18–20 s. A fully automatic graph 

theoretic segmentation algorithm followed by level sets was used to segment and quantify subcutaneous adipose tissue (SAT) – deep 

(dSAT) and superficial (sSAT) and visceral adipose tissue (VAT) depots.100

MR spectroscopy of liver and skeletal muscle

Liver fat was measured by proton magnetic resonance spectroscopy from 2 × 2 × 2 cm3 voxels localized in the left and right lobe of 

the liver using body matrix coil. Care was taken to avoid visible vessels and the liver boundary. Within each voxel, spectra were ac-

quired using a point-resolved spectroscopy (PRESS) sequence (TR = 2000 ms, TE = 30 ms). Respiratory motion was handled by 

breath-holding. The acquired spectra were fitted using the linear combination of model spectra (LCModel).101 The liver fat was deter-

mined from the concentration of methyl and methylene groups of lipids and the unsuppressed water signal from each spectrum, cor-

rected for T2 losses and averaged. The muscle spectrum was obtained from a 2 × 2 × 2 cm3 voxel within the soleus muscle using a 

PRESS sequence (TR = 2000 ms, TE = 30 ms) and knee coil. The spectrum was processed using LCModel and the amount of IMCL 

was calculated and expressed as the IMCL-to-creatine ratio.

Peripheral blood biochemical measurements

Peripheral blood samples were obtained from subjects after a 10-h overnight fast to survey the lipids, liver function, thyroid-stimu-

lating hormone, sodium, and lactate dehydrogenase (LDH). These biochemical analyses were done in the National University Hos-

pital Referral Laboratory (Singapore) accredited by the College of American Pathologists.

Accelerometer

Study subjects wore the accelerometer under free-living conditions to measure physical activity levels. This data was presented as 

mega counts per day (mcnts/day).

Doubly labeled water technique for measurement of total energy expenditure (TEE)

To assess energy expenditure, we used the doubly labeled water technique to precisely measure energy expenditure without 

requiring an in-patient stay, which may modify the participants’ energy expenditure. The body water of the subjects was enriched 

with a stable isotope of hydrogen (2H – deuterium) and oxygen (18O), which was used to determine the washout kinetics of both iso-

topes as their concentrations declined exponentially toward natural abundance levels. After providing a baseline urine sample, each 

subject was given a known quantity of doubly labeled water based on an estimate of total body water and used a mixture of 10% 18O 

and 5% 2H (i.e., does of approximately 100g for a 70kg subject with 25% body fat). Urine specimens were collected according to 

a schedule after the ingestion of the doubly labeled water over 2 weeks. Participants were instructed not to collect the first 

daily void of urine. All urine samples were transferred into aliquot tubes and frozen. Baseline and post-does urine samples were 

analyzed for deuterium and 18O isotopic enrichment by gas isotope ratio mass spectrometry. Fractional turnover rates for 

each isotope and their dilution spaces were computed and used to compute the CO2 expiration rate (rCO2). This, together 

with the oxygen consumption rate (rO2) and urinary nitrogen (UN) was converted to TEE using the Weir equation as follows: TEE 

(kcal/day) = 22.4 * (1.106 * rCO2 +3.941 * rO2) − 2.17 * UN.

Indirect calorimetry – Mixed meal tolerance test

The resting metabolic rate (RMR) was determined after an overnight fast and minimal activity for about two days before testing using 

an indirect calorimeter mounted on a metabolic cart. Activity level was then estimated using TEE – RMR. Using a ventilated hood to 

assess resting energy expenditure, participants will undergo indirect calorimetry. After this had been established, participants 

consumed a standard liquid meal that included 30% of energy from fat (10% for saturated fats, 10% from polyunsaturated fats, 
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and 10% from monounsaturated fats), 15% energy from protein, and 55% energy from carbohydrates. The respiratory quotient (RQ), 

fat and carbohydrate levels at these time points were measured. To quantify the changes in the levels of these measurements 

because of the mixed meal measurements, the baseline was subtracted from the measurement at 1.5 h after the mixed meal. The 

changes in RQ also served as a measure of metabolic flexibility.

Differential clinical traits

Before evaluating the effects of intervention on clinical traits, we addressed the presence of minimal missing data within our dataset. 

Using the ‘mice’ package in R,102 we performed multiple imputations separately for pre-intervention and post-intervention measure-

ments to generate complete datasets for further analysis. This approach allowed us to maintain the integrity and robustness of sub-

sequent statistical tests. To evaluate the effects of the intervention on clinical traits, we conducted a paired t-test for each clinical trait 

measured before and after the intervention. Due to the many traits analyzed, it was necessary to adjust for multiple tests to avoid an 

inflation of the false positive rate.103 Clinical traits that exhibited a q-value of less than 0.05 after correction were considered statis-

tically significant. Further, we computed correlations between the changes in various clinical traits from pre-to post-intervention us-

ing the ‘cor’ function in R.104 These correlations were visualized using a heatmap.105

Lipidomes profiling analysis

To comprehensively analyze the lipidomics profiles within this dataset, we employed Liquid Chromatography-Tandem Mass Spec-

trometry (LC-MS/MS) to measure a total of 201 distinct lipids. This method allows for the precise separation, identification, and quan-

tification of a wide range of molecular species, including both small and complex lipids. To identify differential lipids, we utilized the 

MetaboAnalystR package.106 Significant differential metabolites were selected based on several criteria: A variable importance in 

projection (VIP) score from the partial least squares-discriminant analysis (PLS-DA) model of at least 1, a p-value below 0.05, and 

a fold change threshold of 1.2. Subsequently, we visualized these significant metabolites using the volcano plot function in the 

ggplot2 R package.

Genotyping and imputation

We performed genotyping using InfiniumOm2-5Exome-8v1-3_A1 according to the manufacturer’s protocol. We exported geno-

type data into PLINK (v1.9)107 data format using GenomeStudio108 PLINK Input Report Plug-in v2.1.4 and performed sample QC 

and variant QC. For sample QC, no individuals were removed. We calculated the call ratio and heterozygous variant ratio per 

sample using PLINK. Call ratios of all individuals are greater than 0.98, which indicates good genotyping quality. Next, we esti-

mated genetic sex using intensity ratios (F index) for X chromosomes. We defined males as F > 0.8 and females as F < 0.2. 

Genetic sex and self-reported sex agreed with each other. To infer kinship between samples, we calculated PI_HAT and Z1 

using PLINK to identify related samples and there is no relatedness in our samples. For variant QC, we exclude autosomal var-

iants with low genotyping quality. Variants with suboptimal genotyping quality (call ratio <0.95) were removed. We only keep 

those variants with a minor allele frequency (MAF) > 0.05. We computed the Hardy-Weinberg Equilibrium (HWE) p-values 

and removed 4 variants that did not meet the HWE threshold of p < 1 × 10− 6. A total of 742,597 autosomal variants remained 

after all variant QC steps. These post-QC variants were further used for genome-wide imputation using the Michigan Imputation 

Server,50 and no additional QC on the imputation server was performed. We used all populations in 1000G Phase 3 high- 

coverage (GRCh38/hg38) as a reference panel. Following imputation, only those imputed variants with imputation quality 

R2 > 0.8 were retained. Variants with MAF <0.05 and HWE >1 × 10− 6 and biallelic were excluded. A total of 5,126,984 

SNPs were used for downstream QTL analysis. We merged these SNPs with the 1000 Genomes Project (1KG) (N = 2,504)69

for PCA analysis. Extensive linkage disequilibrium in dense genotyping data biases principal component-based ancestry esti-

mates. To reduce linkage disequilibrium, we pruned our dataset using a greedy algorithm implemented in PLINK. Finally, we 

performed PCA on merged SAMS2 and 1KG samples using PLINK.

Skeletal muscle RNA sequencing and quality control

Total RNA was isolated from the snap frozen samples of skeletal muscle biopsies from the subject’s vastus lateralis using NucleoSpin 

kit. RNA-seq was done on these extracted RNA using HiSeq4000 (Illumina), sequencing up to 80 million bidirectional reads of up to 

151 base pairs. FASTP (v0.23.4)109 was used to trim the adapter sequences and low-quality bases in read sequences. These quality- 

filtered sequence reads were aligned to the human reference genome GRCh38 primary assembly using STARsolo (v2.7.19a)110 and 

the GENCODE v43 annotation file111 was used as the reference GTF file. The resulting bam files generated feature read counts using 

the FeatureCounts (v2.0.3).112 The -waspOutputMode option was used to avoid potential artifacts from allelic mapping bias. The cor-

responding quality-controlled genotype files were used as input for the wasp-filtering classification of each sample. Genes with an 

average read count below ten and with zero counts in more that 20% of samples were considered not expressed and filtered.

Skeletal muscle transcriptome profiling and network analysis

We focused on differentially expressed protein-coding and long lincRNA genes in skeletal muscle RNA-seq using DESeq2,113

comparing gene expression profiles after the intervention to those before. All individuals are male, and all paired samples (pre-inter-

vention and post-intervention for the same sample) are sequenced in the same batch. The primary interest is in detecting differentially 
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expressed genes between the pre-intervention and post-intervention; considering the pairing samples as covariates, we fit the 

following linear mixed model for each gene:

E(expression) = β0 + βt ∗ condition + ID + ε 

Where E stands for expressions, t stands for pre/post-intervention.

Genes with log2 |fold change (FC)| > 0.3 and FDR <0.05 were considered differentially expressed genes (DEGs). Pathway 

enrichment analyses for DE genes were conducted using over-representation analysis (ORA),114 a computational method deter-

mining whether a set of genes defined a priori exhibits statistically significant concordant differences between two biological 

states (pre-intervention and post-intervention). Resulting FDR are adjusted for multiple testing using the qvalue methods con-

trolling at 5%.

To further identify gene co-expression patterns associated with the intervention, we applied weighted gene co-expression network 

analysis (WGCNA) on the skeletal muscle RNA-seq data. WGCNA44 was performed to construct gene modules based on correlation 

networks, allowing us to explore gene sets of highly co-expressed genes. To generate a biologically meaningful input set for co- 

expression network construction, we applied a custom filtering script that retains only genes meeting two criteria: (1) expression levels 

(FPKM) above 1 in at least two-thirds of both Pre and Post samples, and (2) a relative difference in mean expression (Pre vs. Post) 

exceeding 0.2. This stringent approach ensures that only sufficiently expressed and notably varying genes are included, thereby 

enhancing the reliability of subsequent network analyses. Using the dynamic tree-cutting method (deepSpit = 2, minModuleSize = 

30) followed by module merging at a specified threshold (mergeCutHeight = 0.25), we identified three modules in our dataset: the 

brown module (115 genes), the gray module (171 genes), and the blue module (88 genes). Among the three modules, only the gray 

module showed a notably higher correlation between the two conditions (r = 0.57, p = 1 × 10-10). To visualize interactions among 

genes in this module, we used Cytoscape, applying an edge-weight threshold of 0.2 to focus on the most biologically relevant con-

nections. While no single ‘‘super hub’’ gene emerged, a cluster of mitochondrial genes (MT-ND2, MT-ND5, MT-ND6, and MT-ATP8) 

was conspicuous. Given their well-established roles in muscle metabolism, this mitochondrial gene cluster suggests that alterations in 

mitochondrial function may underlie the module’s correlation with weight loss. We calculated the module eigengenes (MEs) and corre-

lated it with the intervention condition. Network analysis within the significantly correlated module was visualized using Cytoscape.115

Quantification of mRNA alternative splicing

We used the LeafCutter116 pipeline to identify alternatively excised introns by pooling all junction reads to quantify alternative splicing 

events. The GENCODE v43 annotation file was used as the reference annotation file. We used LeafCutter to quantify intron usage 

levels with the following steps: (1) We used RegTools ‘- junctions extract’ to analyze CIGAR strings in each bam file to quantify 

the usage of each intron with the options –Min_anchor_length 8, –Min_intron_length 50, –Max_intron_length 500000, –Strand_spe-

cificity FR; (2) Intron clusters were generated using leafcutter_cluster_regtools.py script from LeafCutter with the options –min_clu_ 

reads 50, –max_intron_len 500000; (3) prepare_phenotype_table.py script from LeafCutter was used to normalize the counts and the 

resulting per-chromosome files were merged and converted to BED format. Introns without any read counts in at least 40% of the 

samples or too little variation (standard deviation <0.005) were removed in this procedure. This resulted in 101,492 alternatively 

excised introns from 29,923 clusters. Each cluster comprises on average 3.4 introns.

Differential alternative splicing analysis

We performed differential splicing with LeafCutter,116 using age and five genotype PCs as covariates. Default parameters were used 

(-i 5 -g 3; a minimum of five samples per intron and a minimum of three samples per group). The p-value were adjusted using the 

Benjamin-Hochberg procedure. We call the intervention differential splicing with FDR <0.05. Sashimi plots to show the junction us-

age difference of interested position were generated by ggsashimi.117

Expression quantitative trait loci (eQTLs) with RASQUAL

Prior to eQTL analysis, we first filtered the expression matrices for both pre- and post-intervention conditions to ensure reliable and 

efficient RASQUAL implementation. Specifically, genes with average read count below 10 and with zero counts in more than 20% of 

samples were considered not expressed and removed, as low-expressed genes could lead to model convergence issues in 

RASQUAL. We determined age, genomic ancestry and hidden confounders of phenotype calculated by PEER.118 We performed co-

variate selection by empirically maximizing the power to detect eQTL. We randomly selected three chromosomes to perform covar-

iate selection for computation feasibility and avoid overfitting. We added age, genotype PCs (maximum of ten) and hidden co-

founders (maximum of ten) sequentially. We tested the top three genotype PCs because they explained most of the variability in 

the genotyping data. After multiple hypothesis correction, the number of eAssociations (defined as an SNP-Gene pair that passed 

hierarchical multiple hypothesis testing by TreeQTL) increased for Pre and Post conditions as the number of covariates increased. 

Therefore, we decided to use age, top 2 genotype PCs and top 2 hidden confounders of phenotype both for Pre and Post conditions, 

respectively. Mathematically, the model is the following:

E(expression) = β0 + βg ∗ genotype + βa ∗ Age +
∑2

i = 1

βg ∗ PC +
∑n

i = 1

βg ∗ HF 
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Where E stands for expressions, g stands for genotypes, PC stands for genotype principal components, and HF stands for hidden 

factors. And n = 2 both for Pre and Post conditions.

We mapped eQTL using RASQUAL,51 which integrated total read count with allele-specific expression (ASE) to boost power 

for eQTL mapping. To obtain GC-corrected library size, we first calculated GC content using GENCODE v43 by taking the 

average GC content of the exons of all genes. Next, we calculated GC-corrected library sizes based on read count output 

from FeatureCounts. We determined whether the p-values were inflated by visualizing their distribution. The p-values showed 

a uniform distribution with a spike near 0, indicating a strong signal of significant associations. The upward trend in the QQ plots 

demonstrates clear enrichment of significant eQTLs. Furthermore, eQTLs with low p-values were predominantly enriched 

around transcription start sites (TSS), with those located closer to the TSS showing higher effect sizes. We obtained gene-level 

and association-level FDR using a hierarchical hypothesis correction procedure implemented in TreeQTL. TreeQTL uses a hi-

erarchical FDR correction procedure, which performs FDR correction first on the gene level and then on the association level 

(gene by SNP). We used FDR <0.05 on both gene and association levels. To determine whether the p-values were inflated, we 

visualized the distribution of all p-values. The spike around zero and upward trend in the QQ plots show clear enrichment for 

significant eQTL. As expected, eQTLs with low p-values were enriched around transcription start sites. We further performed 

multi-tissue eQTL calling using the RASQUAL p-values and the multi-tissue version of TreeQTL. We set the gene as the first 

level, the intervention as the second level, and the gene-intervention-SNP as the third level and used the default FDR <0.05 

cutoff for all three levels.

Splicing quantitative trait loci (sQTLs) with QTLtools

We performed sQTL mapping with QTLtools70 using the intron excision ratios and a cis-window of 1Mb up- and downstream of the 

intron junction. The linear model used age, PCs derived from splicing ratios and 2 genotype PCs as covariates. Mathematically, the 

model is the following:

E(intron) = β0 + βg ∗ genotype + βa ∗ Age +
∑2

i = 1

βg ∗ PC +
∑n

i = 1

βg ∗ HF 

Where s stands for the ratio between reads overlapping each intron and the total number of reads over-lapping the intron cluster (to 

obtain cluster-level p-values, we used a conservative approach to correct for family-wise error rate with the Bonferroni procedure 

across introns within each cluster), g stands for genotypes, PC stands for genotype principal components, and HF stands for hidden 

factors. And n = 1 both for Pre and Post conditions.

To identify top nominal sQTL for an intron cluster, QTLtools was run using the permutation pass mode (1,000) permutations, and 

beta-approximated permutation p-values were adjusted for multiple test correlation per phenotype using Storey’s q-value in the 

qvalue R package.119 The significant threshold was set at FDR <0.05. We obtained cluster-based nominal p-value thresholds and 

then conducted the conditional analysis.

Independent sQTL mapping

To identify multiple independent regulatory signals per cluster, we performed conditional analysis using forward stepwise regression 

followed by backward selection for a given splicing ratio phenotype described previously. A scan for sQTLs using QTLtools70 was 

used to correct previously discovered sIntron-SNP pairs, and the covariates used in standard sQTL mapping. If the adjusted p-value 

for the lead variant was not significant at the cluster-level threshold, the forward stage was finished, and the procedure proceeded to 

the backward stage. If the adjusted p-value was significant, the lead variant was included in the list of sQTLs as an independent 

signal, and the forward step proceeded to the next iteration. Testing each sIntron-SNP pair was done in the backward stage. 

Only significant sIntron-SNP pairs in the backward stage were kept as independent sQTLs. And if the sIntron-SNP pairs were not 

significant in the test of the backward stage, they would be dropped. As a quality control, we determined whether the p-values 

were inflated by visualizing their distribution. The p-values showed a uniform distribution with a spike near 0. The upward trend in 

the QQ plots shows clear enrichment for significant sQTL. Further, sQTLs with low p-values were enriched around splicing donor 

and acceptor sites, and intronic sQTL SNPs were enriched at intron boundaries.

e/sQTL replication

We downloaded the entire set of skeletal muscle SNP-gene and SNP-Intron association tests for 361 GTEx skeletal muscle samples 

from GTEx portal.68 During replication, we selected cis-eQTLs and cis-sQTLs from each cell type and queried their p-values in above 

GTEx datasets. This replication was quantified using the π1 statistic implemented in the qvalue R package.119

Identification of gene-by-lifestyle interactions e/sQTLs

We systematically classified the significant e/sQTLs based on their detection patterns across pre- and post-intervention conditions 

into three categories: Pre-biased, Post-biased, and Shared QTLs. Pre-biased QTLs were exclusively significant in the pre-inter-

vention condition, while Post-biased QTLs showed significance only after intervention. QTLs that demonstrated significance in 

both conditions (affecting the same eGene or sIntron) were categorized as Shared e/sQTLs. While context-biased QTLs (Pre-biased 
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and Post-biased) inherently represent gene-by-lifestyle interactions, Shared QTLs may also harbor significant gene-by-lifestyle ef-

fects despite showing significance in both conditions, as their effect sizes and significance levels could differ substantially between 

conditions. To further identify gene-by-lifestyle interaction QTLs for significant e/sQTLs observed in both pre- and post-intervention 

conditions, we employed a linear regression model:

Y = β0 + β1G + β2L + β3(G× L)+ βᵢPCᵢ+ ε 

Y represents either gene expression (for eQTLs) or normalized junction usage ratio (for sQTLs), G denotes genotype, L represents 

lifestyle intervention status, and (G×L) is their interaction term.

We included relevant covariates, such as phenotype PCs, to account for potential confounding factors. The model was fitted for 

each QTL, and those with an FDR <0.05 for the interaction term (G×L) were classified as significant, indicating a gene-by-lifestyle 

interaction effect on the molecular phenotype of interest.

Asian-specific e/sQTLs

To identify Asian-specific e/sQTLs, we leveraged the eQTL and sQTL results obtained from SAMS2, which contains East Asian- 

derived muscle samples. We cross-referenced these significant e/sQTLs with those in the GTEx database,67,68 which primarily com-

prises European populations. By comparing the minor allele frequencies of East Asian-specific e/sQTL SNPs with those in 

European populations using data from the 1000 Genomes Project,69 we identified variants common (MAF >0.05) in East Asians 

but rare (MAF <0.05) in Europeans. These e/sQTLs were thus classified as Asian-specific e/sQTLs, as their elevated frequency in 

East Asians suggests they are likely to drive regulatory differences that are unique to this population.

GWAS summary statistics

We organized publicly available Asian-specific GWAS summary statistics of 12 phenotypes covering a broad range of cate-

gories4,79,80 (BMI, body mass index; BW, Body Weight; HbA1c, glycated hemoglobin; Glucose; TC, Total Cholesterol; TG, triglycer-

ides; HDL, High-Density Lipoprotein; LDL, Low-Density Lipoprotein; T2D, type-2 diabetes; CAD, coronary artery disease).

Colocalization between GWAS and e/sQTLs

We performed colocalization analysis using the organized GWAS summary statistics to determine whether the risk variants at GWAS 

loci will likely be the same regulatory variants for eQTL or sQTL. To assess colocalization between GWAS and eQTL or sQTL signals, 

lead GWAS variants with p-values below 5 × 10− 7 were selected. The HLA region (chr6:25-35Mb) was excluded from the colocal-

ization analysis. For each GWAS loci identified above, colocalization was tested only if it occupied a QTL with a nominal p-value 

below 1 × 10− 3. All GWAS variants were sorted by p-values in ascending order to identify independent GWAS loci. Starting from 

the variant with the most significant p-value, the remaining variants within a 500kb window on either side of the selected lead variant 

were removed. The same procedure was then applied to the next most significant variant among the remaining variants until the last 

variant in the list was reached. For each locus, we then tested colocalization between GWAS and QTL signals using the ‘coloc.abf’ 

function of the COLOC R package.81 The MAF of the SAMS2 was used to estimate sdY. PP4 > 0.75 was set as the threshold for sig-

nificant colocalization. The colocalization results were visualized using LocusCompare.120

Fine-mapping

Fine-mapping analysis was conducted to identify potential causal variants. The analysis was performed using the R package 

SuSiE.82 All SNPs within a 200kb window centered around the lead SNP of targets QTL were selected as candidate causal 

SNPs in this analysis. Function ‘susie_rss()’ was used to calculate the posterior inclusion probabilities (PIP) for these SNPs using 

QTL summary statistics. The LD matrix calculated by LDlink121 based on SAMS2 donors was used as the correlation matrix in this 

process.
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