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This paper investigates the optimal dividend and business scale strategies aimed at maximizing the value
of an insurance company. While prior studies typically assume that insurers can only adjust their business
scale through reinsurance, this study extends the framework by allowing the insurer to control the premium
rate. Under more realistic market assumptions, we examine the joint optimization problem for two common
types of reinsurance — proportional and excess-of-loss — across both arbitrage and non-arbitrage scenarios.
We derive the optimal strategies for dividends and premium pricing, along with their corresponding value

functions. The results show that the insurer should decrease the premium rate and reduce reinsurance coverage
as the surplus increases. The optimal dividend policy follows a barrier strategy. Economic interpretations and
numerical examples are provided to illustrate the findings.

1. Introduction

Safety and profitability are key considerations in a company’s op-
erations, with risk management and profit pursuit at the core. Though
seemingly contradictory, an imbalance between these factors can be
counterproductive—excessive profit-seeking increases short-term risks
and insolvency potential, while overemphasis on safety reduces prof-
itability. A successful corporate strategy requires balancing these ele-
ments to maximize company value. In corporate finance, this balance
is often measured by maximizing expected discounted dividends be-
fore bankruptcy, inherently accounting for both profitability and risk.
For insurance companies, this involves strategies related to dividends,
reinsurance, and premium pricing.

Dividends play a crucial role in determining a company’s value and
act as a key mechanism for profit distribution. A well-structured div-
idend policy not only safeguards shareholder interests but also builds
investor confidence and supports the company’s long-term investment
and growth objectives (Smith & Watts, 1992). The issue of when
to declare dividends and how much to distribute has long attracted
scholarly interest, dating back to the seminal work of De Finetti (1957).
Since then, a substantial body of research has emerged on the optimal
dividend problem from various perspectives, producing significant the-
oretical and practical insights (see, Asmussen & Taksar, 1997; Schmidli,
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2007; Yao et al., 2011; Zhao et al., 2017; Chen et al., 2018; Yang et al.,
2020; Zhu et al., 2020; Avanzi et al., 2021).

Reinsurance is an essential tool for insurance companies to manage
business scale and transfer risk. Among the various types, proportional
and excess-of-loss reinsurance are widely studied due to their opera-
tional simplicity and practical applicability (Cao et al., 2023, Amini
et al,, 2024 and Aboagye et al., 2025). The joint optimization of
dividend and reinsurance strategies has attracted considerable aca-
demic attention, with notable contributions from Hgjgaard and Taksar
(1999), Asmussen et al. (2000), Bai et al. (2010), Liang and Huang
(2011), Zhou and Yuen (2012), Yao et al. (2016), Li et al. (2021), Azcue
and Muler (2005), and Meng et al. (2016). However, these studies focus
on the no-arbitrage setting. In contrast, this paper extends the analysis
by exploring the optimal dividend, reinsurance, and pricing strate-
gies of insurance companies under both no-arbitrage and arbitrage
scenarios.

Premium pricing is one of the key determinants of a company’s
business scale and a fundamental pillar alongside dividends and rein-
surance in insurance company management. Setting appropriate premi-
ums requires careful consideration of consumer affordability, company
profitability, risk coverage, and long-term sustainability. Prior research
has made significant progress in these areas. For example, Martin-
Lof (1983), Asmussen et al. (2019a, 2019b), Steffensen and Thegersen
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(2019) and Thggersen (2016) proposed effective methods for pre-
mium control. Zhou et al. (2017), Liu et al. (2020), and Jiang et al.
(2020) investigated optimal investment and premium strategies aimed
at maximizing the expected utility of terminal wealth. Hpjgaard (2002)
analyzed the optimal dividend problem under premium control in a
diffusion risk model, while Christensen et al. (2021) studied investment
and premium strategies to maximize the expected discounted utility of
dividends. However, to the best of our knowledge, the joint optimiza-
tion of dividend, reinsurance, and premium pricing strategies remains
underexplored.

Dividends, reinsurance, and premium pricing are crucial tools for
managing an insurance company, and their interaction plays a signif-
icant role in maintaining financial stability and promoting sustainable
growth. In this paper, we aim to bridge this gap in the literature by
investigating the joint optimization of these three strategic levers in
a continuous-time setting. We assume that both the insurer and the
reinsurer follow the expected value principle for premium pricing. The
insurer has the ability to influence the premium through the safety
loading parameter y. The arrival of claims is influenced by the premium
rate and is modeled by a non-homogeneous Poisson process { N(?),t >
0} with a time-dependent intensity A,. Following Hgjgaard (2002), we
define the intensity as a function of the safety loading, i.e., 1 = h(y).

To reflect practical considerations, we introduce an upper bound
a on the premium rate, above which no customers are willing to
purchase insurance, resulting in a claim arrival rate of zero. Based
on the relative cost of reinsurance, we classify the problem into two
cases: one where reinsurance is expensive and no arbitrage opportunity
exists, and another where reinsurance is cheap, allowing for arbitrage.
Within this framework, we explore how an insurance company can op-
timally balance its dividend policy, reinsurance strategy, and premium
pricing to maximize its expected discounted dividend payouts. We
consider both proportional reinsurance and excess-of-loss reinsurance
models and derive closed-form solutions for the value function and the
corresponding optimal strategies, which are shown to depend on the
structural parameters of the risk model.

Our analysis reveals that, as the insurer’s surplus increases, the
premium rate tends to decline, thereby facilitating business expan-
sion. In the absence of arbitrage opportunities, the company may
optimally choose to exit the market and accept bankruptcy when
its surplus reaches zero. In contrast, when arbitrage is possible, the
company prefers to continue operating even at zero surplus, as the
premium rate exceeds the cost of reinsurance. If reinsurance becomes
prohibitively expensive, the insurer is inclined to forgo reinsurance
entirely. Interestingly, when the surplus reaches a level sufficient to
pay dividends, the premium strategies under both reinsurance types
converge. By jointly modeling and analyzing dividends, reinsurance,
and premium pricing, this study provides a unified framework that en-
hances our understanding of insurance company decision-making and
offers valuable implications for strategic management under dynamic
risk environments.

The remainder of the paper is organized as follows: Section 2
introduces the framework of risk model and raises the optimization
problem. Optimal control techniques are employed to solve the opti-
mization problems under proportional reinsurance and excess-of-loss
reinsurance, presented in Sections 3 and 4, respectively. Closed-form
solutions to the value function and the optimal strategies are presented.
Section 5 provides numerical examples to illustrate the main results.
Section 6 concludes the paper.

2. Model formulation and the optimal control problem

We start with a filtered probability space (2, F, {F,},50, P), where
the filtration {F,},,, satisfies the usual conditions, that is, {7}, is
right continuous and P-completed. Throughout the paper, it assumes
that all stochastic processes and random variables are well-defined and
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adapted to the probability space. Similar to references such as As-
mussen et al. (2000), Azcue and Muler (2005), we use the following
classical risk model to simulate the uncontrolled surplus process:

N

Rt)=x+c()— Z X,

i=1

(2.1)

where x > 0 is the initial surplus; The claim times process, denoted
by {N(#),t > 0}, is described as a non-homogeneous Poisson process
with a time-dependent intensity function given by 4,; {X;,i = 1,2,...}
denote a sequence of positive, identically and independently distributed
(i.i.d.) random variables representing the claim sizes, with common
distribution function F(x), the finite mean value x > 0, and the second
moment ¢ > 0; c(f) denotes the accumulated premiums up to time 7,
which is determined by the expected value principle with safety loading
7, > 0. Then we have
t

c(t) = ;4/0 (I +7y,)Ads. (2.2)
Under a reinsurance policy, the positive risk X; is decomposed into two
parts: S(X;) > 0 and X; — S(X;) > 0, where S(X,) is retained by the
insurer and X; —S(X;) is ceded to the reinsurer. Assume the reinsurance
premium rate is also calculated by the expected value principle with a
constant safety loading » > 0, then the surplus process of the insurance
portfolio with reinsurance policy is given by

N@)
U =x+Ct) - Y SX,).

i=1

2.3)

where C(¢) represents the net premium for the insurer up to time ¢,
calculated as

t 1
c = /4/ (rs =misds +(1 +71)E(S(X1))/ Agds, 2.4
0 0

with E [S (x 1)] < oo representing the expected claim size under the
reinsurance policy, and E |.S (X )2 < oo denoting its second moment.*

Following Hgjgaard (2002) and Christensen et al. (2021), we as-
sume that the insurer determines the premium rate by choosing the
safety loading y, > 0 at time ¢. The claim times process { N(¢),t > 0}
has an intensity A, that depends on the safety loading, expressed as
A, = h(y,). This implies that both the customer base and claim frequency
are influenced by the premium rate, with 4, decreasing as y, increases.
It is reasonable to assume that A(y,) is a strictly decreasing concave
function, reflecting the observation that higher safety loadings reduce
portfolio size and claim rates. To incorporate practical considerations,
we assume a finite customer base, implying that A(0) = A, < .
Furthermore, to ensure the model remains realistic, we assume the
existence of a threshold « such that a(a) = 0, signifying that no claims
occur when the safety loading reaches or exceeds this level.

It is well known that jump models pose significant challenges in
optimal control problems. Therefore, we adopt a classical approxima-
tion approach to tackle this challenge. Namely, we approximate the
model (2.3) by a pure diffusion model {U,,r > 0} with the same drift
and volatility. Specifically, the approximation process U, satisfies the
following stochastic differential equation

dU, = [u(y, — MA + AnE(SX )]dt + \/ L E (S(X)?)d B,.

with U,

adapted to the filtration{F,}5,. F2 : <

smallest complete information filtration generated by the Brownian
motion process. Motivations and relevant references for this approach,
along with more complex examples of diffusion approximations in risk

(2.5)

x > 0, where {B,,t > 0} is a standard Brownian motion
= o{B;0 < s < t} is the

! Since {X,};-;,5.. are iid. random variables. Thus, E (S (X))
E (S (X,)) = -, and we denote the common expectation as E (.S (X, )) without

loss of generality.
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theory, can be found in Grandell (1991), Meng et al. (2016), Zhou and
Yuen (2012).

Let L, denote the cumulative dividends paid to shareholders from
time O to time 7. In a broader context, an insurance company manages
multiple insurance and reinsurance contracts, each with its own signing
time and terms. This indicates that the retention strategy for the entire
portfolio is fluid and adjustable. This approach more accurately reflects
the operational strategies of insurance companies, as they continuously
adjust and optimize various contracts. We assume the insurer can
dynamically modify retention levels {.S,(-),7 > 0}, premium rates {y,,7 >
0}, and dividends {L,,z > 0}. Given a strategy = {y,S(),L}, the
controlled surplus process follows:

dUT = [u(y, — Mh(y) + nh(r)E(S,(X\)ldt + \/ h(y,)E (S,(X,)*)dB, — dL,.

(2.6)

Definition 2.1. A strategy = {y,S(), L} is said to be admissible
if (i) The process y = {y,,t > 0} is an FIB-predictable process and
satisfies that 0 < y, < 5. (i) S(-) = {S,(-),t > 0} satisfies the following
conditions: (1) S(0) =0, and (2) 0 < S’(X,) < 1 and for all X; > 0. (iii)
L ={L,,0 <t <"} is an increasing, F2-adapted cadlag process with
Ly_=0and AL, =L, -L,_ < ur for all t > 0.

Denote the set of all admissible strategies by IT.

Problem 2.1. Under the strategy = € II, the time of bankruptcy
associated with U/ is defined as

o =inf{t>0: UF <0). @2.7)

Let E, denote the expectation conditional on UJ_ x,and § > 0
denote the discounted rate. In the view of corporation finance, we use
the following performance function to measure the value of insurance
company:

T

V(x,m) = EX< / e"s’dL,),
0

which is the expected present value of the future dividend payments
until the time of bankruptcy. We aim at finding the value function

(2.8)

V(x) = sup V(x,x), (2.9)
rell
and the optimal strategy z* = {y*, $*(-), L*}, such that V' (x) = V(x, 7*).
By defining an operator

£7500(x) = [ SOV (SO02) 1)+ ety =)

+nE(S(X))h()v' (x) - du(x)] , (2.10)
we obtain the HJB equation satisfied by the value function:
max ¢ sup L5000, 1= V'(x) ¢ =0, (2.11)
S().rel0.n]
max {—V(O), sup {uly = h()V'(0) — 5V(0)}} =0. (2.12)
r€l0.a]

Eq. (2.12) represents the boundary condition, indicating that when
the surplus reaches zero, the insurer faces two options: declaring
bankruptcy or sustaining the company through arbitrage.

Theorem 2.1. Suppose f(x) is an increasing, concave, and twice contin-
uously differentiable solution of (2.11) and (2.12). Then, the following
statements hold:
1. For each = € II, f(x) > V(x, n), implying f(x) > V(x) for all x > 0.
2. If there exists a strategy =* = {y*, S*(-), L*} € II such that f(x) =
V (x,7*), then f(x) = V(x), and z* is the associated optimal strategy.

Proof. The proof of this theorem is standard. We refer the readers
to Schmidli (2007). O
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Next, we analyze the optimization problem under two specific
reinsurance arrangements: proportional reinsurance and excess-of-loss
reinsurance.

3. The optimal solution in the case of proportional reinsurance

Proportional reinsurance is one of the simplest and most popular
forms of reinsurance. In this case, S(X;) = aX; denotes a proportional
reinsurance contract, where a € [0, 1] is the risk retention ratio. The
reinsurance strategy a = {a,,7 > 0} is said to be admissible, if it is F2-
adapted process with 0 < @, < 1 for all 7 > 0. Then under the strategy

x = {y,a, L}, the controlled surplus process (2.6) simplifies to

dU[ = [u(y, = mh(y,) + nuah(r)ldt + a,o\/h(y)d B, — d L,. G.D

As a special case of (2.8) and (2.9), let the performance function be
denoted as V,(x,7) = E, ( fOT” e %dL,), and the value function as
V,(x) = sup,cp V,(x, 7). Combined with Eq. (2.11), the corresponding
HJB equation for the value function is:

max sup
a€(0,1],y€[0,1]

iy = 1+ @A) = 80,(0) 1= o) | =0,

{ 3h0@ )
(3.2)

with the boundary condition (2.12). From Theorem 2.1, we conclude
that V,(x) = v (x).

Denote b, = inf{x > 0 : v/(x) < 1}. Then, by the concavity of v,(x),
it has v/ (x) > 1 for x < b,. So, for 0 < x < b,, (3.2) reduces to

sup

{ 3H@0P ) 0) + 1y =+ aDh(r), () = 0,0 | = 0.
a€(0,1],y€[0,n]

3.3)

Differentiating with respect to a and y respectively, and setting the
derivative to zero, we get

ac? U (x) + nuv! (x) = 0, 3.4
(M)zh'(}’)vg(x) +2ulh(y) + (r — 1+ an)h' ()1v] (x) = 0. (3.5)
Solving (3.4) and (3.5) yields
v ac? _ (a0)* ' (y) (3.6)
VI T o 2ulh() + (r =+ aph ()] ’
Moreover, (3.6) gives
2[h() + (y = WA (]

=G(y) =" LT 3.7

a ) ) 3.7)
2, 20(H' (@)

The property G'(y) = =t o < 0 establishes that the function
G(y) is decreasing with respect to y. Now we obtain the relationship
between a* and y*. Next, we will discuss the scenario based on whether
arbitrage exists or not.?

3.1. No arbitrage: n > «

In this section, we examine the scenario where arbitrage is absent,
i.e., reinsurance becomes prohibitively expensive (n > «). This may
result from heightened risk uncertainty, constraints in market supply,
or reinsurers increasing premiums to mitigate risk and adhere to reg-
ulatory requirements. Then boundary condition satisfied by the value

function are:

0a0)=0. and  sup {u(r = Dh()V(©) = 50,0)} <0. (3.8)
Y€El[0,a

2 The condition # > a eliminates any arbitrage potential for the insurer.
Conversely, when 5 < «, the insurer can achieve arbitrage by transferring all
risks to the reinsurer while retaining the profits.



D. Yao et al.

Combined with (3.3) and (3.4), we get

(r = 1+ Samuh()vx) = 50,(x) =0. 3.9
Similarly, (3.3) and (3.5) result in
CERQ) o _

W) Ul (x) = 6v,(x) = 0. (3.10)
Due to v,(0) =0, it is easy to get that y*(0) = a, and
a(0) = 1= (3.11)

Since a(0) € [0, 1], we conclude that a*(0) = 1 if a(0) > 1, indicating
that reinsurance is too expensive and insurers forgo risk transfer. On
the other hand, if a(0) < 1, then a*(0) = a(0).

3.1.1. n>2a

If n > 2a, which means that reinsurance is too expensive, insur-
ers forgo risk transfer. Then the HJB equation satisfied by the value
function is

max {

Repeating step (3.5), we can get (3.10). For ease of derivation, we first
give a lemma.

sup
7€l0.1]

{3H0020 ) + () = 50,00} 1 - vﬁ,(x)} =0,

(3.12)

Lemma 3.1. There exists a unique solution y, € (0,a) to the equation
h(s) + sh'(s) = 0.

Proof. Consider the function h(s) + sh’(s). Its derivative with respect to
s is given by

% (h(s)+ sh'(s)) = B (s) + I (s) + sh" (s) = 2K/ (s) + sh"'(s) < 0,

which implies that the function h(s) + sh’(s) is strictly decreasing.
Moreover, we are given that

h(a)+ah'(@) <0 and  h(0) = Ayy, > 0.

Since A(s) + sh/(s) is continuous and strictly decreasing, by the Inter-
mediate Value Theorem, there exists a unique point y, € (0,a) C (0,7)
such that A(r,) + A (r,) =0. O

uh?(s)

Define the function H(s) := 7 ©

with respect to s yields
2 "
PO S0 for
(h'(s5))?
Combined with Lemma 3.1, A(s) + sh’(s) < 0 for s € (v, a). Next, define
H'(s)

the function Q,(y) as
§ = WUHOTH©) oy

a
x=0(@) = /
4 W (s)o?

Combined with (3.13) and H(s) < 0 for s < «, the integrand in (3.14)
is positive, which implies that the inverse function exists.

< 0. Taking the derivative of H(s)

H'(s) =2uh(s) — u s €[0,al. (3.13)

ds, y€ [yz,a) (3.14)

Theorem 3.1. If n > 2a, then the value function is

b, 200@7 o+07 @ ©7 )
¢ o2 ds
x Q7)o
Vu(x) =0, =13/ e !

x—b, +v,(b,),

dy, 0<x<b,

x> b,,
(3.15)

which is an increasing, concave and twice continuously differentiable solu-
tion of (3.2). Here b, = Q,(y,), where Q,(:) is defined by (3.14). Then the
associated optimal premium strategy is described by the safety loading as

rH(x) = {

07'(x), 0<x<b,
x> b,.

(3.16)
72>
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It is a decreasing function, which means that the insurer should lower the
premium rate as the surplus increases. And the optimal risk-taking ratio is
to take full risk, that is a*(x) = 1. The optimal dividend strategy is of barrier
style with parameter b, > 0, namely,
t

LT = (x = by)y 150 +/0 iyt oy, ALT (3.17)
It means that whenever the (modified) surplus exceeds the barrier b,, the
excess is paid out immediately as dividends.

Proof. The proof of this theorem is standard. We refer the reader
to Hejgaard (2002). [

312 2a>n>a
When 2a > 5 > a, although reinsurance is still expensive, insurers
still choose to buy reinsurance to transfer risk when their surplus is

low. Combined with (3.9) and (3.10), it is easy to get y*(0) = a and
a*(o) — 2(’7—“).
n

Lemma 3.2. There exists a unique y, € (y,,a) such that G (y,) = 1.

_2[a(ra)+(r2=n)H' (r2)]

Proof. Since G (y,) = )
2

, simplifying gives:

2nh’ (72)

nh' (72) -

Additionally, G(a) = —@ < 1 and G(y) is decreasing in y. By the

G(n)=

Intermediate Value Theorem, there exists a unique y; € (y,,a) such
that G (y)) =1. O

Next, define the function Q,(y) as

a H,(S)
x=0y(r) 5=/
2 , 5—

-
G(s)o2 H(S)

ds, y€ly.a (3.18)

- GZ,)::;)H 5 Q;l(x) exists and
is unique for y € [y,a). Therefore, we have a(x) G (Q;l(x)).
Define x, as the point at which the entire risk is assumed, then x, :=
0, (G7'()) = 0, (11)-

Next, define the function Q;(y) as

71 H'
x=04(y) = / ©
y 6

_ 2u(h(s)+sh'(s)
W (s)02
From (3.7), it is easy to get A'(y;)n = 2(h(y,) + v, ' (7)) < 0. Combined
with Lemmas 3.1 and 3.2, A(s) + sh’(s) < 0 for s € (y,,7;).- The inverse
function y = Q_;l(x) exists and is unique for y € [r,,7,). In this case,
b, = Q3(72)~

Since

> 0, the inverse function y

ds+x,,
H(s)

v € [rm1) (3.19)

Theorem 3.2. Under proportional reinsurance contract, when 2a > n > a,
the value function has the following form

Xq Hn

x v 672 ds
n /0 e 2 dy,

0<x<x,
by 241007 )+03 ' ©@F' )1
Vo) =v,(x) = L e at
a a f;: e h (Q3 (s))o dy+ Ua(xa)’ X, <x< ba!
X = ba + Ua(ba)a x> ba’
(3.20)

which is an increasing, concave and twice continuously differentiable solu-
b 24003 OO O Q]

tion of (3.2). Heren, = ¢ * W@y o , where G(-), Q,("),

Q5(-) are defined by (3.7), (3.18), (3.19), respectively. Then the associated

optimal premium strategy is described by the safety loading as

0;'(®), 0<x<x,
) =4907'(x), x,<x<b, (3.21)
72, x> b,,
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which is a decreasing function. The optimal reinsurance strategy is charac-
terized by the following risk retention ratio
GO;'(x), 0<x<x,

a*(x) = {
I,

It is an increasing function, which means that the insurer should reduce
reinsurance as the surplus increases. The optimal dividend strategy follows
a barrier style, similar to that described in (3.17).

(3.22)

x> X,

Proof. We will prove that the value function is a solution of the HJB
Eq. (3.2). First, we demonstrate that U; (x) < 1 holds for 0 < x < b,.
By straightforward calculation, we obtain v/(b,—) = 1. The second
derivative is explicitly given by

[

— g
605" ()02
,

un
—n 0<x<x,,
. 1 6(0;")e? =TT
v, (x) = ‘ 1 - 203 oy ooz on
— - 1O- e — 3 - J
REZCCAIC AR I o <x<b.
(031 ()2 a a
(3.23)

Combining this result with Lemma 3.1, we deduce v”/(x) < 0, which
implies v/ (x) > 1 for 0 < x < b,,.

We now prove that Eq. (3.20) is the solution to (3.2). We rewrite
(3.10) as

H(y(x))v!(x) + 6v,(x) = 0. (3.24)
Then, taking derivative respect to x yields
H(y ()l () + H' (y(x))y" ()l (x) + 60/,(x) = 0. (3.25)

And using (3.4), we obtain the following ordinary differential equa-
tion(ODE)

H(y(x)) -6

nu
G(y(x))o? <o,

H'(y(x))
which means the relationship between y and x satisfies (3.10). And use
(3.6), we can obtain that (3.20) is the solution to (3.2) for 0 < x < x,,.
Similarly, we can prove that (3.20) is the solution to (3.2) for x, < x <
b

Y(x) = (3.26)

-
For x > b,, v,(x) satisfies that 1 —v/ (x) = 0, 50 v,(x) = x—b, +v,(b,).
And we can get

/"

SHO ) + () ) = 50,0)

= uryh(yy) — 6v,(x)
< pyah(ry) — 6v,(b,)

=0. (3.27)

which means that v,(x) satisfies HJB Eq. (3.2).

It is straightforward to verify that v,(x) satisfies the boundary
condition (2.12). Therefore, we omit the details here. In summary,
v,(x) is an increasing, concave, and twice continuously differentiable
solution to the HJB Eq. (3.2). [J

3.2. Arbitrage exists: a > n

When « > 7, reinsurance is relatively cheap and the possibility of
arbitrage exists. Combined with (3.9) and (3.10), we can get 7(0) = «
and a(0) = 20=9) - 0 ynder the boundary condition v,(0) = 0, which
is inconsistent with the definition of a. Then the boundary condition
becomes

—0,0)<0, and sup (3.28)

{ Uy = WAV, (0) = 50,(0)} = 0.
7€l0,a]

Similarly to the above, we take the first-order optimality condition,
[1h(r) + u(y — mH ()] V},(0) = 0.
Now, define {(y) := ph(y) + u(y — mh' ().

(3.29)
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Lemma 3.3. There exists a unique 7 € [, a] such that {(7) = 0.

Proof. Consider the function ¢(y) defined on the interval [, «]. From
the derivative

) =2ul' @)+ uly —mh" (y) < 0.

Hence, {(y) is strictly decreasing on [#, a].

Moreover, we have the boundary values ¢(y) > 0 and {(a) < 0. By
the Intermediate Value Theorem, since {(y) is continuous on [, «] and
strictly decreasing, there exists a unique ¥ € [5,a] such that {(7) =

0. O

From Lemma 3.3, we obtain a = G(7) = 0. This result implies that
when x = 0, the optimal safety loading is 7, and the risk-taking ratio is
0. Next, define the function Q,(y) as

7 H'
e [ O
y 06— s

ds
i ’
G(s)o2 H( )

Yy €lr, 7). (3.30)

Similar to the (3.18), the inverse function y Q;l(x) exists and is
unique for y € [y,,7). Therefore, we have a(x) = G (0;'(x)), and
X, =04 (GT'(D) = 04 (11)-

Next, define the function Qs(y) as

71 H’
x=0s5() = / ()
Y

_ 2u(h(s)+sh'(s)
) e H{(s)
Similar to the (3.19), the inverse function y = Q;](x) exists and is
unique for y € [yz, " ) In this case, b, = O3(r,).

y € [yz, yl) . (3.31)

Theorem 3.3. Under proportional reinsurance contract, when a > 1, the
value function has the following form

/'Xa M ds
X y ~0—1 2
n, /0 e’ O dy+p,(0), 0<x<x,
by 20005 5)+05 o @51 (o))
V() =0, =1 px L = pomiom 4
a a Q3 ()
fX“ e 5 dy+v,(x,), x,<x<b,

x = by +0,(b,)s x> b,

a

(3.32)
which is an increasing, concave and twice continuously differentiable so-
b, 2000Q3  s)+07 ' @5 (1 s
lution of Eq. (3.2). Here ny = e e H@s e , where G(-),
0,("), Os(-) are defined by Egs. (3.7), (3.30), (3.31), respectively. And

~ Xa MM g
7 —mun, e/O [ as
o
Then the associated optimal premium strategy is described by the safety
loading as

v,(0) = (3.33)

0;'(x), 0<x<x,
1) =4903'(x), x,<x<b,
Y25 x> ba’

(3.34)

which is a decreasing function. The optimal reinsurance strategy is charac-
terized by the following risk retention ratio

-1
o= {?(Q4 (). 0<x<x,

X > X,

(3.35)

which is an increasing function. The optimal dividend strategy follows a
barrier style, similar to that described in (3.17).

Proof. The proof is analogous to that of Theorem 3.2 and is omitted
for brevity. [

4. The optimal solution in the case of excess-of-loss reinsurance

In this section, we shall discuss the problem in the case of excess-
of-loss reinsurance, which is another popular reinsurance style. Let
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S(-) = min{-,d} denote an excess-of-loss reinsurance contract, where
d is the risk retention level. Denote F(s) = P(X ;> 5) = 1— F(s).
Considering the insurable conditions, we assume that the support of
claim distribution is limited, i.e., £ := sup{x : F(x) < 1} < oo. It is
easy to prove that 2u¢é > o2, see Yao et al. (2016). Assume that the
insurer can dynamically adjust the retention level d. The excess-of-loss
reinsurance strategy is determined by the process d = {d,,t > 0}, which
is an 72-adapted process and 0 < d, < &. Define the following functions:

d
g(d) = E(X; Ad) = / F(s)ds, 4.1)
0

d
pd)=E ((X; Ad)?) = / 25F(s)ds. (4.2)
0

Then under the strategy =
process follows

{r,d,L} € I, the controlled surplus

dUT = [u(y, — wh(r,) + nh(y)g(d)1dt + \/h(y,)p(d,)d B, — d L,. (4.3)

Similar to Section 3, in the case of excess-of-loss reinsurance, denote
the performance function V,(x,z) = E, ( fOT” e ¥dL,) and the value
function V,(x) = sup,cj V;(x,7), respectively. Correspondingly, we
give the following HJB equation associated with the value function:

max {

with the boundary condition (2.12).

Assume that the switching point b, = inf{x > 0 : v;(x) < 1} exists.
Then, by the concavity, u;(x) > 1 for x < b,. So, for 0 < x < by, (4.3)
reduces to

sup { 1
defoglyelon b 2
*LCr, = MhGr) + (S () = 8040 1,1 = oyx) } =0,

4.4)

h(r)p(d)vy (x)

sup

{ %h(;’)p(d)vf;(X) + [u(r = mh(y) + nh(y)g ()], (x) - 5Ud(x)} =0
del0.£lyel0

(4.5)

Differentiating with respect to y and d respectively, and setting the
derivative to zero, we obtain

(4.6)
“4.7)

R )p()](x) + [2u(h(y) + (v = D () + 2ng(d)R (v)] v}, (x) =0,
dv’](x) + nv/,(x) = 0.

Suppose that the insurer can implement optimal reinsurance and
premium strategies simultaneously. From (4.6) and (4.7), we can get
the relationship between y and d as follow
v 4 - ()p(d)
vy (x) n 2ulh(y) + (v = A (D] + 2ng(d)h' (v)
which is the relationship between optimal retention levels d*(x) and

safety loading y*(x). Next, we will discuss two scenarios: the presence
of arbitrage and the absence of arbitrage.

(4.8)

4.1. No arbitrage: n > «

Similar to the previous section, we first examine the scenario where
reinsurance is more expensive and no arbitrage opportunities exist.
That is to say, the boundary condition becomes:

0,000=0, and sup {u(y — W)V, 0) - 50,0} <O. (4.9)
7€[0,a]
When d = &, (4.8) leads to
¢ Hpe?
n o 2ulh@)+rh' ()]
Thus, define v(y) := 2ué[h(y) + yh' (y)] — nh'(y)o2, and derive that
VI(y) = 2puE120 () + v A" ()] — nk (v)? (4.10)
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= 4Eul (v) + 2uEy i (v) — nh” (y)o?
<AEuh' (v) + 2uénh” () — nh" (y)o?
= 4Eul (7) + nh" (1)2ué - o%)

<0.

The first inequality holds because of # > y and the secondary inequality
holds because of 2ué > 2. Noting that v(0) = 2uéh(0) — nh'(0)c? > 0
and v(a) = 2uéah’ (@) — nh’' (@)o®. We can conclude the following:

1. When v(a) < 0 (i.e., a <57 < 2:—2‘5(1), there exists y, € (y,,a) such
that v(y,) = 0, and insurers adopt reinsurance strategies.

2. Conversely, when v(a) > 0 (i.e., n > zaifa), insurers do not
consider reinsurance strategies.

411 1> %a

When > 2;—‘2511, the cost of maintaining an excess-of-loss reinsurance
strategy becomes prohibitively high for the insurer, leading them to
abandon the reinsurance strategy. In this case, the insurer assumes the
entire risk and dynamically adjusts the safety loading of the premium
to maximize the company’s value. The resulting optimal value function
and optimal strategy align with the findings of Theorem 3.1.

2ué
6—2a>712a

4.1.2.
When 2‘—2‘50: > n > a, although reinsurance is more expensive,

insurers still choose reinsurance to transfer risk. Putting (4.6) back into

(4.5) yields

_ @)

Ry 4

Similar to (3.10), we can get y(0) = a.

(x) = 6vy(x) = 0. (4.11)

Lemma 4.1. There exists a function q(-) such that d = q(y), where q(-)
characterizes the relationship between the optimal retention level and the

safety loading.

Proof. For clarity of presentation, we define

r,(d) = 2du [h(y) + (v = A ()] + 2dng(d)R (v) — nh' (r)p(d),

which follows from (4.8). Taking the derivative of the above function
with respect to d yields

V’y(d) =2u [h(y) + (v = DI )] + 2ng(d)W (7),

and further differentiating gives

(d) = 2nF(d)H (7) < 0.

Thus, r,(d) is a concave function of d. Combined with the conditions
r(0) =24 [A(r) + (v = M ()] > 0 and r/(&) = 2u [1(y) + v I (1)] <0, we
conclude that r,(d) first increases and then decreases. Moreover, since
r,0)=0 and

r, (&) = 2ué [h(y) + v ()] = nh' (r)o* < O

for y € (y4, al, it follows by the Intermediate Value Theorem that there
exists a unique solution d € (0,¢&] to r,(d) = 0. Therefore, there exists
a unique value d; such that r,(d,) = 0, corresponding to the optimal
retention level at x = 0. Additionally, there exists a function ¢(-) such
that d = g(y) and r,(q(y)) = 0, with g(e) = d; and q(y,) =¢. O

Now, define the function:
¢ H'(s
X=11(7)5=/— )
¥

ﬁ H(s)-6
Additionally, define x,; = I,(y,) as the point at which all risk is assumed.
Due to H(a) =0 and H'(y) > 0, we can get H(y) < 0 for y € [0, a). Then
the integrand is greater than 0, and we have y = I N I(x) for 0 < x < x.
In addition, define

2
x=1I(y) 5=/
v

ds,a >y >y, (4.12)

H'(s)

T 2 +sH () _
e P H(s) — 6

ds+Xy,74>7 272, (4.13)
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similar to (3.19), the inverse function exists y = Iz I(x) for x;, < x <

I,(y,). And
d

ba 2ll[h(lz_](S)) + IEI(S)h'(lz_'(S))]
ki =exp / d (4.14)
X,
Theorem 4.1. Under excess-of-loss reinsurance contract, when a < n <

4 w17 (s)o?
2ué

3+ a, the value function is given by

x /yx‘l q(ljl(r))ds
ky fy e i dy, 0<x<xy
b, 2ulh(s ) n (15 )
V,xX)=v,(x) =13 ,x L' —— oz —ds
¢ ¢ /m ¢ e dy+v,(xy), x4 <x<by,
x—by+v,0b,), x> by,
(4.15)

which is an increasing, concave and twice continuously differentiable solu-
tion to (4.4). Here b; = I,(y,) and where k,, I,(-) and I,(-) are defined
by (4.14), (4.12) and (4.13) respectively. The optimal premium control
strategy is described by the safety loading as

ITx), 0<x<x,,
y¥(x) = Iz‘l(x), xg <x < by, (4.16)

72, x> by.

It is a decreasing function, which means that the insurer should lower the

premium rate as the surplus increases. The optimal reinsurance strategy is

characterized by the following retention level
I7'(x), 0<x<xg,

)= 4 AT a (4.17)
N x> Xxy4.

It is an increasing function, which means that the insurer should reduce rein-

surance as the surplus increases. Barrier dividend strategy with parameter

b, > 0 is optimal, namely,

Lﬂ'

t
. :(x—bd)+l(,20]+/0 Loy, LT (4.18)

Proof. First, we demonstrate that U;(X) < 1 holds for 0 < x < b,.
By straightforward calculation, we obtain U;(bd—) = 1. The second
derivative is explicitly given by

n /:d “j( ) ds
WG
YIRIE) L O=x=x
" — L
vy (x) = by 2ulh0T @+ W 13 6
2l G R U ) L T s
_ 5 5 2 (15" 5o <x<b
(T, ()0 ¢ © Ya =X =0
(4.19)

Combining this result with Lemma 3.1, we deduce v;’ (x) < 0, which
implies U;(x) >1for 0 < x < by,.

We now prove that Eq. (4.15) is the solution to (4.4). We rewrite
(4.11) as

H(y(x))U;(x) +6v,(x) =0. (4.20)
Then, taking derivative respect to x yields
Hyo)w(x) + H'(r(x))y' ()v),(x) + 60/ (x) = 0. (4.21)

And using (4.8) and Lemma 4.1, we obtain the following ordinary
differential equation(ODE)
%H(Y(X)) -0 <0

H'(y(x)) ’
which means the relationship between y and x satisfies (4.12). And use
(4.8), we can obtain that (4.15) is the solution to (4.4) for 0 < x < x,.
Similarly, we can prove that (4.15) is the solution to (4.4) for x; < x <
by; the details are omitted here for brevity.

Y(x) = (4.22)
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Similar to the proof of Theorem 4.2, for x > by, v,(x) satisfies
1 —u;(x) = 0, which implies v,(x) = x—b, +v,(b,). Using (3.27), we can
verify that it is indeed a solution to (4.4). It is also straightforward to
check that v,(x) satisfies the boundary condition (2.12); thus, we omit
the details for brevity. In summary, v,(x) is an increasing, concave, and
twice continuously differentiable solution to the HJB equation. []

4.2. Arbitrage exists: a > n

When « > 5, there is room for arbitrage for the insurer. At this point,
the boundary conditions are:

—0,(0)<0, and  sup ] {uly = RV, (0) — 6v4(0)} = 0. (4.23)

y€[0,a
Similar to the proportional reinsurance scenario, the insurer adopts a
safety loading of 7 and sets the retention level to 0 at x = 0. Combined
with Lemma 3.3, we can get v(7) < 0. Following an argument analogous
to (4.10), we further show that v/(y) < 0 for all y € [y,,7]. The strict
monotonicity of v guarantees the existence of a unique y, € [yz,f/]
satisfying v (y4) = 0.

Lemma 4.2. There exists a function q,(-) such that d = q,(y), with ¢,(7) =
0 and ¢, (y4) = &, where q,(-) characterizes the relationship between the
optimal retention level and the safety loading.

Proof. The proof methodology mirrors that of Lemma 4.1, and is
omitted here for brevity. []

Next, define the function I3(y) as

7
x = I3(y) :=/ -
Y

Similar to the (3.18), the inverse function y = I3 L(x) exists and is
unique for y € [y,.7). Therefore, we have d(x) = g (13‘ 1(x)), and
xg =13 (y4).

H'(s)

i _
amH® =6

ds, 7>y 2y, (4.24)

Theorem 4.2. Under excess-of-loss reinsurance contract, when « > 1, the
value function has the following form

J —L—ds
k2 Oxe y 41(13‘“1) dy+Ud(0),

-1 1yl (=1 s
Wzt (s)o?

0<x<xy,

Val) = 0g() =9 o

- dy+uv,(xy), x4 <x<by,

x = by +vy(by), x> by,

(4.25)

which is an increasing, concave and twice continuously differentiable solu-
T O e O LA O]
—_———das

, xd )
tion of (4.4). Here k, = e W56

are defined by (4.13), (4.24), respectively. And

dy, where I,(-), I;(-)

~ Xd
7 —muk, e/f) q](I;I(.r))dS
o
Then the associated optimal premium strategy is described by the safety
loading as

vg(0) = (4.26)

'), 0<x<xg,
=), x;<x<b, (4.27)

Y2, x> b,.

which is a decreasing function. The optimal reinsurance strategy is charac-
terized by the following risk retention level

-1
400 = {41 U3 (). 0<x<xg, (4.28)

x> xy,

which is an increasing function, The optimal dividend strategy follows a
barrier style, similar to that described in (4.18).
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Proof. The proof is analogous to that of Theorem 4.1 and is omitted
for brevity. []

Remark 1. When # = 0, we have y; = y, = 74, = 7. In this case, the
insurer does not assume any risk and transfers the entire risk to the

reinsurer. At this point, the value function is given by v,(x) = v,(x) =
G=mr |
5 .

Based on the discussion of the two reinsurance forms, we find that
when x = 0, whether or not an insurer using proportional reinsurance
adopts a reinsurance strategy and how much risk it takes on mainly
considers the safety loading associated with reinsurance and primary
premiums. In contrast, those opting for excess-of-loss reinsurance must
also take into account the distribution of claims, as it significantly
affects their risk exposure. When the insurer retains the entire risk,
the optimal premium control strategy depends on three factors: the
function A(y), the mean of the claims, and its variance.

5. Numerical examples

In the above two sections, we have presented the value functions
and associated optimal strategies in the cases of two common reinsur-
ance contracts, respectively. Next, we will use numerical examples to
illustrate the results and make insightful comparisons.

In this section, as the safety loading 5 varies, we can observe
the change of optimal strategies adopted by two companies who buy
proportional reinsurance and excess-of-loss reinsurance, respectively.
Due to 6% < &p, %a > 2a. In other words, as the safety loading
of reinsurance pricetz7 n increases, the insurer who adopts proportional
reinsurance will abandon reinsurance earlier.

Remark 2. When the safety loading on reinsurance premiums # con-
tinues to rise, insurance companies employing proportional reinsur-
ance strategies will be the first to cease transferring risks through
reinsurance as the associated costs become prohibitively high.

Now, let us compare the size of y between Sections 3 and 4,
i.e. compare y, and y,, when insurers do not buy reinsurance. (3.6)
gives

hG) Al G _n

1 (5.1)
h’(]’]) 2
and (4.8) gives
h(ry) + 14l 2
(74) ,7’4 (v4) _no 5.2)
R (v4) 2ué
Now, let us define o(x) := %":’;m, then it has
’ 2 _ "
o (x) = 2(h'(x))” = h(x)h" (x) 50 (5.3)
(h' (x))?
Due to o2 < ué, we can get
2
n no
L 5.4
27 2z (5.9

Combined with (5.3) and (5.4), we can get y, < y;.

Remark 3. If # < 2q, insurers will implement a reinsurance strategy.
Under full risk retention, companies utilizing excess-of-loss reinsurance
tend to offer lower premium pricing.

During the premium rate adjustment process, the safety loading y
progressively decreases as the surplus x increases. When the surplus
reaches the dividend payment barrier, the safety loading attains its
minimum value, y,, as demonstrated in Sections 3 and 4. Conse-
quently, insurers employing two distinct reinsurance strategies will
have identical premium rates at the point of dividend payment.
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Fig. 1. The value functions with different #.
The solid lines correspond to the proportional reinsurance; The dotted lines correspond
to the excess-of-loss reinsurance.

Table 1
Effect of # on optimal strategy.

Proportional reinsurance Excess-of-loss reinsurance

n 1.15 1.23 2.5 1.15 1.23 2.5
X, (xg) 1.1033 1.0563 0 2.7631 2.8239 3.1670
b,(by) 3.5531 3.6146 3.6750 2.8651 2.9327 3.3795

Remark 4. The safety loading y decreases progressively with surplus
growth, attaining its minimum value y, at the dividend payment barrier
where insurers employing two distinct reinsurance strategies share
identical premium rates during dividend distribution.

Now let us use a numerical example to explore further. Assume that
distribution of the claim size is heavy-tailed and follows that

Fx)=1- —— x <100,

x+ 13’ (5.5)

with 4 = 0.5 and 62 = 0.9803. Let § = 0.05 in the following calculations.
Our primary focus will be on investigating the impact of the reinsurance
premium safety loading #. It should be noted that a higher 7 signifies
greater costs for insurers in terms of risk transfer. Furthermore, we posit
that h(y) = 1.44 — 2.

Fig. 1 demonstrates an inverse relationship between 5 and the
company’s value. Table 1 reveals that the dividend threshold 5, (4,) in-
creases with #, indicating that higher reinsurance costs require greater
retention of reserves and delayed dividend distribution. Notably, insur-
ers adopting proportional reinsurance exhibit later dividend payments
than those using excess-of-loss reinsurance, as reflected by b, > b,.

The y-n relationship is established through Fig. 2 and Table 1.
Higher reinsurance costs drive up insurers’ premium pricing. Propor-
tional reinsurance users maintain systematically higher premiums than
excess-of-loss adopters. This discrepancy stems from fundamental risk
transfer differences: excess-of-loss reinsurance shifts catastrophic tail
risks to reinsurers, enabling primary insurers to reduce premiums for
market expansion and profit maximization. Remark 4 and Fig. 2 further
identify y, as the unified minimum premium threshold across strategies.
Table 1 shows that increased 5 delays the attainment of y,, with excess-
of-loss insurers reaching this threshold earlier than their proportional
reinsurance counterparts.

Fig. 3 and Table 1 uncover distinct risk retention patterns. Pro-
portional reinsurance insurers assume full risk exposure earlier than
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Fig. 2. The optimal premium rates with different #.
The solid lines correspond to the proportional reinsurance; The dotted lines correspond
to the excess-of-loss reinsurance.

Fig. 3. The optimal retention ratios for reinsurance with different 7.
The solid lines correspond to the proportional reinsurance; The dotted lines correspond
to the excess-of-loss reinsurance.

excess-of-loss users. Crucially, higher 5 accelerates complete risk reten-
tion for proportional reinsurers but delays it for excess-of-loss insurers.
The latter exhibit n-dependent risk profiles: lower surplus corresponds
to higher risk retention with increased #, while abundant surplus shows
an inverse pattern.

6. Conclusion and summary

This paper examines the optimal dividend and business scaling
strategy for an insurance company. It assumes that the insurer aims
to maximize profits by paying dividends and managing its business
scale and risks through reinsurance purchases and premium rate adjust-
ments. Under the object of maximizing the value of company, the trade-
off between return and risk is discussed. As a result, a continuous-time
optimization problem is formulated, and two scenarios — proportional
reinsurance and excess-of-loss reinsurance — are examined under both
the presence and absence of arbitrage.

Using stochastic control techniques, closed-form expressions for the
value function and optimal strategies are derived for all cases. The
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results show that as the surplus increases, the insurer should lower the
premium rate and reduce its reliance on reinsurance. The optimal divi-
dend strategy follows a barrier structure. When arbitrage opportunities
exist, the insurer chooses to remain in business even when the surplus
falls to zero; in contrast, without arbitrage, the insurer opts to exit the
market at zero surplus. Furthermore, the insurer will choose to pay
dividends directly without assuming any risk only when reinsurance is
zero. If reinsurance costs are present, the insurer prefers to retain the
risk itself, provided the surplus is sufficient. When the insurer deems
the surplus sufficient to support dividend payments, both scenarios
converge to the same strategy: retaining all the risk and setting the
premium rate at the lowest level y,.

Future research could extend this work by considering more sophis-
ticated dependence structures, such as the common shock model or the
thinning-dependence model, to provide deeper insights into optimal
insurance management strategies.
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