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 A B S T R A C T

This paper investigates the optimal dividend and business scale strategies aimed at maximizing the value 
of an insurance company. While prior studies typically assume that insurers can only adjust their business 
scale through reinsurance, this study extends the framework by allowing the insurer to control the premium 
rate. Under more realistic market assumptions, we examine the joint optimization problem for two common 
types of reinsurance — proportional and excess-of-loss — across both arbitrage and non-arbitrage scenarios. 
We derive the optimal strategies for dividends and premium pricing, along with their corresponding value 
functions. The results show that the insurer should decrease the premium rate and reduce reinsurance coverage 
as the surplus increases. The optimal dividend policy follows a barrier strategy. Economic interpretations and 
numerical examples are provided to illustrate the findings.
1. Introduction

Safety and profitability are key considerations in a company’s op-
erations, with risk management and profit pursuit at the core. Though 
seemingly contradictory, an imbalance between these factors can be 
counterproductive—excessive profit-seeking increases short-term risks 
and insolvency potential, while overemphasis on safety reduces prof-
itability. A successful corporate strategy requires balancing these ele-
ments to maximize company value. In corporate finance, this balance 
is often measured by maximizing expected discounted dividends be-
fore bankruptcy, inherently accounting for both profitability and risk. 
For insurance companies, this involves strategies related to dividends, 
reinsurance, and premium pricing.

Dividends play a crucial role in determining a company’s value and 
act as a key mechanism for profit distribution. A well-structured div-
idend policy not only safeguards shareholder interests but also builds 
investor confidence and supports the company’s long-term investment 
and growth objectives (Smith & Watts, 1992). The issue of when 
to declare dividends and how much to distribute has long attracted 
scholarly interest, dating back to the seminal work of De Finetti (1957). 
Since then, a substantial body of research has emerged on the optimal 
dividend problem from various perspectives, producing significant the-
oretical and practical insights (see, Asmussen & Taksar, 1997; Schmidli, 
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2007; Yao et al., 2011; Zhao et al., 2017; Chen et al., 2018; Yang et al., 
2020; Zhu et al., 2020; Avanzi et al., 2021).

Reinsurance is an essential tool for insurance companies to manage 
business scale and transfer risk. Among the various types, proportional 
and excess-of-loss reinsurance are widely studied due to their opera-
tional simplicity and practical applicability (Cao et al., 2023, Amini 
et al., 2024 and Aboagye et al., 2025). The joint optimization of 
dividend and reinsurance strategies has attracted considerable aca-
demic attention, with notable contributions from Højgaard and Taksar 
(1999), Asmussen et al. (2000), Bai et al. (2010), Liang and Huang 
(2011), Zhou and Yuen (2012), Yao et al. (2016), Li et al. (2021), Azcue 
and Muler (2005), and Meng et al. (2016). However, these studies focus 
on the no-arbitrage setting. In contrast, this paper extends the analysis 
by exploring the optimal dividend, reinsurance, and pricing strate-
gies of insurance companies under both no-arbitrage and arbitrage 
scenarios.

Premium pricing is one of the key determinants of a company’s 
business scale and a fundamental pillar alongside dividends and rein-
surance in insurance company management. Setting appropriate premi-
ums requires careful consideration of consumer affordability, company 
profitability, risk coverage, and long-term sustainability. Prior research 
has made significant progress in these areas. For example, Martin-
Löf (1983), Asmussen et al. (2019a, 2019b), Steffensen and Thøgersen 
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(2019) and Thøgersen (2016) proposed effective methods for pre-
mium control. Zhou et al. (2017), Liu et al. (2020), and Jiang et al. 
(2020) investigated optimal investment and premium strategies aimed 
at maximizing the expected utility of terminal wealth. Højgaard (2002) 
analyzed the optimal dividend problem under premium control in a 
diffusion risk model, while Christensen et al. (2021) studied investment 
and premium strategies to maximize the expected discounted utility of 
dividends. However, to the best of our knowledge, the joint optimiza-
tion of dividend, reinsurance, and premium pricing strategies remains 
underexplored.

Dividends, reinsurance, and premium pricing are crucial tools for 
managing an insurance company, and their interaction plays a signif-
icant role in maintaining financial stability and promoting sustainable 
growth. In this paper, we aim to bridge this gap in the literature by 
investigating the joint optimization of these three strategic levers in 
a continuous-time setting. We assume that both the insurer and the 
reinsurer follow the expected value principle for premium pricing. The 
insurer has the ability to influence the premium through the safety 
loading parameter 𝛾. The arrival of claims is influenced by the premium 
rate and is modeled by a non-homogeneous Poisson process {𝑁(𝑡), 𝑡 ≥
0} with a time-dependent intensity 𝜆𝑡. Following Højgaard (2002), we 
define the intensity as a function of the safety loading, i.e., 𝜆 = ℎ(𝛾).

To reflect practical considerations, we introduce an upper bound 
𝛼 on the premium rate, above which no customers are willing to 
purchase insurance, resulting in a claim arrival rate of zero. Based 
on the relative cost of reinsurance, we classify the problem into two 
cases: one where reinsurance is expensive and no arbitrage opportunity 
exists, and another where reinsurance is cheap, allowing for arbitrage. 
Within this framework, we explore how an insurance company can op-
timally balance its dividend policy, reinsurance strategy, and premium 
pricing to maximize its expected discounted dividend payouts. We 
consider both proportional reinsurance and excess-of-loss reinsurance 
models and derive closed-form solutions for the value function and the 
corresponding optimal strategies, which are shown to depend on the 
structural parameters of the risk model.

Our analysis reveals that, as the insurer’s surplus increases, the 
premium rate tends to decline, thereby facilitating business expan-
sion. In the absence of arbitrage opportunities, the company may 
optimally choose to exit the market and accept bankruptcy when 
its surplus reaches zero. In contrast, when arbitrage is possible, the 
company prefers to continue operating even at zero surplus, as the 
premium rate exceeds the cost of reinsurance. If reinsurance becomes 
prohibitively expensive, the insurer is inclined to forgo reinsurance 
entirely. Interestingly, when the surplus reaches a level sufficient to 
pay dividends, the premium strategies under both reinsurance types 
converge. By jointly modeling and analyzing dividends, reinsurance, 
and premium pricing, this study provides a unified framework that en-
hances our understanding of insurance company decision-making and 
offers valuable implications for strategic management under dynamic 
risk environments.

The remainder of the paper is organized as follows: Section 2 
introduces the framework of risk model and raises the optimization 
problem. Optimal control techniques are employed to solve the opti-
mization problems under proportional reinsurance and excess-of-loss 
reinsurance, presented in Sections 3 and 4, respectively. Closed-form 
solutions to the value function and the optimal strategies are presented. 
Section 5 provides numerical examples to illustrate the main results. 
Section 6 concludes the paper.

2. Model formulation and the optimal control problem

We start with a filtered probability space (𝛺, , {𝑡}𝑡≥0, 𝑃 ), where 
the filtration {𝑡}𝑡≥0 satisfies the usual conditions, that is, {𝑡}𝑡≥0 is 
right continuous and 𝑃 -completed. Throughout the paper, it assumes 
that all stochastic processes and random variables are well-defined and 
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adapted to the probability space. Similar to references such as As-
mussen et al. (2000), Azcue and Muler (2005), we use the following 
classical risk model to simulate the uncontrolled surplus process: 

𝑅(𝑡) = 𝑥 + 𝑐(𝑡) −
𝑁(𝑡)
∑

𝑖=1
𝑋𝑖, (2.1)

where 𝑥 ≥ 0 is the initial surplus; The claim times process, denoted 
by {𝑁(𝑡), 𝑡 ≥ 0}, is described as a non-homogeneous Poisson process 
with a time-dependent intensity function given by 𝜆𝑡; {𝑋𝑖, 𝑖 = 1, 2,…}
denote a sequence of positive, identically and independently distributed 
(i.i.d.) random variables representing the claim sizes, with common 
distribution function 𝐹 (𝑥), the finite mean value 𝜇 > 0, and the second 
moment 𝜎2 > 0; 𝑐(𝑡) denotes the accumulated premiums up to time 𝑡, 
which is determined by the expected value principle with safety loading 
𝛾𝑡 > 0. Then we have 

𝑐(𝑡) = 𝜇 ∫

𝑡

0
(1 + 𝛾𝑠)𝜆𝑠𝑑𝑠. (2.2)

Under a reinsurance policy, the positive risk 𝑋𝑖 is decomposed into two 
parts: 𝑆(𝑋𝑖) ≥ 0 and 𝑋𝑖 − 𝑆(𝑋𝑖) ≥ 0, where 𝑆(𝑋𝑖) is retained by the 
insurer and 𝑋𝑖−𝑆(𝑋𝑖) is ceded to the reinsurer. Assume the reinsurance 
premium rate is also calculated by the expected value principle with a 
constant safety loading 𝜂 > 0, then the surplus process of the insurance 
portfolio with reinsurance policy is given by 

𝑈 (𝑡) = 𝑥 + 𝐶(𝑡) −
𝑁(𝑡)
∑

𝑖=1
𝑆(𝑋𝑖), (2.3)

where 𝐶(𝑡) represents the net premium for the insurer up to time 𝑡, 
calculated as 

𝐶(𝑡) = 𝜇 ∫

𝑡

0
(𝛾𝑠 − 𝜂)𝜆𝑠𝑑𝑠 + (1 + 𝜂)𝐸(𝑆(𝑋1))∫

𝑡

0
𝜆𝑠𝑑𝑠, (2.4)

with E [

𝑆
(

𝑋1
)]

< ∞ representing the expected claim size under the 
reinsurance policy, and E

[

𝑆
(

𝑋1
)2
]

< ∞ denoting its second moment.1
Following Højgaard (2002) and Christensen et al. (2021), we as-

sume that the insurer determines the premium rate by choosing the 
safety loading 𝛾𝑡 > 0 at time 𝑡. The claim times process {𝑁(𝑡), 𝑡 ≥ 0}
has an intensity 𝜆𝑡 that depends on the safety loading, expressed as 
𝜆𝑡 = ℎ(𝛾𝑡). This implies that both the customer base and claim frequency 
are influenced by the premium rate, with 𝜆𝑡 decreasing as 𝛾𝑡 increases. 
It is reasonable to assume that ℎ(𝛾𝑡) is a strictly decreasing concave 
function, reflecting the observation that higher safety loadings reduce 
portfolio size and claim rates. To incorporate practical considerations, 
we assume a finite customer base, implying that ℎ(0) = 𝜆max < ∞. 
Furthermore, to ensure the model remains realistic, we assume the 
existence of a threshold 𝛼 such that ℎ(𝛼) = 0, signifying that no claims 
occur when the safety loading reaches or exceeds this level.

It is well known that jump models pose significant challenges in 
optimal control problems. Therefore, we adopt a classical approxima-
tion approach to tackle this challenge. Namely, we approximate the 
model (2.3) by a pure diffusion model {𝑈𝑡, 𝑡 ≥ 0} with the same drift 
and volatility. Specifically, the approximation process 𝑈𝑡 satisfies the 
following stochastic differential equation 

𝑑𝑈𝑡 = [𝜇(𝛾𝑡 − 𝜂)𝜆𝑡 + 𝜆𝑡𝜂𝐸(𝑆(𝑋1))]𝑑𝑡 +
√

𝜆𝑡𝐸
(

𝑆(𝑋1)2
)

𝑑𝐵𝑡, (2.5)

with 𝑈0 = 𝑥 ≥ 0, where {𝐵𝑡, 𝑡 ≥ 0} is a standard Brownian motion 
adapted to the filtration{𝑡}𝑡≥0. 𝐵

𝑡 ∶= 𝜎{𝐵𝑠; 0 ≤ 𝑠 ≤ 𝑡} is the 
smallest complete information filtration generated by the Brownian 
motion process. Motivations and relevant references for this approach, 
along with more complex examples of diffusion approximations in risk 

1 Since {𝑋𝑖}𝑖=1,2,3,… are i.i.d. random variables. Thus, E
(

𝑆
(

𝑋1
))

=
E
(

𝑆
(

𝑋2
))

= ⋯, and we denote the common expectation as E (

𝑆
(

𝑋1
)) without 

loss of generality.
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theory, can be found in Grandell (1991), Meng et al. (2016), Zhou and 
Yuen (2012).

Let 𝐿𝑡 denote the cumulative dividends paid to shareholders from 
time 0 to time 𝑡. In a broader context, an insurance company manages 
multiple insurance and reinsurance contracts, each with its own signing 
time and terms. This indicates that the retention strategy for the entire 
portfolio is fluid and adjustable. This approach more accurately reflects 
the operational strategies of insurance companies, as they continuously 
adjust and optimize various contracts. We assume the insurer can 
dynamically modify retention levels {𝑆𝑡(⋅), 𝑡 ≥ 0}, premium rates {𝛾𝑡, 𝑡 ≥
0}, and dividends {𝐿𝑡, 𝑡 ≥ 0}. Given a strategy 𝜋 = {𝛾, 𝑆(⋅), 𝐿}, the 
controlled surplus process follows: 

𝑑𝑈𝜋
𝑡 = [𝜇(𝛾𝑡 − 𝜂)ℎ(𝛾𝑡) + 𝜂ℎ(𝛾𝑡)𝐸(𝑆𝑡(𝑋1))]𝑑𝑡 +

√

ℎ(𝛾𝑡)𝐸
(

𝑆𝑡(𝑋1)2
)

𝑑𝐵𝑡 − 𝑑𝐿𝑡.

(2.6)

Definition 2.1. A strategy 𝜋 = {𝛾, 𝑆(⋅), 𝐿} is said to be admissible 
if (𝑖) The process 𝛾 = {𝛾𝑡, 𝑡 ≥ 0} is  an 𝐵

𝑡 -predictable process and 
satisfies that 0 ≤ 𝛾𝑡 ≤ 𝜂. (𝑖𝑖) 𝑆(⋅) = {𝑆𝑡(⋅), 𝑡 ≥ 0} satisfies the following 
conditions: (1) 𝑆(0) = 0, and (2) 0 ⩽ 𝑆′(𝑋𝑖) ⩽ 1 and for all 𝑋𝑖 ⩾ 0. (𝑖𝑖𝑖) 
𝐿 = {𝐿𝑡, 0 ≤ 𝑡 ≤ 𝜏𝜋} is an increasing, 𝐵

𝑡 -adapted càdlàg process with 
𝐿0− = 0 and 𝛥𝐿𝑡 = 𝐿𝑡 − 𝐿𝑡− ≤ 𝑈𝜋

𝑡− for all 𝑡 ≥ 0.

Denote the set of all admissible strategies by 𝛱 .

Problem 2.1. Under the strategy 𝜋 ∈ 𝛱 , the time of bankruptcy 
associated with 𝑈𝜋

𝑡  is defined as 
𝜏𝜋 = inf{𝑡 ≥ 0 ∶ 𝑈𝜋

𝑡 < 0}. (2.7)

Let 𝐸𝑥 denote the expectation conditional on 𝑈𝜋
0− = 𝑥, and 𝛿 > 0

denote the discounted rate. In the view of corporation finance, we use 
the following performance function to measure the value of insurance 
company: 

𝑉 (𝑥, 𝜋) = 𝐸𝑥

(

∫

𝜏𝜋

0
𝑒−𝛿𝑡𝑑𝐿𝑡

)

, (2.8)

which is the expected present value of the future dividend payments 
until the time of bankruptcy. We aim at finding the value function 
𝑉 (𝑥) = sup

𝜋∈𝛱
𝑉 (𝑥, 𝜋), (2.9)

and the optimal strategy 𝜋∗ = {𝛾∗, 𝑆∗(⋅), 𝐿∗}, such that 𝑉 (𝑥) = 𝑉 (𝑥, 𝜋∗).

By defining an operator

𝛾,𝑆(⋅)𝑣(𝑥) =
[ 1
2
ℎ(𝛾)𝐸

(

𝑆(𝑋1)2
)

𝑣′′(𝑥) + (𝜇(𝛾 − 𝜂)

+𝜂𝐸(𝑆(𝑋1)))ℎ(𝛾)𝑣′(𝑥) − 𝛿𝑣(𝑥)
]

, (2.10)

we obtain the HJB equation satisfied by the value function:

max

{

sup
𝑆(⋅),𝛾∈[0,𝜂]

𝛾,𝑆(⋅)𝑣(𝑥), 1 − 𝑉 ′(𝑥)

}

= 0, (2.11)

max

{

−𝑉 (0), sup
𝛾∈[0,𝛼]

{

𝜇(𝛾 − 𝜂)ℎ(𝛾)𝑉 ′(0) − 𝛿𝑉 (0)
}

}

= 0. (2.12)

Eq.  (2.12) represents the boundary condition, indicating that when 
the surplus reaches zero, the insurer faces two options: declaring 
bankruptcy or sustaining the company through arbitrage. 

Theorem 2.1. Suppose 𝑓 (𝑥) is an increasing, concave, and twice contin-
uously differentiable solution of (2.11) and (2.12). Then, the following 
statements hold:

1. For each 𝜋 ∈ 𝛱,𝑓 (𝑥) ≥ 𝑉 (𝑥, 𝜋), implying 𝑓 (𝑥) ≥ 𝑉 (𝑥) for all 𝑥 ≥ 0.
2. If there exists a strategy 𝜋∗ = {𝛾∗, 𝑆∗(⋅), 𝐿∗} ∈ 𝛱 such that 𝑓 (𝑥) =

𝑉 (𝑥, 𝜋∗), then 𝑓 (𝑥) = 𝑉 (𝑥), and 𝜋∗ is the associated optimal strategy.

Proof. The proof of this theorem is standard. We refer the readers 
to Schmidli (2007). □
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Next, we analyze the optimization problem under two specific 
reinsurance arrangements: proportional reinsurance and excess-of-loss 
reinsurance.

3. The optimal solution in the case of proportional reinsurance

Proportional reinsurance is one of the simplest and most popular 
forms of reinsurance. In this case, 𝑆(𝑋𝑖) = 𝑎𝑋𝑖 denotes a proportional 
reinsurance contract, where 𝑎 ∈ [0, 1] is the risk retention ratio. The 
reinsurance strategy 𝑎 = {𝑎𝑡, 𝑡 ≥ 0} is said to be admissible, if it is 𝐵

𝑡 -
adapted process with 0 ≤ 𝑎𝑡 ≤ 1 for all 𝑡 ≥ 0. Then under the strategy 
𝜋 = {𝛾, 𝑎, 𝐿}, the controlled surplus process (2.6) simplifies to 

𝑑𝑈𝜋
𝑡 = [𝜇(𝛾𝑡 − 𝜂)ℎ(𝛾𝑡) + 𝜂𝜇𝑎𝑡ℎ(𝛾𝑡)]𝑑𝑡 + 𝑎𝑡𝜎

√

ℎ(𝛾𝑡)𝑑𝐵𝑡 − 𝑑𝐿𝑡. (3.1)

As a special case of (2.8) and (2.9), let the performance function be 
denoted as 𝑉𝑎(𝑥, 𝜋) = 𝐸𝑥

(

∫ 𝜏𝜋
0 𝑒−𝛿𝑡𝑑𝐿𝑡

)

, and the value function as 
𝑉𝑎(𝑥) = sup𝜋∈𝛱 𝑉𝑎(𝑥, 𝜋). Combined with Eq. (2.11), the corresponding 
HJB equation for the value function is:

max

{

sup
𝑎∈[0,1],𝛾∈[0,𝜂]

{ 1
2
ℎ(𝛾)(𝑎𝜎)2𝑣′′𝑎 (𝑥)

+𝜇(𝛾 − 𝜂 + 𝑎𝜂)ℎ(𝛾)𝑣′𝑎(𝑥) − 𝛿𝑣𝑎(𝑥)
}

, 1 − 𝑣′𝑎(𝑥)
}

= 0, (3.2)

with the boundary condition (2.12). From Theorem  2.1, we conclude 
that 𝑉𝑎(𝑥) = 𝑣𝑎(𝑥).

Denote 𝑏𝑎 = inf{𝑥 ≥ 0 ∶ 𝑣′𝑎(𝑥) ≤ 1}. Then, by the concavity of 𝑣𝑎(𝑥), 
it has 𝑣′𝑎(𝑥) ≥ 1 for 𝑥 ≤ 𝑏𝑎. So, for 0 ≤ 𝑥 ≤ 𝑏𝑎, (3.2) reduces to 

sup
𝑎∈[0,1],𝛾∈[0,𝜂]

{1
2
ℎ(𝛾)(𝑎𝜎)2𝑣′′𝑎 (𝑥) + 𝜇(𝛾 − 𝜂 + 𝑎𝜂)ℎ(𝛾)𝑣′𝑎(𝑥) − 𝛿𝑣𝑎(𝑥)

}

= 0.

(3.3)

Differentiating with respect to 𝑎 and 𝛾 respectively, and setting the 
derivative to zero, we get
𝑎𝜎2𝑣′′𝑎 (𝑥) + 𝜂𝜇𝑣′𝑎(𝑥) = 0, (3.4)

(𝑎𝜎)2ℎ′(𝛾)𝑣′′𝑎 (𝑥) + 2𝜇[ℎ(𝛾) + (𝛾 − 𝜂 + 𝑎𝜂)ℎ′(𝛾)]𝑣′𝑎(𝑥) = 0. (3.5)

Solving (3.4) and (3.5) yields 
𝑣′𝑎(𝑥)
𝑣′′𝑎 (𝑥)

= − 𝑎𝜎2

𝜂𝜇
= −

(𝑎𝜎)2ℎ′(𝛾)
2𝜇[ℎ(𝛾) + (𝛾 − 𝜂 + 𝑎𝜂)ℎ′(𝛾)]

. (3.6)

Moreover, (3.6) gives 

𝑎 = 𝐺(𝛾) ∶= −
2[ℎ(𝛾) + (𝛾 − 𝜂)ℎ′(𝛾)]

𝜂ℎ′(𝛾)
. (3.7)

The property 𝐺′(𝛾) = − 2
𝜂 + 2ℎ(𝛾)ℎ′′(𝛾)

𝜂(ℎ′(𝛾))2 < 0 establishes that the function 
𝐺(𝛾) is decreasing with respect to 𝛾. Now we obtain the relationship 
between 𝑎∗ and 𝛾∗. Next, we will discuss the scenario based on whether 
arbitrage exists or not.2

3.1. No arbitrage: 𝜂 ≥ 𝛼

In this section, we examine the scenario where arbitrage is absent, 
i.e., reinsurance becomes prohibitively expensive (𝜂 ≥ 𝛼). This may 
result from heightened risk uncertainty, constraints in market supply, 
or reinsurers increasing premiums to mitigate risk and adhere to reg-
ulatory requirements. Then boundary condition satisfied by the value 
function are: 
𝑣𝑎(0) = 0, and sup

𝛾∈[0,𝛼]

{

𝜇(𝛾 − 𝜂)ℎ(𝛾)𝑣′𝑎(0) − 𝛿𝑣𝑎(0)
}

≤ 0. (3.8)

2 The condition 𝜂 ≥ 𝛼 eliminates any arbitrage potential for the insurer. 
Conversely, when 𝜂 < 𝛼, the insurer can achieve arbitrage by transferring all 
risks to the reinsurer while retaining the profits.
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Combined with (3.3) and (3.4), we get 

(𝛾 − 𝜂 + 1
2
𝑎𝜂)𝜇ℎ(𝛾)𝑣′𝑎(𝑥) − 𝛿𝑣𝑎(𝑥) = 0. (3.9)

Similarly, (3.3) and (3.5) result in 

−
𝜇ℎ2(𝛾)
ℎ′(𝛾)

𝑣′𝑎(𝑥) − 𝛿𝑣𝑎(𝑥) = 0. (3.10)

Due to 𝑣𝑎(0) = 0, it is easy to get that 𝛾∗(0) = 𝛼, and 

𝑎(0) =
2(𝜂 − 𝛼)

𝜂
. (3.11)

Since 𝑎(0) ∈ [0, 1], we conclude that 𝑎∗(0) = 1 if 𝑎(0) ≥ 1, indicating 
that reinsurance is too expensive and insurers forgo risk transfer. On 
the other hand, if 𝑎(0) < 1, then 𝑎∗(0) = 𝑎(0).

3.1.1. 𝜂 ≥ 2𝛼
If 𝜂 ≥ 2𝛼, which means that reinsurance is too expensive, insur-

ers forgo risk transfer. Then the HJB equation satisfied by the value 
function is 

max

{

sup
𝛾∈[0,𝜂]

{1
2
ℎ(𝛾)𝜎2𝑣′′𝑎 (𝑥) + 𝜇𝛾ℎ(𝛾)𝑣′𝑎(𝑥) − 𝛿𝑣𝑎(𝑥)

}

, 1 − 𝑣′𝑎(𝑥)

}

= 0,

(3.12)

Repeating step (3.5), we can get (3.10). For ease of derivation, we first 
give a lemma. 

Lemma 3.1. There exists a unique solution 𝛾2 ∈ (0, 𝛼) to the equation 
ℎ(𝑠) + 𝑠ℎ′(𝑠) = 0.

Proof. Consider the function ℎ(𝑠) + 𝑠ℎ′(𝑠). Its derivative with respect to 
𝑠 is given by
𝑑
𝑑𝑠

(

ℎ(𝑠) + 𝑠ℎ′(𝑠)
)

= ℎ′(𝑠) + ℎ′(𝑠) + 𝑠ℎ′′(𝑠) = 2ℎ′(𝑠) + 𝑠ℎ′′(𝑠) < 0,

which implies that the function ℎ(𝑠) + 𝑠ℎ′(𝑠) is strictly decreasing.
Moreover, we are given that

ℎ(𝛼) + 𝛼ℎ′(𝛼) < 0 and ℎ(0) = 𝜆max > 0.

Since ℎ(𝑠) + 𝑠ℎ′(𝑠) is continuous and strictly decreasing, by the Inter-
mediate Value Theorem, there exists a unique point 𝛾2 ∈ (0, 𝛼) ⊂ (0, 𝜂)
such that ℎ(𝛾2) + 𝛾2ℎ′(𝛾2) = 0. □

Define the function 𝐻(𝑠) ∶= 𝜇ℎ2(𝑠)
ℎ′(𝑠) < 0. Taking the derivative of 𝐻(𝑠)

with respect to 𝑠 yields 

𝐻 ′(𝑠) = 2𝜇ℎ(𝑠) − 𝜇
ℎ2(𝑠)ℎ′′(𝑠)
(ℎ′(𝑠))2

≥ 0, for 𝑠 ∈ [0, 𝛼]. (3.13)

Combined with Lemma  3.1, ℎ(𝑠)+ 𝑠ℎ′(𝑠) < 0 for 𝑠 ∈ (𝛾2, 𝛼). Next, define 
the function 𝑄1(𝛾) as 

𝑥 = 𝑄1(𝛾) ∶= ∫

𝛼

𝛾

𝐻 ′(𝑠)

𝛿 − 2𝜇(ℎ(𝑠)+𝑠ℎ′(𝑠))
ℎ′(𝑠)𝜎2 𝐻(𝑠)

𝑑𝑠, 𝛾 ∈
[

𝛾2, 𝛼
)

(3.14)

Combined with (3.13) and 𝐻(𝑠) < 0 for 𝑠 ≤ 𝛼, the integrand in (3.14) 
is positive, which implies that the inverse function exists. 

Theorem 3.1. If 𝜂 ≥ 2𝛼, then the value function is 

𝑉𝑎(𝑥) = 𝑣𝑎(𝑥) =

⎧

⎪

⎨

⎪

⎩

∫ 𝑥
𝑥𝑎

𝑒
∫ 𝑏𝑎
𝑦

2𝜇[ℎ(𝑄−1
1 (𝑠))+𝑄−1

1 (𝑠)ℎ′(𝑄−1
1 (𝑠))]

ℎ′(𝑄−1
1 (𝑠))𝜎2

𝑑𝑠
𝑑𝑦, 0 < 𝑥 ≤ 𝑏𝑎,

𝑥 − 𝑏𝑎 + 𝑣𝑎(𝑏𝑎), 𝑥 > 𝑏𝑎,

(3.15)

which is an increasing, concave and twice continuously differentiable solu-
tion of (3.2). Here 𝑏𝑎 = 𝑄1(𝛾2), where 𝑄1(⋅) is defined by (3.14). Then the 
associated optimal premium strategy is described by the safety loading as 

𝛾∗(𝑥) =

{

𝑄−1
1 (𝑥), 0 < 𝑥 ≤ 𝑏𝑎, (3.16)
𝛾2, 𝑥 > 𝑏𝑎.
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It is a decreasing function, which means that the insurer should lower the 
premium rate as the surplus increases. And the optimal risk-taking ratio is 
to take full risk, that is 𝑎∗(𝑥) = 1. The optimal dividend strategy is of barrier 
style with parameter 𝑏𝑎 > 0, namely, 

𝐿𝜋∗
𝑡 = (𝑥 − 𝑏𝑎)+1{𝑡≥0} + ∫

𝑡

0
1{𝑋𝜋∗

𝑠 =𝑏𝑎}
d𝐿𝜋∗

𝑠 . (3.17)

It means that whenever the (modified) surplus exceeds the barrier 𝑏𝑎, the 
excess is paid out immediately as dividends.

Proof. The proof of this theorem is standard. We refer the reader 
to Højgaard (2002). □

3.1.2. 2𝛼 > 𝜂 ≥ 𝛼
When 2𝛼 > 𝜂 ≥ 𝛼, although reinsurance is still expensive, insurers 

still choose to buy reinsurance to transfer risk when their surplus is 
low. Combined with (3.9) and (3.10), it is easy to get 𝛾∗(0) = 𝛼 and 
𝑎∗(0) = 2(𝜂−𝛼)

𝜂 . 

Lemma 3.2. There exists a unique 𝛾1 ∈
(

𝛾2, 𝛼
) such that 𝐺 (

𝛾1
)

= 1.

Proof. Since 𝐺 (

𝛾2
)

= − 2
[

ℎ
(

𝛾2
)

+
(

𝛾2−𝜂
)

ℎ′
(

𝛾2
)]

𝜂ℎ′
(

𝛾2
) , simplifying gives:

𝐺
(

𝛾2
)

=
2𝜂ℎ′

(

𝛾2
)

𝜂ℎ′
(

𝛾2
) = 2

Additionally, 𝐺(𝛼) = − 2(𝛼−𝜂)
𝜂 < 1 and 𝐺(𝛾) is decreasing in 𝛾. By the 

Intermediate Value Theorem, there exists a unique 𝛾1 ∈
(

𝛾2, 𝛼
) such 

that 𝐺 (

𝛾1
)

= 1. □

Next, define the function 𝑄2(𝛾) as 

𝑥 = 𝑄2(𝛾) ∶= ∫

𝛼

𝛾

𝐻 ′(𝑠)
𝛿 − 𝜂𝜇

𝐺(𝑠)𝜎2 𝐻(𝑠)
𝑑𝑠, 𝛾 ∈ [𝛾1, 𝛼) (3.18)

Since 𝐻 ′(𝑠)
𝛿− 𝜂𝜇

𝐺(𝑠)𝜎2
𝐻(𝑠)

> 0, the inverse function 𝛾 = 𝑄−1
2 (𝑥) exists and 

is unique for 𝛾 ∈
[

𝛾1, 𝛼
)

. Therefore, we have 𝑎(𝑥) = 𝐺
(

𝑄−1
2 (𝑥)

)

. 
Define 𝑥𝑎 as the point at which the entire risk is assumed, then 𝑥𝑎 ∶=
𝑄2

(

𝐺−1(1)
)

= 𝑄2
(

𝛾1
)

.
Next, define the function 𝑄3(𝛾) as 

𝑥 = 𝑄3(𝛾) ∶= ∫

𝛾1

𝛾

𝐻 ′(𝑠)

𝛿 − 2𝜇(ℎ(𝑠)+𝑠ℎ′(𝑠))
ℎ′(𝑠)𝜎2 𝐻(𝑠)

𝑑𝑠 + 𝑥𝑎, 𝛾 ∈
[

𝛾2, 𝛾1
)

(3.19)

From (3.7), it is easy to get ℎ′(𝛾1)𝜂 = 2(ℎ(𝛾1) + 𝛾1ℎ′(𝛾1)) < 0. Combined 
with Lemmas  3.1 and 3.2, ℎ(𝑠) + 𝑠ℎ′(𝑠) < 0 for 𝑠 ∈ (𝛾2, 𝛾1). The inverse 
function 𝛾 = 𝑄−1

3 (𝑥) exists and is unique for 𝛾 ∈
[

𝛾2, 𝛾1
)

. In this case, 
𝑏𝑎 = 𝑄3(𝛾2).

Theorem 3.2. Under proportional reinsurance contract, when 2𝛼 > 𝜂 ≥ 𝛼, 
the value function has the following form 

𝑉𝑎(𝑥) = 𝑣𝑎(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛1 ∫
𝑥
0 𝑒

∫ 𝑥𝑎
𝑦

𝜇𝜂
𝐺(𝑄−1

2 (𝑠))𝜎2
𝑑𝑠
𝑑𝑦, 0 ≤ 𝑥 ≤ 𝑥𝑎,

∫ 𝑥
𝑥𝑎
𝑒
∫ 𝑏𝑎
𝑦

2𝜇[ℎ(𝑄−1
3 (𝑠))+𝑄−1

3 (𝑠)ℎ′ (𝑄−1
3 (𝑠))]

ℎ′ (𝑄−1
3 (𝑠))𝜎2

𝑑𝑠
𝑑𝑦 + 𝑣𝑎(𝑥𝑎), 𝑥𝑎 < 𝑥 ≤ 𝑏𝑎,

𝑥 − 𝑏𝑎 + 𝑣𝑎(𝑏𝑎), 𝑥 > 𝑏𝑎,

(3.20)

which is an increasing, concave and twice continuously differentiable solu-

tion of (3.2). Here 𝑛1 = 𝑒
∫ 𝑏𝑎
𝑥𝑎

2𝜇[ℎ(𝑄−1
3 (𝑠))+𝑄−1

3 (𝑠)ℎ′(𝑄−1
3 (𝑠))]

ℎ′(𝑄−1
3 (𝑠))𝜎2

𝑑𝑠
, where 𝐺(⋅), 𝑄2(⋅), 

𝑄3(⋅) are defined by (3.7), (3.18), (3.19), respectively. Then the associated 
optimal premium strategy is described by the safety loading as 

𝛾∗(𝑥) =

⎧

⎪

⎨

⎪

𝑄−1
2 (𝑥), 0 ≤ 𝑥 ≤ 𝑥𝑎,

𝑄−1
3 (𝑥), 𝑥𝑎 < 𝑥 ≤ 𝑏𝑎, (3.21)
⎩

𝛾2, 𝑥 > 𝑏𝑎,
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which is a decreasing function. The optimal reinsurance strategy is charac-
terized by the following risk retention ratio 

𝑎∗(𝑥) =

{

𝐺(𝑄−1
2 (𝑥)), 0 ≤ 𝑥 ≤ 𝑥𝑎,

1, 𝑥 > 𝑥𝑎.
(3.22)

It is an increasing function, which means that the insurer should reduce 
reinsurance as the surplus increases. The optimal dividend strategy follows 
a barrier style, similar to that described in (3.17).

Proof. We will prove that the value function is a solution of the HJB 
Eq. (3.2). First, we demonstrate that 𝑣′𝑎(𝑥) ≤ 1 holds for 0 ≤ 𝑥 ≤ 𝑏𝑎. 
By straightforward calculation, we obtain 𝑣′𝑎(𝑏𝑎−) = 1. The second 
derivative is explicitly given by 

𝑣′′𝑎 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝑛1
𝜇𝜂

𝐺(𝑄−1
2 (𝑥))𝜎2

𝑒
∫ 𝑥𝑎
𝑥

𝜇𝜂
𝐺(𝑄−1

2 (𝑠))𝜎2
𝑑𝑠
, 0 ≤ 𝑥 ≤ 𝑥𝑎,

−
2𝜇[ℎ(𝑄−1

3 (𝑥))+𝑄−1
3 (𝑠)ℎ′(𝑄−1

3 (𝑥))]

ℎ′(𝑄−1
3 (𝑥))𝜎2

𝑒
∫ 𝑏𝑎
𝑥

2𝜇[ℎ(𝑄−1
3 (𝑠))+𝑄−1

3 (𝑠)ℎ′ (𝑄−1
3 (𝑠))]

ℎ′ (𝑄−1
3 (𝑠))𝜎2

𝑑𝑠
, 𝑥𝑎 < 𝑥 ≤ 𝑏𝑎.

(3.23)

Combining this result with Lemma  3.1, we deduce 𝑣′′𝑎 (𝑥) ≤ 0, which 
implies 𝑣′𝑎(𝑥) ≥ 1 for 0 ≤ 𝑥 ≤ 𝑏𝑎.

We now prove that Eq.  (3.20) is the solution to (3.2). We rewrite 
(3.10) as 
𝐻(𝛾(𝑥))𝑣′𝑎(𝑥) + 𝛿𝑣𝑎(𝑥) = 0. (3.24)

Then, taking derivative respect to 𝑥 yields 
𝐻(𝛾(𝑥))𝑣′′𝑎 (𝑥) +𝐻 ′(𝛾(𝑥))𝛾 ′(𝑥)𝑣′𝑎(𝑥) + 𝛿𝑣′𝑎(𝑥) = 0. (3.25)

And using (3.4), we obtain the following ordinary differential equa-
tion(ODE) 

𝛾 ′(𝑥) =
𝜂𝜇

𝐺(𝛾(𝑥))𝜎2 𝐻(𝛾(𝑥)) − 𝛿

𝐻 ′(𝛾(𝑥))
< 0, (3.26)

which means the relationship between 𝛾 and 𝑥 satisfies (3.10). And use 
(3.6), we can obtain that (3.20) is the solution to (3.2) for 0 ≤ 𝑥 ≤ 𝑥𝑎. 
Similarly, we can prove that (3.20) is the solution to (3.2) for 𝑥𝑎 < 𝑥 ≤
𝑏𝑎.

For 𝑥 > 𝑏𝑎, 𝑣𝑎(𝑥) satisfies that 1−𝑣′𝑎(𝑥) = 0, so 𝑣𝑎(𝑥) = 𝑥−𝑏𝑎+𝑣𝑎(𝑏𝑎). 
And we can get
1
2
ℎ(𝛾2)𝜎2𝑣′′𝑎 (𝑥) + 𝜇𝛾2ℎ(𝛾2)𝑣′𝑎(𝑥) − 𝛿𝑣𝑎(𝑥)

= 𝜇𝛾2ℎ(𝛾2) − 𝛿𝑣𝑎(𝑥)

< 𝜇𝛾2ℎ(𝛾2) − 𝛿𝑣𝑎(𝑏𝑎)

= 0. (3.27)

which means that 𝑣𝑎(𝑥) satisfies HJB Eq. (3.2).
It is straightforward to verify that 𝑣𝑎(𝑥) satisfies the boundary 

condition (2.12). Therefore, we omit the details here. In summary, 
𝑣𝑎(𝑥) is an increasing, concave, and twice continuously differentiable 
solution to the HJB Eq. (3.2). □

3.2. Arbitrage exists: 𝛼 > 𝜂

When 𝛼 > 𝜂, reinsurance is relatively cheap and the possibility of 
arbitrage exists. Combined with (3.9) and (3.10), we can get 𝜂(0) = 𝛼
and 𝑎(0) = 2(𝜂−𝛼)

𝜂 < 0 under the boundary condition 𝑣𝑎(0) = 0, which 
is inconsistent with the definition of 𝑎. Then the boundary condition 
becomes 
−𝑣𝑎(0) ≤ 0, and sup

𝛾∈[0,𝛼]

{

𝜇(𝛾 − 𝜂)ℎ(𝛾)𝑣′𝑎(0) − 𝛿𝑣𝑎(0)
}

= 0. (3.28)

Similarly to the above, we take the first-order optimality condition, 
[

𝜇ℎ(𝛾) + 𝜇(𝛾 − 𝜂)ℎ′(𝛾)
]

𝑣′𝑎(0) = 0. (3.29)

Now, define 𝜁 (𝛾) ∶= 𝜇ℎ(𝛾) + 𝜇(𝛾 − 𝜂)ℎ′(𝛾). 
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Lemma 3.3. There exists a unique 𝛾̃ ∈ [𝜂, 𝛼] such that 𝜁 (𝛾̃) = 0.

Proof. Consider the function 𝜁 (𝛾) defined on the interval [𝜂, 𝛼]. From 
the derivative
𝜁 ′(𝛾) = 2𝜇ℎ′(𝛾) + 𝜇(𝛾 − 𝜂)ℎ′′(𝛾) < 0.

Hence, 𝜁 (𝛾) is strictly decreasing on [𝜂, 𝛼].
Moreover, we have the boundary values 𝜁 (𝜂) > 0 and 𝜁 (𝛼) < 0. By 

the Intermediate Value Theorem, since 𝜁 (𝛾) is continuous on [𝜂, 𝛼] and 
strictly decreasing, there exists a unique 𝛾̃ ∈ [𝜂, 𝛼] such that 𝜁 (𝛾̃) =
0. □

From Lemma  3.3, we obtain 𝑎 = 𝐺(𝛾̃) = 0. This result implies that 
when 𝑥 = 0, the optimal safety loading is 𝛾̃, and the risk-taking ratio is 
0. Next, define the function 𝑄4(𝛾) as 

𝑥 = 𝑄4(𝛾) ∶= ∫

𝛾̃

𝛾

𝐻 ′(𝑠)
𝛿 − 𝜂𝜇

𝐺(𝑠)𝜎2 𝐻(𝑠)
𝑑𝑠, 𝛾 ∈ [𝛾1, 𝛾̃). (3.30)

Similar to the (3.18), the inverse function 𝛾 = 𝑄−1
4 (𝑥) exists and is 

unique for 𝛾 ∈
[

𝛾1, 𝛾̃
)

. Therefore, we have 𝑎(𝑥) = 𝐺
(

𝑄−1
4 (𝑥)

)

, and 
𝑥𝑎 ∶= 𝑄4

(

𝐺−1(1)
)

= 𝑄4
(

𝛾1
)

.
Next, define the function 𝑄5(𝛾) as 

𝑥 = 𝑄5(𝛾) ∶= ∫

𝛾1

𝛾

𝐻 ′(𝑠)

𝛿 − 2𝜇(ℎ(𝑠)+𝑠ℎ′(𝑠))
ℎ′(𝑠)𝜎2 𝐻(𝑠)

𝑑𝑠 + 𝑥𝑎, 𝛾 ∈
[

𝛾2, 𝛾1
)

. (3.31)

Similar to the (3.19), the inverse function 𝛾 = 𝑄−1
5 (𝑥) exists and is 

unique for 𝛾 ∈
[

𝛾2, 𝛾1
)

. In this case, 𝑏𝑎 = 𝑄3(𝛾2).

Theorem 3.3. Under proportional reinsurance contract, when 𝛼 > 𝜂, the 
value function has the following form 

𝑉𝑎(𝑥) = 𝑣𝑎(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛2 ∫
𝑥
0 𝑒

∫ 𝑥𝑎
𝑦

𝜇𝜂
𝐺(𝑄−1

4 (𝑠))𝜎2
𝑑𝑠
𝑑𝑦 + 𝑣𝑎(0), 0 < 𝑥 ≤ 𝑥𝑎,

∫ 𝑥
𝑥𝑎
𝑒
∫ 𝑏𝑎
𝑦

2𝜇[ℎ(𝑄−1
5 (𝑠))+𝑄−1

5 (𝑠)ℎ′ (𝑄−1
5 (𝑠))]

ℎ′ (𝑄−1
5 (𝑠))𝜎2

𝑑𝑠
𝑑𝑦 + 𝑣𝑎(𝑥𝑎), 𝑥𝑎 < 𝑥 ≤ 𝑏𝑎,

𝑥 − 𝑏𝑎 + 𝑣𝑎(𝑏𝑎), 𝑥 > 𝑏𝑎,

(3.32)

which is an increasing, concave and twice continuously differentiable so-

lution of Eq. (3.2). Here 𝑛2 = 𝑒
∫ 𝑏𝑎
𝑥𝑎

2𝜇[ℎ(𝑄−1
5 (𝑠))+𝑄−1

5 (𝑠)ℎ′(𝑄−1
5 (𝑠))]

ℎ′(𝑄−1
5 (𝑠))𝜎2

𝑑𝑠
, where 𝐺(⋅), 

𝑄4(⋅), 𝑄5(⋅) are defined by Eqs. (3.7), (3.30), (3.31), respectively. And 

𝑣𝑎(0) =
(𝛾̃ − 𝜂)𝜇𝑛2

𝛿
𝑒
∫ 𝑥𝑎
0

𝜇𝜂
𝐺(𝑄−1

4 (𝑠))𝜎2
𝑑𝑠

(3.33)

Then the associated optimal premium strategy is described by the safety 
loading as 

𝛾∗(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑄−1
4 (𝑥), 0 < 𝑥 ≤ 𝑥𝑎,

𝑄−1
5 (𝑥), 𝑥𝑎 < 𝑥 ≤ 𝑏𝑎,

𝛾2, 𝑥 > 𝑏𝑎,

(3.34)

which is a decreasing function. The optimal reinsurance strategy is charac-
terized by the following risk retention ratio 

𝑎∗(𝑥) =

{

𝐺(𝑄−1
4 (𝑥)), 0 < 𝑥 ≤ 𝑥𝑎,

1, 𝑥 > 𝑥𝑎,
(3.35)

which is an increasing function. The optimal dividend strategy follows a 
barrier style, similar to that described in (3.17).

Proof. The proof is analogous to that of Theorem  3.2 and is omitted 
for brevity. □

4. The optimal solution in the case of excess-of-loss reinsurance

In this section, we shall discuss the problem in the case of excess-
of-loss reinsurance, which is another popular reinsurance style. Let 
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𝑆(⋅) = min{⋅, 𝑑} denote an excess-of-loss reinsurance contract, where 
𝑑 is the risk retention level. Denote 𝐹 (𝑠) = 𝑃 (𝑋𝑖 > 𝑠) = 1 − 𝐹 (𝑠). 
Considering the insurable conditions, we assume that the support of 
claim distribution is limited, i.e., 𝜉 ∶= sup{𝑥 ∶ 𝐹 (𝑥) < 1} < ∞. It is 
easy to prove that 2𝜇𝜉 > 𝜎2, see Yao et al. (2016). Assume that the 
insurer can dynamically adjust the retention level 𝑑. The excess-of-loss 
reinsurance strategy is determined by the process 𝑑 = {𝑑𝑡, 𝑡 ≥ 0}, which 
is an 𝐵

𝑡 -adapted process and 0 ≤ 𝑑𝑡 ≤ 𝜉. Define the following functions:

𝑔(𝑑) = 𝐸(𝑋𝑖 ∧ 𝑑) = ∫

𝑑

0
𝐹 (𝑠)𝑑𝑠, (4.1)

𝑝(𝑑) = 𝐸
(

(𝑋𝑖 ∧ 𝑑)2
)

= ∫

𝑑

0
2𝑠𝐹 (𝑠)𝑑𝑠. (4.2)

Then under the strategy 𝜋 = {𝛾, 𝑑, 𝐿} ∈ 𝛱 , the controlled surplus 
process follows 

𝑑𝑈𝜋
𝑡 = [𝜇(𝛾𝑡 − 𝜂)ℎ(𝛾𝑡) + 𝜂ℎ(𝛾𝑡)𝑔(𝑑𝑡)]𝑑𝑡 +

√

ℎ(𝛾𝑡)𝑝(𝑑𝑡)𝑑𝐵𝑡 − 𝑑𝐿𝑡. (4.3)

Similar to Section 3, in the case of excess-of-loss reinsurance, denote 
the performance function 𝑉𝑑 (𝑥, 𝜋) = 𝐸𝑥

(

∫ 𝜏𝜋
0 𝑒−𝛿𝑡𝑑𝐿𝑡

)

 and the value 
function 𝑉𝑑 (𝑥) = sup𝜋∈𝛱 𝑉𝑑 (𝑥, 𝜋), respectively. Correspondingly, we 
give the following HJB equation associated with the value function:

max

{

sup
𝑑∈[0,𝜉],𝛾∈[0,𝜂]

{ 1
2
ℎ(𝛾𝑡)𝑝(𝑑)𝑣′′𝑑 (𝑥)

+[𝜇(𝛾𝑡 − 𝜂)ℎ(𝛾𝑡) + 𝜂ℎ(𝛾𝑡)𝑔(𝑑)]𝑣′𝑑 (𝑥) − 𝛿𝑣𝑑 (𝑥)
}

, 1 − 𝑣′𝑑 (𝑥)
}

= 0,

(4.4)

with the boundary condition (2.12).
Assume that the switching point 𝑏𝑑 = inf{𝑥 ≥ 0 ∶ 𝑣′𝑑 (𝑥) ≤ 1} exists. 

Then, by the concavity, 𝑣′𝑑 (𝑥) ≥ 1 for 𝑥 ≤ 𝑏𝑑 . So, for 0 ≤ 𝑥 ≤ 𝑏𝑑 , (4.3) 
reduces to 

sup
𝑑∈[0,𝜉],𝛾∈[0,𝜂]

{ 1
2
ℎ(𝛾)𝑝(𝑑)𝑣′′𝑑 (𝑥) + [𝜇(𝛾 − 𝜂)ℎ(𝛾) + 𝜂ℎ(𝛾)𝑔(𝑑)]𝑣′𝑑 (𝑥) − 𝛿𝑣𝑑 (𝑥)

}

= 0.

(4.5)

Differentiating with respect to 𝛾 and 𝑑 respectively, and setting the 
derivative to zero, we obtain
ℎ′(𝛾)𝑝(𝑑)𝑣′′𝑑 (𝑥) +

[

2𝜇(ℎ(𝛾) + (𝛾 − 𝜂)ℎ′(𝛾)) + 2𝜂𝑔(𝑑)ℎ′(𝛾)
]

𝑣′𝑑 (𝑥) = 0, (4.6)

𝑑𝑣′′𝑑 (𝑥) + 𝜂𝑣′𝑑 (𝑥) = 0. (4.7)

Suppose that the insurer can implement optimal reinsurance and 
premium strategies simultaneously. From (4.6) and (4.7), we can get 
the relationship between 𝛾 and 𝑑 as follow 
𝑣′𝑑 (𝑥)

𝑣′′𝑑 (𝑥)
= −𝑑

𝜂
=

−ℎ′(𝛾)𝑝(𝑑)
2𝜇[ℎ(𝛾) + (𝛾 − 𝜂)ℎ′(𝛾)] + 2𝜂𝑔(𝑑)ℎ′(𝛾)

(4.8)

which is the relationship between optimal retention levels 𝑑∗(𝑥) and 
safety loading 𝛾∗(𝑥). Next, we will discuss two scenarios: the presence 
of arbitrage and the absence of arbitrage.

4.1. No arbitrage: 𝜂 ≥ 𝛼

Similar to the previous section, we first examine the scenario where 
reinsurance is more expensive and no arbitrage opportunities exist. 
That is to say, the boundary condition becomes: 
𝑣𝑎(0) = 0, and sup

𝛾∈[0,𝛼]

{

𝜇(𝛾 − 𝜂)ℎ(𝛾)𝑣′𝑎(0) − 𝛿𝑣𝑎(0)
}

≤ 0. (4.9)

When 𝑑 = 𝜉, (4.8) leads to

−
𝜉
𝜂
= −

ℎ′(𝛾)𝜎2

2𝜇[ℎ(𝛾) + 𝛾ℎ′(𝛾)]
.

Thus, define 𝜈(𝛾) ∶= 2𝜇𝜉[ℎ(𝛾) + 𝛾ℎ′(𝛾)] − 𝜂ℎ′(𝛾)𝜎2, and derive that
𝜈′(𝛾) = 2𝜇𝜉[2ℎ′(𝛾) + 𝛾ℎ′′(𝛾)] − 𝜂ℎ′′(𝛾)𝜎2 (4.10)
699 
= 4𝜉𝜇ℎ′(𝛾) + 2𝜇𝜉𝛾ℎ′′(𝛾) − 𝜂ℎ′′(𝛾)𝜎2

< 4𝜉𝜇ℎ′(𝛾) + 2𝜇𝜉𝜂ℎ′′(𝛾) − 𝜂ℎ′′(𝛾)𝜎2

= 4𝜉𝜇ℎ′(𝛾) + 𝜂ℎ′′(𝛾)(2𝜇𝜉 − 𝜎2)

< 0.

The first inequality holds because of 𝜂 > 𝛾 and the secondary inequality 
holds because of 2𝜇𝜉 > 𝜎2. Noting that 𝜈(0) = 2𝜇𝜉ℎ(0) − 𝜂ℎ′(0)𝜎2 > 0
and 𝜈(𝛼) = 2𝜇𝜉𝛼ℎ′(𝛼) − 𝜂ℎ′(𝛼)𝜎2. We can conclude the following:

1. When 𝜈(𝛼) < 0 (i.e., 𝛼 < 𝜂 < 2𝜇𝜉
𝜎2

𝛼), there exists 𝛾4 ∈ (𝛾2, 𝛼) such 
that 𝜈(𝛾4) = 0, and insurers adopt reinsurance strategies.

2. Conversely, when 𝜈(𝛼) ≥ 0 (i.e., 𝜂 ≥ 2𝜇𝜉
𝜎2

𝛼), insurers do not 
consider reinsurance strategies.

4.1.1. 𝜂 ≥ 2𝜇𝜉
𝜎2

𝛼
When 𝜂 ≥ 2𝜇𝜉

𝜎2
𝛼, the cost of maintaining an excess-of-loss reinsurance 

strategy becomes prohibitively high for the insurer, leading them to 
abandon the reinsurance strategy. In this case, the insurer assumes the 
entire risk and dynamically adjusts the safety loading of the premium 
to maximize the company’s value. The resulting optimal value function 
and optimal strategy align with the findings of Theorem  3.1.

4.1.2. 2𝜇𝜉
𝜎2

𝛼 > 𝜂 ≥ 𝛼
When 2𝜇𝜉

𝜎2
𝛼 > 𝜂 ≥ 𝛼, although reinsurance is more expensive, 

insurers still choose reinsurance to transfer risk. Putting (4.6) back into 
(4.5) yields 

−
𝜇ℎ2(𝛾)
ℎ′(𝛾)

𝑣′𝑑 (𝑥) − 𝛿𝑣𝑑 (𝑥) = 0. (4.11)

Similar to (3.10), we can get 𝛾(0) = 𝛼.

Lemma 4.1. There exists a function 𝑞(⋅) such that 𝑑 = 𝑞(𝛾), where 𝑞(⋅)
characterizes the relationship between the optimal retention level and the 
safety loading.

Proof. For clarity of presentation, we define
𝑟𝛾 (𝑑) ∶= 2𝑑𝜇

[

ℎ(𝛾) + (𝛾 − 𝜂)ℎ′(𝛾)
]

+ 2𝑑𝜂𝑔(𝑑)ℎ′(𝛾) − 𝜂ℎ′(𝛾)𝑝(𝑑),

which follows from (4.8). Taking the derivative of the above function 
with respect to 𝑑 yields
𝑟′𝛾 (𝑑) = 2𝜇

[

ℎ(𝛾) + (𝛾 − 𝜂)ℎ′(𝛾)
]

+ 2𝜂𝑔(𝑑)ℎ′(𝛾),

and further differentiating gives
𝑟′′𝛾 (𝑑) = 2𝜂𝐹 (𝑑)ℎ′(𝛾) < 0.

Thus, 𝑟𝛾 (𝑑) is a concave function of 𝑑. Combined with the conditions 
𝑟′𝛾 (0) = 2𝜇

[

ℎ(𝛾) + (𝛾 − 𝜂)ℎ′(𝛾)
]

> 0 and 𝑟′𝛾 (𝜉) = 2𝜇
[

ℎ(𝛾) + 𝛾ℎ′(𝛾)
]

< 0, we 
conclude that 𝑟𝛾 (𝑑) first increases and then decreases. Moreover, since 
𝑟𝛾 (0) = 0 and
𝑟𝛾 (𝜉) = 2𝜇𝜉

[

ℎ(𝛾) + 𝛾ℎ′(𝛾)
]

− 𝜂ℎ′(𝛾)𝜎2 < 0

for 𝛾 ∈ (𝛾4, 𝛼], it follows by the Intermediate Value Theorem that there 
exists a unique solution 𝑑 ∈ (0, 𝜉] to 𝑟𝛾 (𝑑) = 0. Therefore, there exists 
a unique value 𝑑1 such that 𝑟𝛼(𝑑1) = 0, corresponding to the optimal 
retention level at 𝑥 = 0. Additionally, there exists a function 𝑞(⋅) such 
that 𝑑 = 𝑞(𝛾) and 𝑟𝛾 (𝑞(𝛾)) = 0, with 𝑞(𝛼) = 𝑑1 and 𝑞(𝛾4) = 𝜉. □

Now, define the function: 

𝑥 = 𝐼1(𝛾) ∶= ∫

𝛼

𝛾
−

𝐻 ′(𝑠)
𝜂

𝑞(𝑠)𝐻(𝑠) − 𝛿
𝑑𝑠, 𝛼 > 𝛾 ≥ 𝛾4. (4.12)

Additionally, define 𝑥𝑑 = 𝐼1(𝛾4) as the point at which all risk is assumed. 
Due to 𝐻(𝛼) = 0 and 𝐻 ′(𝛾) ≥ 0, we can get 𝐻(𝛾) < 0 for 𝛾 ∈ [0, 𝛼). Then 
the integrand is greater than 0, and we have 𝛾 = 𝐼−11 (𝑥) for 0 < 𝑥 ≤ 𝑥𝑑 . 
In addition, define 

𝑥 = 𝐼2(𝛾) ∶= ∫

𝛾4

𝛾
−

𝐻 ′(𝑠)
2𝜇(ℎ(𝑠)+𝑠ℎ′(𝑠))

𝑑𝑠 + 𝑥𝑑 , 𝛾4 > 𝛾 ≥ 𝛾2, (4.13)

ℎ′(𝑠)𝜎2 𝐻(𝑠) − 𝛿
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similar to (3.19), the inverse function exists 𝛾 = 𝐼−12 (𝑥) for 𝑥𝑑 < 𝑥 ≤
𝐼2(𝛾2). And 

𝑘1 = exp

{

∫

𝑏𝑑

𝑥𝑑

2𝜇[ℎ(𝐼−12 (𝑠)) + 𝐼−12 (𝑠)ℎ′(𝐼−12 (𝑠))]

ℎ′(𝐼−12 (𝑠))𝜎2
𝑑𝑠

}

(4.14)

Theorem 4.1. Under excess-of-loss reinsurance contract, when 𝛼 ≤ 𝜂 <
2𝜇𝜉
𝜎2

𝛼, the value function is given by 

𝑉𝑑 (𝑥) = 𝑣𝑑 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘1 ∫
𝑥
0 𝑒

∫ 𝑥𝑑
𝑦

𝜂
𝑞(𝐼−11 (𝑠))

𝑑𝑠
𝑑𝑦, 0 ≤ 𝑥 ≤ 𝑥𝑑 ,

∫ 𝑥
𝑥𝑑
𝑒
∫ 𝑏𝑑
𝑦

2𝜇[ℎ(𝐼−12 (𝑠))+𝐼−12 (𝑠)ℎ′ (𝐼−12 (𝑠))]

ℎ′ (𝐼−12 (𝑠))𝜎2
𝑑𝑠
𝑑𝑦 + 𝑣𝑑 (𝑥𝑑 ), 𝑥𝑑 < 𝑥 ≤ 𝑏𝑑 ,

𝑥 − 𝑏𝑑 + 𝑣𝑑 (𝑏𝑑 ), 𝑥 > 𝑏𝑑 ,

(4.15)

which is an increasing, concave and twice continuously differentiable solu-
tion to (4.4). Here 𝑏𝑑 = 𝐼2(𝛾2) and where 𝑘1, 𝐼1(⋅) and 𝐼2(⋅) are defined 
by (4.14), (4.12) and (4.13) respectively. The optimal premium control 
strategy is described by the safety loading as 

𝛾∗(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝐼−11 (𝑥), 0 ≤ 𝑥 ≤ 𝑥𝑑 ,
𝐼−12 (𝑥), 𝑥𝑑 < 𝑥 ≤ 𝑏𝑑 ,
𝛾2, 𝑥 > 𝑏𝑑 .

(4.16)

It is a decreasing function, which means that the insurer should lower the 
premium rate as the surplus increases. The optimal reinsurance strategy is 
characterized by the following retention level 

𝑑∗(𝑥) =

{

𝑞(𝐼−11 (𝑥)), 0 ≤ 𝑥 ≤ 𝑥𝑑 ,
𝜉, 𝑥 > 𝑥𝑑 .

(4.17)

It is an increasing function, which means that the insurer should reduce rein-
surance as the surplus increases. Barrier dividend strategy with parameter 
𝑏𝑑 > 0 is optimal, namely, 

𝐿𝜋∗
𝑡 = (𝑥 − 𝑏𝑑 )+1{𝑡≥0} + ∫

𝑡

0
1{𝑋𝜋∗

𝑠 =𝑏𝑑}
d𝐿𝜋∗

𝑠 . (4.18)

Proof. First, we demonstrate that 𝑣′𝑑 (𝑥) ≤ 1 holds for 0 ≤ 𝑥 ≤ 𝑏𝑑 . 
By straightforward calculation, we obtain 𝑣′𝑑 (𝑏𝑑−) = 1. The second 
derivative is explicitly given by 

𝑣′′𝑑 (𝑥) =

⎧

⎪

⎨

⎪

⎩

− 𝜂
𝑞(𝐼−11 (𝑥))

𝑒
∫ 𝑥𝑑
𝑥

𝜂
𝑞(𝐼−11 (𝑠))

𝑑𝑠
, 0 ≤ 𝑥 ≤ 𝑥𝑑 ,

− 2𝜇[ℎ(𝐼−12 (𝑥))+𝐼−12 (𝑥)ℎ′(𝐼−12 (𝑥))]
ℎ′(𝐼−12 (𝑥))𝜎2 𝑒

∫ 𝑏𝑑
𝑥

2𝜇[ℎ(𝐼−12 (𝑠))+𝐼−12 (𝑠)ℎ′ (𝐼−12 (𝑠))]

ℎ′ (𝐼−12 (𝑠))𝜎2
𝑑𝑠
, 𝑥𝑑 < 𝑥 ≤ 𝑏𝑑 .

(4.19)

Combining this result with Lemma  3.1, we deduce 𝑣′′𝑑 (𝑥) ≤ 0, which 
implies 𝑣′𝑑 (𝑥) ≥ 1 for 0 ≤ 𝑥 ≤ 𝑏𝑑 .

We now prove that Eq.  (4.15) is the solution to (4.4). We rewrite 
(4.11) as 
𝐻(𝛾(𝑥))𝑣′𝑑 (𝑥) + 𝛿𝑣𝑑 (𝑥) = 0. (4.20)

Then, taking derivative respect to 𝑥 yields 

𝐻(𝛾(𝑥))𝑣′′𝑑 (𝑥) +𝐻 ′(𝛾(𝑥))𝛾 ′(𝑥)𝑣′𝑑 (𝑥) + 𝛿𝑣′𝑑 (𝑥) = 0. (4.21)

And using (4.8) and Lemma  4.1, we obtain the following ordinary 
differential equation(ODE) 

𝛾 ′(𝑥) =
𝜂

𝑞(𝑥)𝐻(𝛾(𝑥)) − 𝛿

𝐻 ′(𝛾(𝑥))
< 0, (4.22)

which means the relationship between 𝛾 and 𝑥 satisfies (4.12). And use 
(4.8), we can obtain that (4.15) is the solution to (4.4) for 0 ≤ 𝑥 ≤ 𝑥𝑑 . 
Similarly, we can prove that (4.15) is the solution to (4.4) for 𝑥𝑑 < 𝑥 ≤
𝑏 ; the details are omitted here for brevity.
𝑑

700 
Similar to the proof of Theorem  4.2, for 𝑥 > 𝑏𝑑 , 𝑣𝑑 (𝑥) satisfies 
1−𝑣′𝑑 (𝑥) = 0, which implies 𝑣𝑑 (𝑥) = 𝑥−𝑏𝑑 +𝑣𝑎(𝑏𝑑 ). Using (3.27), we can 
verify that it is indeed a solution to (4.4). It is also straightforward to 
check that 𝑣𝑑 (𝑥) satisfies the boundary condition (2.12); thus, we omit 
the details for brevity. In summary, 𝑣𝑑 (𝑥) is an increasing, concave, and 
twice continuously differentiable solution to the HJB equation. □

4.2. Arbitrage exists: 𝛼 > 𝜂

When 𝛼 > 𝜂, there is room for arbitrage for the insurer. At this point, 
the boundary conditions are: 
−𝑣𝑑 (0) ≤ 0, and sup

𝛾∈[0,𝛼]

{

𝜇(𝛾 − 𝜂)ℎ(𝛾)𝑣′𝑑 (0) − 𝛿𝑣𝑑 (0)
}

= 0. (4.23)

Similar to the proportional reinsurance scenario, the insurer adopts a 
safety loading of 𝛾̃ and sets the retention level to 0 at 𝑥 = 0. Combined 
with Lemma  3.3, we can get 𝜈(𝛾̃) < 0. Following an argument analogous 
to (4.10), we further show that 𝜈′(𝛾) < 0 for all 𝛾 ∈

[

𝛾2, 𝛾̃
]

. The strict 
monotonicity of 𝜈 guarantees the existence of a unique 𝛾4 ∈

[

𝛾2, 𝛾̃
]

satisfying 𝜈 (𝛾4
)

= 0.

Lemma 4.2. There exists a function 𝑞1(⋅) such that 𝑑 = 𝑞1(𝛾), with 𝑞1(𝛾̃) =
0 and 𝑞1

(

𝛾4
)

= 𝜉, where 𝑞1(⋅) characterizes the relationship between the 
optimal retention level and the safety loading.

Proof. The proof methodology mirrors that of Lemma  4.1, and is 
omitted here for brevity. □

Next, define the function 𝐼3(𝛾) as 

𝑥 = 𝐼3(𝛾) ∶= ∫

𝛾̃

𝛾
−

𝐻 ′(𝑠)
𝜂

𝑞1(𝑠)
𝐻(𝑠) − 𝛿

𝑑𝑠, 𝛾̃ > 𝛾 ≥ 𝛾4. (4.24)

Similar to the (3.18), the inverse function 𝛾 = 𝐼−13 (𝑥) exists and is 
unique for 𝛾 ∈

[

𝛾4, 𝛾̃
)

. Therefore, we have 𝑑(𝑥) = 𝑞1
(

𝐼−13 (𝑥)
)

, and 
𝑥𝑑 ∶= 𝐼3

(

𝛾4
)

.

Theorem 4.2. Under excess-of-loss reinsurance contract, when 𝛼 > 𝜂, the 
value function has the following form 

𝑉𝑑 (𝑥) = 𝑣𝑑 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘2 ∫
𝑥
0 𝑒

∫ 𝑥𝑑
𝑦

𝜂
𝑞1 (𝐼

−1
3 (𝑠))

𝑑𝑠
𝑑𝑦 + 𝑣𝑑 (0), 0 < 𝑥 ≤ 𝑥𝑑 ,

∫ 𝑥
𝑥𝑑
𝑒
∫ 𝑏𝑑
𝑦

2𝜇[ℎ(𝐼−12 (𝑠))+𝐼−12 (𝑠)ℎ′ (𝐼−12 (𝑠))]

ℎ′ (𝐼−12 (𝑠))𝜎2
𝑑𝑠
𝑑𝑦 + 𝑣𝑑 (𝑥𝑑 ), 𝑥𝑑 < 𝑥 ≤ 𝑏𝑑 ,

𝑥 − 𝑏𝑑 + 𝑣𝑑 (𝑏𝑑 ), 𝑥 > 𝑏𝑑 ,

(4.25)

which is an increasing, concave and twice continuously differentiable solu-

tion of (4.4). Here 𝑘2 = 𝑒
∫ 𝑏𝑑
𝑥𝑑

2𝜇[ℎ(𝐼−12 (𝑠))+𝐼−12 (𝑠)ℎ′(𝐼−12 (𝑠))]

ℎ′(𝐼−12 (𝑠))𝜎2
𝑑𝑠
𝑑𝑦, where 𝐼2(⋅), 𝐼3(⋅)

are defined by (4.13), (4.24), respectively. And 

𝑣𝑑 (0) =
(𝛾̃ − 𝜂)𝜇𝑘2

𝛿
𝑒
∫ 𝑥𝑑
0

𝜂
𝑞1(𝐼

−1
3 (𝑠))

𝑑𝑠
(4.26)

Then the associated optimal premium strategy is described by the safety 
loading as 

𝛾∗(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝐼−13 (𝑥), 0 ≤ 𝑥 ≤ 𝑥𝑑 ,
𝐼−12 (𝑥), 𝑥𝑑 < 𝑥 ≤ 𝑏𝑑 ,
𝛾2, 𝑥 > 𝑏𝑑 .

(4.27)

which is a decreasing function. The optimal reinsurance strategy is charac-
terized by the following risk retention level 

𝑑∗(𝑥) =

{

𝑞1(𝐼−13 (𝑥)), 0 ≤ 𝑥 ≤ 𝑥𝑑 ,
𝜉, 𝑥 > 𝑥𝑑 ,

(4.28)

which is an increasing function, The optimal dividend strategy follows a 
barrier style, similar to that described in (4.18).
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Proof. The proof is analogous to that of Theorem  4.1 and is omitted 
for brevity. □

Remark 1. When 𝜂 = 0, we have 𝛾1 = 𝛾2 = 𝛾4 = 𝛾̃. In this case, the 
insurer does not assume any risk and transfers the entire risk to the 
reinsurer. At this point, the value function is given by 𝑣𝑑 (𝑥) = 𝑣𝑎(𝑥) =
(𝛾̃−𝜂)𝜇

𝛿 + 𝑥.

Based on the discussion of the two reinsurance forms, we find that 
when 𝑥 = 0, whether or not an insurer using proportional reinsurance 
adopts a reinsurance strategy and how much risk it takes on mainly 
considers the safety loading associated with reinsurance and primary 
premiums. In contrast, those opting for excess-of-loss reinsurance must 
also take into account the distribution of claims, as it significantly 
affects their risk exposure. When the insurer retains the entire risk, 
the optimal premium control strategy depends on three factors: the 
function ℎ(𝛾), the mean of the claims, and its variance.

5. Numerical examples

In the above two sections, we have presented the value functions 
and associated optimal strategies in the cases of two common reinsur-
ance contracts, respectively. Next, we will use numerical examples to 
illustrate the results and make insightful comparisons.

In this section, as the safety loading 𝜂 varies, we can observe 
the change of optimal strategies adopted by two companies who buy 
proportional reinsurance and excess-of-loss reinsurance, respectively. 
Due to 𝜎2 < 𝜉𝜇, 2𝜇𝜉

𝜎2
𝛼 > 2𝛼. In other words, as the safety loading 

of reinsurance price 𝜂 increases, the insurer who adopts proportional 
reinsurance will abandon reinsurance earlier.

Remark 2. When the safety loading on reinsurance premiums 𝜂 con-
tinues to rise, insurance companies employing proportional reinsur-
ance strategies will be the first to cease transferring risks through 
reinsurance as the associated costs become prohibitively high.

Now, let us compare the size of 𝛾 between Sections 3 and 4, 
i.e. compare 𝛾1 and 𝛾4, when insurers do not buy reinsurance. (3.6) 
gives 
ℎ(𝛾1) + 𝛾1ℎ′(𝛾1)

ℎ′(𝛾1)
=

𝜂
2
, (5.1)

and (4.8) gives 
ℎ(𝛾4) + 𝛾4ℎ′(𝛾4)

ℎ′(𝛾4)
=

𝜂𝜎2

2𝜇𝜉
. (5.2)

Now, let us define 𝜚(𝑥) ∶= ℎ(𝑥)+𝑥ℎ′(𝑥)
ℎ′(𝑥) , then it has 

𝜚′(𝑥) =
2(ℎ′(𝑥))2 − ℎ(𝑥)ℎ′′(𝑥)

(ℎ′(𝑥))2
> 0. (5.3)

Due to 𝜎2 < 𝜇𝜉, we can get 
𝜂
2
>

𝜂𝜎2

2𝜇𝜉
. (5.4)

Combined with (5.3) and (5.4), we can get 𝛾4 < 𝛾1.

Remark 3. If 𝜂 < 2𝛼, insurers will implement a reinsurance strategy. 
Under full risk retention, companies utilizing excess-of-loss reinsurance 
tend to offer lower premium pricing.

During the premium rate adjustment process, the safety loading 𝛾
progressively decreases as the surplus 𝑥 increases. When the surplus 
reaches the dividend payment barrier, the safety loading attains its 
minimum value, 𝛾2, as demonstrated in Sections 3 and 4. Conse-
quently, insurers employing two distinct reinsurance strategies will 
have identical premium rates at the point of dividend payment.
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Fig. 1. The value functions with different 𝜂.
The solid lines correspond to the proportional reinsurance; The dotted lines correspond 
to the excess-of-loss reinsurance.

Table 1
Effect of 𝜂 on optimal strategy.
 Proportional reinsurance Excess-of-loss reinsurance
 𝜂 1.15 1.23 2.5 1.15 1.23 2.5  
 𝑥𝑎(𝑥𝑑 ) 1.1033 1.0563 0 2.7631 2.8239 3.1670  
 𝑏𝑎(𝑏𝑑 ) 3.5531 3.6146 3.6750 2.8651 2.9327 3.3795  

Remark 4. The safety loading 𝛾 decreases progressively with surplus 
growth, attaining its minimum value 𝛾2 at the dividend payment barrier 
where insurers employing two distinct reinsurance strategies share 
identical premium rates during dividend distribution.

Now let us use a numerical example to explore further. Assume that 
distribution of the claim size is heavy-tailed and follows that 

𝐹 (𝑥) = 1 − 1
(𝑥 + 1)3

, 𝑥 ≤ 100, (5.5)

with 𝜇 = 0.5 and 𝜎2 = 0.9803. Let 𝛿 = 0.05 in the following calculations. 
Our primary focus will be on investigating the impact of the reinsurance 
premium safety loading 𝜂. It should be noted that a higher 𝜂 signifies 
greater costs for insurers in terms of risk transfer. Furthermore, we posit 
that ℎ(𝛾) = 1.44 − 𝛾2.

Fig.  1 demonstrates an inverse relationship between 𝜂 and the 
company’s value. Table  1 reveals that the dividend threshold 𝑏𝑎 (𝑏𝑑) in-
creases with 𝜂, indicating that higher reinsurance costs require greater 
retention of reserves and delayed dividend distribution. Notably, insur-
ers adopting proportional reinsurance exhibit later dividend payments 
than those using excess-of-loss reinsurance, as reflected by 𝑏𝑎 > 𝑏𝑑 .

The 𝛾-𝜂 relationship is established through Fig.  2 and Table  1. 
Higher reinsurance costs drive up insurers’ premium pricing. Propor-
tional reinsurance users maintain systematically higher premiums than 
excess-of-loss adopters. This discrepancy stems from fundamental risk 
transfer differences: excess-of-loss reinsurance shifts catastrophic tail 
risks to reinsurers, enabling primary insurers to reduce premiums for 
market expansion and profit maximization. Remark  4 and Fig.  2 further 
identify 𝛾2 as the unified minimum premium threshold across strategies. 
Table  1 shows that increased 𝜂 delays the attainment of 𝛾2, with excess-
of-loss insurers reaching this threshold earlier than their proportional 
reinsurance counterparts.

Fig.  3 and Table  1 uncover distinct risk retention patterns. Pro-
portional reinsurance insurers assume full risk exposure earlier than 
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Fig. 2. The optimal premium rates with different 𝜂.
The solid lines correspond to the proportional reinsurance; The dotted lines correspond 
to the excess-of-loss reinsurance.

Fig. 3. The optimal retention ratios for reinsurance with different 𝜂.
The solid lines correspond to the proportional reinsurance; The dotted lines correspond 
to the excess-of-loss reinsurance.

excess-of-loss users. Crucially, higher 𝜂 accelerates complete risk reten-
tion for proportional reinsurers but delays it for excess-of-loss insurers. 
The latter exhibit 𝜂-dependent risk profiles: lower surplus corresponds 
to higher risk retention with increased 𝜂, while abundant surplus shows 
an inverse pattern.

6. Conclusion and summary

This paper examines the optimal dividend and business scaling 
strategy for an insurance company. It assumes that the insurer aims 
to maximize profits by paying dividends and managing its business 
scale and risks through reinsurance purchases and premium rate adjust-
ments. Under the object of maximizing the value of company, the trade-
off between return and risk is discussed. As a result, a continuous-time 
optimization problem is formulated, and two scenarios — proportional 
reinsurance and excess-of-loss reinsurance — are examined under both 
the presence and absence of arbitrage.

Using stochastic control techniques, closed-form expressions for the 
value function and optimal strategies are derived for all cases. The 
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results show that as the surplus increases, the insurer should lower the 
premium rate and reduce its reliance on reinsurance. The optimal divi-
dend strategy follows a barrier structure. When arbitrage opportunities 
exist, the insurer chooses to remain in business even when the surplus 
falls to zero; in contrast, without arbitrage, the insurer opts to exit the 
market at zero surplus. Furthermore, the insurer will choose to pay 
dividends directly without assuming any risk only when reinsurance is 
zero. If reinsurance costs are present, the insurer prefers to retain the 
risk itself, provided the surplus is sufficient. When the insurer deems 
the surplus sufficient to support dividend payments, both scenarios 
converge to the same strategy: retaining all the risk and setting the 
premium rate at the lowest level 𝛾2.

Future research could extend this work by considering more sophis-
ticated dependence structures, such as the common shock model or the 
thinning-dependence model, to provide deeper insights into optimal 
insurance management strategies.
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