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A B S T R A C T

Aiming at a comprehensive understanding of semantic web technologies in enhancing digital intelligence of road 
infrastructure, 141 papers were selected for scientometric analysis and critical review. Research trends were 
visualized through co-authorship, co-citation, and co-word analyses, while critical reviews identified themes and 
limitations. Publication trends revealed growth peaks in 2016 and 2021 and shift toward journal-dominated 
outputs signaling maturation from exploratory methodologies to robust theoretical frameworks and practical 
validations. Co-authorship analysis revealed growing engineering-computer science collaborations, while co- 
citation analysis stressed foundational ontology methodologies. Keyword analysis identified essential themes 
including building information modeling, digital twins, and deep learning. Data exchange and semantic inte-
gration, knowledge management, and reasoning and simple querying were identified pivotal roles of semantic 
web technologies in road infrastructure. Subsequently, a preliminary framework was proposed synthesizing core 
components and key processes. Five limitations were identified: lack of comprehensive guiding framework and 
ontology development protocols; limited information integration and synchronization; insufficient automation; 
and weak capacity of logical inference and decision support. This paper contributes to the current knowledge 
body by providing insights into how semantic web technologies support the management of road infrastructures 
throughout life cycle and addressing concerns and limitations faced therein to offer suggestions for future 
advancement.

1. Introduction

As a fundamental component of the integrated urban transportation 
systems, the scientific and efficient management of road infrastructure 
throughout its life cycle is an indispensable prerequisite for the smooth 
operation of urban functions [1, 2]. However, this imperative persists as 
a multidimensional challenge due to the inherent complexity of coor-
dinating multi-participants workflows, heterogeneous data sources, and 
cross-disciplinary decision-making processes across design, construc-
tion, operation, and maintenance phases.

Advances in information and communication technologies (ICTs) 
such as building information modeling (BIM), geographic information 
systems (GIS), internet of things (IoT), and artificial intelligence (AI), 
have brought new perspectives to this challenge and introduced trans-
formative tools for digitizing and optimizing road infrastructure pro-
cesses. For instance, BIM facilitated collision detection [3], construction 

projects optimization [4, 5], and traffic flow simulations [6]; GIS 
enabled spatial analysis and alignment optimization [7, 8]; IoT sensors 
embedded in pavements and bridges generate real-time structural health 
data [9, 10], and AI was utilized for road defects detection and predic-
tive maintenance [11]. These ICTs have collectively enhanced the 
digitalization of road infrastructure and introduced new possibilities for 
optimizing the functionality and its long-term performance [6, 12, 13].

Despite these advancements, significant challenges remain in 
achieving holistic and semantically coherent information integration 
and intelligent infrastructure management. These stand-alone ICTs were 
characterized by a complex fragmented nature, adhering to disparate 
data standards [8, 14, 15], leading to inefficiencies in cross-domain 
reasoning [16–19] and knowledge-driven decision-making [20, 21]. 
These challenges manifest concretely when the coordination among 
road infrastructure design, structural engineering, geospatial analysis, 
maintenance strategies, and real-time sensor data gives rise to complex 
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and heterogeneous information flows. For instance, during the integra-
tion of BIM component data with GIS regional information for road 
planning and design, while format conversion techniques enable the 
transfer of BIM’s 3D geometric information and attribute data into 
GIS-compatible formats, fundamental heterogeneities persist in their 
conceptual frameworks, terminologies, and relational representations 
[7, 8, 22]. Similarly, in operational decision-making processes, where 
current road maintenance practices primarily rely on manual experience 
or simplistic threshold criteria, without comprehensively evaluating 
multidimensional factors including traffic volume, material aging, and 
environmental erosion. Moreover, cross-departmental collaboration and 
integrated decision-making remain inefficient due to systemic interop-
erability barriers, resulting in compromised assessment accuracy and 
suboptimal resource allocation throughout infrastructure life cycle 
management [23, 24].

Semantic web technologies have been recognized as a feasible so-
lution to these concerns with respect to their capability to represent 
information as structured graphs and support data integration and 
complex search queries across diverse knowledge domains [25–27]. This 
approach established a prototype of knowledge graph formed by stan-
dardized links of interrelated information to promote machine under-
standing and processing of metadata and other large-scale information 
objects [28]. In the domains of architecture, engineering and construc-
tion (AEC), semantic web technologies have been leveraged as a com-
plementary to BIM systems [26, 29]. Unlike the prevailing BIM data 
format standards (e.g., industry foundation classes (IFC)), which struc-
ture information such as project geometry and material attributes in a 
standardized way [8, 23], semantic web technologies enable formalized 
knowledge representation to resolve inconsistencies and ambiguous 
between entities and relationship descriptions [23, 30, 31]. Further-
more, cross-domain reasoning can be performed by leveraging the 
strengths of semantic web and ontologies in the field of knowledge 
representation and management [32], which allowing for interoperable 
heterogenous data from multiple sources while formalizing knowledge 
as an enabler for reasoning [33].

Emerging applications in AEC domains demonstrated these poten-
tials to unify multidisciplinary data into actionable insights. For 
instance, IFC web ontology language (ifcOWL), which was designed and 
enhanced to retain the structural hierarchical concepts of IFC, but 
incorporating the data scalability, querying and reasoning, and reuse 
capabilities of the semantic web technologies [34, 35], has been further 
applied in areas such as code compliance checking [36] and city infor-
mation modeling that merges BIM, GIS and IoT data [37]. In road 
infrastructure specifically, semantic web technologies have also been 
progressively introduced and investigated as means to: integrate infor-
mation for cross-functional and spatial-temporal planning in highway 
projects [38], unify and interconnect lifecycle data spaces to facilitate 
decision making in highway asset management [24], enhance constraint 
information searching and rehabilitation project management of con-
crete bridges [18], as well as facilitate traffic forecasting through a 
knowledge representation-driven method [39].

The significance of semantic web technologies in the engineering 
domain has also been well-established in previous review studies. 
Earlier research has examined the research directions and advancements 
in semantic web technologies from multiple perspectives. As shown in 
Table 1, Pauwels et al. systematically analyzed the development and 
application processes of semantic web technologies in the AEC fields 
[26], emphasizing their indispensability for logic-based multi-source 
information integration. Zhong et al. conducted a scientometric analysis 
of ontologies in the construction domain, providing a comprehensive 
overview of the current research landscape and existing gaps [40]. 
While both studies adopted an engineering lifecycle perspective, their 
primary data sources were predominantly from the building industry. 
While Katsumi et al. organized and compared ontologies used in the 
transportation domain, analyzing their interrelationships through 
high-level taxonomies, they did not elaborate on their practical 

applications [41]. Lei et al. performed a detailed analysis of ontologies 
employed in road asset management, which aligns most closely with the 
objectives of this paper, yet there remains substantial scope for deeper 
exploration of the ontology technology stack itself [42]. While existing 
reviews provide valuable foundations, significant knowledge gaps 
remain: 

a) Domain-specificity limitations: Previous reviews predominantly 
focused on building engineering, while in-depth and structured in-
vestigations into the trends and barriers to the adaptability of se-
mantic web technologies in the road infrastructure domain remain 
limited.

b) Holistic guiding framework deficiency: While current research sub-
stantiated the significance of semantic web technologies in road 
infrastructure domain, practical implementations were largely 
confined to isolated scenarios under singular circumstance. In light 
of the complex characteristics of road infrastructure, a semantically 
integrated technical framework that balances theoretical feasibility 
with engineering applicability was still underdeveloped.

From a broader perspective, there is a critical need to understand the 
state-of-the-art situation of semantic web technologies in the road 
infrastructure domain. To address these gaps, we proposed the following 
research questions, which formed the conceptual foundation of the 
paper: 

RQ1. : What are semantic web technologies and what do they 
encompass? What are the prerequisites and domain-specific consider-
ations for adopting semantic web technologies in road infrastructure?

RQ2. : What is the current research status and in which domains 
within the road infrastructure field might semantic web technologies be 
effectively utilized?

RQ3. : Which technical path or methodology should be followed 
during the application process?

RQ4. : What obstacles are encountered in practice and what should be 
worked on in the future to fully leverage the value of semantic web 
technologies?

These questions aimed to establish a technical and conceptual un-
derstanding of semantic web technologies, assess their current 

Table 1 
Representative published review papers related to semantic web and road 
infrastructure research.

References Contents Scope

Pauwels et al., 2017, 
Automation in Construction 
[26]

a) Interoperability
b) Linking across domains
c) Logical inference and 

proofs

Architecture 
Engineering 
Construction

Zhong BT et al., 2019, 
Automation in Construction 
[40]

a) Domain ontology
b) Industry foundation 

classes
c) Automated compliance 

checking

d) Building information 
modeling

Construction

Katsumi M et al., 2018, 
Transportation Research Part 
C: Emerging Technologies 
[41]

a) Relationships between 
existing transportation 
ontologies

b) High-level taxonomy of 
transportation-related 
concepts

Transportation

Lei X et al., 2021, Archives of 
Computational Methods in 
Engineering [42]

a) Public related 
information

b) Implementation domains
c) Ontology technique 

analysis

Road asset 
management
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application landscape within the road infrastructure life cycle, explore 
the methodological pathways enabling their deployment, and identify 
practical challenges and future directions. Together, they are designed 
to bridge the gap between theoretical feasibility and engineering prac-
tice, and to guide a structured and comprehensive investigation into the 
role of semantic web technologies in advancing intelligent and inte-
grated road infrastructure management.

Therefore, this paper aims to provide a comprehensive, up-to-date 
review of research on semantic web technologies in the road infra-
structure domain. Through a scientometric and cluster analysis, this 
study conducted a visual examination of the current state and trends in 
the adoption of semantic web technologies within the road infrastruc-
ture industry, thereby fostering an understanding of the necessity and 
significance of their application in this field. Subsequently, a critical 
review was undertaken to identify achievements realized in practice and 
obstacles encountered, thereby providing insights to guide future 
research aimed at advancing the intelligent management of road infra-
structure through its life cycle.

The remaining part of the paper was structured as follows: Section 2
described the research methodology. Section 3 presented a sciento-
metric analysis of the collected papers. In Section 4, the results of the 
cluster analysis were summarized, and a critical analysis was given in 
Section 5 to identify the challenges of the research and future directions 
to be worked on. Section 6 outlined the conclusions.

2. Methodology

This paper classified and analyzed the research of semantic web 
technologies in road infrastructure domain through scientometric 
analysis and critical review. Quantitative insights were obtained and 
visualized through scientometric analysis while critical review was 
employed to identify research topics and obstacles along the develop-
ment path. The research methodology in this paper consists of 5 main 
steps, as shown in Fig. 1.

Fig. 1. Outline of research methodology.
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2.1. Step 1: Defining the aim and scope

This paper was designed to examine the published papers and to 
determine the scope and implementation patterns of semantic web 
technologies in road infrastructure domain. Given the intricate nature of 
the road infrastructure systems, it was clarified that this research pri-
marily focused on roads, bridges, and tunnels, while excluding railways, 
airport facilities and other structures. Notably, within the context of life 
cycle management specific to road infrastructure itself, studies related to 
traffic management and road user services during operational processes 
were excluded. Recognizing the strong relevance of semantic web- 
related technologies, terms such as “ontology” and “knowledge graph” 
were also enlisted in the following paper retrieval schema.

2.2. Step 2: Defining the paper collection criteria

2.2.1. Paper retrieval
The collected papers were primarily derived from topic searches 

conducted in the Web of Science (WoS) Core Collection and Scopus 
database. Boolean operators (AND, OR) were employed to refine the 
search strategy, balancing specificity and sensitivity, where the former 
restricting the thematic boundaries, and the latter ensuring that all 
relevant studies within the topic were covered. Aligned with the aim and 
scope delineated in Step 1, terms such as “highway”, “tunnel” and 
“bridge”, life-cycle phrases including “design”, “construction”, “opera-
tion”, and “maintenance”, as well as semantic web-related terms 
“ontology”, “knowledge graph”, “linked data”, “semantic network”, 
“Resource Description Framework (RDF)”, and “Web Ontology Lan-
guage (OWL)” were inserted to the retrieval schema. The detailed search 
code was listed in Table 2, where the wildcard symbol ‘*’ denotes 
truncation for broader matching. Filters were applied to restrict publi-
cation dates from 2010 to 2025, and languages to English. This step 
generated an initial paper pool comprising 2516 papers from the WoS 
database and 4502 papers from Scopus database.

2.2.2. Paper selection
Due to the semantic ambiguities, papers unrelated to this study were 

also put into the paper pool after the initial searching step. To address 
this, a three-step screening process based on document type, research 
area and manual screening was implemented.

Firstly, preliminary screening by document type was conducted. In 
the WoS database, papers were filtered by types including article, 
meeting, review article, early access, and other. In Scopus database, 
papers were refined to journal and conference proceeding categories. 
This step reduced the remaining papers to 2495 (WoS) and 3615 
(Scopus).

Secondly, papers clearly irrelevant to the study were excluded from a 
research field perspective, such as those papers exclusively specialized 
in medicine or philosophy. Notably, papers from computer sciences field 
were retained to preserve comprehensiveness of the dataset. Following 
this procedure, 1725 papers remained in WoS database and 2645 papers 
in Scopus database.

Finally, given persistent terminological ambiguities, for example, an 
instance of “road” can be understood as a physical pathway that facili-
tates travel or transportation, or as a metaphorical “means to achieve 
goals”, and “bridge” might denote physical infrastructure or conceptual 
linkages, while “ontology” is predominantly associated with 

philosophical research, the remaining papers were further subjected to 
meticulous manual review to assure both breadth and accuracy of the 
research data. The exclusion criteria were as follows: 

a) Centered on non-road infrastructure (restricted in this paper), such 
as railways and airports.

b) Irrelevance to road infrastructure itself, such as studies on road user 
behavior, driving safety, driver assistance systems, or accident 
management.

c) Computer science studies lacking cross-domain relevance to road 
infrastructure, such as misinterpretations of terms like “highway” (as 
rapid development) or “bridge” (as conceptual links).

d) Studies solely addressing operational traffic management, such as 
traffic trajectory prediction in intelligent transportation systems 
(ITS), congestion control, autonomous driving, or vehicle service 
optimization. Noted that research centered on traffic flow prediction 
for route planning during the design stage were included.

After deduplication between two databases, 141 papers published 
between 2010 and 2025 were retained in the final paper pool for sci-
entometric analysis and critical review.

2.3. Step 3 Scientometric analysis & Cluster analysis

Scientometric analysis, “a quantitative method of studying the pro-
cess of the development of science” [43], employs mathematical tech-
niques to shed light on how scientific research on specific topics, broader 
areas of inquiry, and even entire bodies of knowledge develop [44, 45]. 
CiteSpace adopted in this paper is a typical scientometric analysis toolkit 
designed for visualizing and analyzing trends and patterns in the sci-
entific literature [45]. It provides various functions to facilitate the 
discovery of key pivot points and turning points in the development of 
the research domain [46].

In this paper, a scientometric analysis focusing on publication in-
formation, co-authorship, document co-citation, co-word analysis 
related to road infrastructure and semantic web technologies was con-
ducted based on selected papers. Firstly, the publication-related infor-
mation, including year of publication, category, country and region, 
were analyzed and visualized aiming to reflect the extent of research in 
different regions over different time periods. The co-authorship analysis 
then gave a micro-level collaboration among the authors of the study. 
Then key literature and dynamics of the research process were identified 
by documents co-citation analysis. The co-word analysis included the 
co-occurrence and clustering of keywords, which was used to clarify the 
hotness of the keywords studied and to classify the different research 
themes.

2.4. Step 4: Critical review

On the basis of the aforementioned visualization process, this part 
unfolded the tasks and issues of life cycle management of road infra-
structure. Starting from the semantic web technology stack analysis, 
then the roles of semantic web technologies, in light of the status of their 
applications in the design, construction, operation and maintenance 
phases, sorting out the application landscape of semantic web technol-
ogies supported intelligent management of road infrastructures.

Table 2 
The paper search code for semantic web applications in road infrastructure domain.

Search Code

((“Semantic web” OR ontolog* OR “knowledge graph” OR “linked data” OR “semantic network” OR RDF OR OWL) AND (“road infrastructure” OR highway OR road OR bridge OR 
tunnel OR “transport* infrastructure” OR “road design” OR “highway design” OR “bridge design” OR “tunnel design” OR “road construction” OR “highway construction” OR “bridge 
construction” OR “tunnel construction” OR “road operation” OR “road maintenance” OR “bridge maintenance” OR “tunnel maintenance” OR “road asset management” OR 
“infrastructure asset management”))
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2.5. Step 5: Limitations & Future Work

Lastly, a framework of the principal components and processes for 
the applications of semantic web technologies in the road infrastructure 
domain was elaborated, combining all the issues to be considered in 
these steps, the critical review was performed to identify and analyze the 
limitations of the classified research themes and the future directions to 
be worked on.

3. Scientometric Analysis

3.1. Publication-related Information

This section provides a quantitative analysis of publication-related 
information for selected papers, including year of publication, jour-
nal/conference type and country/region, which answered the first part 
of RQ2.

Fig. 2 illustrates the distribution of publication types of the 141 pa-
pers from 2010 to 2025. As can be seen from the number of papers 
published each year, there was an overall fluctuating upward trend with 
2024 marking the peak year, witnessing 24 published papers. It should 
be acknowledged that data for 2025 does not provide a comprehensive 
representation of the entire year due to the ongoing nature of the sta-
tistics collection period. Significant peaks were observed in 2016 and 
2021, aligning with the digital transformation of the engineering in-
dustry. Beginning in 2016, the maturation of BIM-focused digital rep-
resentation spurred a research shift toward the multi-source 
heterogeneous data integration [16, 40]. From 2021 onward, break-
throughs in machine learning (ML) and large language models (LLMs) 
catalyzed a surge in research focused on their deep integration with the 
engineering domain [33, 47]. Key topics include knowledge 
graph-driven parsing of unstructured engineering data and intelligent 
semantic knowledge management systems, reflecting a research focus 
transition towards practical application scenarios.

Regarding the publication types, journal articles constitute 63 % of 
the total, significantly surpassing conference papers (37 %). It is worth 
noting that in the early research stage, the conference papers made up a 
greater portion of published papers with studies primarily centered on 
technical path exploration and framework design, indicative of the 
initial exploratory stage of semantic web applications in road infra-
structure domain. From 2016 onwards, the number of journal papers 
gradually exceeded that of conference papers and kept ahead of the 
curve in the following years, highlighting an evolving research emphasis 
shifting from methodological exploration to advancements in systemic 
theoretical innovation and practical engineering validation.

In terms of countries/regions, Fig. 3 gives the spatial distribution 
network of selected papers with 29 nodes and 30 links. The size of the 

nodes indicates the total number of papers published in that country/ 
region, and the colors of the nodes tree rings correspond to the different 
years from 2010 to 2025. As can be seen from Fig. 3, China, United 
States, United Kingdom, Germany, and Australia occupied the top five 
positions in terms of the number of papers published with 65, 34, 17, 13 
and 11 papers respectively. It can be noted that the sum of these five 
countries accounts for 77 % of the total number, indicating that the 
researchers from these countries have explored extensively and made 
outstanding contributions to the application of semantic web technol-
ogies in the field of road infrastructure.

The analysis of the “betweenness centrality” (highlighted with a 
purple outer ring in Fig. 3), which evaluates the significance of nodes 
within a network, reveals that Netherlands held the highest position 
with a betweenness centrality value of 0.17. Following closely was 
China in second place with a value of 0.15, Australia in third (0.13), and 
United Kingdom in fourth (0.11). Their high betweenness centrality 
indicates their pivotal bridging roles in international collaboration 
networks. These countries exhibit prominent roles in applying semantic 
web technologies to road infrastructure research, demonstrating sub-
stantial influence in advancing this cross-domain collaboration. 
Notably, the Netherlands, despite its limited publication output (6 pa-
pers), maintains a relatively high betweenness centrality, underscoring 
its significant contribution to facilitating international cooperation 
within this field.

3.2. Co-authorship Analysis

The application of semantic web technologies in the domain of road 
infrastructure has witnessed the establishment of methods and theories 
accompanied by the ongoing development of scholarly collaboration. It 
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is vital to examine the way academics engaged in collaboration to un-
derstand the frontiers of research and to identify outstanding scholars. 
Based on the collected 141 papers, this paper generated an author 
collaboration network and investigated the collaborative relationships 
among authors within this network through co-authorship analysis.

The co-authorship network was depicted in Fig. 4, with a total of 427 
nodes and 979 links, where the nodes symbolize the authors, with their 
respective sizes denoting the number of published papers. The links 
signify collaborative interactions, while their colors correspond to 
distinct years in which the collaborations took place. Several research 
groups can be identified in the figure, and close collaborative relation-
ships have been established between scholars within these groups.

One of the notable research groups was led by El-Gohary Nora, 
Kaijian Liu and Hu Xi, whose work primarily focused on the ontology- 
based information extraction and integration for bridge engineering, 
as well as semantic modeling of bridge performance degradation 
knowledge. Their team was among the early ones to apply semantic web 
technologies to data analysis in the construction field, establishing sys-
tematic research outcomes that have been extended into road infra-
structure domain. Similarly, another significant group, comprising Li 
Ren, Jiang Shixin, and Yang Jianxi, primarily affiliated with Chongqing 
Jiaotong University, also specialized in bridges, their research mainly 
focused on knowledge extraction from inspection reports using ontol-
ogies and language models such as Bidirectional Encoder Representation 
from Transformers (BERT). The team led by Li Haijiang focused on en-
gineering data analysis, information integration, and knowledge pro-
cessing, with a dedication to developing intelligent computational 
engineering platforms. Their work in the road infrastructure domain 
encompassed knowledge-driven comprehensive maintenance decision- 
making for bridges and automated knowledge extraction with decision 
support solutions during tunnel design phases. A collaborative research 
team from the University of Shanghai and the University of Auckland, 
consisting of Hu Min, Wang Yields, Du Juan, Sugumaran Vijayan, and 
others, was oriented towards construction and operations management 
in the field of tunneling. Their research highlighted the indispensable 
role of semantic web technologies in enabling the convergence of data, 
objects, and knowledge layers within the digital twin framework. 
Another research group led by Anthony G. Cohn and Dimitrova Vania 
from the University of Leeds, with a primary focus on machine learning 
and knowledge representation for tunneling as well. Additionally, there 
was a research group led by Le Tuyen, which specialized in construction 
engineering, pavement engineering, and highway data analysis. Mean-
while, the work of Zhu Jun and collaborators focused on hybrid data- 
driven and knowledge-driven methodologies for decision-making in 

mountainous highway development, as well as highway bridge and 
tunnel construction and maintenance phases.

The co-authorship network revealed a clear pattern of collaboration 
among researchers, primarily centered around their respective institu-
tional affiliations. Particularly, there was a noticeable lack of commu-
nication observed between different research groups. This phenomenon 
can also be detected by the betweenness centrality, which was calcu-
lated to be 0 for all nodes in the network and can only be identified as a 
key node if it is greater than 0.1. It is evident that there is a need to 
enhance the mutual collaboration among groups and scholars from 
diverse professional backgrounds.

3.3. Document Co-citation Analysis

Document co-citation analysis (DCA) can identify the key literature 
on multidisciplinary concepts and reveal the internal relationships and 
dynamics of the research paths [48]. Fig. 5 shows the generated docu-
ment co-citation network with the screening criteria set to: time span 
2010–2025, top 50 per slice (time slice length = 1), LRF = 3.0, 
L/N = 10, LBY = -1, and e = 2.0. The network comprises 170 nodes and 
617 links. Each node represents a document identified by the first author 
and the year of publication. The size of each node corresponds to the 
number of times it has been co-cited. The presence of purple circles 
signifies that these nodes possess a betweenness centrality exceeding 
0.1, indicating their significant involvement in bridging the 
cross-domain collaboration.

Table 3 lists the top 10 documents in terms of co-citation frequency. 
Most of these publications were related to domain ontology develop-
ment. Among them, the article by Ren et al. ranks first for its methodical 
development of the bridge maintenance ontology (BrM ontology), one of 
the earliest ontologies in the field of bridge maintenance management 
using the Ontology Development 101 method, offering comprehensive 
reference processes for bridge maintenance knowledge management 
frameworks. Similarly, El-Gohary et al. constructed a basic ontology for 
infrastructure and construction process knowledge based on five con-
cepts: entity, constraint, attribute, modality, and family. Works by Wu 
et al., Li et al., and Niknam et al., including the concrete bridge reha-
bilitation project ontology (CBRPMO), bridge structure and health 
monitoring ontology, and BIM shared ontology (BIMSO), encompass 
diverse perspectives ranging from construction processes to bridge 
maintenance and road entities. Notably, the seminal works by Gruber 
Thomas R and Uschold et al. from the 1990s still maintain high citation 
rates. Their papers have garnered significant recognition for their 
foundational contributions in defining ontology concepts, clarifying 

Fig. 4. The co-authorship network of selected papers.
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their role in knowledge sharing, and establishing methodological 
frameworks for ontology development. Furthermore, studies by Liu et al. 
and Fang et al. have innovatively integrated machine learning and 
computer vision algorithms with ontology for knowledge extraction and 
construction site hazard identification. Additionally, Pauwals et al.’s 
review on semantic web technology applications in the AEC domain has 
provided valuable guidance for subsequent research and technological 
advancements.

Table 4 gives the top 10 documents in terms of betweenness cen-
trality in addition to those listed in Table 3. El-Diraby et al. first pro-
posed a distributed ontology architecture for knowledge management in 
the highway construction domain, encompassing domain knowledge, 
application knowledge, and user knowledge. Bradley et al. systemati-
cally reviewed the application of BIM in the infrastructure field, rec-
ommending the use of semantic web technologies to link and integrate 
information resources within the domain. Park et al. pioneered the 
integration of BIM, augmented reality, and ontology for construction 
defect management. Finally, Hou et al. extended the application of se-
mantic web technologies in the engineering field to low-carbon aspects 
of structural design. Their proposed Ontology for Sustainable Concrete 
Structure (OntoSCS) framework demonstrates the potential of ontology 
and semantic web rules in knowledge-driven systems.

3.4. Keywords Co-occurrence Analysis

Statistical analysis of keyword frequency and centrality can provide 
clear insights into understanding and identifying research hotspots in 
the field. Therefore, keywords were extracted from the selected 141 
publications and imported into CiteSpace for co-occurrence analysis. At 
the same time, to verify the credibility of the data, the synonymous 
terms were merged in the order of keyword frequency. For example, 
“semantic web technologies” and “semantic web technology” were 
merged into “semantic web”, “building information modelling”, 
“building information systems (bim)”, “building information modeling 
(bim)” into “building information modeling”. It was noted that “BIM” 
was used to represent “building information modeling” in CiteSpace for 
a clear display. Similarly, “industry foundation class (ifc)”, “industry 
foundation classes” and “industry foundation classes (ifc)” were merged 
into “IFC”. The keyword co-occurrence network obtained has 374 nodes 
and 1472 links under the screening criteria: time span 2010–2025, time 
slice length = 1, g-index (k = 100), LRF = 3.0, L/N = 10, LBY = -1, and 
e = 1.0 (shown in Fig. 6).

Each node represents a keyword, and its size denotes the frequency 
of the keyword occurrence in the data set. The links represent the cor-
relation between keywords, and their color represents different years 

Fig. 5. The co-citation network of selected papers.
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from 2010 to 2025. The top 10 high frequency occurring keywords were: 
“ontology”, “knowledge graph”, “semantic web”, “BIM”, “decision 
support”, “bridge maintenance”, “knowledge management”, “bridge 
inspection”, “digital twin”, “deep learning”.

It is worth noticing that, besides the research theme semantic web 
technologies related keywords “ontology”, “knowledge graph”, “se-
mantic web”, the keyword “BIM” appeared with the highest frequency. 
BIM was regarded as a digital asset for information exchange among 
stakeholders in the AEC industry [58] and the foundation of digital 
transformation [59]. By leveraging 3D parametric modeling, BIM 
established the digital foundation for road infrastructure. Under the 
semantic web framework, the transformation and semantic representa-
tion of BIM data (e.g., converting IFC to OWL) bridged the gap between 

engineering semantics and machine-readable knowledge, thereby 
facilitating data exchange and integration across information models 
and domains [8, 27, 60]. Simultaneously, the keyword “digital twin” 
also appeared with significant frequency. Digital twins marked another 
critical technological leap in the engineering field following BIM [61]. 
They created real-time dynamic mapping models of physical entities in 
virtual space through digital means, achieving data interaction and 
synchronized optimization between physical and virtual entities [62]. 
Semantic web technologies played a pivotal role by linking data, objects, 
and knowledge in digital twin frameworks [63]. Through semantic 
modeling, knowledge fusion, and intelligent reasoning, the digital twin 
systems were endowed with structured knowledge representation and 
dynamic decision-making capabilities [10, 64]. Furthermore, the 
keyword “deep learning” has gained increasing attention since 2020. Its 
applications mainly focused on two aspects: the semantic conversion 
and knowledge extraction from unstructured data such as industry 
standards, specifications, and historical inspection reports [9]; and the 
integration of deep learning algorithms with ontologies to develop 
intelligent decision-making systems driven by both data and knowledge 
[65].

3.5. Keywords clustering analysis

To further illustrate the research topics of semantic web technologies 
in the field of road infrastructure, this study clustered the keywords on 
the basis of Fig. 6 and the keyword clustering graph (Fig. 7) was 
generated using the built-in algorithm of Log-likelihood rate (LLR) in 
CiteSpace.

As seen in Fig. 7, 11 significant keyword clusters were identified, 
namely cluster #0 “bridge maintenance”, cluster #1 “ontology model”, 
cluster #2 “building information modeling”, cluster #3 “information 
extraction”, cluster #4 “knowledge representation”, cluster #5 “road 
network”, cluster #6 “intelligent bridge management”, cluster #7 
“computer vision”, cluster #8 “infrastructure system”, cluster #9 “risk 
management”, cluster #10 “digital project delivery”.

Observing these 11 clusters, we can find that “ontology model” pri-
marily focused on diverse application forms and foundational modeling 
techniques related to semantic web technologies. Clusters such as 
“bridge maintenance”, “building information modeling”, “road 
network”, “intelligent bridge management”, “infrastructure system”, 
“risk management”, and “digital project delivery” were concerned with 
specific application scenarios in different life cycle stages, categorized 
under the application layer. Similarly, the cluster “computer vision” in 
this study was mainly applied to construction scenarios and the 

Table 3 
Top 10 co-citated documents sorted by count.

Cited references Count Centrality Contents

Ren GQ, 2019, Advances 
in Engineering Software 
[49]

15 0.18 Proposed a holistic ontology- 
based framework for bridge 
maintenance.

El-Gohary NM, 2010, 
Journal of Construction 
Engineering and 
Management [50]

12 0.26 Presented an ontology for the 
infrastructure and 
construction domain using 
five concepts of entity, 
constraint, attribute, 
modality, and family.

Liu KJ, 2017, Automation 
in Construction [51]

11 0.13 Proposed an ontology-based 
semi-supervised conditional 
random field method for 
information extraction from 
bridge inspection reports.

Gruber TR, 1993, 
Knowledge Acquisition 
[52]

11 0.21 “An ontology is the 
specification of a vocabulary 
of representations - 
definitions of classes, 
relations, functions, and 
other objects - in the domain 
of shared discourse”.

Wu CK, 2021, Automation 
in Construction [18]

10 0.04 Presented the concrete bridge 
rehabilitation project 
ontology (CBRPMO) to 
improve information 
integration and constraint 
management.

Uschold M, 1996, The 
Knowledge Engineering 
Review [53]

9 0.06 Proposed methodology for 
ontology development and 
evaluation.

Li R, 2021, IEEE 
Transactions on 
Industrial Informatics 
[19]

9 0.11 Designed a bridge structure 
and health monitoring 
ontology to integrate 
heterogeneous sensor data for 
structural health monitoring 
systems.

Fang WL, 2020, 
Automation in 
Construction [17]

9 0.05 Integrated computer vision 
algorithms and ontology to 
enable the development of 
knowledge graphs for 
automated hazard 
identification on construction 
sites.

Pauwels P, 2017, 
Automation in 
Construction [26]

9 0.12 A comprehensive review on 
the application of semantic 
web technologies in the 
architecture, engineering, 
and construction (AEC) 
domain.

Niknam M, 2017, 
Automation in 
Construction [27]

8 0.01 BIMSO (BIM shared 
ontology) was developed to 
enable semantic 
representation of building 
information and to serve as 
an extensible foundation 
ontology for the development 
of different ontologies in the 
building domain.

Table 4 
Top 10 co-citated documents sorted by betweenness centrality (not included in 
Table 3).

Cited references Count Centrality Contents

El-Diraby TE, 2005, 
Journal of Construction 
Engineering and 
Management [54]

7 0.20 Proposed a distributed 
ontology architecture for 
cross-domain knowledge 
exchange in highway 
construction.

Bradley A, 2016, 
Automation in 
Construction [55]

4 0.19 A systematic review on 
infrastructure and 
construction BIM.

Park CS, 2013, 
Automation in 
Construction [56]

6 0.14 Proposed a conceptual 
system framework 
integrating BIM, augmented 
reality (AR), and ontology 
for construction defect 
management.

Hou SJ, 2015, ENERG 
BUILDINGS [57]

4 0.11 Proposed a prototypical 
system OntoSCS (Ontology 
for Sustainable Concrete 
Structure) for structure 
design decision support.
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interpretation of surface defects in concrete and tunnel structures, and 
thus was also classified within the application layer. While “information 
extraction” and “knowledge representation” were dedicated to infor-
mation management in the aforementioned scenarios, highlighting the 
roles that semantic web technologies played in these processes.

Therefore, corresponding to the first two research questions 
mentioned in Section 1 (RQ1, RQ2), these 11 clusters would be analyzed 
from three perspectives in Section 4: semantic web technologies anal-
ysis, the roles of semantic web technologies in road infrastructure 
domain, applications of semantic web technologies in the lifecycle of 

road infrastructure.

4. Semantic web technologies supported life cycle management 
of road infrastructure

4.1. Semantic Web Technologies Analysis

This part answered the former part of RQ1 by offering a well- 
organized overview of semantic web technologies.

Semantic web is a generic framework for making data on the web 
machine-readable [66]. Establishing effective methods for sharing, 
discovering, integrating, and reusing data is the objective of this area of 
application. During the development and advancement of semantic web 
technologies, terminologies including semantic network, linked data, 
knowledge graph, ontology, RDF, OWL, etc. were commonly employed 
and might lead to confusion when selecting appropriate technologies for 
a certain situation. Fig. 8 elucidated these terms to facilitate a clear 
understanding of the implementation of semantic web technologies in 
the road infrastructure domain. Initially, semantic networks were sug-
gested as a form of knowledge representation comprised of inter-
connected nodes and edges [67]. However, they were hindered by the 
absence of specific definitional standards. To address this issue and 
provide label definitions for nodes and edges, RDF [68] and OWL [69]
were then proposed successively. Following this, the terms semantic 
web [70] and linked data [71] were introduced to better characterize 
the relationship between resources and data in the world wide web. The 
former was more inclined to express the relationship between concepts, 
while the latter emphasized interlinking among multiple data sets. 
Knowledge graph [72] served as an expanded industry implementation 
of these ideas nowadays, consisting of an ontology [73] as the schema 

Fig. 6. The keywords co-occurrence network of selected papers.

Fig. 7. The keywords clustering graph of selected papers.
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layer and structured datasets that are compatible with the RDF data 
type.

Ontology, a philosophical concept, was introduced into computing 
domain in the early 1990s. Tom Gruber defined an ontology as an 
“explicit specification of a conceptualization”, specifically referring to 
the hierarchical organization of classes and the relationships between 
entities [52]. Ontologies served as the basic tools for integrating, 
distributing, and discovering information within the stack of the se-
mantic web [74]. The goal of ontologies was to capture knowledge, 
provide common understanding, and identify mutually accepted vo-
cabularies for specific domains, and to support sharing and interaction 
with other related domains [26]. Table 5 displayed a representative 
selection of ontologies derived from the collected papers. In general, 
ontologies have been developed for all stages of the roads, bridges and 
tunnels. For example, El-Gohary et al. proposed a distributed ontology 
architecture (HiOnto) for cross-domain knowledge exchange in highway 
construction [54]. Likewise, HCIOntology [75] was devised with the 
purpose of retaining and managing inspection knowledge at road con-
struction phase. Niknam et al., on the other hand, focusing on pavement 
management, created the RSO and RMO [76] by using a shared ontology 
approach to model the road infrastructure knowledge domain based on 

the BIMSO proposed in 2017 [27]. IHP-Onto [38] mainly served to 
provide representations that could be used to support integrated plan-
ning tasks for road asset management. Within the field of bridge engi-
neering, the notable ontologies include CBRPMO [18], which focused on 
improving the integration, reasoning, and retrieval of project informa-
tion in the constraints management of bridge rehabilitation projects, as 
well as BMDO [77] and BrMontology [49], which primarily concen-
trated on maintenance processes. OntoETS was specifically designed to 
evaluate design alternatives for tunnel systems [78].

An overview of the development methodologies adopted for the 
representative ontologies was also presented in Table 5, including 
Ontology Development 101 [79], The NeOn Methodology [80], 
Methontology [81], and Uschold and Gruninger [53]. Detailed steps of 
these methods were illustrated in Fig. 9. These methodologies compre-
hensively addressed critical considerations in the ontology development 
process, allowing for the selection of a single method or a combination of 
multiple approaches based on specific scenarios and requirements. 
Notably, Ontology Development 101 emphasizes the reuse of existing 
ontologies, as ontologies are fundamentally built for reusability. As can 
be seen in Table 5, nearly half of the ontologies reused existing ontol-
ogies and it is anticipated that this trend will intensify with ongoing 

Fig. 8. Terminologies related to semantic web technologies.

Table 5 
Respective ontologies selected from collected papers.

Ontologies Methodology Descriptive 
Language

Scopes Ontology 
Reuse

Validation

Semantic validation Syntactical 
validation

CBRPMO (Concrete Bridge 
Rehabilitation Project Management 
Ontology) [18]

Ontology 
Development 101

OWL syntax Concrete bridge 
Rehabilitation

— competency questions 
Consulting experts

Built-in reasoner

HiOnto (Highway Ontology) [54] — OWL Highway 
Construction

e-COGNOS 
ontology

Competency questions 
Industry survey

—

BIMSO (BIM Shared Ontology) [27] The NeOn 
Methodology

RDF/OWL AEC-FM — SPARQL query language —

BMDO (Bridge Maintenance Domain 
Ontology) [77]

— OWL Bridge 
Maintenance

— — Built-in reasoner

BrMontology (Bridge Maintenance 
Ontology) [49]

Ontology 
Development 101

OWL Bridge 
Maintenance

— Consulting experts Built-in reasoner 
Case study

RSO (Road Shared Ontology) 
RMO (Road Maintenance Ontology) 
[76]

— OWL 2 Pavement 
Maintenance

Time 
ontology

SPARQL query language —

OntoETS (Ontology of Energy-Tunnel 
Systems) [78]

Ontology 
Development 101

OWL Tunnel 
Design

— by comparing, reusing, 
and merging the existing 
ontology

Built-in reasoner 
SWRLTab 
plugin

IHP-Onto (Integrated Highway 
Planning Ontology) [38]

Methontology 
Uschold and 
Gruninger

RDF/OWL Highway 
Planning

e-COGNOS 
ontology

task-based, data-driven, and 
criteria-based evaluations

Automated 
consistency 
checking

HCIOntology (Highway Construction 
Inspection Ontology) [75]

— RDFS/OWL Highway 
Construction

— Pilot Project for Testing —
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development and refinement of industry-specific ontologies. The 
e-COGNOS ontology [82], mentioned twice in Table 5, was derived from 
the IFC framework, defined resources, actors, processes, and products 
involved in the interconnected building construction process [38], 
which was informative for the workflow definition. In addition, vali-
dation remained an integral step in ontology development, typically 
achieved through expert review and built-in reasoners and case-based 
validation to guarantee consistency at both semantic and syntactic level.

In terms of description languages and storage models, RDF, RDF 
Schema (RDFS) and OWL were found more widely used from collected 
papers (Table 5). RDF was inherently a data model that provides a 
unified standard for describing resources on the web [83], represented 
formally as a subject, predicate, object (SPO) triple for describing con-
crete things and relationships [84]. RDFS was designed as the extension 
and enrichment of the RDF vocabulary for describing resources and 
relationships, defining classes, properties and relationships on the basis 
of RDF, and constraining resources through the domain and range of 
properties [85]. Hagedorn et al. converted the data in the road asset 
management database to RDF format to support the linking of data to 
the IFC model and to industry ontology instances, but there were still 
problems with ontology retrieval and alignment [86]. OWL and later 
improved version of OWL 2 were released to address these aspects, 
adding predefined vocabularies that can declare resource equivalence, 
attribute transferability, mutual exclusivity, functionality, symmetry, 
etc. to describe resources, further enriching RDFS with better semantic 
expressiveness. The semantic traffic analytics and reasoning for city 
(STSR-CITY) ontology built by Lecue et al. was based on OWL 2 
expressing language, which guaranteed the accuracy, efficiency, and 
flexibility in exchanging and integrating heterogeneous data from 
multiple sources [87].

In addition, knowledge graph was seen as a new framework of 
thought derived from the semantic web, consisted of instances of classes 
described in ontologies which was more domain specific and often 
industry-oriented [88]. The construction of knowledge graph was typi-
cally based on ontology design, encompassing steps such as information 
extraction, knowledge integration and updating, and knowledge storage 
[33, 89]. Ontology design, also referred to as the schema layer design of 
knowledge graph, was often conducted manually by integrating domain 
expertise to achieve semantic unification through the fusion of 
multi-source heterogeneous data [90] (e.g., structured sensor data and 
unstructured text). For example, an ontology base has been developed 

by extending the construction operation building information exchange 
(COBie) standard and incorporating maintenance experience to support 
the representation of operational knowledge for electromechanical 
equipment in tunnels [10]. Information extraction involved deriving 
structured information (entities, relationships, and attributes) from 
semi-structured or unstructured data to form the fundamental units of 
knowledge [33]. Common methods included rule-based, statis-
tics-based, and machine learning-based approaches. For instance, 
rule-based systems and natural language processing (NLP) techniques 
were employed to extract entity relationships in tunnel support design 
from regulatory documents, while deep learning models (e.g., BERT) 
combined with statistical methods were used to mine non-classified 
relationships from literature or design schemes [91]. For knowledge 
integration and updating, semantic similarity calculation (e.g., text 
matching based on word embeddings) was frequently adopted for entity 
alignment [92]. Real-time sensing data was introduced to enable dy-
namic updates of subgraphs [93], while graph embedding techniques 
and semantic query languages (e.g., SPARQL Protocol and RDF Query 
Language, SPARQL) were utilized to optimize link prediction and de-
cision generation [94]. Notably, the storage and computational archi-
tecture of knowledge graph was increasingly integrating with digital 
twin technologies [64]. The “entity-relationship-attribute” graph model 
naturally positioned knowledge graph as an enabler for achieving a 
universal digital twin (UDT) [95].

Research on knowledge graph in the road infrastructure domain has 
been rising steadily since 2021, reaching a phase of deepened applica-
tion by 2023 and 2024, covering the entire lifecycle of design, con-
struction, and maintenance. Through multimodal data integration, 
visual representation, and rule-based reasoning and decision support, 
knowledge graph has provided technical support for the intelligent 
advancement of road infrastructures. In tunnel engineering, knowledge 
graph integrated lifecycle data of shield tunnels, facilitating the fusion of 
computer vision-based object detection with maintenance planning. 
Additionally, the combination of a tunnel risk knowledge graph 
(TRisKG) and generative pretrained transformer (GPT) has achieved 
precise responses in tunnel risk question answering systems [96]. For 
bridge management, knowledge graph supported similarity calculation 
and recommendation of low-carbon construction solutions [92] while 
optimizing maintenance strategies through node classification and 
parameter clustering [94]. In highway engineering, knowledge graph 
designed for mountainous highway scenario leveraged spatial semantic 

Fig. 9. Methodologies for ontology development.
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constraint rules to accelerate digital twin modeling [97], and cloud 
model-based data trace improved efficiency in highway construction 
anomaly control [98]. Furthermore, knowledge graph also enabled 
condition prediction and fault tracing in electromechanical equipment 
operations [10] and enhanced traffic flow prediction efficacy by inte-
grating expert knowledge with graph convolutional networks [99].

4.2. The Roles of Semantic Web Technologies in Road Infrastructure 
Domain

This part addressed the latter portion of RQ1 by analyzing the 
domain-specific imperatives for adopting semantic web technologies in 
road infrastructure domain. The digital transformation of road infra-
structure domain has evolved from fundamental data collection to 
knowledge-driven and intelligent decision-making, presenting multi-
faceted challenges throughout the entire lifecycle [100, 101]. During the 
design phase, collaborative optimization was imperative to resolve 
multi-disciplinary parameter coupling conflicts [38, 91], while the 
construction phase demanded rigorous control over project scheduling 
and safety management due to the linear engineering characteristics and 
unique environmental constraints [102]. For the operation and main-
tenance phase, time-sensitive decision-making required the integration 
of massive sensor data with unstructured empirical knowledge [103]. 
Key challenges include cross-phase data fragmentation (e.g., in-
compatibility between BIM and GIS formats [104]), difficulty in implicit 
knowledge reuse (e.g., expert experience concealed in static documen-
tation [105]), and efficiency bottlenecks stemming from manual reli-
ance in real-time decision-making [106]. Semantic web technologies 
addressed these issues through unified ontology models and semantic 
mapping rules, thereby transforming multi-source heterogeneous data 
into machine-interpretable semantic networks. Particularly, RDF triples 
enabled dynamic associations between design parameters and opera-
tional metrics, while the semantic web rule language (SWRL) rules 
converted engineering specifications into executable logic [105]. This 
not only eliminated data silos but also enabled cross-phase reasoning (e. 
g., correlating tunnel defects with maintenance strategies [89]) and 
empowered real-time knowledge services (e.g., knowledge 
graph-enabled bridge inspection Q&A systems [107]).

Specifically, data exchange and semantic integration were found to 
be initial considerations for the adoption of semantic web technologies 
in the field of road infrastructure [26]. Effective data integration and 
exchange not only at the syntactic level but also at the semantic level 
were prerequisite for intelligent management and scientific 
decision-making [21, 108]. With this objective, the ontological con-
ceptualizations of the domain were crucial components of the semantic 
web mechanism as these ontologies provide common vocabularies for 
the integration of heterogeneous sources [109]. Three primary imple-
mentation patterns were observed: a) Horizontal integration, where 
domain ontologies that unified fragmented lifecycle data and resolved 
the ambiguity and semantic inconsistency dilemma found in early open 
data standards developed using object-oriented modeling techniques (e. 
g., IFC and LandXML) [24]; b) Vertical integration, exemplified by 
IFCInfra4OM ontology that connected BIM-derived design parameters 
with real-time operational monitoring data [23]; c) Scenario-specific 
applications, including construction risk reasoning (e.g., tunnel subsi-
dence early warnings [110]), semantic enrichment of BIM models [27], 
traffic scenario modeling [111] and sensor data harmonization in ITS 
[112]. These ontology-driven mechanisms established unified vocabu-
laries crucial for coherent decision-making across the fragmented 
infrastructure systems.

Meanwhile, semantic web technologies have demonstrated sub-
stantial potential in knowledge management by transforming unstruc-
tured lifecycle data (e.g., historical maintenance reports, traffic 
monitoring videos) into structured knowledge for evaluating, predicting 
and managing the long-term performance of road infrastructures 
[113–117]. Semantic web technologies, as powerful knowledge 

management tools, enable semantic representation through three key 
applications: a) Information extraction frameworks, as demonstrated by 
Liu and El-Gohary’s ontology-based system for bridge deterioration 
prediction using text mining and semi-supervised learning [51, 116]; b) 
Cross-domain knowledge integration, exemplified by Fang et al.’s 
computer vision-ontology hybrid for construction hazard identification 
[17]; c) Formalization of expert knowledge, such as Hu et al.’s ontology 
for structural deficiency modeling and Chen et al.’s BIM-compatible 
knowledge model automating facility inspections [47, 118]. By inter-
linking domain concepts and embedding reasoning rules, semantic web 
technologies enabled the explicit and machine-interpretable expression 
of both codified standards and tacit expert knowledge, effectively 
addressing the complexity and heterogeneity inherent in infrastructure 
knowledge management.

Reasoning and simple querying were also strengths of the semantic 
web technologies, where the use of an inference engine allows extra 
information to be inferred from RDF and OWL through simple 
Description Logic (DL) principles, which provided new solutions for the 
intelligent management of road infrastructures. To automatically 
compute and fill in missing relationships and attribute values, Zhang 
et al. employed ontology reasoning and predefined SWRL rule-based 
reasoning in the establishment of a bridge maintenance knowledge 
graph and performed consistency checking through a global reasoner 
[77]. Similarly, Yu et al. encoded tunnel operation and maintenance 
knowledge in the form of inference rules by defining SWRL. Based on the 
existing knowledge in the ontology library, the engine parses these 
inference rules to infer new knowledge and update and extend the 
ontology library, thus forming a closed loop of knowledge management 
[119]. In addition, decision making can also be supported by logical 
reasoning-based automatically information inference in infrastructure 
domain for vulnerability identification [120] and inter-asset manage-
ment [121]. And these logical reasoning and proof processes based on 
semantic web technologies allow for the automatic generation of proofs 
of inferences, which to some extent compensates for the interpretability 
deficiencies of current artificial intelligence approaches such as machine 
learning [122].

4.3. Applications of Semantic Web Technologies in the Lifecycle of Road 
Infrastructure

Analysis of the 141 collected papers revealed that the application of 
semantic web technologies in the field of road infrastructure spans the 
entire life cycle. In response to RQ2 in Section 1, this part clearly 
mapped the applications of semantic web technologies across life cycle 

Table 6 
Distribution of semantic web technology adoption at different stages and their 
representative research.

Stages & Numbers Specific 
Application

Representative Research

Design (20) Collaborative 
Design

[8], [38], [78], [91], [100], [123], 
[124], [125], [22]

Automated 
Compliance 
Checking

[105], [126], [127]

Construction (18) Quality Control [75], [102], [128], [129], [130]
Safety Management [17], [60], [93], [96], [131], [132], 

[133], [134]
Schedule 
Management

[135], [136], [137], [138]

Operation & 
Maintenance 
（72）

Inspection & 
Condition 
Assessment

[19], [47], [86], [90], [107], [113], 
[122], [139], [140], [141], [142], 
[143], [144], [145], [146], [147]

Decision Making [10], [18], [33], [49], [77], [103], 
[119], [148], [149], [150], [151], 
[152], [153], [154], [155], [156]

Asset Management [23], [24], [76], [97], [104], [124], 
[145], [157], [158], [159], [160]
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phases of road infrastructure: design, construction, and operation and 
maintenance. Table 6 summarized the distribution of semantic web 
technology adoption at different stages and their representative 
research. Of the 110 papers remaining after manual screening, those in 
the operation and maintenance stage accounted for the majority share, 
at 65 %. The clusters of “bridge maintenance”, “intelligent bridge 
management”, “infrastructure system” were mainly for different appli-
cation scenarios during this stage. While the design and construction 
stages attracted relatively little research interest, with a similar pro-
portion of 19 % and 16 %, respectively.

4.3.1. Design stage
The planning and design of road infrastructure was a task requiring 

cross-functional coordination. Ensuring seamless information trans-
mission, exchange and integration between different participants was an 
effective solution to resolve temporal conflicts and redundant planning 
efforts. Semantic web technologies were driving innovation in the 
design stage of road infrastructure by enabling multi-disciplinary 
collaborative design and automated compliance checking (ACC), two 
rapidly evolving directions that addressed critical challenges in data 
interoperability and regulatory adherence. They defined the hierarchy 
and relationships of model elements, facilitating the integration and 
retrieval of information at both syntactic and semantic levels through 
mappings between different ontologies. For example, the IHP-Onto 
facilitated inter-temporal coordination among cross-functional high-
way agencies, improving cost-effective planning through integrated in-
formation sharing [38]. As BIM was constantly being developed as 
visually interactive platform with physical, geometric and attribute in-
formation of roads, bridges and tunnels [161] and taking into account 
the linear characteristics of these road infrastructures, the integration of 
GIS information with BIM model was also a pivotal issue to be addressed 
in the planning and design stage [162]. Zhao et al. constructed an IFC 
ontology to describe the hierarchies, attributes and relationships of BIM 
objects. They converted GIS data into OWL via an intermediate format, 
and mapped ontologies using graph matching for ontologies (GMO), 
enabling the integration of BIM and GIS data for highway route opti-
mization [8]. Stepien et al. utilized an ontology database to integrate 
BIM and GIS at the data level, linking and evaluating information in a 
structured manner to create risk- and cost-optimized routes for mecha-
nized excavation operations [123].

Additionally, ACC has garnered increasing attention in recent 
research. While studies on ACC in the building field, such as fire safety 
design verification [163], were relatively mature, research in the road 
infrastructure domain remained exploratory and limited to specific 
scenarios, primarily within the bridge field [126]. Semantic web tech-
nologies demonstrated significant potential in ACC by constructing 
domain-specific ontologies to encode design standards into 
machine-readable rule bases and employing logical reasoning tools (e.g., 
SWRL, SPARQL) to automate the verification of selected clauses. How-
ever, current ACC in road infrastructure domain still faced challenges 
such as simplified application scenarios, partial clause formalization (e. 
g., limited to quantifiable metrics), and weak semantic resolution of 
ambiguous clauses.

4.3.2. Construction stage
Semantic web technologies provided an innovative way to better 

support the construction management process for schedule management 
[164], safety management [17, 131, 132], and quality control [75, 128]. 
Ontologies developed for the construction stage should not only contain 
hierarchies and relationships representing construction model elements, 
but should also link the attribute information of instances in a logical 
manner, taking into account the specifications and the engineers’ ex-
periences [42]. For example, Koch et al. developed a tunnel information 
modeling framework in an open IFC environment to visualize settlement 
monitoring data and predict future conditions during tunnel construc-
tion [60], and Niknam et al. developed an ontology and created project 

knowledge base to effectively integrate schedule information with BIM 
for real-time information access and retrieval [164]. In construction 
safety management, based on semantic regulation checking, Fang et al. 
monitored workers’ behavior for compliance with safety regulations and 
identified hazardous behaviors by constructing a hazard ontology model 
and combining it with computer vision algorithms [17]. Dong et al. 
proposed a knowledge-dynamics integrated map (KIM) to solve the 
safety knowledge visualization problem for workers with different 
professional qualifications and different educational backgrounds dur-
ing the construction of tunnel projects [131] while Xu et al. defined 
SWRL rules for rollover risk assessment of engineering vehicles by se-
mantic representation of rollover stability index and concepts correla-
tion [132]. In addition, quality control played a crucial role in ensuring 
the high quality and long-term performance. Xu et al. proposed an 
ontological approach to manage construction quality inspection 
knowledge, which clarifies the content, timing and standard processes 
that need to be inspected by integrated with the construction business 
process [75]. Based on this, they further proposed an intelligent data-
base approach that can automatically generate tailored lists of con-
struction requirements according to user preferences which enhances 
the efficiency of construction quality inspection [128].

4.3.3. Operation and maintenance stage
The management of road infrastructure during its operational and 

maintenance phases primarily encompasses the inspection and assess-
ment of technical conditions, decision-making for maintenance plans, 
and asset management. Scientific and effective management required 
the collaboration of massive heterogeneous data from multiple sources 
where semantic web technologies were widely accepted and highly 
anticipated.

In operational condition inspection and performance evaluation, 
semantic web technologies employed ontologies as a knowledge back-
bone to interlink the physical states of infrastructure with domain rules, 
enabling structured representation and integration of multidimensional 
knowledge. For instance, in bridge monitoring, the deterioration 
knowledge ontology (DT-KL-Onto) developed by Hu Xi et al. mapped 
bridge structural defects, defect attributes, and contributing factors into 
a computable semantic relationship network that enabled rule-based 
early warnings [47]. For tunnel health assessment, knowledge graph 
based on evolutionary characteristics dynamically correlated historical 
inspection data with degradation models, forming a semantic diagnostic 
framework for tunnel health monitoring [90]. In pavement performance 
analysis, semantic modeling frameworks combined with Bayesian net-
works clarified causal relationships between defects and factors like 
material aging and traffic loads, significantly enhancing the interpret-
ability of degradation mechanisms [139]. These practices standardized 
ambiguous semantics in inspection reports and leveraged pretrained 
models like BERT to semantically parse unstructured text [141], 
significantly improving the interpretability of condition assessments and 
the explicit representation of domain rule-based knowledge.

In maintenance decision-making, semantic web technologies bridged 
the path from inspection data to domain knowledge and decision rules, 
transforming maintenance strategies from experience-driven to data- 
knowledge dual-driven paradigms. For instance, Yu et al. developed a 
tunnel digital twin system integrating ontologies and real-time sensor 
data to dynamically optimize preventive maintenance through semantic 
mappings and 3D simulations [10]. Hu et al. combined BIM, IFC, and 
semantic models to unify heterogeneous information and enhance 
lifecycle-based maintenance planning [151]. Additionally, 
ontology-driven systems such as PADTUN (pathology assessment and 
diagnosis of tunnels) demonstrated how semantic reasoning supports 
pathology diagnosis and decision-making in tunnel management by 
linking structured maintenance data repository with decision support 
system [142]. For bridges, Jiang et al. designed an ontology that 
semantically connects finite element analysis results with 
standard-based constraints, enabling optimal lifecycle multi-objective 
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solutions [103]. Notably, cutting-edge research explored synergistic 
innovations between deep neural networks and semantic reasoning en-
gines recent years, such as cascaded architectures integrating YOLOv8 
defect detection models with knowledge graphs [153], or hybrid 
frameworks coupling finite element-based ML models with SWRL 
rule-driven knowledge repositories for bridge safety assessment [103]. 
Such innovations merged the perceptual capabilities of deep learning 
with the logic-driven rigor of semantic reasoning, significantly 
enhancing decision transparency and maintenance efficiency.

To meet digital transformation needs for life cycle asset management 
in road infrastructure domain, semantic web technologies constructed 
data exchange hubs across systems through domain ontology modeling. 
The European connected data for effective collaboration (CoDEC) pro-
ject’s BIM-AMS (asset management systems) integrated ontology broke 
semantic barriers between IFC standards and asset management sys-
tems, interlinks asset states, maintenance records, and resource sched-
uling data to enable lifecycle cost traceability and analysis [104]. 
Similarly, Hagedorn et al. introduced standardized information con-
tainers to connect road asset management systems or relational data-
bases with BIM models, enabling cross-domain interoperability and 
federated queries of asset information [86]. Meanwhile, to address ter-
minology inconsistencies, Le and Jeong adopted an NLP-based approach 
for automatic classification of semantic relationships among heteroge-
neous transportation asset data [124], while Mehrdad et al. modularized 
sub-ontologies to structurally reorganize cross-domain concepts (e.g., 
pavement inventory, performance degradation, economic costs) [76]. 
Furthermore, these NLP-driven semantic relationship classification al-
gorithms [124] and dynamic data container technologies [86] enhanced 
the adaptive transformation of unstructured documents (e.g., mainte-
nance logs, inspection reports) into knowledge graphs, significantly 
improving the scalability, accuracy, and actionability of asset manage-
ment systems.

5. Limitations of Semantic Web Technologies for Road 
Infrastructure Applications

Section 4 demonstrated the substantial influence of the semantic web 
technologies on data exchange, semantic integration, knowledge man-
agement and decision support throughout the lifecycle of road in-
frastructures. Fig. 10 presented a preliminary framework for the 
applications of semantic web technologies in the field of road infra-
structure, synthesizing the principal components and critical processes 
within this domain, which also responded to RQ3 in Section 1.

The integration of semantic web technologies in road infrastructure 
domain revolved around a four-layer collaborative mechanism encom-
passing requirements, data sets, knowledge, and decision-making. 
Among them, the development of ontology base and knowledge base 
played a fundamental role to the functioning of this system. The 
ontology base comprised interlinked core and domain ontologies, with 
the core ontology consisting of basic terms and relationships, while the 
domain ontology was tailored to a given specialty. Knowledge bases 
primarily hosted data containing semantic information such as concepts, 
facts, rules and relationships between these elements to support complex 
queries and reasoning, including knowledge representation based on 
description logic, using terminology box and assertional box describing 
domain structure and individual assertions respectively, as well as rule 
based explicitly representation of knowledge derived from regulations 
and domain experts.

The perspective of this system was that the participants, such as 
designers and managers, put forward the requirements and aims under 
various specialization backgrounds, and these task breakdowns can be 
aligned with the semantic information in the knowledge base, directly 
invoke existing ontologies or build new ones based on the core ontology 
to integrate cross domain data and knowledge, and also the associated 
rules in knowledge base can be selected and invoked through semantic 
matching. Comprehensive decision-making can then be achieved 

Fig. 10. A framework for the application of semantic web technologies in road infrastructure domain and issues to be considered.
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through a combination of data-based analysis and knowledge-based 
analysis.

Nevertheless, there were still concerns that need to be considered 
and addressed throughout the whole process, including the breakdown 
of requirements and tasks, multi-source heterogeneous data acquisition 
and processing, ontology development methodologies, linking across 
domains, knowledge representation, and the collaboration between 
data-based and knowledge-based methods, and so on, as depicted in 
Fig. 10. These concerns were then collated from the following five as-
pects and the corresponding future improvements were further orga-
nized, which answered RQ4 in Section 1.

5.1. Lack of comprehensive guiding framework for semantic web 
applications in road infrastructure domain

Despite the construction of various semantic web application 
frameworks in several publications and case studies, there were still 
deficiencies in unification and reusability. Particularly, specific features 
essential for road infrastructure have not been given sufficient consid-
eration. For instance, the large-span linear features and multidimen-
sional spatial attributes of road infrastructure necessitate the handling of 
high-precision geometric parameters and spatial topological constraints 
during the design phase. The construction phase subsequently requires 
attention to component-level sequential data and resource scheduling 
logic, while the operation and maintenance phase demands seamless 
integration of real-time sensor data streams with historical degradation 
models. These three distinct lifecycle stages demonstrated divergent 
requirements regarding spatiotemporal granularity, attribute dimen-
sionality, and dynamic characteristics of the data. Key challenges lie in 
balancing hierarchical data relationships across the entire life cycle, 
coordinating dynamic reconciliation mechanisms between static infra-
structure data (e.g., BIM and GIS models) and dynamic real-time oper-
ational data (e.g., complex sensor detection data), ensuring consistency 
and precision in data description, updating, and processing, and sup-
porting multi-granular scenarios ranging from route design and segment 
construction to preventive maintenance and emergency response. The 
current emphasis in the design and development of semantic web on-
tologies primarily prioritized data syntactic conversion over context- 
aware semantic translation, leading to redundancies in knowledge rep-
resentation and inconsistencies in terminology [165]. Reducing redun-
dancy while maintaining clarity and logical consistency, as well as 
fine-tuning hierarchical relationships in accordance with the data 
characteristics and requirements of various service phases of road 
infrastructure are matters should be taken into account.

In addition, current frameworks also lack scalable adoption path-
ways for emerging technologies such as digital twins, AI-driven anomaly 
detection, and multi-agent decision-making systems, limiting their 
applicability in complex scenarios like predictive maintenance or 
climate resilience planning. To address these barriers, a domain-specific 
comprehensive guiding framework is urgently needed to systematize 
ontology engineering, enforce semantic consistency, standardize 
knowledge management and bridge the gap between theoretical models 
and practical implementation. This framework should emphasize 
modular ontologies, automated logical inference, context-aware 
reasoning engines, and adaptive middleware to unify heterogeneous 
data sources, thereby unlocking the full potential of semantic web 
technologies in advancing intelligent, lifecycle-driven road infrastruc-
ture management.

5.2. Lack of specific ontology development protocols

The development of ontologies in the semantic web stack was the 
fundamental component for converting data from databases, BIM and 
GIS models, decision-making procedures, and other lifecycle asset data 
related to road infrastructure into machine-readable and interpretable 
information. As can be seen in Fig. 9, experts and scholars employed 

multiple methodologies for developing ontologies, which included 
Ontology Development 101, Methontology, NeOn, Uschold and Grun-
inger and others. Suitable procedures can be selected from these meth-
odologies based on specific requirements. Among them, the 
establishment of ontology hierarchy and relationships involved diverse 
methods such as transformed into OWL files by referencing the IFC 
extension architecture [151, 159, 166, 167], converting from COBie’s 
structural framework [119, 168], and defining the ontology structure 
and hierarchy from top-bottom, taking into account the practical 
application requirements and experts’ experience [47, 49]. But occa-
sionally different inheritance relationships might be involved for the 
same entity in different scenarios, which required a comprehensive and 
operational hierarchical design. In addition, despite the fact that the 
majority of the process for ontology development involved referencing 
published ontologies, especially as the application progresses, a large 
number of ontologies were created, giving rise to practical concerns such 
as inconsistent hierarchical structures that cannot be mapped and con-
flicting terms that result in ambiguity. A mechanism for investigating 
and evaluating existing ontologies was therefore needed, as well as 
screening guidelines to ensure the quality of ontologies while enhancing 
their reusability.

Moreover, in order to automate ontology development and minimize 
manual intervention, AI tools have recently being employed to identify 
and extract triples from historical document data for road monitoring, 
inspection, and operation and maintenance [51], but due to the 
continuous accumulation of data volume and the heterogeneity char-
acteristics, there remained an inadequacy in research on how to extract 
information from not only textual documents but also multiple sourced 
structured and unstructured data. Further exploration was therefore 
required to delve deeper into this field. Meanwhile, the domain of road 
infrastructure encompassed not only the geometric and attribute data of 
the structural elements, but also the data on users, vehicles, climate 
conditions, and sensors during the operational phase, as well as data on 
computational models, decision-making procedures, and construction 
operations during the management process. It was impractical to 
develop a comprehensive ontology covering all of these knowledge 
domains, instead there were approaches through interlinked indepen-
dent sub-domain ontologies [19, 77] or establishing a shared core 
ontology for other sub-domains to expand upon [27, 38]. Consequently, 
how the abstract concepts and relationships were selected for the 
development of the core ontology was one that required careful iden-
tification and multiple validations, and also for the creation and man-
agement of links between diverse sub-models, partial models and rule 
sets. Therefore, arriving at the optimal blueprint for developing ontol-
ogies that cater to varying fine-grained prerequisites for divergent 
business necessities and can facilitate cross-domain information 
retrieval and semantic reasoning at different stages presented a chal-
lenge that need to be deliberated thoroughly. Hence, it poses a task for 
academics and practitioners to devise a specific ontology development 
protocol that employs automated or semi-automated techniques to ac-
count for the data characteristics during road infrastructure life cycle 
and varying fine-grained needs for diverse business purposes while 
maintaining unambiguous terminologies and hierarchical structures.

5.3. Limited information integration and synchronization

Models such as BIM and GIS in the field of road infrastructure were 
mostly created in the design and construction stage, how to establish 
synchronous relationships between the massive existing data, especially 
road network data, geometric data, terrain data and computational 
models, and expanding the value of information to the whole life cycle of 
road infrastructure was a hot issue of current research concern. Experts 
and scholars endeavored to attain the synchronization of information 
through information containers [86], data wrappers [24], BIM and GIS 
cityGML ontology mapping rules [7], links between model elements and 
risk management [169], etc. Instead of achieving global 
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interoperability, what was offered was a semantic-based data exchange 
that only synchronized and integrated elements between specific sce-
narios. Even if it was achievable to map original data structures to on-
tologies, beyond a certain point, a single ontology was unable to 
encompass all facets of the data model and lacked a thorough descrip-
tion of the application annotations of existing ontologies and interfaces 
with other ontologies [170]. Furthermore, taking into account the 
real-time characteristics of road information, there were issues relating 
to the temporal depiction of attributes and historical information over-
lay for instances when updating real-time data obtained from sensors. 
Future research should concentrate on how to accomplish full life cycle 
data integration and synchronization without altering the external da-
tabase’s structure or the current management system, which can access 
the external database’s real-time updated data and also call upon the 
computational model and knowledge base of the system for manage-
ment decisions in emergency situations and routine circumstances.

5.4. Insufficient automation of information extraction and alignment

To enhance the efficiency of information extraction and semantic 
alignment while reducing reliance on manual intervention, researchers 
have explored diverse automation strategies. This included tools such as 
initial mapping master plug-in for the ontology modeling tool protégé, 
designed to automatically convert spreadsheets into RDF triples [171], 
as well as hybrid machine learning systems integrating statistical models 
like CRF [51] and support vector machines (SVM) with feature engi-
neering pipelines for entity-relation extraction [91]. With advancements 
in deep learning and large language models (LLMs), pre-trained lan-
guage models like BERT have also been adopted for contextual named 
entity recognition and relationship extraction [107]. For semantic 
alignment, rule-based and logic-driven methods using predefined 
domain ontologies, mapping rules, and reasoning tools [49] have been 
actively investigated, alongside vector similarity calculations and rela-
tional reasoning techniques [92]. However, there was still insufficient 
automated conversion mechanism and manual mapping rule definition 
was still required.

For example, road infrastructure data predominantly resides in un-
structured formats, necessitating labor-intensive customization of task- 
specific extraction rules with limited portability. Despite leveraging 
unsupervised learning in pre-trained language models, their training 
and fine-tuning processes still demand extensive annotated datasets. In 
downstream tasks such as named entity recognition and relationship 
extraction, current research remains constrained to predefined simple 
categories, offering limited functionality for handling nested entities, 
multi-level causal relationships, or composite event descriptions. Addi-
tionally, dynamic and multimodal semantic alignment faces compati-
bility challenges. While real-time sensor data requires dynamic logical 
updates to align with static ontologies, inference delays in rule engines 
often lead to adaptation lags. Joint reasoning across heterogeneous data 
sources was further complicated by coordinate system discrepancies and 
ambiguous terminology. Moreover, the increasing number of indepen-
dently created ontologies catering to diverse business requirements, 
coupled with the exponential growth of networked data sources, has 
exacerbated domain ontology fragmentation and generalization costs. 
Differences in ontology definitions across systems and scenarios neces-
sitate repetitive adjustments to annotation rules or knowledge model 
reconfiguration. Compounded by the absence of industry standards, 
terminological ambiguities, and low-quality noise data, significant 
manual intervention remains critical to ensure logical consistency.

To address these issues, future research should prioritize the stan-
dardization of core ontology bases for the road infrastructure, estab-
lishing consistent terminology and taxonomies across design, 
construction, and maintenance phases. This requires adaptive ontology 
development protocols to dynamically synchronize with real-time data 
streams while enabling multimodal joint embedding frameworks to 
resolve semantic conflicts. Domain-augmented hybrid learning systems 

should integrate LLMs with few-shot learning strategies, reducing reli-
ance on annotated datasets, while semi-automated annotation tools can 
also lower labeling costs. Engineering standards and expert experiences 
can be embedded as symbolic constraints to ensure extraction precision 
and logical compliance. Concurrently, open collaborative platforms 
should foster cross-institutional ontology sharing, leveraging decen-
tralized architectures to reconcile definitional ambiguities and stream-
line knowledge model updates. By converging these advancements, this 
field can shift toward scalable, low-intervention automation, where 
semantically unified, context-aware data integration can support pro-
active decision-making efficaciously.

5.5. Weak capacity of logical inference and decision support

Logical inference and reasoning were also significant considerations 
when deploying semantic web technologies for added value in the road 
infrastructure domain, where unknown facts or relationships can be 
inferred from existing facts or relationships in RDF and OWL using a 
common inference engine by simple DL principles. In most semantic web 
implementations, current research in the field of road infrastructure 
employed SWRL reasoning to build rule sets that were tailored to 
particular circumstances, such as mechanisms for identifying the oper-
ational status of tunnel equipment [119], keeping track of the condition 
of bridge structures and sending out early warnings [19], and per-
forming compliance checks [105]. This was accomplished by specifying 
the prior (requirements that must be satisfied for the rule to be trig-
gered), and as a consequent (actions that are executed after the rule is 
triggered). But the most of these rule bases followed a knowledge rep-
resentation based on discrete symbols for reasoning, which had the 
benefits of strong logical constraints and high accuracy but the draw-
backs of being difficult to scale and target-oriented, making it imprac-
tical to develop an exhaustive rule base for managing road 
infrastructure. Future research must look into ways to align rules 
developed by different domain experts as well as rules developed by the 
same domain expert over time or under various circumstances. More-
over, utilizing representation learning for reasoning in the mapped 
vector space is a novel technique that could be explored for adaptation 
to the road infrastructure management field. Furthermore, it was note-
worthy that apart from algorithmic rules and mandatory requirements 
that take into account expert experience, industry standards and norms, 
an increasing amount of sensor data were taken into consideration to aid 
decision-making, particularly in the realm of the internet of things, 
where big data-driven methodologies were utilized in diverse areas like 
forecasting the deterioration of road and bridge performance and pre-
dicting the remaining lifespan of equipment. However, the data-based 
prognostication was hindered by factors such as the selection of vari-
ables, probabilistic models, and others, making the outcomes more un-
predictable. How to integrate data-driven and knowledge-driven or 
theoretical model-driven methodologies for decision making throughout 
the entire life cycle of road infrastructure management, and to 
strengthen the deep cooperation between the road professional field and 
the computer industry need to be further explored and validated in the 
practical engineering environment in the future.

6. Conclusions

Semantic web technologies have demonstrated significant trans-
formative potential in advancing the digital intelligence of road infra-
structure domain, permeating all phases of its life cycle and evolving 
rapidly. To provide a comprehensive and up-to-date analysis and syn-
thesis of research on semantic web technologies in this field, this study 
conducted a scientometric and clustering analysis of 141 selected papers 
to visualize the current status and trends of semantic web technology 
adoption in the road infrastructure industry. Through critical review, 
the achievements in practice and encountered obstacles were identified, 
offering insights to guide future research aimed at advancing intelligent 
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management across the entire life cycle of road infrastructure.
Firstly, the analysis of publication-related information revealed 

fluctuating growth trends in research output, with two distinct peaks in 
2016 and 2021. These peaks closely correspond to the transformative 
processes in engineering digitalization, namely the introduction of BIM 
and advancements in artificial intelligence. Meanwhile, a transition 
from conference papers to journal-dominated publications was 
observed, reflecting the field’s maturation from exploratory methodol-
ogies to robust theoretical frameworks and practical validations. 
Geographically, research contributions were concentrated in China, 
United States, United Kingdom, Germany, and Australia. Notably, the 
Netherlands, despite contributing fewer studies, exhibited the highest 
betweenness centrality, underscoring its critical role in facilitating in-
ternational collaboration. Co-authorship analysis identified influential 
research groups and highlighted emerging partnerships between engi-
neering and computer science disciplines, though deeper interdisci-
plinary integration remains necessary. Document co-citation analysis 
emphasized seminal works that provided scientific definitions of on-
tologies and their development methodologies, early explorations of 
domain-specific ontologies, and integrations with AI methods.

Prominent research themes were identified through keyword anal-
ysis, such as BIM, digital twins, and deep learning, demonstrating se-
mantic web technologies’ abilities in bridging engineering semantics 
with machine-readable formats and enabling dynamic data-object- 
knowledge linkages within digital twins. Deep learning further 
enhanced the unstructured knowledge extraction and data-knowledge 
synergy for cross-domain scientific decision-making. Subsequently, 
clusters of these keywords were further analyzed through three di-
mensions: semantic web technologies analysis, the roles of semantic web 
technologies in the road infrastructure domain, and applications of se-
mantic web technologies across the lifecycle of road infrastructure. A 
detailed examination of semantic web technologies included what they 
are and their core components, elaborated from perspectives such as 
term evolution path, ontologies and their development methodologies, 
description languages, and knowledge graphs. Three pivotal roles of 
semantic web technologies in the road infrastructure domain were then 
identified, namely data exchange and semantic integration, knowledge 
management, and reasoning and simple querying. From a lifecycle 
perspective, semantic web technologies spanned all stages of road 
infrastructure. However, their applications in the operation and main-
tenance phase dominated, leveraging semantic integration to enable 
condition monitoring, maintenance decision-making, and asset man-
agement. Innovations driven by these technologies in the design phase 
include multidisciplinary collaborative design and ACC, while in the 
construction phase, they offered novel solutions to enhance schedule 
management, safety management, and quality control.

Despite these advancements, critical challenges persist. Building on 
the above synthesis, this paper proposed a preliminary framework for 
semantic web applications in road infrastructure domain, synthesizing 
core components and key processes. Five major limitations in current 
applications were then identified: lack of comprehensive guiding 
framework for semantic web applications in road infrastructure domain; 
lack of specific ontology development protocols; limited information 
integration and synchronization; insufficient automation of information 
extraction and alignment; weak capacity of logical inference and deci-
sion support. To address these barriers, there is an urgent need for a road 
infrastructure domain-specific, integrated guiding framework to sys-
tematize ontology engineering, enhance semantic consistency, regulate 
knowledge management, leverage advanced AI tools, and bridge the gap 
between theoretical models and practical implementations, thereby 
unlocking the full potential of semantic web technologies in advancing 
intelligent road infrastructure life cycle management.

Finally, while this study offered an in-depth review of the applica-
tions of semantic web technologies in road infrastructure domain, 
certain limitations must be acknowledged. Firstly, the literature review 
emphasized influential journal articles and conference papers, yet 

practical case studies from real world applications were underrepre-
sented. As research materials continue to accumulate, future efforts 
should actively integrate empirical insights from these cases to enhance 
theoretical frameworks and address practical challenges. Secondly, 
while the adoption and investigation of semantic web technologies in 
road infrastructure exhibit domain-specific characteristics, they share 
fundamental logic and research paradigms with the AEC domain. 
Although we drew insights from research frameworks in this domain 
during our analysis, comparative exploration was not conducted deeply. 
Future work should involve a thorough comparison and synthesis of the 
application priorities between these two fields to identify tailored 
development pathways for the road infrastructure domain.
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[101] E. Renzi, C.A. Trifarò, Knowledge and digitalization: a way to improve safety of 
road and highway infrastructures, Procedia Struct. Integr. 44 (2023) 1228–1235, 
https://doi.org/10.1016/j.prostr.2023.01.158.

[102] F. Li, X. Xu, J. Zhou, J. Chen, S. Zhou, Automatic generation of inspection 
knowledge for highway construction via the integration of computer vision and 
ontology reasoning, Eng. Constr. Archit. Manag. (2024), https://doi.org/ 
10.1108/ecam-06-2024-0821.

[103] Y. Jiang, G. Yang, H. Li, T. Zhang, A. Khudhair, Physics-informed knowledge- 
driven decision-making framework for holistic bridge maintenance, J. Constr. 
Eng. Manag. 150 (9) (2024), https://doi.org/10.1061/jcemd4.Coeng-13593.

[104] A. Lorvão Antunes, J. Barateiro, V. Marecos, J. Petrović, E. Cardoso, Ontology- 
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