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1.  INTRODUCTION

Learning-associated neural processes occurring during 
sleep have been receiving increasing attention in recent 
times. The active systems consolidation model suggests 
that newly encoded memories are reactivated during 
non-rapid eye movement (NREM) sleep, and that this 
enables their re-coding from a temporary store to a more 
permanent location (Born et al., 2006; Born & Wilhelm, 
2012; Rasch & Born, 2013). However, while the process 
of memory consolidation is gradual and occurs over long 
timescales (Frankland & Bontempi, 2005), it is unclear 
whether reactivation of memories during sleep leads to 

structural plasticity over time. Moreover, there is increas-
ing evidence for distributed long-term cortical storage of 
memories (Dudai, 2004; Josselyn et al., 2015; Josselyn & 
Tonegawa, 2020), but it is unclear whether replay-driven 
consolidation is associated with plasticity at different 
cortical sites. Likewise, how such plasticity could lead to 
long-term memory storage in humans has not been stud-
ied sufficiently (Stee & Peigneux, 2021).

Here, we set out to track the location and timescale of 
microstructural changes associated with the long-term 
effects of memory reactivation during sleep using Targeted 
Memory Reactivation (TMR). TMR involves associating 
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learning items with sensory cues during wake and then 
covertly re-presenting these cues during sleep (e.g., Rasch 
et al., 2007; Rudoy et al., 2009). This is thought to trigger 
reactivation of the cue-associated memory representation 
which leads to a better recall of the cued items compared 
to those that were not cued during the night (i.e., uncued) 
(Antony et al., 2012; Cousins et al., 2014; Rakowska et al., 
2021; Schönauer et al., 2014). In recent years, TMR has 
become a valuable tool to study the mechanisms of sleep-
dependent memory processes. It has allowed us to estab-
lish a causal link between memory reactivation and 
consolidation (Belal et  al., 2018; Schreiner et  al., 2018), 
and to identify brain regions that are functionally involved 
in such relationship (Cousins et  al., 2016; Rasch et  al., 
2007; Shanahan et al., 2018; Van Dongen et al., 2012). Our 
previous study (Rakowska et al., 2021) as well as an inde-
pendent prior analysis of the current dataset (Rakowska 
et  al., 2024) further demonstrated that the behavioural 
effects of TMR develop over time and can last up to 
3 weeks. However, the structural brain changes driving the 
long-term functional and behavioural benefits of TMR 
remain poorly understood. Moreover, it is still unclear 
whether repeated reactivation of a memory trace can 
modify tissue microstructure and what the time scale of 
such changes might be.

We used Mean Diffusivity (MD) and Restricted Water 
Fraction (Fr) to examine short- and long-term microstruc-
tural plasticity after TMR of a procedural memory task 
(Fig. 1a). Both MD and Fr are task-independent structural 
measures which allow probing of the microstructural 
substrate but do not directly reflect neuronal activation. 
These metrics are reliable and comparable across sub-
jects (Salvan et  al., 2021; Sexton et  al., 2014). Impor-
tantly, both measures are sensitive to experience-driven 
plasticity within memory-related areas (Hofstetter et al., 

2013; Sagi et al., 2012; Tavor et al., 2013) and have been 
used to track the development of the neocortical engram, 
with the microstructural changes driving gains in 
behavioural performance (Brodt et al., 2018). MD and Fr 
are, therefore, excellent metrics for studying the gradual 
microstructural plasticity associated with memory forma-
tion over long timescales.

MD provides indirect information about aspects of 
cortical microstructure (Mori & Zhang, 2006) such as cell 
density or size (Sagi et al., 2012). MD has recently been 
shown to decrease in precuneus in response to a series 
of repeated learning-retrieval epochs during wake (Brodt 
et al., 2018), which could be regarded as a proxy of mem-
ory reactivation during sleep (Himmer et al., 2019). We, 
thus, hypothesised that TMR during sleep would also 
lead to MD changes as a result of plasticity within precu-
neus. We further expected the motor-related regions to 
undergo long-term microstructural changes, thereby 
reflecting their slowly evolving reorganisation (Ganguly & 
Carmena, 2009; Gao et al., 2018; Kami et al., 1995; Kleim 
et al., 2004; Matsuzaka et al., 2007).

Finally, despite the importance of tissue microstruc-
ture for memory formation (Brodt et al., 2018), it is unclear 
whether baseline tissue microstructure is predictive of 
memory encoding capacity. To clarify this, we tested the 
relationship between baseline brain characteristics and 
the behavioural benefit of our manipulation, thus adding 
to our current understanding of the factors that influence 
the effectiveness of TMR (Hu et al., 2020).

2.  METHODS

2.1.  Participants

The same sample of 33 healthy volunteers that we 
reported previously (Rakowska et  al., 2024) signed a 

Fig. 1.  Experimental methods and behavioural effects of TMR. (a) Study design. The study consisted of four sessions, each 
requiring participants to complete the SRTT. During S1, SRTT was followed by DW-MRI acquisition. During S2 (24 h post-
TMR) and S3 (10 days post-TMR), the order was flipped, with the SRTT following MRI data collection. Structural T1w data 
were acquired at the beginning of each scan (S1-S3). S1 also involved EEG recording during the stimulation night. While 
asleep, tones associated with one of the sequences were replayed to the participants during stable N2 and N3. During S4 
(20 days post-TMR), SRTT was delivered outside the scanner. (b) MRI data analysis. MD and Fr maps were extracted from 
the DW-MRI data and combined in a joint multi-parameter approach to uncover common trends related to microstructural 
plasticity of grey matter. The multi-parameter analysis was followed by uni-parameter post-hoc tests to determine the 
contribution of each parameter to the multi-parameter results (not shown). (c) Average reaction time for the cued sequence 
(blue), uncued sequence (yellow), and random blocks (light and dark purple) of the SRTT performed before sleep (S1), 24 h 
post-TMR (S2), 10 days post-TMR (S3), and 20 days post-TMR (S4). Error bars represent the SEM. The data are reported 
for completeness, for full report see Rakowska et al. (2024). (d) Difference between the late sequence specific skill of the 
cued and uncued sequence (i.e., the cueing benefit) plotted against the number of days post-TMR. Green dots represent 
mean ± SEM calculated for S2 (1 day post-TMR), S3 (10–14 days post-TMR), and S4 (16–21 days post-TMR). Grey lines 
represent cueing benefit for each subject. A linear mixed-effects analysis showed a main effect of time on cueing benefit, 
which itself was significant at S4. *p < 0.05; **padj = 0.004. (e) Top: Heatmap of Pearson’s correlation coefficient matrix 
showing the relationships between cueing benefit at different sessions. Bottom: Scatterplots showing the same correlations. 
CBS2-S4: cueing benefit at S2-S4; S1-4: Session 1-4; SRTT: Serial Reaction Time Task; DW-MRI: Diffusion Weighted MRI; 
MD: Mean Diffusivity; Fr: Restricted Water Fraction. For (c): n = 30 for S2, n = 25 for S3; n = 24 for S4. For (d-e): n = 23.
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written informed consent to take part in the study, which 
had been approved by the Ethics Committee of the 
School of Psychology at Cardiff University. All partici-
pants reported being right-handed, sleeping approxi-
mately 8  h per night, having no hearing impairment, 
normal or corrected to normal vision, and no prior knowl-
edge of the tasks performed upon the start of the study. 
Regular nappers, smokers, subjects who had travelled 
across more than two time-zones or engaged in any reg-
ular night work during 1 month prior to the experiment 
were not recruited. Further criteria for exclusion included 
recent stressful life event(s), regular use of any medica-
tion or substance affecting sleep, prior history of drug/
alcohol abuse, and neurological, psychological, or sleep 
disorders. Additionally, participants were asked to 
abstain from napping, extreme physical exercise, caf-
feine, alcohol, and other psychologically active food 
from 24 h prior to each experimental session. We also 
excluded participants with more than 3 years of musical 
training in the past 5 years due to a probable link between 
musical abilities and procedural learning (Anaya et  al., 
2017; Romano Bergstrom et al., 2012). Participants were 
screened by a qualified radiographer from Cardiff Uni-
versity to assess their suitability for MRI and signed an 
MRI screening form prior to each scan.

Four participants had to be excluded from all analyses 
due to: technical issues (n  =  1), voluntary withdrawal 
(n = 1), interrupted electroencephalography (EEG) record-
ing during the night (n = 1), and positive slope of learning 
curve during the first session (indicating lack of sequence 
learning before sleep) (n = 1). Six additional participants 
had to be removed from the DW-MRI analyses due to 
failure of the posterior (n = 2) or anterior (n = 4) part of the 
radiofrequency coil. Hence, 23 participants remained in 
the final dataset (12 females, age range: 18–23  years, 
mean  ±  SD: 20.42  ±  1.56; 11 males, age range: 19–
22 years, mean ± SD: 20.18 ± 0.98). Due to COVID-19 
outbreak, four participants were unable to complete the 
study, missing either one (n = 1) or two (n = 5) sessions. 
One additional participant could not physically attend S3; 
they performed the SRTT online, but their MRI data could 
not be collected and therefore the sample size for the 
MRI analyses of S3 had to be decreased by one. Finally, 
Fr maps collected from three additional participants 
failed a visual quality check after pre-processing and 
were thus excluded from the Fr analysis (n = 3). Hence, 
the final sample size for MD analysis was n = 23 for S1, 
n = 23 for S2 and n = 19 for S3, and the sample size for 
Fr analysis was n = 20 for S1, n = 20 for S2, and n = 16 
for S3. A flowchart of participants included and excluded 
from the different analyses is presented in Supplemen-
tary Figure S3. Note, however, that the different number 
of participants at different sessions and parameters 

meant that when these were combined the final sample 
size had to be decreased. For instance, to create S2-S3 
subtraction maps the sample size had to match that of 
the session with lower number of participants available 
(i.e., n = 16 for Fr and n = 19 for MD). However, to com-
bine the S2-S3 subtraction maps for a multi-parameter 
analysis the final sample size for MD had to be decreased 
by 3 to match the sample size of Fr (i.e., 16 participants). 
To assess the relationship between late plasticity and 
cueing benefit at S4 (as in, e.g., Fig. 2d) the sample size 
had to be further decreased by 1 due to 1 additional par-
ticipant being unable to attend S4 and hence missing 
data for the behavioural regressor, leaving only 15 partic-
ipants available for the analysis.

2.2.  Study design

The study consisted of four sessions (Fig. 1a), all sched-
uled for 8 pm to control for the time-of-day effect in MRI 
data (Trefler et al., 2016). Upon arrival for the first session 
(S1), participants completed Pittsburgh Sleep Quality 
Index (PSQI) (Buysse et al., 1989), to examine their sleep 
quality over the past month. S1 consisted of a motor 
sequence learning task (the SRTT), MRI data acquisition, 
and overnight stay in the lab. The SRTT learning session 
was split in half, such that the first half of the SRTT blocks 
(24 sequence blocks) was performed in a 0T Siemens 
‘mock’ scanner (i.e., an environment that looked exactly 
like an MRI scanner, but with no magnetic field) and the 
other half (24 sequence blocks + 4 random blocks) in a 
3T Siemens MRI scanner, immediately after T1-weighted 
(T1w) structural data acquisition. This was followed by 
DW-MRI (see section 2.6). Participants were then asked 
to prepare themselves for bed and were fitted with an 
EEG cap. While in stable stage 2 (N2) or 3 (N3) of NREM 
sleep, the TMR protocol was initiated (see section 2.5). 
Briefly, to trigger reactivation of the associated SRTT 
memories, tones associated with one of the SRTT 
sequences were replayed to the participants through 
speakers (Harman/Kardon HK206, Harman/Kardon, 
Woodbury, NY, USA). Afterwards, on average, 8.81  ± 
0.82 h in bed participants were woken up and had the 
EEG cap removed before leaving the lab.

Session 2 (S2), session 3 (S3), and session 4 (S4) took 
place 23–26  h, 10–14  days, and 16–21  days after S1, 
respectively. During S2 and S3, DW-MRI data were 
acquired as before, followed by an SRTT re-test. Here, 
the first half of the SRTT blocks (24 sequence blocks + 4 
random blocks) was performed in the 3T scanner and the 
second half (24 sequence blocks + 4 random blocks) in 
the 0T scanner. Note that the order of scans (3T vs. 0T) 
was flipped from S1 to S2 and S3 for the microstructural 
assessment to occur as close to TMR as possible. S4 



5

M. Rakowska, A. Lazari, M. Cercignani et al.	 Imaging Neuroscience, Volume 3, 2025

was performed either in the lab or online, depending on 
the severity of COVID-19 restrictions at the time. During 
S4, SRTT was delivered in one run (48 sequence blocks + 
4 random blocks).

All experimental tasks were delivered as described 
before (Rakowska et al., 2024). For offline data collec-
tion, the SRTT (S1-S3) was back projected onto a pro-
jection screen situated at the end of the MRI/mock 
scanner and reflected into the participant’s eyes via a 
mirror mounted on the head coil; during S4 SRTT was 

presented on a computer screen with resolution 
1920 x 1080 pixels and executed using MATLAB 2016b 
(The MathWorks Inc., Natick, MA, USA) and Cogent 
2000 (developed by the Cogent 2000 team at the Func-
tional Imaging Laboratory and the Institute for Cognitive 
Neuroscience, University College, London, UK). For 
online data collection (S4), SRTT was programmed in 
Python using PsychoPy 3.2.2. (Peirce et al., 2019) and 
administered through Pavlovia online platform (https://
pavlovia​.org/).

Fig. 2.  Microstructural plasticity in precuneus and task-related structures is associated with long-term cueing benefits. 
(a) Early (from S1 to S2) microstructural plasticity in right putamen is associated with cueing benefit at S4. (d) Late (from 
S2 to S3) microstructural plasticity in bilateral precuneus is associated with cueing benefit at S4. (g) Late (from S2 to 
S3) microstructural plasticity in left sensorimotor cortex is associated with cueing benefit at S4. Purple-yellow colour 
bars indicate p-values for the results thresholded at a significance level of pFWE < 0.05, corrected for multiple voxel-
wise comparisons within each pre-defined ROI for bilateral putamen (a), precuneus (d), and sensorimotor cortex (g). For 
multiple voxel-wise comparisons across all four ROIs, see Supplementary Table S2. Results are overlaid on a Montreal 
Neurological Institute (MNI) brain. (b, c, e, f, h, i) Mean MD (b, e, h) and Fr (c, f, i) change values extracted from joint multi-
parameter clusters significant at pFWE < 0.05 shown in (a), (d), and (g). Scatterplots are presented for visualisation purposes 
only and should not be used for statistical inference. Each data point represents a single participant; axes represent 
residual values after correcting for age, sex, PSQI score, baseline reaction time, baseline learning capabilities on the SRTT, 
cueing benefit at S2 and S3. MD: Mean Diffusivity; Fr: Restricted Water Fraction; PSQI: Pittsburgh Sleep Quality Index;  
S1-S4: Session 1-4; n = 15 for (a-f), n = 16 for (g-i).

https://pavlovia.org/
https://pavlovia.org/
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2.3.  Experimental tasks—the serial reaction time 
task (SRTT)

The SRTT was used to induce and measure motor 
sequence learning. It was adapted from (Cousins et al., 
2014) and implemented exactly as described before 
(Rakowska et al., 2024). Briefly, participants learned two 
12-item sequences of auditorily and visually cued key 
presses. The task was to respond to the stimuli as quickly 
and accurately as possible, using index and middle fin-
gers of both hands. The two sequences—A (1-2-1-4-2- 
3-4-1-3-2-4-3) and B (2-4-3-2-3-1-4-2-3-1-4-1)—were 
matched for learning difficulty, did not share strings of 
more than four items, and contained items that were 
equally represented (three repetitions of each). Each 
sequence was paired with a set of 200 ms-long tones, 
either high (5th octave, A/B/C#/D) or low (4th octave, C/D/
E/F) pitched, that were counterbalanced across 
sequences and participants. For each item/trial, the tone 
was played with simultaneous presentation of a visual 
cue in one of the four corners of the screen. Visual cues 
consisted of neutral faces and objects, appearing in the 
same location regardless of the sequences (1 – top left 
corner = male face, 2 – bottom left corner = lamp, 3 – top 
right corner = female face, 4 – bottom right corner = 
water tap). Participants were told that the nature of the 
stimuli (faces/objects) was not relevant for the study. 
Their task was to press the key on the keyboard (while in 
the sleep lab or at home) or on an MRI-compatible button 
pad (2-Hand system, NAtA technologies, Coquitlam, 
Canada) (while in the MRI/mock scanner) that corre-
sponded to the position of the picture as quickly and 
accurately as possible: 1 = left shift/left middle finger but-
ton; 2 =  left Ctrl/left index finger button; 3 = up arrow/
right middle finger button; 4  =  down arrow/right index 
finger button. Participants were instructed to use both 
hands and always keep the same fingers on the appropri-
ate response keys. The visual cue disappeared from the 
screen only after the correct key was pressed, followed 
by a 300 ms interval before the next trial. There were 24 
blocks of each sequence (a total of 48 sequence blocks 
per session), where block type was indicated with ‘A’ or 
‘B’ displayed in the centre of the screen. Each block con-
tained three sequence repetitions (36 items) and was fol-
lowed by a 15s pause/break, with reaction time (RT) and 
error rate feedback. Blocks were interleaved pseudo-
randomly with no more than two blocks of the same 
sequence in a row. Participants were aware that there 
were two sequences but were not asked to learn them 
explicitly. Block order and sequence replayed were coun-
terbalanced across participants.

During each run of the SRTT, sequence blocks A and 
B were followed by 4 random blocks, except for the first 

half of S1 (to avoid interrupted learning). Random blocks 
were indicated with ‘R’ appearing centrally on the screen 
and contained pseudo-randomised sequences, the same 
visual stimuli, and tones matching sequence A for half of 
them (Rand_A) and sequence B for the other half 
(Rand_B). Blocks Rand_A and Rand_B were interleaved, 
and the random sequences contained within them fol-
lowed three constraints: (1) each cue was represented 
equally within a string of 12 items, (2) two consecutive 
trials could not contain the same cue, and (3) random 
sequence did not share a string of more than four items 
with either sequence A or B.

2.4.  EEG data acquisition

EEG data acquisition was performed exactly as described 
before (Rakowska et al., 2024). Briefly, EEG was recorded 
using 64 actiCap slim active electrodes (Brain Products 
GmbH, Gilching, Germany), with 62 electrodes embedded 
within an elastic cap (Easycap GmbH, Herrsching, Ger-
many). This included the reference positioned at CPz and 
ground at AFz. The remaining electrodes were the left and 
right electrooculography (EOG) electrodes (placed below 
and above each eye, respectively), and left and right elec-
tromyography (EMG) electrodes (placed on the chin). Sup-
plementary Figure S4 shows the EEG electrodes layout. 
Elefix EEG-electrode paste (Nihon Kohden, Tokyo, Japan) 
was used for stable electrode attachment, and Super-Visc 
high viscosity electrolyte gel (Easycap GmbH) was inserted 
into each electrode to reduce impedance below 25 kOhm. 
To amplify the signal, we used either two BrainAmp MR 
plus EEG amplifiers or a LiveAmp wireless amplifier (all 
from Brain Products GmbH). Signals were recorded using 
BrainVision Recorder software (Brain Products GmbH).

2.5.  TMR during NREM sleep

Tones associated with one of the learned sequences (A or 
B, counterbalanced across participants) were replayed to 
the participants during N2 and N3, using a protocol 
described before (Rakowska et al., 2021, 2024). The target 
sleep stages were assessed with standard AASM criteria 
(Berry et  al., 2015). Volume was adjusted manually for 
each participant to make sure that the sounds did not 
wake them up. As in prior papers (Belal et  al., 2018; 
Cousins et al., 2016; Rakowska et al., 2021) to avoid inter-
ference between cues, the inter-trial-interval was much 
longer in sleep than in wake. One repetition of a sequence 
was followed by a 20 s break, with the inter-trial interval 
jittered between 2500 and 3500 ms. Upon arousal or leav-
ing the relevant sleep stage, replay was paused immedi-
ately and resumed only when stable N2/N3 was apparent. 
TMR was performed for as long as a minimum threshold of 
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~1000 trials in N3 was reached. On average, 1552.91 ± 
215.00 sounds were delivered. The protocol was executed 
using MATLAB 2016b and Cogent 2000.

2.6.  MRI data acquisition

Magnetic resonance imaging (MRI) data were acquired 
using a 3T Siemens Connectom scanner (maximum gra-
dient strength 300 mT/m) with a 32-channel head-coil. All 
scans were performed at Cardiff University Brain Imaging 
Centre (CUBRIC) and lasted ~1 h in total each. This paper 
is concerned with the analysis of the multi-shell DW-MRI, 
but the MRI protocol also included T1w, functional MRI 
(fMRI), and mcDESPOT acquisitions, the analyses of 
which are reported in separate publications (for T1w and 
fMRI results, see Rakowska et al. (2024)).

2.6.1.  T1-weighted imaging

A high-resolution T1-weighted anatomical scan was 
acquired with a 3D magnetization-prepared rapid gradient 
echoes (MPRAGE) sequence as described before 
(Rakowska et al., 2024) (repetition time [TR] = 2300 ms; 
echo time [TE] = 2 ms; inversion time [TI] = 857 ms; flip 
angle [FA] = 9°; bandwidth 230 Hz/Pixel; 256 mm field-of-
view [FOV], 256 x 256 voxel matrix size, 1 mm isotropic 
voxel size; 1 mm slice thickness; 192 sagittal slices; paral-
lel acquisition technique [PAT] with in-plane acceleration 
factor 2 (GRAPPA); anterior-to-posterior phase-encoding 
direction; 5 min total acquisition time [AT]) at the beginning 
of each scanning session.

2.6.2.  Multi-shell diffusion-weighted imaging

Diffusion-Weighted MRI data were acquired with a monop-
olar sequence (TR = 3000 ms; TE = 59 ms; FA = 90°; 266 
gradient directions distributed over 6 shells (b = 200, 500, 
1200, 2400, 4000, 6000  s/mm2); 13 interspersed b  =  0 
images; bandwidth 2272 Hz/Pixel; 220 mm FOV; 220 x 200 
voxel matrix size; 2 mm isotropic voxel size; 2 mm slice 
thickness; 66 axial-to-coronal slices obtained parallel to 
the AC–PC line with interleaved slice acquisition; PAT 2 
(GRAPPA); multi-band acceleration factor = 2; AT = 14 min) 
in an anterior-to-posterior phase-encoding direction, with 
one additional b = 0 posterior-to-anterior volume.

2.7.  Data analysis

2.7.1.  Behavioural data

PSQI global scores were calculated based on the original 
scoring system (Buysse et al., 1989), and the SRTT analy-
sis was performed as described before (Rakowska et al., 

2024). Briefly, the SRTT performance was measured using 
mean reaction time per block of each sequence (cued and 
uncued). All trials within each block were considered (i.e., 
trials performed by both hands), except for those with 
reaction time exceeding 1000  ms. For each sequence 
during each session, the mean performance on the last 
four blocks was subtracted from the mean performance 
on the two random blocks, thus yielding a measure of late 
‘sequence-specific skill’ (SSS). We chose to focus on late 
SSS rather than early SSS given that our previous study 
(Rakowska et al., 2021) as well as an independent prior 
analysis of the current dataset (Rakowska et  al., 2024) 
showed a main effect of TMR on the former only.

To obtain a single measure reflecting the effect of 
TMR on SRTT performance at each session, we calcu-
lated the difference between the late SSS of the cued 
and uncued sequence and refer to it as the ‘cueing ben-
efit’. Cueing benefits at S2 and S3 were entered as 
covariates of no interest in the analyses testing the rela-
tionship between cueing benefit at S4 and brain micro-
structure (see section 2.8.2).

2.7.2.  DW-MRI data pre-processing

A key limitation of MD is that it reflects contributions from 
all cells within a voxel, as well as extracellular water. To 
address this, more advanced models have been devel-
oped to differentiate between intra- and extracellular water 
dynamics, such as the Composite Hindered and Restricted 
Model of Diffusion (CHARMED) (Assaf et  al., 2004). By 
incorporating both hindered and restricted diffusion com-
ponents, CHARMED enables the estimation of the volume 
fraction of the restricted compartment (Fr), which has been 
shown to enhance sensitivity to neuroplasticity (Tavor 
et al., 2013). Fr primarily reflects the contribution of intra-
cellular cylindrical structures, including axons, dendrites, 
and glial cell processes. Since dendrites and neural/glial 
processes are known to undergo structural changes in 
response to plasticity (Blumenfeld-Katzir et al., 2011; Tavor 
et al., 2013; Theodosis et al., 2008), this measure offers 
valuable insights into neurobiological adaptations not only 
increasing sensitivity to plastic changes, but also facilitat-
ing their interpretation. We thus combined MD with Fr in a 
joint multi-parameter analysis protocol to uncover com-
mon microstructural patterns across the two MRI markers 
and their relationship with TMR benefits in the long term 
(Fig. 1b).

DW-MRI data pre-processing was performed as 
described in previous publications (Genc et al., 2020; Tax 
et al., 2021). The pre-processing steps included (1) Slice-
wise OutLIer Detection (SOLID) (Sairanen et  al., 2018);  
(2) full Fourier Gibbs ringing correction (Kellner et al., 2016) 
using Mrtrix mrdegibbs software (Tournier et  al., 2012); 
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and (3) a combined topup, eddy, and DISCO step 
(Rudrapatna et  al., 2018) to (i) estimate susceptibility-
induced off-resonance field and correct for the resulting 
distortions using images with reversed phase-encoding 
directions, (ii) correct for eddy current distortions, and (iii) 
correct for gradient nonlinearity. To generate Mean Diffu-
sivity (MD) maps, the diffusion tensor model was fitted to 
the data using the DTIFIT command in FSL for shells with 
b < 1500 s/mm2. To estimate Restricted Water Fraction (Fr) 
metric, the composite hindered and restricted model of 
diffusion (CHARMED) was fitted to the data using an in-
house non-linear least square fitting algorithm (De Santis 
et  al., 2014) coded in MATLAB 2015a. The two indices 
(MD, Fr) were chosen based on the existing human litera-
ture on the microstructural changes following learning MD: 
(Brodt et al., 2018; Hofstetter et al., 2013; Sagi et al., 2012; 
Tavor et al., 2020) Fr: (Tavor et al., 2013). MD describes the 
average mobility of water molecules and has shown sensi-
tivity to changes in grey matter (Brodt et al., 2018; Sagi 
et al., 2012; Tavor et al., 2020). MD is thought to reflect the 
underlying, learning-dependent remodelling of neurons 
and glia, that is, synaptogenesis, astrocytes activation, 
and brain-derived neurotrophic factor (BDNF) expression, 
as confirmed by histological findings (Sagi et  al., 2012), 
which were of particular interest in this study. As opposed 
to DTI, the CHARMED model separates the contribution of 
water diffusion from the extra-axonal (hindered) and intra-
axonal (restricted) space (Assaf et al., 2004), thereby pro-
viding a more sensitive method to look at the microstructural 
changes than DTI (Tavor et al., 2013). Fr is one of the out-
puts from the CHARMED framework. In grey matter, Fr 
changes are thought to reflect remodelling of dendrites 
and glia and were observed both short-term (2 h) and long-
term (1  week) following a spatial navigation task (Tavor 
et al., 2013).

Co-registration, spatial normalisation, and smoothing 
of the MD and Fr maps were performed in SPM12, run-
ning under MATLAB 2015a. First, we co-registered the 
pre-processed diffusion images with participants’ struc-
tural images using a rigid body model. The co-registration 
output was then spatially normalised to MNI space. This 
step involved resampling to 2  mm voxel with B-spline 
interpolation and utilised T1 deformation fields generated 
during fMRI analysis of the same participants (Rakowska 
et  al., 2024). That way, the resulting diffusion images 
were in the same space as the fMRI and T1w data. Finally, 
the normalised data were smoothed with an 8 mm FWHM 
Gaussian kernel.

2.8.  Statistical analysis

All behavioural tests conducted were two-tailed, and 
both positive and negative contrasts were performed for 

the MRI analyses. MRI results were voxel-level corrected 
for multiple comparisons by family wise error (FWE) cor-
rection for the whole-brain grey matter (GM) and for the 
pre-defined anatomical regions of interest (ROI, see sec-
tion 2.8.4), with the significance threshold set at p

FWE < 
0.05. To obtain a whole-brain GM mask, the SPM12 tis-
sue probability map of GM was thresholded at 50% 
probability (Ceccarelli et al., 2012).

2.8.1.  Behavioural data

Statistical analyses of behavioural data were conducted 
in an independent analysis of the same dataset (Rakowska 
et al., 2024). We used lme4 package (Bates et al., 2015) 
in R to fit two linear mixed-effects models to our data. 
The first model (model 1) was used to test the effect of 
TMR (cued vs. uncued) and Session (S2, S3, S4) on the 
late SSS. The second model (model 2) was used to test 
the effect of Time (i.e., number of days post-TMR) on 
cueing benefit. To account for the repeated-measures 
design, participant code was always entered as a ran-
dom intercept.

> model  1 =  lmer ( late SSS ~  Session + TMR 
+  1 |Participant( ),  data = dataset)

> model  2 =  lmer (CueingBenefit ~  Time 

+  1 |Participant( ),  data = dataset)

An ANOVA function in R was used to run likelihood 
ratio tests between the full model and the model without 
the effect of interest. This allowed us to obtain a p-value 
for each effect tested. Emmeans package (Lenth et al., 
2019) was used to conduct Holm-adjusted post-hoc 
pairwise comparisons. The results of both the likelihood 
ratio tests and post-hoc comparisons are cited in this 
manuscript and discussed in relation to the underlying 
tissue microstructure.

2.8.2.  Joint multi-parameter analysis

Group-level analyses of DW-MRI data were performed in 
FSL (FMRIB’s Software Library, http://www​.fmrib​.ox​.ac​
.uk​/fsl) (Smith et al., 2004). To examine the relationship 
between brain characteristics and our variables of inter-
est, we performed non-parametric combination (NPC) for 
joint interference analysis (Fig. 1b), as described before 
(Lazari et al., 2021; Sampaio-Baptista et al., 2020). Spe-
cifically, NPC was performed over MD and Fr maps to 
uncover common trends related to non-myelin GM micro-
structure (Sagi et al., 2012; Tavor et al., 2013).

The analysis was performed through Permutation 
Analysis of Linear Models (PALM) in FSL (Winkler et al., 

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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2016), using voxel-wise Fisher test with the following 
equation:

−2 ln ln(pk)
k=1

k

∑

where k denotes the total number of parameters being 
combined, and pk denotes the p-value for a given param-
eter (Winkler et al., 2016).

NPC Fisher’s combining function tests for effects 
with concordant directions across parameters of choice. 
Thus, to test for positive effects across our parameters, 
imaging data with mismatching directions (here MD) 
were multiplied by (-1). The significance of the resulting, 
single joint statistic was assessed through 5000 permu-
tations of each of the separate tests and a cluster-
forming threshold of t  >  1.75 (equivalent to p  <  0.05, 
based on the degrees of freedom for the smallest sam-
ple) at 5% FWE rate. Correction for multiple compari-
sons was carried out both for the whole-brain GM and 
for the pre-defined ROIs.

We set out to test for a linear relationship between 
early (S1 vs. S2) and late (S2 vs. S3) microstructural plas-
ticity and long-term cueing benefit (i.e., at S4). We chose 
to analyse S1 vs. S2 and S2 vs. S3 separately to look at 
non-overlapping changes over distinct periods of time. 
To this end, the images used to assess the longitudinal 
effects of time were generated by subtracting the pre-
processed MD and Fr parameter maps from consecutive 
sessions. The resultant images were entered into a one-
sample t-test with cueing benefit at S4 added as a main 
regressor and the remaining sessions (S2 and S3 where 
no behavioral benefit was apparent), treated as the 
covariates of no interest (nuisance covariates) to control 
for inter-session variations in behavioural trajectories that 
are unrelated to emergence of the cueing benefit in S4. 
This ensured that the results were specific to the session 
analysed. Additionally, the nuisance covariates also 
included sex and age to control for the differences 
between males and females, as well as the effect of age. 
Baseline reaction time (i.e., average reaction time on the 
random blocks performed during S1) and baseline learn-
ing capabilities (i.e., difference between the average of 
the last four blocks and the first four blocks performed 
during S1) were also specified as the variables of no 
interest to ensure that the results were independent of 
baseline SRTT performance.

To determine whether individual differences in base-
line brain characteristics can predict susceptibility to the 
manipulation, we tested the relationship between base-
line (S1) GM microstructure and cueing benefit at S4. 
Thus, cueing benefit at S4 was entered as a covariate of 
interest in a one-sample t-test within the joint multi-
parameter framework. The nuisance covariates for this 

analysis included: cueing benefit at S2 and S3, sex, age, 
PSQI, baseline reaction time, baseline learning capabili-
ties, and percentage of time spent in N2 (given the results 
described in Rakowska et  al., 2024). This approach 
ensured that the results were independent of demo-
graphics, general sleep patterns, and baseline SRTT per-
formance, all of which could be related to baseline 
characteristics of the brain.

2.8.3.  UNI-parameter analysis

To determine individual contribution of each micro-
structural parameter to the multi-parameter results, we 
performed uni-parameter analyses of individual param-
eters, in FSL and through non-parametric, permutation-
based voxel-wise comparisons using the randomise 
function (Winkler et  al., 2014). Results were derived 
from 5000 permutations. Correction for multiple com-
parisons was carried out by FWE correction both for 
the whole-brain GM and for the pre-defined ROIs, as 
for the multi-parameter analysis. Multiple parameters 
correction was performed based on the number of 
parameters entered in the multi-parameter analysis 
(here two: MD and Fr).

2.8.4.  Regions of interest

All MRI results were voxel-level corrected for multiple 
comparisons within the whole-brain GM and the pre-
defined anatomical ROIs. Our pre-defined ROIs included 
(1) bilateral precuneus, (2) bilateral dorsal striatum 
(putamen and caudate), (3) bilateral hippocampus and 
parahippocampus, and (4) bilateral sensorimotor cortex 
(precentral and postcentral gyri). All ROIs were selected 
based on their known involvement in sleep-dependent 
procedural memory consolidation (Albouy et  al., 2008; 
Debas et  al., 2010; Fischer et  al., 2005; Walker et  al., 
2005) and memory reactivation (Brodt et  al., 2018; 
Cousins et al., 2016; Maquet et al., 2000, 2003; Rasch 
et al., 2007; Van Dongen et al., 2012). Any contrast that 
yielded significant results for either one of our pre-defined 
ROIs was re-entered into the analysis and corrected for 
multiple comparisons within a single mask combining all 
the pre-defined ROIs, thus accounting for multiple small 
volume corrections. Wake Forest University (WFU) Pick-
Atlas toolbox was used to create a mask for each ROI, 
based on an Automated Anatomical Labeling (AAL) atlas 
(Maldjian et al., 2003).

2.9. Results preparation

Anatomical localisation of the significant clusters from 
both uniparameter and multi-parameter analyses was 
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determined with the automatic labelling of MRIcroGL 
(https://www​.nitrc​.org​/projects​/mricrogl/) based on the 
AAL atlas. Results in Figures 2 and 3 and Supplemen-
tary Figure  S1 and Supplementary Figure  S2 are pre-
sented using MRIcroGL, displayed on the MNI152 
standard brain (University of South Carolina, Columbia, 
SC). Cluster statistics for all significant clusters are 
reported in supplementary tables; peak voxel MNI coor-
dinates are given in text. Figure 1, Supplementary Fig-
ure  S3 and Supplementary Figure  S4 were created in 
Microsoft PowerPoint v16.53; Figure 1d was generated 
using ggplot2 (version 3.3.0) (Wickham, 2009) in R; and 
Figure 1e was generated using Prism 9 (GraphPad Soft-
ware, San Diego, CA, USA), and corrplot command in 
MATLAB.

3.  RESULTS

Our participants learned two motor sequences of a Serial 
Reaction Time Task (SRTT), each associated with a differ-
ent set of auditory tones (Supplementary Notes: Baseline 
SRTT performance). Tones associated with one of the 
sequences were replayed to the participants during sub-
sequent NREM on a single night (see Supplementary 
Table S5 for sleep parameters). The post-sleep SRTT re-
test sessions took place 24.67 h (SD: 0.70) (Session 2, 
S2), 10.48 days (SD: 0.92) (Session 3, S3), and 20.08 days 
(SD: 0.97) (Session 4, S4) after Session 1 (S1), with the 
MRI data acquired before sleep, at S2, and at S3. Raw 
behavioural data are presented in Figure 1c. A prior anal-
ysis of the data (Rakowska et al., 2024) showed a main 
effect of TMR on the SRTT reaction time performance 

Fig. 3.  Cueing benefit at S4 is associated with baseline sensorimotor microstructure. (a) Results of the joint multi-
parameter analysis testing the relationship between cueing benefit at S4 and baseline microstructure. Colour bar 
indicates p-values for the results thresholded at a significance level of pFWE < 0.05 (red), corrected for multiple 
voxel-wise comparisons within pre-defined ROI for bilateral sensorimotor cortex. Results are overlaid on a Montreal 
Neurological Institute (MNI) brain. (b, c) Mean baseline MD (b) and Fr (c) extracted from the clusters significant at 
pFWE < 0.05 shown in (a). Scatterplots are presented for visualisation purposes only and should not be used for 
statistical inference. Each data point represents a single participant; axes represent residual values after correcting for 
cueing benefit at S2 and S3, age, sex, PSQI score, percentage of time spent in N2, baseline reaction time, and baseline 
learning capabilities on the SRTT. MD: Mean Diffusivity; Fr: Restricted Water Fraction; PSQI: Pittsburgh Sleep Quality 
Index; S1-4: Session 1-4; n = 16.

https://www.nitrc.org/projects/mricrogl/
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(p  =  0.001), with the difference between the cued and 
uncued sequence strongest at S4, that is, 20 days post-
TMR (padj = 0.004, Fig. 1d; Supplementary Notes: Main 
effect of TMR across post-stimulation sessions). Further-
more, there was a main effect of the amount of time post-
TMR on cueing benefit (p = 0.046, Fig. 1d), suggesting 
that the effects of our manipulation develop over time 
before they emerge at S4 (Rakowska et  al., 2024; see 
Supplementary Notes: Cueing Benefit Across Time). 
Hence, the relationship between microstructural plas-
ticity across sessions and subsequent cueing benefit at 
S4 was of particular interest. We also tested for correla-
tions between cueing benefit and percentage of time 
spent in S2 and S3 sleep stages (Supplementary 
Table S6).

3.1.  TMR-related plasticity

We wanted to know whether repeated reactivation of a 
motor memory trace during a single night could poten-
tially be associated with subsequent plasticity in the 
brain. Thus, we tested for correlations between changes 
in brain microstructure within predefined regions of inter-
est (ROIs) over set periods of time and the significant 
behavioural cueing benefit that emerged at S4. To this 
end, individual MR parameter maps collected at different 
sessions were subtracted from each other, yielding mea-
sures of early (S1-S2) and late (S2-S3) microstructural 
plasticity. The resultant difference maps were used as 
inputs in the joint multi-parameter analysis which aimed 
to uncover common trends in MD and Fr change mea-
sures. Cueing benefit at S4 was entered as the main 
regressor of interest because we wanted to know whether 
structural plasticity at earlier timepoints was related to 
this significant cueing effect observed ~20 days after the 
manipulation. Notably, we covaried out the non-significant 
behavioural cueing benefit at S2 and S3 to control for 
inter-session variations in behavioural trajectories that 
are unrelated to emergence of the cueing benefit in S4.

We first tested for associations between early plas-
ticity (over the first 24 h e.g. between S1 and S2), and 
subsequent behavioural benefit at S4. This revealed a 
positive association between early plasticity in right 
putamen (34, -6, -8) and cueing benefit at S4 (p = 0.016; 
Fig.  2a-c, Supplementary Table  S1A, Supplementary 
Fig. S1b). However, this result did not survive correction 
for multiple ROIs (Supplementary Table S2A), and there 
was no relationship between cueing benefit and early 
plasticity in precuneus, hippocampus, or sensorimotor 
cortex (Supplementary Table S1A). We next tested for 
associations between plasticity occurring later in the 
consolidation process (e.g., from 24 h to ~10 days post 
manipulation) and subsequent behavioural benefit. This 

revealed a positive relationship between late plasticity in 
bilateral precuneus (4, -58, 16) and behavioural cueing 
benefit at S4 when controlling for the behaviour at S2 
and S3 (p = 0.027; Fig. 2d-f, Supplementary Table S1Bi-
iii, Supplementary Fig. S1a). Late plasticity in left senso-
rimotor cortex (-60, -18, 14) was also associated with 
cueing benefit at S4 (p = 0.018; Fig. 2g-i, Supplemen-
tary Table  S1Biv-vi, Supplementary Fig.  S1c). In both 
cases, greater cueing benefit was associated with 
greater reductions in MD and greater increases in Fr, 
and both results survived correction for multiple ROIs 
(Supplementary Table S2B). No significant clusters were 
found for the hippocampal or striatal ROI analyses in 
relation to late microstructural changes (Supplementary 
Table S1B).

Finally, we performed an exploratory, whole-brain 
analysis to search for a relationship between cueing ben-
efit and both early and late microstructural plasticity and 
found no effect in regions outside our pre-defined ROIs 
(Supplementary Table  S1). Together, these results pro-
vide evidence for gradual plasticity in the microstructure 
of precuneus, striatum and sensorimotor cortex that cor-
relates with delayed behavioural effects of TMR. Specifi-
cally, our data suggest that TMR benefit 20 days after the 
manipulation correlates with changes in striatum micro-
structure over the first 24 h of the consolidation process, 
while plasticity in precuneus and task-related areas that 
correlates with this late TMR benefit occurs between 24 h 
and 10 days of consolidation.

Importantly, we did not have structural MRI data for all 
participants in all sessions. Thus, our microstructural 
analyses were limited to just 16 participants for the early 
delay and 15 participants for the late delay. This small 
sample size should, therefore, be noted as an important 
limitation. Additionally, none of the regions where we 
found correlations between brain plasticity and TMR-
related behavioural benefit showed a significant absolute 
change across either early or late retention intervals when 
behavioural data were not taken into account.

3.2.  Individual differences in baseline 
microstructure

Turning to a separate but closely related issue, we were 
interested to determine if inter-individual variability in 
brain microstructure could confer susceptibility to our 
manipulation. A wide variety of factors are known to 
influence TMR’s success (Hu et  al., 2020). We used 
baseline (S1) maps of MD and Fr as inputs in the joint 
multi-parameter analysis, with cueing benefit at S4 
entered as a regressor. This showed a relationship 
between baseline microstructure in right precentral and 
postcentral gyrus (58, -6, 20) and cueing benefit at S4 
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(p = 0.008; Fig. 3a-c, Supplementary Table S3; Supple-
mentary Fig.  S2), such that individuals with greater 
response to TMR had less MD and more Fr in this struc-
ture at baseline. The result, which survived whole-brain 
correction (Supplementary Table S4A) and correction for 
multiple ROIs (Supplementary Table S4B), suggests that 
the individual variation in sensorimotor microstructure 
could predict susceptibility to TMR of procedural mem-
ory. Importantly, this finding is independent of cueing 
benefit at S2 and S3, participants’ demographics (sex, 
age), general sleep patterns (as measured by the Pitts-
burgh Sleep Quality Index (PSQI) score), time spent in 
stage 2 of NREM sleep (N2), baseline reaction time, and 
learning capabilities on the SRTT, all of which were con-
trolled for in the analysis. No correlation with baseline 
microstructure was revealed within any other pre-defined 
ROI (Supplementary Table S3).

4.  DISCUSSION

We set out to investigate the relationship between plas-
ticity in tissue microstructure and beneficial effects of 
memory reactivation during sleep. To this end, we com-
bined TMR with DW-MRI to test whether baseline micro-
architecture of the brain can be used to determine one’s 
susceptibility to TMR, and whether TMR can impact on 
brain microstructure, thus giving rise to the behavioural 
effects observed. First, we find that long-term cueing 
benefit is associated with gradual microstructural plas-
ticity within memory and task-related regions. Specifi-
cally, our data demonstrate that there are early 
microstructural changes in striatum and late microstruc-
tural changes in precuneus and sensorimotor cortex 
which predict the beneficial effects of cueing 20  days 
post-TMR. Additionally, we demonstrate that individual 
differences in baseline sensorimotor microstructure pre-
dict long-term behavioural effects of TMR, suggesting 
that TMR impacts differently on different brains.

Perhaps the most interesting of these results is the 
relationship between late (24 h – 10 days post-TMR) pre-
cuneus plasticity and cueing benefit 20 days post-TMR. 
This suggests that repeated reactivation of a memory 
trace during a single night of sleep engenders micro-
structural changes within precuneus that are associated 
with the eventual emergence of behavioural benefits from 
the manipulation. However, these changes do not appear 
immediately after the manipulation, but need more time 
and presumably more consolidation to emerge. Func-
tional data collected in parallel with the current dataset 
have shown that TMR of a procedural memory also 
engages precuneus functionally, but this occurs relatively 
early in the consolidation process (Rakowska et  al., 
2024). Given the well-described role of precuneus in 

memory retrieval (Treder et al., 2021; Wagner et al., 2005), 
these results could reflect the difference in recall strength 
of cued and uncued sequences during their execution. 
Indeed, TMR and memory reactivation per se share a lot 
of parallels with memory retrieval. However, the long-
term time scale of our current results as well as the micro-
structural changes that we report suggest that the role of 
precuneus may extend well beyond immediate retrieval. 
We speculate that precuneus could build up physical rep-
resentations of the retrieved information over a longer 
time-frame. Indeed, precuneus has already been shown 
to undergo rapid, learning-dependent microstructural 
plasticity, indicative of memory engram development 
within this region (Brodt et  al., 2018). This structure is 
known to harbour behaviourally relevant memory repre-
sentations (Brodt et al., 2016; Jeong & Xu, 2016) and its 
function is traditionally associated with motor learning 
(Cohen & Andersen, 2002; Shadmehr & Holcomb, 1997), 
although it has recently been implicated in declarative 
memory processing (Brodt et  al., 2016, 2018). Notably, 
the SRTT is not purely procedural, but has a declarative 
component too (Albouy et al., 2008, 2013). Our observa-
tion of plasticity in precuneus during ‘late’ consolidation 
expands the existing literature by suggesting that micro-
structural plasticity in this structure as a result of reacti-
vation may continue across several days. Such plasticity 
could perhaps facilitate the development of a stable and 
long-lasting memory trace in this structure. This, in turn, 
gives rise to the emergence of behavioural benefits of 
reactivation, reflected in the difference between the cued 
and uncued sequence that we observe 20  days post-
TMR. Thus, our data support the idea that (targeted) 
memory reactivation during sleep has a powerful impact 
on both memory processing and brain plasticity, and that 
its effects extend beyond the initial night of sleep.

Our findings also support the suggestion that the long-
term cueing benefit of TMR to the SRTT is mediated by 
the motor system, with early plasticity in putamen and 
late plasticity in precentral and postcentral gyri. We show 
that changes within all of these structures are specifically 
related to the behavioural effects 20  days post-TMR, 
suggesting that such microstructural plasticity in the 
motor system may eventually lead to the emergence of 
behavioural TMR effects. Both striatum and sensorimotor 
structures are thought to be critical for long-term storage 
of motor sequences (Doyon et al., 2003). We build on this 
literature by arguing that memory reactivation during 
sleep may engender microplasticity within these regions, 
and thus stabilise memory traces harboured by the 
cortico-striatal system, shaping the sleep-dependent 
procedural benefits. Memory reactivation has been 
observed in ventral striatum immediately after learning 
(Pennartz et  al., 2004) and this could drive the early 
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microstructural plasticity in the adjacent regions, includ-
ing putamen. In turn, the late microstructural plasticity 
that we observe in primary motor and somatosensory 
cortices likely reflects their slowly evolving reorganisation 
(Ganguly & Carmena, 2009; Gao et al., 2018; Kami et al., 
1995; Kleim et al., 2004; Matsuzaka et al., 2007). This late 
plasticity could also underpin the TMR-related functional 
engagement and grey matter volume increase of the sen-
sorimotor cortex which we observed in an independent 
analysis of the current dataset (Rakowska et al., 2024). 
Interestingly, a recent rodent study found that cortico-
striatal functional coupling increases during offline peri-
ods of rest and is required for long-term skill learning 
(Lemke et al., 2021). Furthermore, this coupling seems to 
be mediated by NREM sleep spindles (Lemke et  al., 
2021), which are known to be involved in motor learning 
(Boutin & Doyon, 2020). One intriguing possibility is that 
neuronal ensembles within sensorimotor cortex and stri-
atum undergo simultaneous replay during post-learning 
sleep and this leads to their functional coupling. Simulta-
neous activity in primary motor cortex and dorsal stria-
tum has already been recorded during motor learning 
(Costa et al., 2004). Our results raise the hypothesis that 
memory reactivation could also co-occur in these regions 
during sleep and thereby drive the synaptic plasticity 
within the underlying substrate. If this is correct, it might 
suggest that such co-replay could underpin the micro-
structural changes and the subsequent behavioural ben-
efits observed in our dataset.

Finally, we show that individual differences in the micro-
structural architecture of sensorimotor cortex measured at 
baseline are associated with cueing benefit at S4. Our 
results, therefore, combine to suggest that the microstruc-
ture of sensorimotor cortex can both change in response 
to cueing motor memory reactivation and confer suscepti-
bility to the stimulation. The success of TMR may, there-
fore, depend on the inter-individual variation in the 
microstructure of precentral and postcentral gyri. That is, 
the intrinsic micro-architecture of these task-related 
regions may either control memory encoding capacity, 
impact the response to the manipulation, or determine the 
effectiveness of the reactivation process itself. This finding 
adds to the existing literature on the factors modulating 
TMR’s success (Cairney et al., 2016; Creery et al., 2015; 
Hu et al., 2020; Schechtman et al., 2021), perhaps explain-
ing some of the discrepancies in the TMR literature.

The results of the current study demonstrate that DW-
MRI can provide a valuable tool to investigate behaviourally 
relevant changes in brain microstructure. Furthermore, 
the multi-parameter approach that we adopted here 
revealed a common pattern across two diffusion markers: 
MD and Fr. This not only makes our findings more robust 
but also provides insights into the biological changes that 

could underpin sleep-dependent memory consolidation. 
Biological interpretation of diffusion measures is not 
straightforward (Zatorre et al., 2012), but combining mul-
tiple parameters increases the chances of picking up fea-
tures that are shared by the two markers. In case of MD 
and Fr, water diffusion within the restricted (intracellular) 
volume fraction seems to be a common feature that both 
markers are sensitive to. Thus, the microstructural 
changes associated with memory reactivation could 
involve remodelling of the cylindrical tissue compart-
ments, such as neural and glial cytoplasmic processes 
(Tavor et al., 2013). Indeed, rapid structural modifications 
after learning have been reported in astrocytic cytoplas-
mic processes (Blumenfeld-Katzir et al., 2011; Theodosis 
et al., 2008) and dendritic spines (Xu et al., 2009). In fact, 
both NREM (Yang et al., 2014) and REM sleep (Li et al., 
2017) have been implicated in dendritic spine plasticity 
within hours after learning, while disrupting memory reac-
tivation during sleep impaired post-training spine forma-
tion (Yang et  al., 2014). By the same token, repeated 
reactivation through TMR during sleep could have 
boosted similar forms of plasticity in the cylindrical com-
partments of precuneus, striatum, and sensorimotor cor-
tex in our dataset, thus giving rise to the observed 
changes in the DW-MRI metrics. However, swelling of 
cells (particularly astrocytes (Macvicar et al., 2002)), and 
thus a shift in the ratio of extra- to intra-cellular space 
(Johansen-Berg et al., 2012; Le Bihan, 2012; Theodosis 
et al., 2008) could also alter the diffusion properties of the 
tissue and, consequently, the MD and Fr values. Indeed, 
synaptogenesis (Kleim et al., 2004) and astrocytic hyper-
trophy (Kleim et al., 2007) are detectable after motor train-
ing and could have contributed to the microstructural 
plasticity that we report. Nevertheless, the cellular pro-
cesses driving MD and Fr changes are generally difficult 
to identify and histological approaches would be needed 
to confirm the biological interpretation of our results.

In a broader context, DW-MRI allowed us to study the 
dynamic and distributed nature of the TMR-related 
changes. Our results show for the first time that micro-
structural plasticity after cued memory reactivation cor-
relates with cueing-related behavioural advantage. 
Notably, we show the resulting plasticity encompasses 
several cortical areas, continues after the stimulation 
nights, and correlates with long-term consolidation of 
memories that are reactivated during sleep. Thus, we 
extend the existing literature by providing direct evidence 
for reactivation-mediated redistribution of memory traces 
across the brain (Born et al., 2006; Diekelmann & Born, 
2010). Given the long-term character of the detected 
changes, we speculate that cueing memory reactivation 
must have either primed the relevant synapses for later 
processing (Diekelmann & Born, 2010) or biased 
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plasticity-related protein capture towards the targeted 
memory traces (Seibt & Frank, 2019). This could explain 
why changes in tissue microstructure over the next 
10 days correlated with subsequent behavioural cueing 
benefit. We further identify precuneus and motor struc-
tures as important neocortical memory hubs for long-
term retention of procedural memories. The 
microstructural changes in precuneus, striatum, and sen-
sorimotor cortex were specifically related to the 
behavioural effects 20  days post-TMR, which was the 
only time point where we find group-level evidence for 
the difference between the cued and uncued sequence 
(Rakowska et  al., 2024). This suggests that the micro-
structural plasticity parallels the gradual development of 
behavioural cueing benefit, and could eventually contrib-
ute to the emergence of behavioural effects of TMR.

5.  CONCLUSION

We show that gradual microstructural changes, distrib-
uted across several cortical areas, are associated with 
the emergence of behavioural benefits stemming from 
memory reactivation. Specifically, we find that micro-
structural plasticity occurs in precuneus and the motor 
system and is associated with long-term benefits of pro-
cedural memory TMR. These findings support the long-
standing belief that stable memory traces develop 
gradually and reorganise the underlying tissue (Frankland 
& Bontempi, 2005). Our results are specifically linked to 
the cueing benefit we observed 20  days post-
manipulation. These findings demonstrate that DW-MRI 
can be used to detect behaviourally relevant microstruc-
tural remodelling that underpins sleep-dependent mem-
ory consolidation. We also shed new light on the factors 
that influence TMR’s effectiveness by demonstrating that 
individual variation in the microstructure of the task-
related regions can be used to predict one’s behavioural 
benefit from the manipulation.
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