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A B S T R A C T 

We use numerical N -body experiments to explore the statistics of multiple systems formed in small- N subclusters, i.e. the 
distributions of orbital semimajor axis, a, orbital eccentricity, e, mass ratio, q, mutual orbital inclination, θ , and ejection velocity, 
υej . The stars in a subcluster are evolved as if they are the fragmentation products of a single isolated prestellar core from which 

most of the natal gas has already been dispersed, and there are no correlations between the stars’ initial positions and velocities. 
Two parameters are particularly important: the number of stars in the subcluster, N , and the fraction of kinetic energy in ordered 

rotation, αrot . Increasing N has the effect of systematically decreasing the semimajor axes of the tighter orbits, but has very 

little effect on the semimajor axes of the wider orbits. The main effect of αrot is to regulate the distribution of mutual orbital 
inclinations, with αrot ∼0 . 5 producing a distribution of orbital inclinations for triple systems which is consistent with observed 

values. Triples frequently form in high-inclination orbits without the assistance of von Zeipel–Lidov–Kozai cycles. Our previous 
work demonstrated that subclusters with mass segregation, moderate rotation, and typically N = 4 or 5 stars produced the best 
fit to the multiplicity statistics (proportions of singles, binaries, triples, etc.). Here, we show that these parameters also reproduce 
the orbital statistics (distributions of orbital semimajor axis, a, orbital eccentricity, e, mass ratio, q, mutual orbital inclination, 
θ , and ejection velocity, υej ). For the best-fitting parameters, 21( ±1) per cent of subclusters produce more than one multiple 
system. 

Key words: celestial mechanics – binaries: close – stars: formation – stars: kinematics and dynamics. 
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 I N T RO D U C T I O N  

tellar multiples are close, bound systems of stars circling one
nother on regular, stable or meta-stable orbits. Observational and
tatistical studies show that such systems are common in the solar
eighbourhood. The majority of solar-mass stars appear to be mem-
ers of multiple systems (Whitworth & Lomax 2015 ), and 46 per cent
f solar-mass primaries reside in multiple systems (Tokovinin 2021 ,
ereafter T21 ). This percentage increases rapidly with increasing pri-
ary mass, reaching > 90 per cent for O stars (see Offner et al. 2023

nd references therein). Conversely the percentage decreases with
ecreasing primary mass. The companion fraction (CF; the mean
umber of companions per primary star) is found to be highest in the
arliest phases of protostellar evolution, and then declines through
he subsequent protostellar phases. Chen et al. ( 2013 ) observed a CF
f 0 . 91( ±0 . 05) for low-mass Class 0 protostars, while Connelley,
eipurth & Tokunaga ( 2008a , b ) found this fraction to be 0 . 46( ±0 . 3)

or Class 1 sources. Tobin et al. ( 2022 ) evaluated the same statistics
n a more recent, higher resolution study of protostars in Perseus,
nding that the CF decreases from 0 . 74( ±0 . 08) for Class 0 sources

o 0 . 35( ±0 . 09) for Class 1. Reipurth & Zinnecker ( 1993 ) found that
he CF continues to fall from pre-main sequence to main-sequence
opulations. 
 E-mail: ambrosehe@cardiff.ac.uk 
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Published by Oxford University Press on behalf of Royal Astronomical Societ
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), whi
In Ambrose & Whitworth 2024 (hereafter AW24 ), we report the
esults from a suite of numerical experiments designed to determine
he relative numbers of singles, binaries, triples, and higher order

ultiples (hereafter the Multiplicity Statistics ) formed by pure stellar
ynamics in an isolated subcluster with between three and seven
embers. The experiments that best reproduced the observed main-

equence multiplicity statistics invoked subclusters with a mix of
 values centred on μN ∼4 . 8, with standard deviation σN ∼2 . 4,

nd moderate ordered rotation, αrot ∼0 . 5. Holman et al. ( 2013 )
nd Lomax, Whitworth & Hubber ( 2015 ) arrived at similar results
hrough independent methods, both concluding that a low-mass
restellar core should typically produce between four and five stars.
olman et al. ( 2013 ) reached this conclusion through statistical

nalysis of the relation between the stellar initial mass function and
he core mass function, finding that, if the mapping between the two
s self-similar, then μN ∼4 . 3, with σN ∼0 . 4. Lomax et al. ( 2015 )
eached this conclusion by simulating the evolution of Ophiuchus-
ike prestellar cores using smoothed particle hydrodynamics, finding
hat μN ∼4 . 5 and σN ∼1 . 9. Recent hydrodynamics simulations of

olecular clouds by Cusack et al. ( 2025 ) corroborate the Lomax
t al. ( 2015 ) findings, showing that given a solar neighbourhood star
ormation rate, as many as six stellar-mass fragmentation products
ill form on the scale of a prestellar core. 
Stellar dynamics leaves distinct and lasting signatures on the archi-

ectures of multiple systems formed in isolated stellar subclusters.
n this regard, an especially important role is played by three-star
nteractions that start with two of the stars on a relatively tight orbit,
© The Author(s) 2025.
y. This is an Open Access article distributed under the terms of the Creative
ch permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.
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1 In AW24 , Section 2.1 , we omitted to state how initial star positions were 
adjusted to flatten rotating configurations. We did not treat this exactly, but 
simply multiplied the z coordinates of stars by a factor F = (1 − αrot ) / (1 + 

2 αrot ), and their z velocity components by F 1 / 2 . We note (a) that velocities are 
subsequently re-normalized to ensure global virial equilibrium, and (b) that 
we repeated these experiments without flattening and found no significant 
differences in the results. 
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nd end with two of the stars (not necessarily the same two) on an
ven tighter orbit. Here, we define tighter to mean lower total energy
kinetic plus gravitational), so the third star gains energy (and may 
e ejected from the subcluster). In such interactions it tends to be
he two more massive stars that end up in the tight binary, and this is
alled Dynamical Biasing (McDonald & Clarke 1993 ). 

Sterzik & Durisen ( 1998 ) (hereafter SD98 ) observe Dynamical 
iasing in their numerical simulations of subclusters with 3 ≤N ≤5. 
etween 80 per cent and 90 per cent of central orbits in triple and
igher order multiples involve the two most-massive stars, and this 
ercentage increases with increasing N , and with the range of stellar
asses within the subcluster. At the same time, the mean semimajor 

xis of these central orbits decreases with increasing N , since with 
arger N there are more opportunities for three-star interactions. 

In higher order multiple systems, the orbital inclinations and ec- 
entricities can be altered by von Zeipel–Lidov–Kozai (ZLK) cycles 
von Zeipel 1910 ; Kozai 1962 ; Lidov 1962 ). These cycles are caused
y a transfer of orbital angular momentum within an hierarchical 
riple system at each pericentre of the outer orbit. This transfer results
n a cyclic variation in the eccentricity of the inner orbit, combined
ith a cyclic variation in the relative inclination of the outer orbit. 
The dynamics of subclusters also affects the statistics of single 

tars, since many, and possibly most, single stars start life in 
ubclusters and are then ejected into the field. Consequently the 
umber, mass distribution, and velocity distribution of single 
tars are shaped, at least in part, by the dissolution of their birth
ubclusters. For example, the single star population should start with 
 velocity distribution compatible with the distribution of ejection 
elocities from subclusters. Subsequent interactions between these 
ingle stars and other objects (other field stars, star clusters and 
olecular clouds) may then alter this distribution. In addition, 
ynamical Biasing leads to the preferential ejection of lower mass 

tars, which will shift the mass distribution of single stars to lower
alues than the masses of stars in multiple systems. 

In this paper, we analyse the orbital parameters of the multiple 
ystems identified in the numerical experiments of AW24 , viz. semi-
ajor axes, the extent of Dynamical Biasing , mass ratios, numbers 

f companions, mutual orbital inclinations, eccentricities, masses, 
nd velocities. We term these Orbital Statistics , to distinguish them 

rom the Multiplicity Statistics reported in AW24 . Section 2 outlines 
he model used to initialize and evolve subclusters and to calculate 
nd monitor their orbital parameters. In Sections 3 and 4 , we analyse
nd discuss the results. In Section 5 , we summarize our conclusions.

 M E T H O D  

.1 Creating and evolving subclusters 

n AW24 , we evolve an ensemble of stellar subclusters of point-mass
articles using pure stellar dynamics, i.e. no ambient gas, therefore 
o stellar accretion, no stellar mass-loss, and no external forces. The 
ubclusters are initially characterized by the number of stars they 
ontain, N , and four configuration parameters , namely: 

(i) σ� , the standard deviation of the lognormal distribution 
f stellar masses, hereafter termed the ‘mass range’. Here, �= 

og 
10 
( M/ M� ). 

(ii) αrot , the fraction of kinetic energy in ordered rotation. The 
est is in random velocities drawn from an isotropic Maxwellian 
istribution. 
(iii) αlaw , the rotation law. This is either Keplerian, υrot ∝ w−1 / 2 , 

r solid body, υrot ∝ w, with w = ( x2 + y2 )1 / 2 . 
(iv) αseg , which determines whether the stars are mass-segregated 
 αseg =1) or not ( αseg =0). 

Star positions are generated randomly with uniform density either 
ithin a sphere of radius Ro , or within an oblate spheroid with

emimajor axis Ro . The procedures used to generate initial particle 
ositions and velocities are detailed in AW24 (subsection 2.1). 1 

All subclusters start in virial equilibrium and for each combination 
f N and configuration parameters ( σ� , αrot , αlaw , αseg ) we evolve
000 realizations. The integrator follows a 4th Order Runge–Kutte 
cheme with global adaptive time-step and no gravitational softening. 
he median fractional change in the total energy by the end of a
imulation is ∼1 per cent for N = 3. 

For the purpose of illustration, we set: (i) the mean of the lognormal
istribution of masses to μ� =−0 . 6 so that the median stellar mass
s Mmed =0 . 25 M� ; and (ii) the radius (or semimajor axis) of the
nitial spherical (or oblate spheroidal) envelope to Ro =1000 au . 
owever the equations regulating the evolution of a pure N -body 

ubcluster are dimensionless, so the results can be rescaled arbitrarily. 
pecifically, if the total mass of a subcluster is Mtot , the results can
e rescaled to different values of Mtot and Ro – say M ′ 

tot and R′ 
o 

by multiplying all stellar and system masses by fM 

=M ′ 
tot /Mtot ; 

ll position vectors and orbital axes by fR =R′ 
o /Ro ; the time and

ll orbital periods by ( f 3 
R /fM 

)1 / 2 ; and all velocities by ( fM 

/fR )1 / 2 .
rbital eccentricities and inclinations are unchanged. Further details 

an be found in AW24 . 

.2 Identifying and classifying multiple systems 

e apply a Multiplicity Monitoring Operation (MMO) at regular 
ntervals (every 33 crossing times) throughout the evolution of a 
ubcluster. 33 crossing times corresponds to ∼2 . 3 Myr N−1 / 2 , or 

1 Myr for a subcluster with N = 4 or 5. The MMO determines 
he full orbital architecture for all multiple systems in the subcluster.
t each monitoring time-step, we compute the semimajor axis (a) and

ccentricity (e) for all identified orbits, the mutual orbital inclinations 
 θ ) for triples and higher order multiples, and the masses of the stars
nd subsystems on either end of the orbit. Further details of the MMO
an be found in AW24 . 

.3 Architectures of multiple systems 

 system with multiplicity m comprises m stars and m −1 orbits.
ost of the parameters we discuss in the sequel describe an orbit. If

oth the objects on either end of the orbit are stars, we classify the
rbit as S2; if only one is a star, as S1; and if neither is a star, as S0. 
A binary consists of a single S2 orbit. 
A stable (and therefore hierarchical) triple comprises an S2 orbit 

nd a larger S1 orbit; the S2 orbit involves a pair of stars orbiting one
nother, and the S1 orbit involves this pair and a third star orbiting
ne another. 
A quadruple may comprise an S2 orbit and two S1 orbits, in which

ase it is classed as a Planetary Quadruple ; the S2 orbit involves a
air of stars orbiting one another, the first S1 orbit involves this pair
MNRAS 541, 3728–3738 (2025)
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Figure 1. The specific probability distributions of semimajor axis, a, for (a) S2 orbits, and (b) S1 orbits, in the Fiducial Case with N =3, 5, and 7; the results 
for N =4 and 6 are omitted to avoid confusion. (c) and (d) show the specific probability distributions for the Best-fitting Case . 
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nd a third star orbiting one another, and the second S1 orbit involves
his threesome and a fourth star orbiting one another. Alternatively,
 quadruple may comprise two S2 orbits and one S0 orbit, in which
ase it is classed as a 2 + 2 Quadruple ; each of the S2 orbits involves
 different pair of stars orbiting one another, and the S0 orbit involves
he two pairs orbiting one another. 

For the purpose of evaluating statistical distributions, we distin-
uish S2 orbits from S1 orbits, and we do not consider S0 orbits,
ince they are too rare to support reliable statistics. 

 RESULTS  

e have selected two main cases from AW24 with which to illustrate
he Orbital Statistics . In both we fix σ� =0 . 3, since this is the value
hat is most consistent with the mapping from the prestellar core mass
unction to the stellar initial mass function (Whitworth, Ambrose &
eorgatos, in preparation). 

(i) The first case is the Fiducial Case . It has αrot =0, therefore
here is no ordered rotation and αlaw is irrelevant. It also has αseg =0,
eaning no mass segregation. We present results for N =3, 4,

, 6, and 7. With N =1 all stars are single, and with N =2 all
tars are in binaries, since the subcluster is virialised from the
utset. 
(ii) The second case is the Best-fitting Case . This is the case

dentified in AW24 which best reproduces the Multiplicity Statistics
or solar-mass primaries from T21 . It has a distribution of N 

alues with mean μN =4 . 8 and standard deviation σN =2 . 4. The
onfiguration parameters are αrot = 0 . 5 and αlaw =KEP (moderate
eplerian rotation) and αseg =1 (mass segregation). The procedure
sed to identify the Best-fitting Case is detailed in AW24 section 3.2
nd subsection 3.2.1. 

(iii) Dependences that are better illustrated by considering param-
ter values other than those of the Fiducial and Best-fitting Cases
NRAS 541, 3728–3738 (2025)
re discussed in separate subsections. Section 3.1.3 deals with the
ependence of semimajor axes on the amount of ordered rotation
 αrot ). Section 3.4.3 deals with how the mutual orbital inclinations
epend on the amount of ordered rotation ( αrot ). 

.1 The distribution of semimajor axes 

.1.1 Semimajor axes in the Fiducial Case 

igs 1 a and 1 b show that in the Fiducial Case the semimajor
xes of S2 orbits tend to decrease with N , whereas the semimajor
xes of S1 orbits are roughly independent of N . Specifically,
ith the scalings adopted here (see Section 2.1 ), the peak of

he distribution of semimajor axes for S2 orbits decreases from
400 au for N =3, to ∼90 au for N =7, with the peaks of the
orresponding period distributions decreasing from ∼8 kyr to ∼1 kyr .
n contrast, the semimajor axes for S1 orbits peak at ∼4000 au
periods at ∼300 kyr ), more or less independent of N . The ratios
f S1 to S2 orbital semimajor axes, Ra , are shown in Fig. 2 .
he ratio peaks around Ra ∼ 45 for N = 7 and drops to Ra ∼ 25

or N = 3. 

.1.2 Semimajor axes in the Best-fitting Case 

igs 1 c and 1 d show that in the Best-fitting Case , the distribution of
emimajor axes for S2 orbits peaks at ∼160 au (periods ∼2 . 5 kyr ),
imilar to the Fiducial Case with N =4 or 5. For S1 orbits, the
istribution peaks at ∼4000 au (periods ∼300 kyr ), as for the Fiducial
ase with all N . 

.1.3 Semimajor axes with very high rotation 

he distributions of semimajor axis for S2 orbits (as discussed
n the two preceding Subsections 3.1.1 and 3.1.2 ) are, with one
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Figure 2. The specific probability distributions of the ratio, Ra , of outer 
(S1) to inner (S2) orbital semimajor axis in triple systems for N = 3, 5, 
and 7. 

Figure 3. The specific probability distributions of semimajor axis, a, for S2 
orbits from the high-rotation case discussed in Section 3.1.3 (i.e. αrot =0 . 99, 
αlaw =SOL , αseg =0, so almost all the kinetic energy in solid-body rotation, 
and no mass segregation) with N =3, 4, 5, 6, 7. 
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Figure 4. The cumulative probability distributions of mass ratio, q1 . Solid 
line : S2 orbits of systems formed dynamically in the Fiducial Case with 
N = 3. Dotted line: values obtained by simply pairing the two most massive 
stars. Dash-dotted line: values obtained by pairing the most and least massive 
stars. 
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2 While mass ratios and the relative frequency of high- q1 systems increases 
with N , the degree of pure Dynamical Biasing , in which S2 orbits involve 
the two most massive stars, actually decreases with increasing N . This is 
because, with larger N , i.e. more stars in the birth subcluster and therefore 
more relatively massive stars to chose from, a pairing of – say – the first and 
third most massive star may still have a high-mass ratio. As noted by SD98 , 
Dynamical Biasing is a more useful concept if it is not limited in this sense, 
i.e. not limited to systems involving the two most massive stars. 
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otable exception, almost independent of the configuration param- 
ters ( σ� , αrot . αlaw , αseg ). The one exception is the case of very
apid rotation. Fig. 3 shows the results obtained with σ� =0 . 3,
rot = 0 . 99, αlaw =SOL , αseg = 0, and different N . These parameters
orrespond to the same range of un-segregated masses as 3.1.1 and 
.1.2 , but with almost all the kinetic energy invested in solid-body
otation. In this case the semimajor axes again tend to decrease 
ith increasing N , but the effect is significantly smaller. There 

re two reasons for this. First, the stars start on very circular
rbits, and therefore close to nested ‘planetary’ architectures; this 
educes the frequency of close interactions. Second, with solid- 
ody rotation, and a gravitational potential well that is only 
ue to the masses of the other stars, the virial condition in the
orm 

kinetic = Erandom 

+ Erotation = − �

2 
, (1) 

ill often deliver set-ups in which some stars are unbound, from the
utset, and therefore fly off immediately. At the same time, the stars
n closer orbits are very strongly bound and tend to stay so. This is
articularly true for N =3. 
.2 Mass ratios 

.2.1 Mass ratios in the fiducial case 

or any system in which two stars with masses M1 and M2 ( <M1 ) or-
it their mutual centre of mass, the binary mass ratio is q1 =M2 /M1 .
ecessarily 0 < q1 < 1. 
For any system in which a star with mass M3 and an S2 pairing

total mass M1 +M2 ) orbit one another, the tertiary mass ratio is

2 =M3 / ( M1 +M2 ). It follows that q2 >0, but there is no upper limit
n q2 . 
The solid line on Fig. 4 shows the cumulative probability distri-

ution of q1 for the S2 orbits from the Fiducial Case with N =3.
or comparison, the dotted line shows the ratio between the mass
f the second most massive star and the mass of the most massive
tar, irrespective of whether they end up on an S2 orbit, for the same
ase. The dash-dotted line shows the ratio between the mass of the
ost and least massive stars. This demonstrates the tendency of pure
-body dynamics to deliver the two most massive stars into an S2

rbit (and conversely to put less massive stars on outer orbits or eject
hem). In this case, 72( ±1 . 5) per cent of the S2 orbits involve the two

ost massive stars. 
Fig. 4 also shows that the distribution of mass ratios for the S2

rbits is approximately flat in the interval 0 . 2 < q1 < 1, and that there
re very few below q1 =0 . 2, i.e. to a first approximation, 

d p 

d q1 

∼
{

0 . 00 , q1 <0 . 2 ; 
1 . 25 , 0 . 2 ≤q1 < 1 . 

(2) 

Fig. 5 a shows the cumulative probability distribution of q1 for the
2 orbits in the Fiducial Case with N =3, 4, 5, 6, 7. As N increases,

he q1 distribution for S2 orbits shifts to higher values. 2 This shift is
pparent from the median values of q1 , shown in Table 1 . 
MNRAS 541, 3728–3738 (2025)
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Figure 5. The cumulative probability distributions of binary mass ratio, q1 , and tertiary mass ratio, q2 . (a) q1 and (b) q2 , for the Fiducial Case with N =3, 4, 5, 
6, 7. (c) q1 and (d) q2 , for the Best-fitting Case with Fiducial Case N = 4 for comparison. 

Table 1. The median values of binary mass ratio, q1 ,med , for all N values in 
the Fiducial Case and the Best-fitting Case . 

N 3 4 5 6 7 Best fit 

q1 ,med 0.58 0.62 0.63 0.65 0.66 0.60 
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Our results for the Fiducial Case and N =3, 4, 5 can be compared
ith those of SD98 , who obtain somewhat higher levels of dynamical
iasing. This is because SD98 initialize their subclusters with a
reater spread of stellar masses. 
Our model almost never produces binaries with very similar
asses, say q1 >0 . 9, since this requires two unlikely circumstances:

he random selection of two stars with very similar mass from the
ass spectrum, and for those two stars to be high-mass and therefore

ikely to pair up. 
Fig. 5 b shows the cumulative probability distribution of q2 for

he S1 orbits in the Fiducial Case with N =3, 4, 5, 6, 7. As N 

ncreases, the mean q2 decreases, and in the limit N �5 almost all
igher order systems have 0 . 1 � q2 � 0 . 4. For lower N values, there
s little ( N =4) or no ( N =3) choice for the masses of additional
omponents in higher order systems, once the stars in the central S2
rbit have been set. 

.2.2 Mass ratios in the Best-fitting Case 

ig. 5 c shows the cumulative probability distribution of q1 , and 
ig. 5 d the cumulative probability distribution of q2 , for the Best-
tting Case . They are very similar to those for the Fiducial Case
ith N =4 and N =5, i.e. most q1 values are between 0.2 and 0.9;
ost q2 values are between 0.1 and 0.4; 65 per cent of S2 orbits

nvolve the two most massive stars in the initial subcluster. Rotation
nd mass-segregation do not have a significant influence on mass 
atios. 
NRAS 541, 3728–3738 (2025)
.3 The number of companions 

n AW24 , we define the plurality of a cohort of stars, 

L = 2B + 6T + 12Q + ... 

S + 2B + 3T + 4Q + ... 
, (3) 

hich is the mean number of companions that a star in the cohort
as, irrespective of whether it is a primary star . Thus, for example, a
inary involves two stars each of which has one companion, a triple
nvolves three stars each of which has two companions, and so on. 

.3.1 The number of companions in the fiducial case 

ig. 6 a shows the mean plurality, PL , as a function of mass for the
iducial Case with N =3, 5, 7. As expected PL increases with mass,
nd exceeds unity for masses above the median (0 . 25 M� ). As N 

ncreases, the mean plurality of the highest mass stars increases,
nd the mean plurality of the lowest mass stars decreases. This is
 consequence of the greater number of interactions that can occur
hen N is higher. These interactions tend to eject lower mass stars,

hereby reducing their plurality, and to deliver higher mass stars
nto more tightly bound long-lived higher order multiples, thereby
ncreasing their plurality. 

.3.2 The number of companions in the Best-fitting Case 

ig. 6 b shows the variation of PL with stellar mass for the Best-fitting
ase . This is very similar to the Fiducial Case with N =5, indicating

hat rotation and mass segregation do not affect PL very much. For
asses M � 0 . 5 M� , PL � 1 . 5. 

.4 Mutual orbital inclination and von Zeipel–Lidov–Kozai 
ycles 

ach orbit, o, in a multiple system has an orientation, ˆ e o = L o / |L o | ,
hich is the direction of the associated angular momentum, L o .
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Figure 6. The mean plurality, PL , as a function of stellar mass. (a) the 
Fiducial Case with N =3, 5, 7. (b) The Best-fitting Case . The shaded regions 
represent the 1 σ uncertainty. 
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Figure 7. The specific probability distributions of mutual orbital inclination, 
θ , for θ in degrees. (a) The Fiducial Case with N =3, 4, 5, 6, 7. (b) The 
Best-fitting Case and for the observed systems in the T23 catalogue. Fig. 7 a 
is produced using 2000 realizations for each N value, in order to improve 
signal-to-noise. 

Figure 8. The cumulative probability distributions of mutual orbital inclina- 
tion, θ , for subclusters with the Best-fit ting N and different amounts of initial 
solid-body rotation, αrot ; and for the observed systems in the T23 catalogue. 
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n important parameter constraining the architectures of triple and 
igher order multiples is the mutual orbital inclination, i.e. the angle 
oo′ =cos −1 (ˆ e o · ˆ e ′ o ) between two nested orbits o and o′ . A random, 
sotropic distribution of orbits will have a mutual orbital inclination 
DF with d p/ d θ =sin ( θ ) / 2, where 0 ≤ θ ≤ π . In this section, we
xplore the statistics of mutual orbital inclinations, θ , and their 
ystematic time-variation, due to ZLK cycles. 

.4.1 Mutual orbital inclination in the fiducial case 

ig. 7 a shows the specific probability distributions of mutual orbital 
nclinations for the Fiducial Case with different N . For all N there are
ery few systems close to co-rotation (small θ ). For N =3, 6, and 7,
he distribution is peaked towards approximately orthogonal orbits. 
or N =4 and 5, the distribution is quite flat above θ =30o , implying

hat counter rotating orbits are somewhat favoured compared with 
 random θ distribution. This preference for counter rotation is 
upported by the simulations of Hayashi, Trani & Suto ( 2022 ), who
nd hierarchical triples to be more stable in an orbit that is fully
etrograde than either fully prograde or orthogonal. 

.4.2 Mutual orbital inclination in the Best-fitting Case 

ig. 7 b shows the specific probability distributions of mutual orbital 
nclinations for the Best-fitting Case and for the observed systems 
n the 2023 version of the Multiple Star Catalog (Tokovinin 2018 ,
ereafter T23 ). They have similar shapes, but in the Best-fitting Case
he mean is somewhat lower (θ̄ =78◦ with skewness 0.038) than the 
23 sample (θ̄ =89◦ with skewness 0.035). The dip in orbits with 
∼ 90◦ is also supported by the Hayashi et al. ( 2022 ) results, which
nd initially orthogonal orbits to be the least stable when compared
ith fully prograde and fully retrograde. 

.4.3 The effect of rotation 

ig. 8 shows the cumulative probability distributions of mutual 
rbital inclinations for the systems in the T23 catalogue, and the
ffect of introducing different amounts of ordered rotation, αrot , into 
he Best-fitting Case . There is a better fit when αrot =0 . 5 (albeit θ̄

s a little low) than with very low rotation ( αrot =0) or very high
MNRAS 541, 3728–3738 (2025)
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M

Figure 9. An hierarchical triple system undergoing ZLK cycles. (a) The 
eccentricity, e, of the inner S2 orbit, as a function of time. (b) The 
corresponding mutual orbital inclination, θ . 
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otation ( αrot =0 . 99), which both produce distributions that flatten
oward high inclinations ( θ > 110◦). 

.4.4 von Zeipel–Lidov–Kozai cycles 

n a ZLK cycle, a slow periodic change in the eccentricity of the
nner binary produces a correlated change in the inclination of the
ertiary orbit at each pericentre. An example from our numerical
xperiments is shown in Fig. 9 . In the case of hierarchical triples
ith high eccentricity outer orbits, octupole-order interactions can
rive the Eccentric Kozai–Lidov (EKL) mechanism (see Naoz 2016 ),
otentially flipping the orbit from θ <90◦ to θ >90◦. However, of the
ystems that end up with θ >90◦ in the experiments reported here,
nly ∼25 per cent reach these inclinations by the EKL mechanism.
he remainder are either formed with, or displaced impulsively into,
rbits with θ >90◦. 

.5 Orbital eccentricities 

ig. 10 a shows the specific probability distributions of eccentricity, e,
or S2 orbits in the Fiducial Case with N =3, 4, 5, 6, 7. Fig. 10 c shows
he distribution of e for S2 orbits in the Best-fitting Case . In all cases,
he distribution of eccentricities is very close to thermal, i.e. d p/ d e �
 e. The only significant departure from a thermal distribution is an
xcess of very eccentric orbits ( e �1), which is evident for all cases
xcept the Fiducial Case with N =3. For S1 orbits, this population
s likely to be both highly unstable to external perturbations, and
ifficult to observe; this issue is discussed further in Section 4.7 . 
NRAS 541, 3728–3738 (2025)
The high- e excess increases with N . Some of this high- e excess
ay be due to stellar exchanges between nested S2 and S1 orbits,

r to tertiary members exciting S2 orbits into higher eccentricities
ia ZLK cycles. The tertiary may then either remain bound to the
xcited S2 system, or be ejected. The increase in the high- e excess
ith increasing N supports these hypotheses, as the opportunities

or orbital exchanges, and the number of systems capable of ZLK
ycles, both increase with N . 

Figs 10 b and 10 d show the specific probability distributions of e
or S1 orbits for, respectively, the Fiducial Case with N =3, 4, 5, 6, 7,
nd the Best-fitting Case . Again the distributions are approximately
hermal, albeit with low counts for the low- N cases, and again there
s an excess of high eccentricity orbits ( e >0 . 95). 

.6 Dynamical biasing 

able 2 gives the means and standard deviations of lognormal fits to
he mass distributions for all stars, for stars that end up in multiples,
nd for stars that end up single, in the Fiducial Case with N =3,
, 5, 6, 7, and in the Best-fitting Case . Due to Dynamical Biasing
McDonald & Clarke 1993 ), the stars in multiple systems are in
ll cases on average more massive than the singles, typically by
50 per cent . Fig. 11 illustrates this for the Best-fitting Case ; the
istributions for the Fiducial cases look very similar. 

.7 Ejection velocities 

ll stars start off as members of virialised subclusters. Therefore at
he end any single star must have been ejected fast enough to become
nbound from all the other stars in its birth subcluster. 
Fig. 12 compares the Maxwellian distribution of initial stellar

elocities, v0 , with the velocities of single stars at the end, vej , for
he Best-fitting Case . The ejection velocity distribution is slightly
roadened compared with the initial velocities. Few stars have
elocity outside of the initial velocity range. A similar result is found
or the Fiducial Case . 

.8 Dissolution time-scale 

ig. 13 a shows the cumulative probability distribution of single-star
jections as a function of time, for the Fiducial Case with N =3, 4, 5,
, 7. Ejections occur more rapidly for larger N , as shown by Hamers
 2020 ), but even for N =3, 50 per cent of ejections occur within the
rst 66 crossing times. 
Fig. 13 b shows the cumulative probability distribution of

ingle-star ejections as a function of time, for the Best-fitting
ase . 87( ±5) per cent of ejections occur in the first 2 Myr, and
8( ±2) per cent occur by 10 Myr. 

.9 Number of multiples per subcluster 

n most cases, a subcluster in the experiment dissolves into one
ultiple system of multiplicity m , and N − m single stars. But in

ome instances the subcluster dissolves into as many as 	 N/ 2 

ultiple systems. For the Best-fitting Case , 21( ±1) per cent of

ubclusters produce more than one multiple system. All additional
ultiple systems produced in this case are binaries. 

 DI SCUSSI ON  

n this section, we discuss some of the caveats and limitations that
hould be borne in mind when evaluating the results presented above.
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Figure 10. The specific probability distributions of eccentricity, e. (a) S2 orbits, (b) S1 orbits, for the Fiducial Case with N =3, 4, 5, 6, 7, (c) S2 orbits, and (d) 
S1 orbits, for the Best-fitting Case . 

Table 2. The mean and standard deviation of lognormal fits to the mass 
distributions for stars that end up in multiple systems and stars that end up 
single. Values are given for different N in the Fiducial Case and for the 
Best-fitting N -distribution. � = log 

10 
( M/ M� ). 

Fiducial Best fit 
with N = 3 4 5 6 7 

Initial 
μ� −0.60 −0.60 −0.60 −0.60 −0.60 −0.60 
σ� 0.30 0.30 0.30 0.30 0.30 0.30 

Multiple 
μ� −0.52 −0.50 −0.48 −0.44 −0.46 −0.49 
σ� 0.28 0.28 0.27 0.28 0.28 0.27 

Single 
μ� −0.71 −0.68 −0.65 −0.62 −0.59 −0.66 
σ� 0.27 0.28 0.28 0.29 0.31 0.28 

Figure 11. The mass distributions for all stars, for those that end up in 
multiples, and for those that end up single, in the Best-fitting Case . Means 
and standard deviations are given in Table 2 . 

Figure 12. The specific probability distributions of initial velocity ( v0 ) and 
ejection velocity ( vej ) for all stars in the Best-fitting Case . 
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.1 Dynamical biasing and ejections 

f, as we find in AW24 , a prestellar core typically produces N =4 or
 stars, and these stars have a relatively small range of masses ( σ� ∼
 . 3), the concept of Dynamical Biasing is slightly more nuanced,
n the sense that even if an S2 orbit does not involve the two most

assive stars in the subcluster, it will still – more often than not –
nvolve two of the more massive stars. 

This in turn means that the single stars that are ejected will tend to
e of lower mass, and therefore harder to detect in observations than
he ones that end up in multiple systems. 

.2 The core potential and subcluster dispersal 

t is reasonable that we have only taken account of the gravitational
eld of the stars in the subcluster. The gas between the stars in the
MNRAS 541, 3728–3738 (2025)
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M

Figure 13. The cumulative probability distributions of the first ejection as a 
function of the elapsed time. (a) The Fiducial Case with N =3, 4, 5, 6, 7. (b) 
The Best-fitting Case . 

s  

w  

i

n

T  

a  

f  

e
l

4

T  

a  

w  

b  

b  

c  

(  

b  

c  

H  

f  

T  

t  

r  

o

4

A  

t  

T  

a  

c  

T  

t  

o  

o  

m  

a  

t  

h

4

A  

a  

t  

a  

i  

p
 

e  

t  

a  

c
m

 

a  

n

4

T  

t  

h  

B  

a  

M  

a
 

C  

t  

S  

m  

o  

b  

m  

w  

t

R

R

w  

m

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/541/4/3728/8217252 by D
uthie Library, U

W
C

M
 user on 14 August 2025
ubcluster will only dominate the gravitational field in the region
here the stellar dynamics is modelled ( R < Ro ) if its mean density

s very high, 

¯H2 
� 2 × 109 cm−3 

(
N 

5 

)(
M̄ 

0 . 25 M�

)(
Ro 

500 au 

)−3 

. (4) 

his is unlikely. However, residual gas from the prestellar core
t radii larger than Ro will slow down dispersal of the stars
ormed, unless it has been very widely dispersed. Therefore the
jection velocities we compute should strictly be seen as upper 
imits. 

.3 Disc fragmentation and primordial multiples 

he stars in our numerical experiments start with random positions
nd velocities. Therefore primordial binaries in close, tight orbits
ill be extremely rare at the outset. However, in nature stars forming
y dynamical fragmentation of a prestellar core will be attended
y circumstellar accretion discs, and these discs may become suffi-
iently massive and cold to fragment, producing close companions
semimajor axes a � 50 au ) on low-eccentricity orbits. Indeed, we
elieve that disc fragmentation is a critical channel for producing
lose systems (e.g. Whitworth & Stamatellos 2006 ). Kuruwita &
augbølle ( 2023 ) have also shown that the gas present around

orming stars can trigger their inspiral and create close binaries.
hese close systems would be more difficult to disrupt, increasing

he proportion of higher order multiples. Therefore the experiments
eported here are not expected to reproduce the statistics of the closest
bserved orbits. 
NRAS 541, 3728–3738 (2025)
.4 Binary twins 

 significant fraction of observed binary stars have mass ratio close
o unity. In other words the component stars have very similar masses.
his preference is too extreme to be the result of dynamical biasing,
nd is normally attributed to hydrodynamical effects, which are not
aptured in the pure N -body numerical experiments reported here.
he standard explanation (Whitworth et al. 1995 , their section 5.2) is

hat a binary forms, possibly by disc fragmentation, but there is then
ngoing accretion on to the binary. The specific angular momentum
f the inflowing material increases with time, and therefore the lower
ass component, which has higher specific angular momentum (by
 factor q−2 

1 
) and is therefore on a wider orbit, is better able to accrete

his material. Consequently, it grows towards the same mass as the
igher mass component. 

.5 Interacting discs and tidal circularization 

n attendant circumstellar accretion disc may also interact with
nother star and its disc. This will dissipate kinetic energy, and may
hereby make the two stars bound, or more tightly bound if they
re already bound (e.g. McDonald & Clarke 1995 ). This mechanism
s missing from our pure N -body experiments, and would help to
roduce closer orbits. 
In addition, stars on extremely close orbits ( a � 0 . 1 au ) will

xperience strong internal tidal interactions, and this will drive
hem into low-eccentricity orbits. However, such close orbits
re not produced here – and tidal interactions would not be
aptured, even if they were, since the stars here are point 
asses. 
Binary orbits may also be circularized when the component stars

ccrete from a circumbinary disc. Again this is not included in our
umerical experiments. 

.6 Time-scales 

he Orbital Statistics presented in this paper represent subclusters
hat have been evolved for 1000 crossing times. With the scalings we
ave adopted, one crossing time is ∼0 . 077 Myr N−1 / 2 , which for the
est-fitting Case with μN =4 . 8 gives ∼0 . 035 Myr . Orbital Statistics
re only considered robust if they are reproduced in two successive
MOs (see Section 2.2 ). Thus the first Orbital Statistics are collated

fter 66 crossing times, i.e. at ∼2 Myr . 
For the Fiducial Cases with large N ≥4, and for the Best-fitting

ase , Fig. 13 indicates that the Orbital Statistics are closing in on
heir asymptotic values by t �3 Myr , whereas for N =3, the Orbital
tatistics only approach their asymptotic values at t �15 Myr . This
ay constitute a new and – at least in principle – distinctive constraint

n the size of the region in which the protostellar fragments in a core
ecome an ensemble of virialised protostars, like the ones we have
odelled. If we exploit the fact that the experiments are scale-free, i.e.
e can adjust the mass- and length-scales as described in Section 2.1 ,

hen the radius is given by 

o � 250 au 

(
N 

5 

)2 / 3 (
M̄ 

0 . 25M�

)1 / 3 (
tdisp 

Myr 

)2 / 3 

, N >3 , (5) 

o � 60 au 

(
M̄ 

0 . 25M�

)1 / 3 (
tdisp 

Myr 

)2 / 3 

, N =3 , (6) 

here N is the number of stars in the subcluster, M̄ is the mean stellar
ass, and tdisp is the time-scale on which the subcluster disperses. 
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.7 External perturbations 

ven before a subcluster disperses due to internal interactions, it 
ay be subject to external perturbations, due to other massive 

tructures in the vicinity, i.e. other subclusters and gas clumps. 
hese perturbations will sometimes unbind the outer members of 

he subcluster and will destroy some of the multiples. 
Once the subcluster disperses, its stars and multiple systems will 

nteract with other stars and multiple systems formed in nearby 
ubclusters. These interactions will change the architectures of 
xisting multiples, and lead to exchanges of stars between the 
ultiples from different subclusters. In the long term these processes 
ill tend to reduce the overall multiplicity and plurality, by unbinding 
ider orbits, but at the same time it will harden closer orbits. 
The high-eccentricity tertiary orbits noted in Section 3.5 (see 

ig. 10 ) are real in the sense that their orbital parameters are
onfirmed at successive MMOs. However, successive MMOs are 
nly ∼1 Myr apart, and these highly eccentric orbits have periods 
1 Gyr . Consequently they will be hard to detect observationally, 
rstly because they will spend most of their lifetime at distances 
 1 pc , and secondly because association with a companion will be 

ard to establish. Therefore they are unlikely to appear in catalogues. 
ore importantly, they have very low binding energy and will be 

asily disrupted. We find that performing a cut to remove these 
igh-period orbits ( P < 107 yr, a � 4 . 5×104 au) does not affect the
istributions of tertiary mass ratio or mutual orbital inclination at a 
tatistically significant level. 

.8 Collisions, mergers, and tidal effects 

ince the stellar particles are treated as point masses, collisions, 
ergers, and tidal effects between particles are not included in these 

xperiments. Because the subclusters studied here are small ( N ≤
) with relatively low number density, random chance collisions 
re extremely unlikely. Situations which might lead to mergers and 
ides are also rare. In the Best-fitting parameter set, for example, 
tars approach within 0.5 au of one another in ∼0 . 2 per cent of
ealizations. Tidal effects, meanwhile, are only expected to affect 
olar-mass pairs with separations� 0 . 1 au (e.g. Johnstone et al. 2019 ).

hile some of these systems have the potential to merge due to tidal
issipation, thereby reducing the proportion of close systems, the 
ffect on the overall statistics is very small. 

.9 Initial spatial distribution 

e invoke a uniform density profile when positioning the stellar 
articles. Because the number density of particles in each subcluster 
s so low, the choice of density profile has little effect on the initial
istributions. 
Our initially rotating subclusters may begin with either a spherical 

r oblate geometry (see Section 2.1 ). We find that these geometries do
ot produce statistically significant differences in any of the reported 
etrics. 

 C O N C L U S I O N S  

he initial conditions of a subcluster play an integral role in 
etermining the characteristics of the stellar multiple systems that 
t spawns. The initial number of stars in the subcluster, N , has
he greatest effect, influencing periods and separations, dynamical 
iasing, plurality, mutual orbital inclinations, and ejection time- 
cales. The fraction of kinetic energy in ordered rotation, αrot , and 
he degree of mass segregation, αseg also have an effect on some of
hese statistics. 

The distributions of semimajor axis, a, for S2 orbits shift to lower
alues with increasing N . This is because S2 orbits are hardened by
nergy exchange with other stars in the subcluster, often leading to
he ejection of these other stars. With higher N there are more ‘other
tars’ with which to exchange energy. 

In contrast the distributions of a for S1 orbits are essentially
ndependent of N . 

In the Fiducial Case , the percentage of subclusters that produce
n S2 orbit involving the two most massive stars decreases from
2( ±1 . 5) per cent for N =3, to 62( ±1 . 6) per cent for N =7. How-
ver, there is still Dynamical Biasing , i.e. the tendency for more
assive stars to be bound in multiples and lower mass stars to be

jected, when N is large. This is because, when N is large, stars other
han the two most massive ones may still be quite massive. 

Consequently, the single stars tend to have lower than average 
ass and to acquire the highest velocities, υej , relative to the centre

f mass of the original subcluster. The distribution of υej for these
ingle stars is indistinguishable from the Maxwellian distribution 
f velocities in the initial subcluster, so they should be classified
s ‘walk-aways’, rather than ‘run-aways’. Walk-aways are ejected 
arlier in subclusters with higher N . 

S2 orbits have a flat distribution of mass ratios between q1 =0 . 2
nd q1 =1 . 0. S1 orbits have a flat distribution of mass ratios between

2 =0 . 1 and q2 =0 . 5 with very few higher values. These distributions
o not depend strongly on the initial conditions of the subcluster. 
On average, a star’s plurality (i.e. the number of companions that

 star has, irrespective of whether it is a primary) increases with its
ass. The maximum number of companions increases with N , and 

lmost all stars with M �0 . 5 M� end up with at least one companion
hen N ≥3. 
Moderate rotation results in triple systems with a distribution of 
utual orbital inclinations peaking at θ ∼90◦, in agreement with the 

bserved distributions. For triple systems with θ >90◦, the majority 
∼75 per cent ) form dynamically in high-inclination orbits without 
he help of vZKL cycles. 

For the Best-fitting Case , 21( ±1) per cent of subclusters produce 
ore than one multiple system. 
When considering Multiplicity Statistics , i.e. the relative propor- 

ions of different multiples (singles, binaries, triples, etc.) AW24 
ound that subclusters should have a distribution of N values with
edian μN � 4 . 8; the kinetic energy of the stars should be divided

etween random isotropic velocities drawn from a Maxwellian 
istribution and ordered rotation, with comparable amounts in each; 
nd there should be mass segregation. Here, we have shown that these
roperties are also compatible with the observed Orbital Statistics , 
.e. the distributions of semimajor axis, mass ratio, eccentricity and 

utual inclination. Moreover, the observed distribution of mutual 
nclinations also strongly favours μN ∼ 4 . 8 (see Fig. 8 ). 

We have shown that there is a relationship (equations 5 and 6)
etween the size of the region in which the protostars in a subcluster
nitially condense out ( Ro ), the number of stars in the subcluster
 N ), the mean stellar mass (M̄ ), and the time-scale ( tdisp ) on which
he subcluster disperses. We will explore the consequences of this 
elationship in a future paper. 
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