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Abstract—Attention-deficit hyperactivity disorder (ADHD) is
prevalent in children and adolescents, often treated with med-
ication. Monitoring medication, however, strains healthcare re-
sources, prompting exploration of remote monitoring. In this
paper, we address the problem of locating hubs for healthcare
assistants to travel to schools to cover the demand of a remote
monitoring service for pupils with ADHD. We propose a facility
location problem approach to decide on the number of hubs for
healthcare assistants and where to locate them in order to cover
the demand for remote monitoring in secondary schools in Wales,
UK. The results provide insights into how many hub locations are
needed to cover the demand. Thus, our mathematical modelling
approach can help policy makers efficiently plan resources and
help children and adolescents with ADHD to be monitored more
effectively.

Index Terms—mathematical modelling, linear programming,
healthcare management

I. INTRODUCTION

Attention-deficit hyperactivity disorder (ADHD) is con-
sidered to be one of the most prevalent neurodevelopmen-
tal/behavioural disorders amongst children and adolescents
[1, 2] with prevalence commonly reported as 5% [1, 3, 4].
ADHD medication prescription prevalence has been increasing
in the UK [4], possibly due to improved identification and
recognition of ADHD. Common ADHD symptoms include
the presence of pervasive, developmentally excessive, and
impairing levels of overactivity, inattention, and impulsivity
[4]. Furthermore, the diagnosis should also be considered in
children and adolescents with poor attention, distractibility,
hyperactivity, impulsiveness, poor academic performance, or
behavioural problems [2].

Medication is part of the treatment in ADHD. It is usually
tried if all non drug interventions are unsuccessful or if the
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condition is severe and has a significant impairment [5].
However, the medication options available to treat ADHD
may cause side effects such as decreased appetite, reduction
in height growth, sleeping problems, and changes in blood
pressure and heart rate [2, 6]. Due to the aforementioned
side effects, patients prescribed with ADHD medication need
monitoring, requiring general practitioner (GP) or hospital
appointments which add pressure onto the National Health
Service (NHS). Frequent monitoring allows the optimal per-
sonalised dosage to be achieved [6].

Remote monitoring could reduce the number of in-person
appointments required to achieve the necessary monitoring of
ADHD patients, subsequently easing pressures on NHS ser-
vices. Typically, remote monitoring involves capturing health-
related data from patients in one location and transmitting
the data to a clinician for review in another location [7, 8].
Data may be captured automatically by wearable technological
equipment, or may be inputted manually into a system by
patients [3, 7]. Health data that can be captured by remote
monitoring includes blood pressure, heart rate, oxygen levels
and other vital signs [7]. ADHD patients are ideal candidates
for remote monitoring services because ADHD treatment does
not require much physical interaction during their appoint-
ments. Therefore, remote appointments can be alternated with
in-person appointments [9]. Additionally, patients with other
conditions that call for medical supervision may also find
remote monitoring services beneficial.

One challenge prevalent in the literature on remote moni-
toring is the inconsistent use of terminology and definitions.
Many definitions exist referring to the concept of remote
monitoring including telemedicine, telehealth, virtual ward,
mHealth and wearable technologies. Dixon et al. [10] state
that over 100 definitions of ‘telemedicine’ were found in a
review in 2007. Mantena and Keshavjee [11] define remote



monitoring to be a mode of digital health intervention allowing
patients to be monitored away from a clinical setting. The
World Health Organisation (WHO) defines telemedicine as
“The delivery of health care services, where distance is a
critical factor, by all health care professionals using informa-
tion and communication technologies for the exchange of valid
information for diagnosis, treatment and prevention of disease
and injuries, research and evaluation, and for the continuing
education of health care providers” [12]. Merritt [13] suggests
“all health services provided using telecommunications tech-
nology” as a broad definition of telehealth. Research should
be conducted to establish unanimous and universal definitions
of the terminology used.

In this paper, we address the problem of finding the optimal
number of hubs for healthcare assistants to deliver a remote
monitoring service in secondary schools in Wales. Health-
care assistants would be located in hubs and would travel
to secondary schools twice a year to support the delivery
of remote monitoring. We specifically focus on secondary
schools as these institutions typically have a higher number
of pupils on medication or with chronic health conditions
that require monitoring, compared to primary schools. To
that extent, a mathematical model is developed with the aim
of determining the number of hubs for healthcare assistants
required to effectively administer the service. Using data from
secondary schools across Wales, UK, we solve the problem
using a metaheuristic optimisation approach and compare
it with the optimal solution determined by an open source
solver. The novelty of this paper lies in its application of the
optimisation problem, offering a potential solution to support
the implementation of a new remote monitoring service.
Visualisations of solutions are provided to aid decision-makers
in evaluating the allocation of healthcare assistants to schools
and the corresponding demand coverage in each solution.

The remainder of this paper is structured as follows: Section
II provides an overview of related work signifying the possible
benefits of remote monitoring technology, and indicates some
operational research (OR) techniques that could be utilised to
approach the problem of this paper. In Section III, a formal
problem description is provided followed by our mathemat-
ical model. Furthermore, the algorithm utilised to solve the
problem is described. The experimental results are detailed in
Section IV, with a discussion provided in Section V. Section
VI concludes the paper and provides recommendations for
future work.

II. RELATED WORK

This section provides an overview of related literature or-
ganised into three themes. The first area explores the benefits,
feasibility and acceptance of remote monitoring in schools.
The second area focuses on OR methods applied in the context
of remote monitoring. Lastly, the third area examines the
literature on the facility location problem, particularly within
the healthcare context.

A. Benefits, feasibility and acceptance of remote monitoring
in schools

Reductions in travel time, travel distance, waiting time
and cost are commonly cited benefits of remote monitoring
services, portraying the burden that in-person monitoring ap-
pointments place on patients, families and caregivers [10, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Another frequently men-
tioned benefit of remote monitoring services is the improved
access to healthcare [14, 15, 16, 17].

An important consideration when implementing remote
monitoring services is access to the required technology.
Several articles have researched disparities in access to remote
monitoring, and have consistently observed older age, rurality,
race, ethnicity, language, internet access and insurance status
to impact the level of interaction with remote monitoring ser-
vices [19, 22, 25]. Implementing remote monitoring services
in schools could minimise disparities in access to a stable
internet connection and the required technology. Additionally,
being absent from school to attend medical appointments is
a common concern reported by patients and caregivers of the
children receiving medications or treatments [15, 21, 26].

Implementing remote monitoring services in schools could
enable medical appointment participation from everyone in-
volved in a child’s day-to-day life including teachers, care-
givers, clinicians, and the patient themselves [10]. This could
be advantageous to children receiving ADHD medication be-
cause both teachers and parents observe the child’s behaviours
and potential side effects of the medication at various times
of the day, providing a more comprehensive understanding of
the child’s overall well-being.

Remote monitoring services can also improve feelings of
empowerment, allowing children to take control of their con-
dition and to feel greater involvement in their treatment [27].
Promoting feelings of empowerment and involvement early on
in life is pivotal to maximise medication adherence and self-
management skills, thus leading to an improved quality of life
for the patient [27].

Lin et al. [26] explored the effectiveness of a school-based
remote monitoring intervention aimed at enhancing asthma
control, severity and monitoring adherence in participants aged
10 to 17 years old from economically deprived areas. The
study utilised a remote monitoring device to track inhaler
utilisation where the inhaler was linked to mobile device soft-
ware via Bluetooth connection. Results indicated a significant
improvement in asthma severity among participants diagnosed
with severe asthma, while those with non-severe asthma expe-
rienced a smaller improvement. The authors underscored the
potential of remote monitoring to enhance healthcare access
for individuals from economically disadvantaged communities
and highlighted the cost-reducing benefits of a school-based
remote monitoring service.

B. Operational research and remote monitoring

The majority of research on remote monitoring focuses on
the feasibility, utilisation, opinions and compliance of remote
monitoring services [19, 22, 24]. This may be a consequence



of remote monitoring being a relatively new service, as ev-
idenced by the significant rise in remote monitoring-related
literature that has occurred since the COVID-19 pandemic.
The lack of research could also be attributed to inconsistent use
of terminology concerning remote monitoring. Consequently,
there exists a gap in the literature regarding the application
of OR techniques to remote monitoring services, particularly
in supporting its implementation through mathematical mod-
elling.

A number of papers have conducted literature reviews on
the application of OR to healthcare. More specifically, in
a context similar to remote monitoring, Grieco et al. [28]
carried out a literature review exploring the application of OR
to home healthcare (HHC). The review focused on the use
of OR to address strategic, tactical and operational planning
decisions. The most common decisions examined were related
to the allocation of staff, visit scheduling and routing of visits.
Mixed-integer programming (MIP) emerged as the predomi-
nant OR method used to address these issues, often based on
the vehicle routing problem. Consequently, the most common
measure of system performance was staff travel distance, with
the objective function typically focusing on minimising travel
costs.

Markov models have been used to model patient disease
progression and compare two patient groups: one group using
a remote monitoring device and a control group. Padula
et al. [29] analysed the cost-utility of Bluetooth-enabled
pulse-oximetry monitors for COVID-19 patients employing
a Markov model comprising six health states. Health out-
comes improved for patients using remote pulse-oximetry
monitors and costs were reduced. Yao et al. [30] utilised
a constrained Markov decision process to model methods
to optimise electrocardiography readings under a constrained
energy consumption budget.

A variety of simulation models have been utilised to rep-
resent the advantages of remote monitoring. Faezipour and
Faezipour [31] developed a system dynamics model to explore
the effectiveness of a smart-phone based heart monitoring
service, based on elctrocardiogram (ECG) signals. A feedback
model was developed, based on factors such as patient well-
being, care, cost, convenience, and user-friendliness, along
with various embedded ECG system design and performance
metrics. Gorelova et al. [32] utilised a discrete event simulation
model to demonstrate changes to patient flow in infertility
treatment when using a wearable device to gather hormone
level data. When a concerning hormone level reading was
observed, the patient would be prioritised for an online ap-
pointment. As a result of using a remote monitoring device,
mean waiting times for appointments were reduced by 36.5%
and there was an 88% increase in the number of patients
that could be served by one physician. Finally, an agent-
based simulation model was used by Montagna and Omicini
[33] to model the changes to Type I diabetes patients’ health
when self-management interventions were introduced. Remote
monitoring devices collected information including physical
activity and vital signs. The model had two levels, where the

high-level model characterised patients’ utilisation of the tool,
and the disease model depicted the disease physiopathology.
Improvements to patients’ health were recognised as a result
of remote monitoring.

The majority of literature applying OR methods to re-
mote monitoring has focused on the feasibility, benefits and
acceptance of remote monitoring. Consequently, there is a
significant lack of consideration of the implications of a remote
monitoring service on the workforce.

C. Facility Location Problem (FLP)

The FLP is an optimisation problem in which a set of
potential facilities with limited capacities are chosen to serve
the demand at demand points. The FLP determines which
facilities serve which demand points in a way to optimise the
objective function, for example, minimising the total distance
travelled or total costs [34]. The FLP has been applied to a
variety of healthcare settings, for example, hospital location
[35], HHC [36], medication delivery [37] and ward planning
[38].

Grange et al. [38] applied the FLP solver to the virtual
ward planning problem for frail and elderly patient moni-
toring. Their mixed-integer linear programming model jointly
optimises virtual ward locations, staff allocation, and patient
assignment while balancing coverage and workload. Through
a case study using regional healthcare data, the authors
demonstrated the FLP solver’s effectiveness for virtual ward
capacity planning by considering location, staffing, and patient
decisions jointly.

Ahmadi-Javid [39] conducted a literature review to con-
struct a framework to classify healthcare FLPs. The ap-
plications can be broadly separated into non-emergency or
emergency facilities. Non-emergency facilities included blood
banks and doctors’ offices, whereas emergency facilities in-
cluded permanent facilities such as emergency centres and
temporary facilities including temporary medical centres.

Zhang et al. [35] applied the FLP to a hospital setting, aim-
ing to minimise disparities in access to community hospitals
while considering costs such as construction and travel, and
simultaneously maximising demand point coverage. Zhang
et al.’s model included a set of demand points and sets
of potential community and general hospitals. The model
integrates parameters such as distances between demand points
and candidate hospital capacities. Additionally, it accounts for
the proportion of the demand point population necessitating
different levels of medical services.

A maximal covering location problem (MCLP) applied to
emergency medical services was presented by Erkut et al.
[40] where the model aimed to maximise the number of
surviving patients in an ambulance location problem. Erkut et
al. highlighted two weaknesses of the standard MCLP model.
Firstly, it assumes the constant availability of an emergency
vehicle, and secondly, it overlooks the variability in travel
times.

Pourrezaie-Khaligh et al. [36] developed a two-stage HHC
FLP in which base locations were needed for HHC staff to start



their journeys. The model was constructed under uncertain
demand, and transportation decisions were made following
determining base locations. The objective was to maximise
profits, comprised of revenue and capacity costs.

The aforementioned applications of the FLP demonstrate
the feasibility of applying the model to a healthcare setting.
Nevertheless, the literature has not yet applied the FLP to a
remote monitoring setting, reiterating the lack of consideration
of the implications of the service on the workforce.

D. Conclusion
The literature demonstrates the feasibility and general ac-

ceptability of remote monitoring services. It was highlighted
that implementing a school-based remote monitoring service
could improve access to healthcare [14, 15, 16, 17]. Addition-
ally, a school-based remote monitoring service could reduce
the burdens of time and cost on patients, parents and caregivers
[15, 18, 21, 26]. Remote monitoring services could increase
feelings of empowerment, consequently improving quality of
life [27].

OR methods have been applied to remote monitoring set-
tings, for example, to model disease progression and improve-
ments in waiting times when using remote monitoring devices.
Nevertheless, the literature lacks utilisation of OR methods
to model the required workforce capacity adjustments and
the demand and capacity planning for remote monitoring,
reaffirming the incentive for this research.

Our search for related work revealed that the FLP has
previously been utilised in healthcare settings, such as emer-
gency service vehicle location planning [40] and HHC base
location planning [36]. However, the model has not previously
been used to model the demand and capacity of a remote
monitoring service. Nevertheless, these previously developed
FLP models could support the demand and capacity planning
for remote monitoring of ADHD medication in secondary
schools in Wales, facilitating the development of the models
in this research.

III. PROBLEM DESCRIPTION, MODEL FORMULATION AND
SOLUTION APPROACH

The main objective of this paper is to determine the
optimal location of hubs for healthcare assistants to travel
to secondary schools to deliver a remote monitoring service
to monitor ADHD medication. The objective is to minimise
the total cost not only to set up the service but also when
travelling from hubs to schools. Finally, we want to avoid
long travel distances. A workshop conducted by TEC Cymru
with stakeholders, including teachers and pupils, confirmed the
feasibility of the proposed service. Satisfaction was expressed
regarding the ability and portability of the remote monitoring
equipment. Teachers expressed that they would prefer for a
healthcare professional to bear the responsibility of remote
monitoring rather than themselves.

A. Sets, indices and parameters
Let I := {1, 2, 3, . . . , n} denote the set of schools and

J := {1, 2, 3, . . . ,m} denote the set of healthcare assistant

hub locations. Let i ∈ I be an index for a school and j ∈ J
be an index for a potential healthcare assistant hub location.
Furthermore, let bi indicate the demand at school i. Let sj
denote the cost for setting up a hub for healthcare assistants
at location j. Let kj be the capacity of the healthcare assistant
hub at location j, where capacity means the total number of
appointments that can be administered by healthcare assistants.
Let cij represent the travel cost between healthcare assistant
hub location j and school i. Let dij be the distance between
school i and healthcare assistant hub location j, with D being
an upper limit on the travel distance.

B. Decision variables

We introduce the following three sets of decision variables.
Firstly,

yj =


1, if location j is used as a hub in locating

healthcare assistants
0, otherwise.

(1)

Secondly, our real-valued decision variables xij ∈ R≥0

count the demand that school i sends to hub j. Finally, our
decision variables zij are denoted as:

zij =


1, if the hub at location j receives demand from

school i
0, otherwise.

(2)

C. Objective function and constraints

Since the aim is to minimise total cost, our objective
function is comprised of two terms. The first term of the objec-
tive function (3) minimises the travelling costs of healthcare
assistants to schools. The second term represents the setup
costs of deploying healthcare assistant hubs.

minimise
∑
i∈I

∑
j∈J

cijxij +
∑
j∈J

sjyj (3)

subject to

∑
i∈I

xij ≤ kjyj ∀j ∈ J (4)∑
j∈J

xij ≥ bi ∀i ∈ I (5)

M · zij − xij ≥ 0 ∀i ∈ I, j ∈ J (6)
zij · dij ≤ D ∀i ∈ I, j ∈ J (7)
xij ∈ R≥0 ∀i ∈ I, j ∈ J (8)
yj ∈ {0, 1} ∀j ∈ J (9)
zij ∈ {0, 1} ∀i ∈ I, j ∈ J (10)

Constraint (4) ensures that the demand which healthcare
assistant hubs are serving do not exceed their capacity. Con-
straint (5) establishes that the total demand that is looked
after by the hubs are guaranteed. Constraint (6) links the flow



variables xij with binary variables zij that denote whether hub
j is taking care of location i. We use a big M formulation
where M can be set to an upper bound on the demand.
Constraint (7) guarantees that the maximum distance D to
travel from the hub to the schools is not exceeded. The
decision variables and their domains are provided by (8)–(10).

D. Solving the mathematical model

Since our model is a generalisation of the FLP, solving
large instances with standard solvers to optimality is challeng-
ing. An alternative way is to use a metaheuristic approach,
for example, based on the tabu search (TS) algorithm. The
TS algorithm is a metaheuristic used to solve optimisation
tasks. The algorithm enables solutions to escape local optimal
solutions. The assignment of locations to facilities differs at
each iteration, and the solution which gives the best objective
function is selected. A list of previously visited solutions is
kept, known as the tabu list, and the solution cannot return to
the tabu list’s solutions for a number of iterations, enabling
the solution to escape local optima.

The algorithm differs in the case of the uncapacitated and
capacitated FLP, as explained by Erdoğan et al. [34]. For the
capacitated FLP, the FLP addressed in this paper, exceeding
a facility’s capacity results in a penalisation, in addition to
penalisations for missing locations and violating a maximum
distance constraint. The assignment of locations to facilities
is stored in an ordered list, where the list’s first location
denotes the facility’s location. The solution begins with an
empty solution, and adds one location to one list at a time,
either to the beginning or to the end of the list. The objective
function is evaluated when exchanging a location and a facility
in a list, and the best result is returned. Additionally, the
objective function is evaluated when a location is re-assigned.
The candidate solutions do not involve tabu list solutions,
except for in the instance when the solution improves the
current best known solution.

IV. EXPERIMENTAL RESULTS

In what follows, we describe the data used in our experi-
mental study followed by a presentation of the results broken
down by various levels of detail.

A. Demand

Postcodes of secondary schools in Wales were obtained
from a data set from the Welsh Government website [41]
(Figure 1).

The same data set also included the number of pupils in each
secondary school, which was used to calculate each school’s
demand. Although ADHD prevalence rates are commonly
estimated to be 5% [1, 3, 4], ADHD medication administration
rates are much lower in Wales at 0.96% [42]. For the health-
care assistant hub location problem (HAHLP) model, demand
in each school was estimated by multiplying the number of
pupils in the school by the ADHD medication administration
rate of 0.96%.

Fig. 1. Location of secondary schools in Wales - Correct as of May 2023
[41].

B. Model assumptions

We make the following assumptions: all healthcare assis-
tants work full-time and are homogeneous as no skill level
is required. Each appointment is allocated 15 minutes with
working hours between 09:00-14:00. Furthermore, we assume
a 15 minute break for healthcare assistants, resulting in a
maximum of 19 appointments per day.

Children require monitoring twice a year, based on standard
practice guidelines [43], and considering the school year spans
39 weeks, models should be formulated for each 19 week
period. With 19 appointments per day over 19 weeks, and
each week comprising of five days, the maximum capacity for
healthcare assistant appointments within each 19 week cycle
totals 1,805 appointments as given by Equation (11).

Max. appointment capacity = no. of appointments per day
× no. of days in working week
× no. of weeks in cycle

(11)
The setup cost is assumed to be the cost to employ a health-

care assistant per 19 weeks, i.e. half of healthcare assistants’
annual salary, and is assumed to be homogeneous across all
healthcare assistants as all healthcare assistants are assumed
to be homogeneous. The salary of a healthcare assistant is
assumed to be £23,000 [44]. Hence, the setup cost is assumed
to be £11,500. Additionally, the cost of travel is set to be
£0.45 per unit distance [45].



C. Illustrative model

An illustrative model was constructed to test and understand
the FLP spreadsheet solver’s input parameters. For simplifica-
tion, secondary school locations were restricted to those in
Cardiff, presented in Figure 2.

Fig. 2. Secondary schools in Cardiff.

Demand in each school was calculated by generating a
random number between one and ten. A capacity of 1,805 was
allocated to each possible healthcare assistant hub along with
a setup cost of £11,500 and a cost of 0.45 per unit distance.
The maximum number of healthcare assistant hubs to locate
was set to 18, equal to the number of secondary schools in
Cardiff. The objective of the solution was to minimise the
total cost, comprised of setup and travelling costs. The solver
function was run for 60 seconds to generate a solution, and
a feasibility check was run on the solution to ensure that
the demand allocated to each healthcare assistant hub did not
exceed its capacity. The illustrative model was performed on
a machine with an Intel Core i7-8665U processor running at
1.9GHz with 32GB of RAM.

One healthcare assistant hub was located at Cardiff High
School which was allocated the total demand across all schools
of 109 appointments, outlined in Figure 3. The solution
was represented visually, illustrated in Figure 4, where the
square represented the secondary school in which the hub
for healthcare assistants would be based, dots represented the
secondary schools, and lines connected each secondary school
to the hub serving its demand.

D. Computational results comparing the tabu search heuristic
and the mathematical model

Returning to the case of 178 secondary schools, we stopped
the TS and the MIP after 60, 600, 3,600 and 36,000 seconds

Fig. 3. Illustrative model solution - demand allocated to the healthcare
assistant hub located at Cardiff High School.

Fig. 4. Visualisation of the solution of the illustrative model.

runtime. Similar to Section IV-C, the computational exper-
iments were performed on a machine with an Intel Core i7-
8665U processor running at 1.9GHz with 32GB of RAM. The
results displaying the objective function values and number of
hubs are shown in Tables I and II, respectively.

TABLE I
OBJECTIVE FUNCTION VALUE FOR THE TABU SEARCH AND THE MIP.

60s 600s 3,600s 36,000s

TS 79,502.19 79,166.65 79,166.65 79,166.65
MIP 69,953.89 69,942.32 69,942.32 69,942.32

Table I reveals that, after 10 hours of computation time the
MIP achieves a cost which is 88.3% of the value of the TS
model. Even after a relatively short computation time, the gap
between the TS and the MIP is quite substantial.



TABLE II
NUMBER OF LOCATIONS FOR THE TABU SEARCH AND THE MIP.

60s 600s 3,600s 36,000s

TS 6 6 6 6
MIP 5 5 5 5

The results from Table II shed more light into why this
substantial difference between the objective function values
occurs. The TS always produces a higher number of locations
compared to the MIP, which finds a stable number of five
locations to select as hubs for healthcare assistants monitoring
children and adolescents with ADHD.

By deploying fewer hubs, the MIP model was able to reduce
the overall setup costs, while still adequately covering the
demand across the schools. In contrast, the TS algorithm over-
provisioned the number of hubs, leading to higher setup costs
without a commensurate improvement in the ability to serve
the demand. This highlights the advantage of mathematical
programming taken in the MIP model - it was able to more
efficiently locate the optimal number and placement of hubs to
minimise the total cost, both in terms of setup and travel ex-
penses. The TS heuristic, while a useful approximate method,
did not capture this tradeoff as effectively, resulting in the gap
in objective function values between the two approaches.

E. Results for the Healthcare Assistant Hub Location Problem
Model

As described in Section IV-B, healthcare assistant capacity
was assumed to be 1,805 appointments per 19 weeks. In the
HAHLP model, demand was assumed to be 0.96% [42]. Each
school could be a hub for healthcare assistants. The setup cost
per healthcare assistant was £11,500, and the cost per unit
distance was 0.45. The number of locations was 178, equal to
the number of secondary schools in Wales, and the maximum
number of hubs to locate was set to 150. The solution’s
objective was to minimise the total cost, incorporating setup
and travelling costs.

1) Initial solution of the Healthcare Assistant Hub Location
Problem Model: The MIP solver was run using the Gurobi
Solver, to enable optimality to be reached. This resulted in two
healthcare assistant hubs being established. One hub was based
in Whitchurch High School serving 122 schools, while the
second was based at Ysgol Maes Garmon, serving 56 schools.

The solution’s visualisation, shown in Figure 5, portrayed
that one healthcare assistant hub would serve the schools
in the south, and one would serve the schools in the north
of Wales. The maximum distance travelled was 108 miles,
which could be unrealistic and unacceptable for healthcare
assistants to travel. Additionally, if the remote monitoring
service were to be expanded to monitor additional health
conditions, healthcare assistants might not have the capacity
to travel long distances. These factors supported the inclusion
of a maximum travel distance.

2) Healthcare Assistant Hub Location Problem Model with
a travel distance limit results: A travel distance limit of 50

Fig. 5. Initial solution of the healthcare assistant hub location problem model.

miles was incorporated into the MIP (see Constraints (7) in
Section III). This was deemed a reasonable distance to travel
in one day. After running the solver to optimality, the updated
solution, portrayed in Figure 6, resulted in five healthcare as-
sistant hubs being located with a maximum distance travelled
of 49.52 miles.

One healthcare assistant hub was stationed in the following
Welsh local authorities: Cardiff, Carmarthenshire, Ceredigion,
Denbighshire, and Gwynedd. It is important to note that
healthcare assistants served demand beyond the local author-
ity in which they were stationed. The highest demand was
allocated to the hubs based in Cardiff and Denbighshire. The
smallest demand was assigned to the hub based in Ceredigion.

The schools in which healthcare assistant hubs would be
located, the number of schools served by each healthcare
assistant hub, and the demand allocated to each healthcare
assistant hub are presented in Tables III and IV within the
Appendix.

V. DISCUSSION

This paper investigated the demand and capacity planning
for remote monitoring of ADHD medication in secondary
schools in Wales. The future intention is to extend the ser-
vice to monitor additional health conditions, including eating
disorders and diabetes.

A. Healthcare Assistant Hub Location Problem Model

The initial optimal solution of the HAHLP, displayed in
Figure 5, resulted in only two healthcare assistant hubs being
located, with one serving the north and one serving the south
of Wales. Healthcare assistant utilisation was relatively high.



Fig. 6. Solution of the healthcare assistant location problem model with a
travel distance limit.

The demand assigned to the hub in South Wales was signifi-
cantly greater than the demand assigned to the hub in North
Wales, consistent with the greater number of schools in South
Wales, depicted in Figure 1. However, this solution resulted in
large and unrealistic travel distances for healthcare assistants.
The extensive travel distances resulted in this solution being
unrealistic, and inspired the inclusion of a maximum travel
distance limit.

The experimental results of the HAHLP indicated that
incorporating a travel distance limit increased the number of
required healthcare assistant hubs to five. Each hub served a
smaller geographical area, leading to reduced travel distances.
However, this approach resulted in decreased healthcare assis-
tant utilisation. Our HAHLP demonstrated the importance of a
balance between minimising travel distances and maximising
healthcare assistant utilisation.

A disadvantage of the HAHLP model for the demand and
capacity planning for remote monitoring of ADHD medication
in secondary schools in Wales was its inability to incorpo-
rate randomness, for example, healthcare assistant absence
or changes in demand. Furthermore, the HAHLP model’s
demand was unrealistic as it assumed that demand was directly
proportional to the number of pupils in each school. Each
school is likely to have a different prevalence of children
being prescribed ADHD medication, therefore alternative fac-
tors such as local authorities’ rate of ADHD diagnosis and
medication administration should be considered. Nevertheless,
when the service is implemented, the exact demand in each
school could be determined, therefore the HAHLP model may
become more realistic in the future.

B. Modelling approach

The MIP was chosen to model the demand and capacity
planning for remote monitoring of ADHD medication in sec-
ondary schools in Wales, however, alternative OR modelling
approaches could have been utilised. A simulation model
developed to incorporate variation could enable an evaluation
of both the proposed service and its implications on the NHS.
Simulation models could support the forecasting of future
demand and be utilised for strategic planning. Similarly to
the MIP model, simulation models incorporate interactive
elements to support investigations of the consequences of
adjusting parameters.

C. Limitations

Solutions were generated by running the model once. Run-
ning the model multiple times would enable comparisons
across all solutions to determine the optimal and most ap-
propriate solution. Demand used in the model was based on
assumptions, including assuming homogeneous demand across
local authorities and assuming demand to be proportional to
the number of pupils in each school, both of which could
impact the realism of results. If data were available, future
research could model demand by local authority. However,
once the service is implemented, precise demand figures for
each school could be determined, enabling the input of these
numbers into the MIP and FLP spreadsheet solvers to obtain
realistic results.

The estimated capacity of healthcare assistants did not
include travel times to and from schools, thus assuming that
travel was completed outside of the working hours of 09:00-
14:00. However, this assumption may not be realistic or
acceptable. It is important to model the implications of incor-
porating travel time into healthcare assistants’ capacity. Doing
so would likely reduce the maximum number of appointments
that could be delivered, potentially necessitating an increase in
the number of healthcare assistant hubs required. Furthermore,
the model did not incorporate fairness in terms of the amount
of travel required by the healthcare assistants, neither does is
consider a trade off between the number of hubs located and
the amount of travel required by healthcare assistants.

All healthcare assistants were assumed to work full time,
however, demand assigned to healthcare assistants was rarely
above half of their estimated capacity (Table IV within the
Appendix). Employing some part-time healthcare assistants
may be a better financial decision by reducing setup costs
and increasing healthcare assistant utilisation.

This paper applies the proposed service to one geographic
location and educational context. The model’s generalisability
could be improved by testing the model in other locations to
see whether the proposed service would also be achievable
elsewhere, and how rurality and urbanity may affect the
practicality of the travel distance limit. Nevertheless, the model
presented in this paper provides the concept of the service and
a framework for its implementation in practice.



VI. CONCLUSION AND FUTURE WORK

A. Conclusion

This research enhances the literature on remote monitoring
by considering the demand and capacity planning for remote
monitoring of ADHD medication in secondary schools in
Wales. The analysis builds on existing knowledge of the impli-
cations of remote monitoring by considering its consequences
on the workforce. The results support the administration of
a remote monitoring service by investigating the number of
healthcare assistant hubs required to implement an efficient
service for ADHD medication monitoring, and provides a
visual representation of the models’ solution.

The literature review provides evidence of the feasibility
and benefits of a school-based remote monitoring service,
including reducing hospital admissions and increasing access
to healthcare. The literature review suggests that demand
and capacity planning for a school-based remote monitoring
service has not previously been considered or conducted.
However, OR techniques have previously been applied to
remote monitoring contexts and the FLP has been applied
to healthcare contexts, providing evidence of OR’s ability to
support the efficient implementation of remote monitoring.
Previously developed FLP models applied to other healthcare
settings provided a platform for the development of this
research’s models.

The initial HAHLP model inspired the inclusion of a
travel distance limit to generate realistic travel distances for
healthcare assistants. Five healthcare assistant hubs are needed
to serve the demand modelled in the MIP model with a travel
distance limit. Healthcare assistant hubs should be situated in
each of the following local authorities in Wales: Cardiff, Car-
marthenshire, Ceredigion, Denbighshire and Gwynedd. Whilst
the HAHLP model’s demand was based on many assumptions,
the HAHLP model will become increasingly more useful as
demand becomes more certain.

The visualisations of the model’s solutions were critical to
support conclusions because they enabled a visual evaluation
of the solution’s efficiency. The visual solutions are particu-
larly valuable because they enable mathematical results to be
presented clearly to non-technical audiences.

B. Future work

The eventual aim of the project is to deliver the remote
monitoring service for numerous health conditions. Health
conditions may need to be monitored at different frequencies
therefore future work will need to consider how to best expand
the model developed in this paper to incorporate additional
health conditions.

To enhance and progress the work conducted in this re-
search, following the determination of the number of health-
care assistant hubs required to implement the remote moni-
toring service for ADHD medication in secondary schools in
Wales, it would be necessary to develop personalised schedules
or routes for each healthcare assistant. These schedules should
specify which schools they will visit each week. There is also

potential for this work to be expanded to the remainder of
the UK to determine remote monitoring services for ADHD
medication across all secondary schools.

A nurse scheduling problem could be utilised to support
the development of a schedule for the healthcare assistants
delivering the service. Applying the nurse scheduling problem
to this project will be less complex than a typical nurse
scheduling problem because there will be no skill level require-
ments as healthcare assistants are assumed to be homogeneous.
Additionally, there will be no weekend, overnight or days off
requirements because the service will only be implemented
during school hours.

The vehicle routing problem could also be a supporting
model. An optimal route between the schools minimising
travelling costs could be determined. The service could be
modelled as a capacitated vehicle routing problem where
healthcare assistants would have limited carrying capacities,
where their carrying capacity would be the number of appoint-
ments that could be delivered each day. Once the routes are
constructed, travelling costs could be calculated, facilitating
an accurate cost analysis of the remote monitoring service for
ADHD medication in secondary schools in Wales.
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for maximum survival”. In: Naval Research Logistics 55 (1
2007), pp. 42–58. DOI: 10.1002/nav.20267.



[41] Welsh Government. Address list of schools. Accessed: 11 July
2023. 2023. URL: https://www.gov.%20wales/address- list-
schools.

[42] M. Fleming et al. “Age within schoolyear and attention-deficit
hyperactivity disorder in Scotland and Wales”. In: BMC Public
Health 22 (2022). DOI: 10.1186/s12889-022-13453-w.

[43] NHS. Methylphenidate for children. Accessed: 25 Novem-
ber 2024. 2021. URL: https : / / www . nhs . uk / medicines /
methylphenidate-children/.

[44] Careers Wales. Healthcare assistant. Accessed: 31 July 2023.
2023. URL: https://careerswales.gov.wales/job- information/
healthcare-assistant.

[45] GOV.UK. Claim tax relief for your job expenses. Accessed:
13 August 2023. 2023. URL: https://www.gov.uk/tax-relief-
for-employees/vehicles-you-use-for-work.

APPENDIX

TABLE III
INITIAL DETERMINISTIC HEALTHCARE ASSISTANT LOCATION PROBLEM

MODEL.

Healthcare Assistant
Location

Number of Schools Served Demand Allocated

Whitchurch High
School

122 1235

Ysgol Maes Garmon 56 430

TABLE IV
MIP MODEL WITH A TRAVEL DISTANCE LIMIT.

Healthcare Assistant
Hub Location

Number of Schools Served Demand Allocated

Corpus Christi
Catholic High
School

82 864

Castell Alun High
School

28 235

Ysgol Maes y Gwen-
draeth

37 356

Ysgol Tryfan 23 162
Gyfun Aberaeron
Comprehensive

8 48


