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We present a mathematical solution for the two-dimensional linear problem involving
acoustic-gravity waves interacting with rectangular barriers at the bottom of a channel
containing a slightly compressible fluid. Our analysis reveals that, below a certain cutoff
frequency, the presence of a barrier inhibits the propagation of acoustic-gravity modes.
However, through the coupling with evanescent modes existing in the barrier region, we
demonstrate the phenomenon of ‘tunnelling’ where the incident acoustic-gravity wave
energy can leak to the other side of the barrier, creating a propagating acoustic-gravity
mode of the same frequency. Notably, the amplitude of the tunnelling waves exponentially
decays with the width of the barrier, analogous to the behaviour observed in quantum
tunnelling phenomena. Moreover, a more general solution for multi-barrier and multi-
modes is discussed. It is found that tunnelling energy tends to transform from an incident
mode to the lowest neighbouring modes. Resonance due to barrier length results in more
efficient energy transfer between modes.

Key words: acoustics, detonation waves, geophysical and geological Flows

1. Introduction

The interaction of waves with barriers in various physical systems has been a topic of
great interest and importance. Understanding the behaviour of waves when encountering
obstacles allows us to analyse and predict the transmission, reflection and scattering
phenomena that arise in a wide range of scenarios. In classical physics, there is a range
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of implications from the scattering of surface-gravity waves due to seabed irregularities
(e.g. Mei, Stiassnie & Yue 2005), to the interaction of acoustic-gravity waves with shelf
breaks and trenches resembling variable depth in ocean (Kadri & Stiassnie 2012;
Sammarco et al. 2013; Abdolali, Kirby & Bellotti 2015; Kadri 2015). Further examples are
found in quantum physics, from fusion reactions in stars (Balantekin & Takigawa 1998) to
miniaturisation in microchips (Kelly & Weisbuch 1986).

In this study, we focus on the interaction of acoustic-gravity waves with rectangular
barriers submerged in water. Acoustic-gravity waves are a type of wave that propagates
through a medium, such as water, and exhibits characteristics influenced by both gravity
and compressibility effects (Abdolali, Kadri & Kirby 2019). These waves play a crucial
role in various natural phenomena, including oceanic dynamics, underwater acoustics and
geophysical processes.

The interaction of acoustic-gravity waves with rectangular barriers gives rise to
intriguing wave phenomena, namely energy tunnelling at a large scale. By studying
this interaction, we derive mathematical expressions that describe the transmission
and reflection coefficients as function of the barrier length. Notably, we find that
the transmission coefficient exhibits exponential decay with increasing barrier width,
reminiscent of the phenomenon of quantum tunnelling encountered in particle physics.

Moreover, we study resonance effects involving multiple barriers. Resonance effects in
barrier transmission typically occur in potentials with multiple peaks and a trough between
them. In quantum mechanics it is well documented that the transmission probability
sharply rises, reaching its peak when the kinetic energy of an incoming particle resonates
with one of the quasi-bound energy levels within the trough (Child 1967; Connor 1968).
This mechanism allows efficient tunnelling processes, even when the energy is signifi-
cantly below the barrier’s peak. A similar phenomenon is observed in the field of surface
water waves, where either partial reflection or full transmission under tunnelling effects is
governed by the geometry of submarine irregularities such canyons (Kirby & Dalrymple
1983; Thomson, Elgar & Herbers 2005). This effect arises from the interplay between
the wave dynamics and the topography of bumps or trenches, which can either permit
or block the passage of waves depending on their angle, energy and the specific features
of the irregularities (Kirby & Dalrymple 1983; Thomson et al. 2005). Interestingly, a very
similar behaviour is observed for the interaction of acoustic-gravity waves interacting with
multiple barriers. The analogy between the transmission and reflection coefficients in our
acoustic-gravity wave system and those encountered in quantum tunnelling provides an
intriguing connection between the wave dynamics and particle behaviour.

2. Preliminaries
Consider the interaction of an incident acoustic-gravity wave disturbance in water of

depth z(()o) with a single rectangular barrier. The water depths at and after the barrier are

z(()l) and z(()z), respectively — see figure 1 regions (0), (1) and (2). We choose the water

depth in zone O as the length scale and so the normalised depth is z(()o) =1, and z(()o)/ c
is the time scale, where c is the speed of sound in water and « is the mode amplitude.
We also introduce a small non-dimensional parameter pu = gz(()o)/ 2, which governs the
effects of gravity (g is the gravitational constant) relative to compressibility. Assuming an
irrotational flow, the wave problem is formulated in terms of the two-dimensional velocity
potential ¢(x, z, t), where u = Vg is the velocity field. By neglecting nonlinear terms,
the equation governing ¢ in the fluid interior is obtained by combining continuity with
the unsteady Bernoulli equation (see Bondi 1947)
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Figure 1. Definition sketch of multiple steps.

1t — (Pxx T @z2) + 0, =0, —z0<z<0. (2.1)

The bottom boundary condition is considered rigid, implying

0.=0, z=-z, j=01,2,.... (2.2)
Here, z(()j ) is normalised by z(()o). On the other hand, at the free surface, the combined
kinematic and dynamic boundary condition requires that

@i + e, =0, z=0. (2.3)

Note that variations in the speed of sound can reach a maximum of O(u), as shown by
Michele & Renzi (2020). However, these become more relevant when considering acoustic
modes with length scales much smaller than zo. For long-wavelength waves, however,
the entire water column effectively acts as a waveguide, allowing any minor variations
in sound speed to be averaged out, making the detailed sound speed profile effectively
negligible for the problem addressed here.

Conversely, elasticity effects become important for acoustic-gravity waves propagating
at near-critical depths (Eyov et al. 2013). To avoid unnecessary inclusion of elasticity, we
treat the physical problem as follows: an incident acoustic-gravity mode can be divided
into two parts. The first part reflects and penetrates through the elastic barrier, while the
second part reflects and transitions into acoustic modes (evanescent and higher progressive
modes where applicable) within the barrier zone. Since our focus is on tunnelling effects,
this study explicitly concerns the second part. The effect of elasticity are revisited in the
conclusion section.

2.1. Solution

The fundamental solution in a domain with constant depth is obtained by employing the
separation of variables for the potential ¢, yielding

© =y, f(2) exp <%,uz) explitkyx —wt)}, n=0,1,2,..., 2.4)

where «;, represents the amplitude of the nth mode, &, is the wavenumber of the nth mode,
and o is the frequency. To leading order, neglecting terms O (u?), the system of partial
differential equations reduces to a set of ordinary differential equations (the index j was
omitted unless necessary)

foet R2f =0, —z0<z<0, 2.5)
1

fz+ Euf =0, z=-2, (2.6)

nf. —@*f =0, z=0, 2.7)
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and the solution of the orthonormal eigenfunctions given by

cos £2(z + zp)

()= ; (2.8)
! Vi
0 .
252 282
I :/ cos? 2(z + z0)dz = Z0 + sin( zo)’ 2.9)
—2 48
where 2 is the eigenvalue satisfying
27 =w? — k% (2.10)
Substituting (2.4) into (2.5)—(2.7) yields the dispersion relation
2 _ k2
w® = —p————— tan(2z0) + O (u?). 2.11)
282
Substituting into the dispersion relation and making use of trigonometric identities gives
2_ 12 2 k> — ay 2
— n —
o =k +wn—,uk2+w’%+0(,u), n=1,2,3..., (2.12)

where w, = (n — 1/2)m. Noting that for progressive acoustic-gravity waves §2 and k
are real.

It is noteworthy that when w > £2, k is real, and the dispersion relation corresponds to
progressive modes. Conversely, when w < §2, k =ik is purely imaginary, and the same
dispersion relation corresponds to evanescent modes.

Note that, if the contribution of the gravity wave is considered, then the water depth
should not be assumed deep. Under that setting, §2 >~ ik, the well-known dispersion
relation for the gravity waves can be directly derived from (2.11)

w? = pk tanh(kzo). (2.13)

Under this setting, we shall refer to the gravity mode as the zeroth mode, n = 0.

3. Interaction with a barrier

The solution at the left side of the barrier, denoted by (0), consists of an incident mode i
with amplitude o;, and an infinite sum of reflected modes

(©) (0) o0 () ©)
PROBNOLEL (242 )ei(k;@x—w’) +3 [ cos 2, (242 ) i (k" xror)
=a. (
, J10 = J1©
(3.1

Here, and in what follows superscript (j), with j =0, 1,2, ... denote the different
regions defined in figure 1, subscripts i and n represent the incident and reflected modes,
respectively. In the barrier zone (1)

1 1
o) _ i cos £2; )(z + z(() )) (Olt(lrzei(k'('])x_wt) —i—ozr(ln)e_i(k’(’l)x“Lw)), (3.2)

= v

where subscripts t,n and r, n represent the transmitted and reflected nth modes,
respectively. At the right side of the barrier (2), there is an infinite sum of transmitted
modes
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2 2
@(2) _ i (2) Ccos .Q( )(Z + Z( )) e—i(k,(,z)x-i-wt) ) (33)
2)

n=0 1,5

Matching @© = &M at x = 0 gives
O)JM+Z TN =ay +alh, M=012.... (3.4)
Similarly, matching @) = & at x = L gives
> ) 0 o)
> Tun(ef e b alDe L) =) bl M =0,1,2,.... (3.5)

Finally, matching the horizontal velocity at x =0 and x = L gives the two conditions

ikyorl” 8, — ikjy sy = Zlk Tum(@im — ), M=0,1,2,..., (3.6)
(1) (D > (2
ik (orf e b — oD e ®u L) = 3 k@) e b, M=0,1,2,.... (3.7
m=0

Here, ‘Sf 18 the Kronecker delta and the integral [y, between two regions [ and [ + 1
where [ = [0, 1] is defined as

j=01+1,  (3.8)

7 _/0 cos.(Z(l)(erz(l)) cos .Q(l“)( +z g“’)d
nm — () Z,
/ Iél)#ﬂ)

jnm:(I,El)l,ffﬂ))_]/z(ﬂ,gﬂ)z—Q,EDZ) [20%D cos (202) sin (20+D20+D)
_ ‘Ql(jj) sin (ngi)(z(()l+l) _ Z(()l))) Q(l) cos (9(l+1) (l+1)) (Q(Z) (l))]

n, ifj=I;
lf_{m, if j=1+1. (39)

By applying the boundary condition equilibrium at the interfaces between regions
b=0,1,...,B and for modes n=0,1,..., N, ensuring continuity of both the
potential (3.4)—(3.5) and velocity (3.6)—(3.7), a linear system of equations is constructed.
This system can be represented by a square matrix of size [2B x (N + 1)] x [2B x
(N + 1)], corresponding to N + 1 modes across B interfaces. In the case of a single barrier
(B =2), the matrix has dimensions 4(N + 1) x 4(N + 1). The matrix size increases
accordingly for multi-barrier cases discussed in the following sections. Solving this system

(b ) and a,(bn),

yields an equal number of unknown reflection and transmission coefficients, o,
respectively.

These conditions and expressions govern the interaction of the acoustic-gravity waves
and the surface-gravity wave with the barrier and allow us to determine the amplitudes
of the reflected and transmitted modes for a given incident mode. The transmission
coefficient is maximal when the total number of modes allowed in each region is one,

i.e. evanescent in the barrier zone and progressive elsewhere, as shown in figure 2.
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Figure 2. General solution convergence for (a) surface-gravity wave as the incident wave with A/ z(()o) =16
and (b) acoustic—gravity wave as the incident wave with /l/z(()o) =12.5; in both cases, L/z(()o) =0.5 and
z(()l)/zg)) =0.75.

The more modes that are allowed before the barrier, the more energy is reflected through
mode conversion, leaving less energy available for transfer into evanescent modes, and
thus reducing tunnelling. This scenario is referred to as a particular solution. When
allowing more evanescent modes, energy transfer by the higher modes is less efficient
and therefore the total transmission reduces almost by a factor of two. On the other hand,
increasing the number of modes beyond 25 has a negligible impact on the transmitted
modes, as the relative difference falls below 1 % and the higher-order modes contribute
very little to energy transfer (see figure 4 of Kadri & Stiassnie (2012)). Note that, to ensure
convergence of the solution, including a sufficiently large number of evanescent modes is
necessary.
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3.1. Particular solution

Consider the scenario where only a single incident mode is allowed, specifically the first
acoustic-gravity mode, which propagates from left to right and interacts with the rectan-
gular barrier. We will assume that the water depth in zones 0 and 2 is just above the cutoff
frequency, i.e. deep enough to allow the first acoustic-gravity wave to be progressive, while
in region 1 it is just below the cutoff frequency, allowing only evanescent modes to exist.
This can be expressed as z(()o) = z(()z) = z(()l) + Az, where Az < 1. With this set-up, the
conditions between the zones can be reduced to the following expressions:

O FO 4 @ FO _ (D7) 4 0 71 (3.10)
az(l)f(l)e—KL + ar(l)f(l)eJrKL _ at(Z)f(Z)eikL’ G.11)
and two equations for their derivatives
ikai(o)f(o) — ikocr(o) fO= —/coz,(l)f(l) + /cozﬁl)f(l), (3.12)
— Kat(l)f(l)e_"L + Kaﬁl)f(l)e“L"L = ikat(z)f(z)ei“. (3.13)

After simplification, these equations lead to

WP _ (707

T? = = : (3.14)
V12 14 2 sinh?(cL)
where
k2 2
r— 2:’("' (3.15)
Similarly, the reflection coefficient can be expressed as
1— fO/ @ 4 r2sinh?(k L
R%— O 9 + = sinh”(k )_ (3.16)

1+ I'? sinh?(k L)

If we assume that f© = @ the transmission and reflection coefficients can be further
simplified
2 _ 1 . p2_  I?sinh’(kL)
14 I'2sinh?>(kL)’ 14 I'? sinh?(k L)
The particular solution result is in agreement with the general single-barrier result,
presented in figure 2(b) with circles in the case of a single mode, i.e. the particular
solution. The result here is equivalent to the result for scattering of obliquely incident

surface-gravity waves from a deep trench, described by Kirby & Dalrymple (1983), (4.4).
In the limit where « L >> 1, the transmission coefficient can be approximated as

2

T=—e* 3.18

T (3.18)
This implies that the transmission decays exponentially with increasing barrier width,
resembling the phenomenon of quantum tunnelling. It is interesting to note the similarity
between the transmission and reflection coefficients in this system and those encountered
in quantum tunnelling. In quantum mechanics, the coefficients are given by

; ko= . 3.19
%) - (3.19)

(3.17)
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Figure 3. General solution for A/ z(()o) =125and L/ Z(()O) =0.5. Solid curves: general solution computed using
a single mode without gravity, coinciding with the particular solution. Dashed curves: general solution using
32 modes, with and without gravity mode.

Here, m represents the mass of the particle, E is the particle energy, V is the potential
energy of the barrier and A is Planck’s constant. The analogy suggests that there are
underlying similarities between the behaviour of waves and particles in certain physical
systems. Thus, the transmission and reflection coefficients in (3.1) behave exactly as in
the quantum tunnelling of a single potential barrier, as shown in figure 3. However, in the
general case with 32 modes (with and without gravity) a smaller potential is required to
achieve a similar energy transmission, thus tunnelling becomes less efficient. Interestingly,
for an incident acoustic mode, the contribution of the gravity mode, which is always
progressive, becomes negligible as the acoustic mode approaches its critical value. Within
the frequency range of this study, the gravity mode lies in the deep-water limit, where
surface-gravity waves do not interact with the barrier. The critical value corresponds to the
rightmost end of the curves in the figure. It is worth noting that gravity waves may still form
when two progressive acoustic-gravity wave modes propagate simultaneously. However,
this results from nonlinear triad resonance (see Zuccoli & Kadri 2025 for details), which
lies beyond the scope of this work.

3.2. Gravity as an incident mode

Consider the scenario where the gravity mode (n =0) serves as the incident wave. In
this case, the associated eigenvalue §2¢ is purely imaginary, while the corresponding
wavenumber kg remains real across all regions. This indicates that the wave does not
exhibit exponential decay within the barrier, rendering the analogy to quantum tunnelling,
where energy decays exponentially with barrier length, inapplicable. Nonetheless, we
focus on the scenario where all acoustic modes (n > 1) are assumed to be evanescent,
allowing energy leakage through these modes.
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Figure 4. Transmission coefficient of an incident gravity wave as a function of wavelength, Ag/ayiry /zéo)
(left panels), and barrier depth, z(()l) / z(()o ) (right panels), for a fixed barrier length of L /z(()o) = 3. Panels (@) and

(0)
0

(b) depict variations with wavelength at fixed barrier depths of z(()l) /2o = 0.5 and 0.25, respectively. Panels (c)

and (d) illustrate variations with barrier depth at fixed wavelengths of Aggviry/ z((]o) =3 and 0.2, respectively.
The black curves represent the solution with a single propagating gravity mode, excluding evanescent modes.
The red curves indicate the converged general solution, comprising one propagating gravity mode and ten
evanescent acoustic modes.

In deep-water environments (corresponding to the left end of the curves in figures 4a
and 4b) or when the water depth over the barrier is comparable to the depth outside it
(as shown in panels ¢ and d), the transmission coefficient tends toward one. This indicates
that the gravity wave propagates through the barrier with minimal attenuation, resulting in
nearly complete transmission, as expected.

In the limit of very shallow water, corresponding to the right end of the curves in panels
(a) and (b) of figure 4, the barrier’s influence becomes negligible, provided it does not
obstruct the entire water column. In this regime, the transmission coefficient approaches
unity, indicating nearly complete wave transmission. Conversely, in the deep-water limit
(left end of the same panels) or when the water depth over the barrier closely matches the
surrounding depth (as shown in panels ¢ and d), the transmission coefficient also tends
toward unity, especially when only the gravity mode is considered and acoustic modes are
neglected, such as in an incompressible setting.
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Between these two extremes, transmission is highly sensitive to the wavelength relative
to the barrier length. Introducing evanescent acoustic modes (n > 1) leads to a noticeable
decrease in the transmission coefficient compared with the incompressible case without
these modes. Notably, the inclusion of evanescent modes results in a more rapid reduction
of the transmission coefficient as the barrier height increases, surpassing the attenuation
observed with gravity modes alone. This behaviour highlights the significant role of
evanescent modes in energy leakage and wave attenuation across the barrier.

4. Interaction with multiple barriers
Consider multiple rectangular barriers with regions denoted by »=0, 1,2, ..., B, from

left to right. The origin is located between regions (0) and (1). The distance of the left side
of the bth region is xp, e.g. xg =0 (see figure 1). In each region the velocity potential can
be written as

o0
o = }:

cos .Q(b) (z + Zéb)

1

) (at(,brzei(k,iwx_wz) n aﬁ’lyn)e—i(k,(lb)x—i-wt))’ @

0 (0) —

where for b =0, o:( ) =0 for all n apart from the incident mode n =1, and thus a

azo) #0; and for b = B there are no reflected modes, i.e. aﬁ,n) = (. Matching <1§(b) =
@+ at x = b gives

by i ®) . ® b1y i O+D bil) _ipB+D
ZjMn<()1k xb+0(£”,l)elk”xb =at(A-/|I-)elk,, b4y (+) iky b,

M=0,1,2,... 4.2)
Finally, matching the horizontal velocity at x = xp, forb=0,1,2,..., (B —1)
o
., (b) ., (b) (b+1) B+
ik (at(’b’;elkM Xp _ a;,braze_lkM xb) — Z ko Tatm (al(b’;li'l) ikpy, (b+1) —iky, )
4.3)

Here, the integral .7,,;;, between two regions b and b + 1 is defined as

0 cos .Q,(lb) (z + z(()b)) coSs .(2,$f’+l)(z + (()bH)
Tnm = 0

/Irgb)1n(1b+1)
~1/2 2 2\ ! by . b+l
T = (I 10TD) (.Q,(,f’H) - " ) [.Q,(nb“) cos (202 sin (2¢*Dz0*)
() ) (,b+1) _ _(b) b b+1)  (b+1)y b) .(b)
- .Qlj sin (‘Ql,- (ZO -2y )) - .Qn( ) cos (.Q,(n )ZO ) sin (.Q,g )ZO )] ,

n, if j=b;
lj = 4.
/ Lm if j=b+1. (4.5)

ML F=bb+1,  (44)

These conditions and expressions govern the interaction of the acoustic-gravity waves
with the barrier and allow us to determine the amplitudes of the reflected and transmitted
modes, as well as the reflection and transmission coefficients. In the following section we
focus on a symmetric double barrier and derive the expressions analytically.
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4.1. Interaction with a symmetric double barrier (particular solution)
Now consider a double barrier with its centre located at x = 0, with L being the length of
each barrier, and d is the separation distance. Again, we assume critical conditions, zéo) =
z(()l) —Az= Z(()z) = Z(()S) —Az= z(()4), allowing the propagation of a single progressive
mode at the trough sides of the barriers, and a single evanescent mode at the barriers’
zones. The governing equations become

(e_ik(L+d/2) n a;())eik(urd/z))f _ (at(l)e;«(ud/z) + O[r(l)e—K(L+d/2))f” (4.6)
(oz,(])e"d/z + a;l)e—Kd/Z)f/ _ (at@)e_ikd/z + aﬁz)eikd/z)f, 4.7)
(at(Z)eikd/z + aﬁZ)e—ikd/Z)f _ (at(3)e—/<d/2 + a£3)exd/2)f/, (4.8)

(az(3)e—K(L+d/2) +a£3)eK(L+d/2))f/ :at(4)eik(L+d/2)f’ (4.9)

and the derivatives give

ik(e—ik(L-i-d/Z) _ a’gO)eik(L—O—d/Z))f — —K(az(l)eK(L+d/2) _ a;l)e—/c(L-l-d/Z))f/’ (4.10)

_K(at(nexd/z _ O[r(1)e—/<d/2)f/ _ ik(at(Z)e—ikd/z _ O[r(z)eikd/z)ﬁ 4.11)
ik(at(Z)eikd/Z _ a;Z)efikd/Z)f _ —/c(oz,(S)e*"d/Z _ a£3)exd/2)f/’ (4.12)
_K(at(3)e—f<(L+d/2) _ 0[r(3)e;<(L+d/2))f/ _ ikat(4)eik(L+d/2)f. (4.13)

Solving the set of equations yields
_e—ikQL+d)

T= = ~ ~ )
[I" sinh(2« L)—2iI"2 sinh(k L)?] sin(kd)—[cosh(2«x L)—ikk I" sinh(2«x L)] cos(kd))
(4.14)

iretkQL+d)[_ cos(kd) sinh(2k L)+1I" sin(kd) cosh(2k L) — I” sin(kd)]

R=— = = .
[ sinh(2k L)—2iI"? sinh(k L)?] sin(kd)—[cosh(2«x L) —ikk I" sinh(2«x L)] cos(kd))
4.15)

where I = (k2 — Kz) /2kk. It is easy to show that, when d =0, and taking the length
of each barrier L/2, that the single-barrier equations are retrieved. Strekalov (2018)
demonstrated the significance of double-barrier phenomena and perfect transmission (i.e.
no reflection) even at zero kinetic energy, once the inter-barrier distance meets a resonance
criterion. Again, we see a similar analogy to quantum tunnelling even though our analytical
approach is different that presented by Strekalov (2018). Analogically, perfect transmission
is obtained at specific distances for a given incident mode of fixed wavenumber, as shown
in figure 5; or at specific wavenumbers for given distances, as shown in figure 6. Moreover,
figure 7 demonstrates the dependence of the position of resonance of k> on distance d, in
an analogy to the dependence of the position of resonance of energy on the distance as
shown in figure 2 of Strekalov (2018). In all calculations, ¥ was considered slightly larger
than & to satisfy the critical condition discussed above. Obviously, as k? increases, the
wave frequency increases, wavelength reduces and a smaller distance is required for the
resonance conditions to be satisfied. On the other hand, the following resonance peaks
are associated with the higher modes, i.e. increased k2. Moreover, it seems that each
localised resonance peak splits into multiple peaks around the original localised peak.
The number of the localised peaks is equal to the number of separators, i.e. (B/2 — 1),
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Distance d

Figure 5. Transmission coefficient as a function of distance d at a fixed incident mode of wavenumber k and
L =1. The dashed lines represent particular solution and general solution for the case of N = 1. Solid lines
show general solution with N = 32.

2.0 2.5 3.0

Figure 6. Transmission coefficient as a function of the wavenumber k at fixed distances d and
L =1. The dashed lines represent particular solution and general solution for the case of N = 1. Solid lines
show general solution with N = 32.

as shown in figure 8. The larger the distance between the barriers, the larger the variance
about the peaks becomes. This suggests a possible non-dimensional number that governs
the physical problem.

Notably, the general solution, consisting of a progressive mode before the barrier(s) and
an evanescent mode over the bump region(s), aligns with the particular solution derived in
§8 3.1 and 4.1. This solution is equivalent to the one commonly discussed in the quantum
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Figure 7. Peaks of transmitted energy (resonance) as a function of the inter-barrier distance d for the case of
symmetric double barriers.

tunnelling literature (e.g. Strekalov (2018)) Due to this consistency, we adopted the general
solution for generating the plots presented in this work in figures 3—-6.

4.2. Energy transformation between modes

This section examines the interaction of multiple modes with a single barrier, as the
modes transition from evanescent to progressive states due to varying barrier heights. It is
found that energy distribution between modes after the barrier is highly dependent on the
incident mode and the barrier height (potential). Moreover, a significant mode switching
is observed near the critical heights where modes change from evanescent to progressive,
and energy essentially transforms between the modes.

To gain a more quantitative understanding of this energy transformation we consider a
numerical example (figure 9) comprising three progressive modes allowed in region (0)

where 4=0.75 x z(()o). The general solution presented in § 3 is truncated for a total of
ten modes, including both progressive and evanescent types, to ensure accuracy (e.g. see
Kadri & Stiassnie 2012). The figure illustrates the transmission coefficient T2 as a function
of the normalised barrier length and height (potential). The columns correspond to the
number of the incident mode, whereas the rows depict the transmission coefficient in a
specific mode number. For example, panel (¢) corresponds to the transmission coefficient
in mode 3 provided that mode 1 is the incident mode; whereas panel (/) corresponds to the
transmission coefficient in mode 2 after an incident mode 3. In each panel, the horizontal
solid, dashed and dotted white lines indicate the critical potential at which modes 1, 2 and
3 transition from evanescent to progressive states, respectively.

Panel (a) shows the expected behaviour where, as the potential increases, the
transmitted energy remains in the same mode. However, due to the existence of higher
progressive modes, once the barrier potential allows it (as seen in panel b), the energy is
shared between modes 1 and 2. Tunnelling still occurs, and the amount of energy in mode
1 is larger than in mode 2, but once permitted, some energy leaks to mode 2. A small
portion of energy also transfers to mode 3, as shown in panel (c). This mode-switching
behaviour contrasts with the previous section, where only one progressive mode was
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Figure 8. Transmission coefficient as a function of the wavenumber k at fixed distancesd =1, 2 and L =1
for 1-5 barriers calculated by the general solution with N = 32.

allowed, resulting in energy transferring to the next lowest neighbouring mode — in this
case from mode 1 to mode 2 — near the critical potential (cutoff depth).

When the incident mode is not the lowest, as in the middle column (panels d,e, f),
where the second mode is the incident (i = 2), energy distributes almost equally between
modes 1 and 2 near the dashed line corresponding to the critical potential of mode 2. As
the barrier potential decreases and approaches the point where mode 3 turns progressive,
energy begins to transfer to the third mode as well (panel f).

In the case where mode 3 is the incident (i = 3), i.e. right column with panels g,h,i,
only the first mode is progressive in region (1), for large barrier potentials (below the solid
line), almost one third of the transmitted energy transfers to modes 1 and 2. In panel (),
as the barrier potential decreases beyond the dashed line, energy begins to split between
modes 2 and 3. Finally, when all modes are progressive (below the dotted line), energy
predominantly remains in the third mode, as shown in panel (i).

It is worth noting that resonances due to the barrier length may result in a more efficient
energy transfer between modes. For example, when the incident mode is i = 1 more than
16 % of the energy may transfer to the next lowest mode 2 (panel b), although at a specific
range of barrier lengths a similar percentage (approximately 12 %) is transferred to mode 3
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Figure 9. Effects of barrier length and potential on the transmission coefficient for: mode 1 (a,d,g); mode
2 (b,e,h); mode 3 (c,f,i) for three progressive incident modes in region (0): i =1 (a,b,c); i =2 (d,e.f); i =3
(g,h,i). The corresponding barrier potential to progressive and evanescent mode limits are shown by horizontal
white lines. In all computations a total of 32 modes (up to 3 progressive) were considered.

(panel ¢). When the incident mode is i =2 almost 40 % of the energy can transfer to mode
3 provided the optimal barrier length is employed (panel f).

4.3. A note on Anderson localisation: multi-barrier disorder

Anderson localisation is a phenomenon in condensed matter physics where the wave-like
properties of particles (such as electrons in a disordered medium) become localised and
cannot propagate through the material. This was first proposed by physicist Philip W.
Anderson in 1958, who showed that, in a sufficiently disordered lattice (random
arrangement of atoms or molecules), the interference of scattered waves can lead to a
complete halt in particle transport Anderson (1958).

In practical terms, Anderson localisation explains why electrons in disordered materials
(like amorphous solids or doped semiconductors) can become trapped, leading to
insulating behaviour even in materials that might otherwise conduct electricity. A similar
behaviour is observed, when considering an incident acoustic-gravity wave interacting
with multi-barriers (§4). As is shown in figure 10, the transmission was evaluated
for 1000 randomly generated instances, each with variations in barrier height and

width disturbances, where |Az(b)| < 1/2 and IAL®| <1 /2. The disorder parameter is

characterised by the diagonal length, given by \/ {Az(b) + {AL®}2 The domain length

is set to 100; the average barrier height z(()b) 0.85; and the average barrier length L®) = 2.

The incident wavelength is A =4, where full transmission occurs under the condition
Az = AL® =0,
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Figure 10. Effect of barrier disorder (Anderson localisation) on the transmission coefficient.

4.3.1. Implication to the Argentinian ARA San Juan submarine

The ARA San Juan, a TR-1700-class submarine of the Argentine Navy, sank on
15 November 2017 during a routine patrol in the South Atlantic, resulting in the loss of
all 44 crew members. Shortly after the submarine reported a battery fire, acoustic signals
consistent with an implosion was recorded by hydroacoustic stations of the Comprehensive
Nuclear-Test-Ban Treaty Organisation (CTBTO), Ascension (H10) and Crozet Islands
(HO4) (Vergoz et al. 2021), as well as at Juan Fernandez Island hydroacoustic station
(HO3S) (Kadri 2024). The recorded signals played a critical role in narrowing the search
area, leading to the discovery of the wreckage a year later, in November 2018, at a depth
exceeding 900 m.

Vergoz et al. (2021) carried out a comprehensive analysis on the acoustic signals
associated with the submarine incident. As shown in figure 11, the submarine
was last located at 45.950°S, 59.773°W, approximately 6300 km from the HION
hydrophone, positioned at 7.840°S, 14.480°W. The acoustic waves generated by the
event predominantly fall within the frequency range of 7-10 Hz Vergoz et al. (2021).
These waves are trapped in the sound fixing and ranging (SOFAR) channel, enabling
their propagation over long distances with minimal attenuation. However, the Rio Grande
Seamount lies between the incident location and the hydrophone. Notably, the seamount’s
summit intersects the SOFAR channel depth, which is approximately 2000 m below the
ocean surface. This interaction likely disrupts the acoustic waves’ propagation within the
SOFAR channel, causing energy dissipation and scattering.

To analyse this interference, we modelled the region where the Rio Grande Seamount
and the lower boundary of the SOFAR channel intersect, spanning an effective length
of approximately 250 km. Based on the geometry shown in panel (b) of figure 11,
we considered the average depth of seamount bumps within the highlighted area to be
around 60 % of the SOFAR channel’s depth. Using this configuration, we investigated
the transmission coefficient for acoustic waves in the 7-10 Hz frequency range under a
multi-bump scenario with random bottom topography.
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Figure 11. (@) Bathymetric map of the eastern coast of South America, showing the location of the San Juan
submarine disappearance on 17 November 2017, the HION hydrophone coordinates and the connecting path
across the Rio Grande Rise; (b) vertical transect along the connecting path, displaying sound speed profiles and
the estimated SOFAR channel, corresponding to the minimum temperature layers. A highlighted box indicates
the region where acoustic signals interact with the seamount; (c) effect of barrier disorder on the transmission
coefficient for waves with frequencies ranging from 7 to 10 Hz, passing through multi-bump barriers with a
total length of 250 km and an average blockage of 60 %.

The level of disorder (panel c¢) quantifies the randomness in the multi-barrier
configurations, characterised by variations in barrier length and height. A disorder
value close to O indicates minimal deviation from the mean values, while a disorder
value of 1 corresponds to the maximum degree of randomness in the configuration.
The transmission coefficient was evaluated across 1000 randomly generated instances
(figure 11). Each instance featured variations in barrier height and width, constrained by

IAZ(()b)I <0.5 and |AL®| < 1, respectively. The average barrier height and length were

set at z(()b) = 0.6 and L® = 10, respectively. This statistical approach enabled us to assess

the impact of random seafloor configurations on wave transmission within the specified
frequency range.

5. Concluding remarks

Motivated by quantum tunnelling phenomena, we studied the interaction of acoustic-
gravity waves with rectangular barriers. The analytical solution for transmission (and
reflection) coefficients in the case of a single barrier is found to be analogue to quantum
tunnelling, where the transmission decays exponentially with increasing barrier width
(assuming a single mode in each region). For the double-barrier case, resonance conditions
allow full transmission through tunnelling, again analogously to quantum tunnelling
(Strekalov 2018).
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Moreover, we derived a general multi-barrier solution that allows the propagation of
many modes at any given configuration of barriers. The general solution is interesting
from two different perspectives. Firstly, it suggests that acoustic-gravity waves can
transmit energy even beyond a turning point, e.g. due to shoaling, or due to bathymetric
barriers. This could have implications for short signals travelling large distances, through
bathymetric barriers as in the case of the Argentinian ARA San Juan Submarine.

It is crucial to emphasise that accounting for the elasticity of the sea floor, a necessary
consideration in shallow water and near-critical depth scenarios, fundamentally alters wave
propagation. Under these conditions, only the leading mode propagates through the elastic
medium (Eyov et al. 2013), significantly reducing reflection and enhancing transmission
efficiency — unless tunnelling from only higher acoustic modes is considered — deviating
from the classical analogy with quantum tunnelling. However, even when the leading
acoustic-gravity mode couples with the elastic sea floor, the problem can be conceptually
divided into two parts: penetration through the elastic barrier and tunnelling. The solution
to the first part is essentially provided in (3.1), with sin(x L) replacing sinh(x L), as is
well established in the literature (see Brekhovskikh 1980, pp. 23-26). The solution to the
second part, while conceptually similar to the one provided here, becomes dynamically
more complex due to increased phase speed and greater energy transfer to the surface-
gravity mode, which can no longer be neglected in shallow-water scenarios. This insight
not only offers a new perspective on the wave dynamics in elastic media but also highlights
the significant role of the surface-gravity mode in shallow water tunnelling phenomena.
Further exploration of the gravity mode’s effects under such conditions represents an
essential step towards a more comprehensive understanding of wave—sea floor interactions,
with potential implications for both geophysics and quantum analogue systems.

Declaration of interests. The authors report no conflict of interest.
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