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A B S T R A C T

Digitalisation is transforming various economic sectors, with the digital twin (DT) being a key manifestation for 
complex systems. While numerous studies focus on sector-specific DTs, few offer comparative analyses across 
domains. This paper delivers three major contributions: (1) A six-dimensional characterisation framework that 
systematically captures DT development processes across conceptual (twinning objects, purposes, system ar-
chitectures) and implementation (data, modelling, services) dimensions; (2) Cross-domain comparative analysis 
of DTs across five representative domains (agriculture, manufacturing, construction, healthcare, smart cities) 
using this framework, revealing universal commonalities in DIKW-based intelligence progression and identifying 
three key differentiators—digitalisation capability, cost-benefit dynamics, and socio-ethical risks—that explain 
domain-specific variations in DT maturity and adoption; and (3) A unified Digital Twin Platform-as-a-Service 
(DT-PaaS) solution that standardises common processes, tools, and applications while accommodating 
domain-specific variations through interoperable data models, reusable modelling libraries, and cross-domain 
service orchestration. A case study demonstrates that the proposed DT-PaaS framework enables connected DT 
ecosystems with capabilities for data synchronisation, co-simulation, collaborative learning, and coordinated 
decision-making across sectors. This research establishes the first systematic cross-domain DT comparison 
methodology and provides practical pathways for knowledge transfer between mature and emerging DT do-
mains, ultimately supporting more efficient and interoperable digital transformation.

1. Introduction

Digitalisation, often regarded as the fourth major innovation cycle in 
human history, is transforming nearly every aspect of economic activ-
ities [1]. Among the key technological enablers—including artificial 
intelligence, Internet of Things and autonomous systems—DTs have 
emerged as powerful manifestations of data-centric approaches to sys-
tem engineering. Digital twinning establishes a dynamic correspondence 
and continuous alignment between physical and virtual entities, 
enabling real-time monitoring, predictive analysis, and performance 
optimisation of engineering systems through their digital counterparts 
[2].

1.1. Digital twins evolution

The development of DT has been a cross-domain effort. The idea of 
DT was born at NASA in the 1960 s as a “living model” of the Apollo 
mission, where DTs allowed engineers on the ground to control vehicles 

in space [3]. The DT’s formal academic definition was first introduced in 
Michael Grieves’ work with NASA’s John Vickers in a 2003 lecture when 
they envisioned virtual models as foundations for product lifecycle 
management [4]. Later, Grieves expanded the concept to align with 
product lifecycles through four components [5]: DT Prototype (design 
phase), DT Instance (individual manufactured products), DT Aggregate 
(accumulation of instances), and DT Environment (virtual representa-
tion of the physical environment enabling simulation and evaluation). 
The modern DT framework was emphasised as a central vision for In-
dustry 4.0 in manufacturing, supporting process optimisation and life-
cycle management [6]. The adoption of DTs has since expanded into 
other industries and fields, including real-time urban mobility moni-
toring [7] and sustainable development [8] within smart cities, as well 
as medical resource management [9,10] and precision medicine [11] in 
healthcare. Though the physical object and context differ across do-
mains, the core definition of DT remains consistent - they all describe 
real-time, bidirectional, data-driven virtual representations of physical 
entities that enable monitoring, prediction, and optimisation.
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1.2. Research gaps

Despite this widespread adoption and advancements in DT research, 
there are significant limitations that motivated this comparative study:

1.2.1. Restricted domain focus
Existing research on DT tends to focus on a specific domain, and 

these studies often benchmark DT applications against advanced do-
mains such as manufacturing. For instance, [12] surveyed DT applica-
tions in smart cities against Industry 4.0, and [13] reviewed DT 
developments in manufacturing and maritime domains. [14] summar-
ised features of manufacturing DT and discussed their applicability for 
the built environment. These one-to-one comparisons, while valuable, 
fall short of uncovering shared challenges and transferable insights.

1.2.2. Limited interdisciplinary insights
Existing studies on DT applications across domains often provide 

only brief and unstructured comparisons. For instance, [15] examined 
DT applications across various industries with a focus on construction, 
limiting the comparison to aspects such as usage and benefits. While 
some characterisation frameworks for DTs exist, they are typically 
confined to single domains, lacking cross-domain application or analysis 
of distinct characteristics from different fields. This narrow scope 
struggles to uncover deeper insights into the interdisciplinary potential 
of DTs.

1.2.3. Insufficient theoretical foundations
Most DT review studies primarily rely on existing DT literature 

[16–19], often neglecting to trace the origins of the terminology or 
explore the foundational principles. As a result, these studies tend to 
describe what DTs currently represent but fall short of explaining the 
origins of the concepts or the rationale behind the terminology used to 
define DTs.

1.2.4. Gap between high-level principles and implementation guidance
While the Gemini Principles [20] define high-level objectives for DTs 

(public good, value creation, insight, security, interoperability, federa-
tion, curation, evolution, and quality), but do not specify how these 
objectives should be operationalised across different domains. Similarly, 
existing analysis frameworks provide valuable contributions by pro-
posing systematic approaches that focus on common functional char-
acteristics for comparison, enabling the characterisation and 
comparison of different DTs through unified frameworks [21]. However, 
these frameworks primarily address functional requirements and com-
parison methodologies but lack implementation guidance, procedural 
details, and systematic approaches for identifying transferable insights. 
This paper argues that a comprehensive characterisation framework and 
its application in a structured cross-domain comparison are necessary to 
address these fundamental gaps and enable systematic knowledge 
transfer across domains.

1.3. Need for cross-domain analysis

The need for cross-domain DT analysis is driven by both theoretical 
foundations and practical urgency across multiple dimensions:

1.3.1. Interdisciplinary nature and global challenges
The interdisciplinary nature of digital twinning demands a more 

holistic approach. The advancement of DT has utilised concepts from 
various engineering fields - complex systems engineering, software en-
gineering, modelling engineering, etc. This interdisciplinary foundation 
suggests that insights from one domain could benefit others, yet sys-
tematic cross-domain analysis remains unexplored. Furthermore, 
emerging global challenges—such as pandemic response, climate 
change mitigation, and sustainable development—require inter-
connected systems that span multiple domains. For instance, addressing 

urban sustainability requires coordination between energy supply sys-
tems, building performance and transportation networks. Such complex 
challenges cannot be addressed through isolated, domain-specific DTs.

1.3.2. Universal principles vs. domain fragmentation
Cross-domain DT research is critical because it reveals the universal 

principles hidden beneath apparent domain-specific differences, pre-
venting the fragmentation of what is fundamentally a single, trans-
formative technology, while current domain-specific approaches create 
differences in scholars’ understanding of the same entity in different 
fields [22]. Without systematic cross-domain analysis, each sector con-
tinues to reinvent the wheel, leading to domain-specific development 
where applications might differ in requirements but unnecessarily 
duplicate data processing techniques and modelling capabilities [17].

1.3.3. Knowledge transfer and multi-domain integration
The cross-domain DT research could enable critical knowledge 

transfer from mature to emerging domains while addressing complex, 
multi-domain challenges that span multiple sectors. Agriculture repre-
sents the next stage of DT use after its application to the manufacturing 
industry [23], demonstrating how insights from mature domains can 
accelerate development in emerging ones. In addition, modern chal-
lenges require DT applied across healthcare, agriculture, retail, 
manufacturing, energy, and transportation working together as inte-
grated solutions [24], which require DTs that can model not just indi-
vidual entities but also the whole system where multiple domains 
interact [25].

Given the identified research gaps and importance of cross-domain 
DT analysis, this study divides the cross-domain comparison into two 
stages: Stage 1: Establishing a principle-based terminology characteri-
sation DT framework. This framework should be grounded in principles 
that trace the historical and conceptual development of DTs, providing 
deeper insights into their evolution and underlying rationale. It should 
also capture the key procedures for DT implementation across various 
domains, ensuring a comprehensive understanding of their foundational 
aspects. Stage 2: Applying this framework to analyse DTs across mul-
tiple domains. This comparison would identify commonalities and 
domain-specific features, aiming to uncover the principles that univer-
salise or differentiate DT applications, thereby enabling knowledge ex-
change and interdisciplinary collaboration.

The rest of this paper is organised as follows: Section 2 outlines the 
methodology of this study, including the rationale for domain selection 
and the synthesis of a six-dimensional DT comparative framework. 
Section 3 presents the selection of domains based on the Three Sector 
Model and academic publication analysis. Section 4 details the synthesis 
of the comparative framework, defining the six dimensions: twinning 
objects, twinning purposes, system architectures, data, modelling, and 
services. Section 5 applies the framework to analyse selected DT ar-
chetypes across the five domains (agriculture, manufacturing, con-
struction, healthcare, and smart cities). Section 6 discusses cross-domain 
observations and insights that universalise or differentiate DT applica-
tions, as well as proposes a unified DT-PaaS solution for cross-domain 
DT development. Finally, conclusions and future research directions 
are drawn in Section 7.

2. Methodology

With the research gaps and research significance discussed in Section 
1, the overall research objective − how to conduct a cross-domain DT 
comparison – has been broken down into a two-stage comparative 
analysis process, as reflected in the following research questions: 

• RQ1: What are the most frequently discussed DT domains, and what 
domains are most suitable for comparative analysis?

• RQ2: How can a framework be developed to enable the comparison 
of DTs across various domains?
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• RQ3: What are the defining characteristics of DTs in each selected 
domain based on the comparative framework?

• RQ4: What similarities and differences exist in the characteristics of 
DTs across the selected domains?

• RQ5: How can the identified similarities facilitate cross-domain 
synergy in DT development?

Stage 1 addresses RQ1 and RQ2: For RQ1, the domains selected 
were required to be representative and encompass major DT applica-
tions. DT-related publications were sourced from Scopus and Web of 
Science and filtered into two subject lists − one for each database. The 
classic Three Sector Model was then leveraged to categorise and refine 
these subjects into three groups, from which one or two representative 
domains were selected for in-depth analysis and cross-domain compar-
ison. For RQ2, existing DT characterisation frameworks from academic 
literature were systematically examined, and key DT attributes were 
conceptualised into three levels of categories to establish a principle- 
based six-dimensional characterisation framework grounded in DT his-
torical and conceptual development principles. Stage 2 encompasses 
RQ3-RQ5: For RQ3, representative DT use-cases from each selected 
domain were analysed using the comparative framework. The charac-
teristics of these use-cases were extracted and linked to the underlying 
reasons for the observed phenomena, often reflecting the demands and 
nature of the domain. For RQ4, thematic analysis using the Principles of 
Variation and Universality [26] was conducted to summarise and 
explain the differences and similarities between DTs across domains. 

Finally, for RQ5, the insights gained from the six-dimensional frame-
work and the explanatory theory were used to propose universal DT 
solutions. These solutions were integrated into a unified cross-domain 
DT-PaaS.

The five research questions of two stages, along with their corre-
sponding research methods, are presented in the methodology illus-
trated in Fig. 1.

3. Selection of domains

To systematically select representative domains for cross-domain DT 
comparison, an appropriate classification framework is essential. While 
DT represents fundamentally an engineering technology, the ultimate 
goal of digitalisation and digital twinning is to improve efficiency in 
human economic activities, making economic frameworks suitable for 
domain selection. The selection criteria require a model that can capture 
and categorise all research areas of DT while being sufficiently simple 
for systematic analysis; therefore, widely acknowledged foundation 
theories are preferred.

In economics, the production chain is often used as an analytical tool 
to understand the production process. The Three Sector Model, devel-
oped by economists Fisher and Clark [27], categorises economic activ-
ities into three categories: 1) the primary industry, where raw material 
are extracted from natural resources; 2) the secondary industry, 
involving the transformation of raw materials into manufactured goods 
and constructed assets; and 3) the tertiary industry, which delivers 

Fig. 1. Methodology diagram for comparative framework development.
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services to customers and end-users. This model provides a systematic 
framework for DT domain selection because it ensures comprehensive 
coverage across fundamental economic activities, enables structured 
comparison across different types of production processes, and allows 
for analysis of digitalisation patterns that may correlate with economic 
sector characteristics.

To assess the presence of DTs across economic sectors, a cluster of 
publications was retrieved with the search query “digital twin” from the 
academic databases Scopus and Web of Science, covering the period 
2015–2023. The initial search yielded 10,600 papers from Scopus and 
6411 papers from Web of Science. The two databases were selected as 
Scopus provides ’Subject Area’ filtering and Web of Science offers 
’Category’ filtering, which align with economic sector categorisation 
and are essential for the domain selection methodology using the Three 
Sector Model. The filtering tools of these databases were then applied to 
classify the collected publications by subject area or category. Inclusion 
criteria comprised peer-reviewed articles and book chapters in English 
language, while exclusion criteria eliminated data papers, letters, notes 
or non-English papers.

The two clusters of research domains obtained were then manually 
picked up, assessed, refined, and combined through a thematic analysis 
process to ensure accurate domain categorisation and eliminate over-
lapping or ambiguous classifications. The refined research domains were 
subsequently mapped to the Three Sector Model, ranked by the number 

of publications, and selected based on their presence in the research 
literature.

Finally, representative sectors for each industry were selected for 
reviewing DT research and application, following the procedures illus-
trated in Fig. 2. From the primary sector, agriculture was selected based 
on publication volume and research activity. Manufacturing and con-
struction were chosen from the secondary sector due to their prominent 
presence in DT literature and established research foundations. For the 
tertiary sector, multiple service domains were identified, including 
transportation, water, social science, healthcare, healthcare, business, 
and economics. These were consolidated into two clusters: the majority 
of them were grouped as “smart city” due to their spatial relationships, 
municipal governance, and infrastructure-centric nature; healthcare was 
kept separate due to its human-focused, individual-centric service de-
livery and distinct stakeholders. Business and economics were excluded 
as they are not engineering-related.

4. Synthesis of comparative framework

The comparison of DTs across multiple domains can be viewed as a 
form of comparative analysis. According to the methodology outlined in 
[26], the study aims to establish that every concept, implementation, 
and use case of DTs adheres to the same set of principles. To achieve this, 
a universal frame of reference must be developed based on the following 

Fig. 2. Selection of digital twin domains for comparative study.
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criteria: 

• Inclusivity: The framework should encompass all commonly agreed 
core elements of DTs.

• Causality: The elements should reveal underlying causal patterns.
• Universal Applicability: The framework should be applicable to DTs 

across all domains, scales, and use cases.
• Balanced Detail: It must provide sufficient detail for comprehensive 

analysis while remaining reasonably simplified to ensure the 
conciseness of the comparative study.

4.1. Evaluation of existing DT frameworks

Relevant work has been reviewed against the above criteria based on 
systematic literature analyses from academic research. The results are 
summarised in Table 1.

4.2. Framework synthesis methodology

Currently, there are no clearly defined criteria for comparing DTs 
across domains. A framework for comparison is therefore essential, with 
explicit parameters and criteria for measurement. Furthermore, since 
the appearance and behaviour of DTs are not directly measurable, a 
process of operationalisation is required to define the attributes for 
effective comparison. With this framework, features of typical DTs from 
selected domains can be extracted and compared. Consequently, the DT 
comparative framework is synthesised through the following steps: 

• Conceptualisation of DT Attributes: Identifying and defining key 
attributes of existing DT frameworks.

• Characterisation of DT Attributes: Structuring the attributes into 
categories and sub-categories based on shared and domain-specific 
features.

• Operationalisation for Measurement: Establishing criteria and pa-
rameters to enable measurable and meaningful comparison.

By summarising the DT characterising frameworks in Table 1, it 
becomes evident that characteristics of DT can generally be divided into 
two broad groups: abstractions and concepts on one side, and 
implementation-focused tools and techniques on the other. Accordingly, 
it is proposed that the frame of reference shall be primarily divided into 
two categories − conceptualisation and implementation − to assess DTs 
across domains in terms of their conceptual and technical development.

Numerous publications [2,16]. [31,32] emphasise that the starting 
point of digital twining is the physical entity, and the purposes must be 
clearly defined in the beginning. This is consistent with the Gemini 
Principles [20]. The purposes of digital twinning encompass the objec-
tives to be achieved [29], the values to be created [31] and the appli-
cation to be realised [32].

To bridge the starting point and purposes, a bi-directional and 
synchronised data link [16]. [2]. [30,31] shall be introduced, alongside 
with some other elements (users [29–32], life-cycle stage [28,29,32], 
etc), to be packaged into the system architecture, as a presentation of the 
whole picture of the conceptualised DT.

After establishing the conceptual foundations of DTs, the next step 
addresses their implementation—how to transform these concepts into 
working systems using various technologies and methodologies. Three 
steps were identified for the technology-oriented implementation. To 
begin with, the behaviours of the physical entity are captured in the 
form of data via technologies such as sensors, cameras and scanners. To 
interpret the data, certain levels of computing power are required so the 
data is transmitted to another venue, normally the cloud. There might be 
a reduction in the complexity of data during the communication, but the 
nature of the data remains unchanged until the next step, where data is 
reconstructed to form models that can mimic the operation of the 

Table 1 
Digital twin characterising frameworks.

Ref. Domains DT Characterising 
Frameworks

Comments on frameworks

[16] Manufacturing, 
energy, aerospace, 
automotive, 
agriculture, 
healthcare

1) Industrial sector
2) Purpose
3) Physical 

reference object
4) Completeness
5) Creation time
1) Connection

• Provide perspective on 
the application 
scenarios of DT across 
industries

• DT technical 
development details 
are not included

[28] Multiple domains 2) Application 
context

3) Life-cycle phases
4) Functions
5) Architecture
6) Components/ 

technologies

• Defined where, when, 
why and how to 
develop a DT

• Physical object and 
digital modelling are 
not addressed

[29] Multiple domains 1) Goals
2) User focus
3) Life cycle focus
4) System focus
5) Data sources
6) Data integration 

level
7) Authenticity

• For application- 
oriented DT applica-
tions and universally 
valid in all DT related 
domains

• All the key elements are 
covered, but lack 
details and the links on 
the elements

[2] Manufacturing 1) Physical entity/ 
virtual twin

2) Physical/virtual 
environment

3) State
4) Metrology
5) Realisation
6) Twining rate
7) Physical-to- 

Virtual 
connection

8) Virtual-to- 
Physical 
connection

9) Physical/virtual 
processes

• A complete conceptual 
description of the DT

• Some implementation 
tools and technology 
are described

[30] Based on the 
Manufacturing 
domain

1) Purpose
2) Data input
3) Data link
4) Synchronisation
5) Interface

• Possible to be used as a 
reference to measure 
the DT development 
progress

• Digital model and 
application/services 
are not introduced

[31] Multiple domains 1) Scope of physical 
entity

2) Feature of a 
physical entity

3) Scope of virtual 
entity

4) Form of data 
communication

5) User-specific 
output/values

• For cross-industry clas-
sification and develop-
ment of applications 
within the concept of 
the DT

• Major DT elements are 
covered, and can be 
used as a basis for 
creating a more 
detailed framework

[32] Multiple domains 1) Application areas
2) Federation
3) Layering
4) Spatial scale & 

resolution
5) Temporality & 

resolution
6) Lifecycle stage
7) DT actors & asset 

stakeholders

• Enable decision-makers 
to articulate the DT 
user requirements

• involve the supply and 
delivery of a complex 
DT by multiple parties

• Technical elements are 
not fully covered

[33] For manufacturing 
systems

1) Physical entity
2) Virtual model
3) Service
4) Data
5) Connection

• Emphasis on functions 
and practice, clear 
causal links are 
presented between DT 
elements

• Can be further 
extended for cross- 
domain comparison
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physical object. While setting up the modelling of the physical object 
might be a milestone, it is not the destination. As the final step, different 
levels of services are delivered to the users to meet their demands 
defined in the purposes.

To conclude, the six-dimensional framework was derived through a 
systematic analysis of the frameworks in Table 1. The synthesis process 
involved: (1) extracting common elements across frameworks (e.g., 
physical entity, purpose, data, services, etc.); (2) grouping similar ele-
ments into broader categories (e.g., “physical entity,” “scope of physical 
entity,” and “feature of physical entity” were consolidated into “twin-
ning objects”); and (3) organising each dimension into sub-categories to 
accommodate domain-specific variations while maintaining universal 
applicability.

Thus, a six-dimensional comparative framework of DTs is shown in 
Fig. 3, it describes a DT from characteristics in the conceptual devel-
opment and technical implementation. The framework synthesises in-
sights from the existing frameworks (Table 1) into six core dimensions: 

three conceptual dimensions (twinning objects, twinning purposes, 
system architectures) and three implementation dimensions (data, 
modelling, services), with each dimension extended to multi- 
hierarchical to include representative categories and sub-categories 
based on the DT studies from different domains.

4.3. Framework specification

This section operationalises the six-dimensional comparative 
framework by establishing explicit parameters and criteria for mea-
surement across domains. Since DT characteristics are not directly 
observable, each dimension requires detailed specification to enable 
systematic comparison. The following sub-sections define the scope, 
categories, and measurable attributes for twinning objects, purposes, 
system architectures, data, modelling, and services. This operationali-
sation transforms the abstract framework into a practical tool for 
extracting and comparing features from domain-specific DT 

Fig. 3. Six-dimensional cross-domain digital twin comparative framework.
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implementations in Section 5.

4.3.1. Twinning objects
A twinning object is the entity for which the DT is created, making its 

identification the first question to address when developing a DT. 
Analysis of twinning object patterns across relevant studies reveals three 
insights critical for cross-domain DT development and transferability.

Initially, twinning objects were predominantly physical, human- 
made entities, such as a product [34] or a factory [35]. More recently, 
interest has expanded to include natural entities such as animals [36], 
climate systems [37] and abstract entities like enterprise DTs, which 
replicate the operation of organisations that do not physically exist 
[38,39]. This progression from purely physical objects in early 
manufacturing studies to conceptual entities in recent healthcare and 
organisational research signals DT technology’s maturation beyond its 
manufacturing origins and purely physical representations.

The commonality among these entities − whether physical products, 
natural systems, or abstract organisations- lies in their existence in the 
real world, either physically or conceptually, enabling them to be digi-
tally twinned in cyberspace. Hence, though some papers refer to the 
twinning object as a “physical twin,” this study adopts the term “twin-
ning object” to reflect broader developments and applications.

On another dimension, twinning often focuses on specific aspects of 
an object, such as geometry, materials, or behaviours, depending on 
the information of interest to DT users. Therefore, it is crucial to consider 
which aspects of the object are twinned and how this selection impacts 
the twinning process.

Both industry and academia have proposed practices to characterise 
twinning objects. Siemens [40] categorises twinning objects based on 
the product lifecycle stage, identifying product twins for efficient design, 
production twins for production planning, and performance twins for 
capturing and analysing operational data. IBM [41] defines twinning 
objects in terms of magnification levels, ranging from component twins, 
which focus on individual parts, asset twins that study interactions be-
tween components, system twins representing entire functional systems, 
to process twins that reveal how systems collaborate.

The distinction between these categories primarily lies in their 
application areas. For instance, Whyte et al. [42], in a feasibility study 
for the Thames Tideway Tunnel scheme, proposed three levels of 

twinning for various subsystems: asset, project, and system of systems, 
each employing different modelling techniques. Similarly, Rosen, 
Boschert and Sohr [43] suggest that a production system can be twinned 
at three scales: product, process or system. Tao et al. [33] classify entities 
by function and structure into unit, system, and system of systems (SoS) 
levels. Al-Sehrawy, Kumar and Watson [32] further extend this frame-
work to urban DTs, proposing a classification into sub-system, system, 
and system of systems to enable inter-organisational collaboration and 
address sectoral silos in infrastructure.

In conclusion, twinning objects can be broadly categorised according 
to their federation/aggregation: units, systems, or systems of sys-
tems. The selection of the twinning object depends on the research 
purpose and focus, with different objects dictating different modelling 
techniques.

4.3.2. Twinning purposes
The purposes of digital twinning define the rationale for creating a 

particular DT. They establish the critical link between the DT system and 
the applications, functions, or use cases the DT is intended to serve. DTs 
are developed for a variety of purposes, even when addressing the same 
physical twinning object. These purposes determine which aspects of the 
physical asset are digitised and the level of detail the DT should 
encompass relative to its physical counterpart [44]. Furthermore, the 
purposes influence other key DT components, including system archi-
tecture design [45], modelling fidelity and dynamics [46], and the ser-
vices to be delivered [47]. Therefore, it is essential to define the 
purposes of a DT before proceeding with design, development, or 
implementation.

A significant body of cross-domain research has categorised DT 
purposes. In agriculture, Pylianidis et al. [48] categorised DT functions 
into four levels: (1) fundamental, with monitoring, user-interface, and 
analytics; (2) enhanced, including actuator components for control; (3) 
further enhanced, with simulation capabilities; and (4) the highest level, 
incorporating learning capabilities to uncover underlying system 
mechanisms. For manufacturing, Wagg et al. [46] proposed a five-level 
capability hierarchy: supervisory, operational, predictive, learning, and 
autonomous management. In the construction domain, Boje et al. [49] 
described a three-tier paradigm for DT platforms, ranging from moni-
toring platforms to intelligent semantic platforms, and finally, agent- 

Fig. 4. Digital twin intelligence mode and analogy to human intelligence.
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driven socio-technical platforms, reflecting increasing levels of intelli-
gence and lifecycle integration. In the city’s domain, Al-Sehrawy et al. 
[32] developed a multi-dimensional classification framework for city DT 
uses, dividing them into four categories: information mirror, commu-
nication, analysis, and control. On a broader cross-industry scale, Enders 
& Hoßbach [16] summarised DT application purposes into three lev-
els—monitoring, simulation, and control—based on a systematic liter-
ature review of major DT application domains.

Across different domains, the purposes of DTs share several com-
monalities, including real-time monitoring, fault analytics, simulation 
and prediction, and optimisation. These purposes are often classified 
based on capability and intelligence levels, which can be evaluated from 
two perspectives: (1) situational awareness and understanding, and (2) 
timeliness of response. Therefore, an analogy can be drawn as in Fig. 4 to 
match DT intelligence to human intelligence for clarity. Furthermore, a 
single DT can perform different levels of intelligence in applications; in 
other words, DTs may shift between modes depending on their purpose 
and application requirements. These modes correspond to the levels of 
DT intelligence and are analogous to how humans adopt different roles 
in their professional tasks.

The first level/mode, “passive(oversight)” involves monitoring the 
physical twin without influencing it while at the second “reactive 
(hindsight)”, DTs at these levels may analyse data and understand sit-
uations, their performance is typically reactive, with delayed responses 
to take predefined actions based on changes in the physical twin or its 
environment. The “predictive (foresight)” level involves simulation- 
based predictions of future scenarios, enabling pre-planning and tar-
geted optimisation, though human intervention is still required to close 
the control loop. At the highest level, “proactive” and “autonomous” DTs 
achieve a degree of autonomy by influencing their physical twins 
through actuators, facilitating lifecycle management with minimal 
human involvement. This hierarchy can be applied as a universal scale 
for assessing the purposes of digital twinning. This purpose intelligence 
hierarchy (from passive to autonomous) represents the decision-making 
autonomy of the DT system, which is distinct from but related to the 
cognitive sophistication of services delivered (DIKW framework dis-
cussed in Section 4.3.6). Purpose intelligence addresses decision-making 
authority and timing, while service sophistication addresses cognitive 
processing complexity.

Notably, while the emergence of agentic AI represents a potential 
advancement in DT capabilities, its integration with DT systems presents 
both opportunities and significant challenges. AI agents can theoreti-
cally be positioned at the wisdom level of the DIKW hierarchy due to 
their autonomous decision-making and proactive action capabilities 
[50], yet current implementations often struggle with reliability, 
explainability, and contextual understanding in complex real-world 
environments. Agentic AI-equipped DTs incorporate autonomous 
agents that can independently analyse situations and execute actions 
without human intervention [51], though concerns remain regarding 
decision transparency and accountability in critical applications [52].

On top of the basic demands, the values that DTs will create for or-
ganisations and society also motivate the adoption of this technology. 
The Gemini Principles [20] for DTs of the built environment emphasise 
public good, openness and trustworthiness as foundational values. 
Current DT applications are often motivated by two primary value 
drivers: performance-centric and human-centric goals. Performance- 
centric DT intelligence, such as optimisation, predictive maintenance, 
and autonomy, focuses on efficiency and effectiveness. However, 
human-centric DT design is increasingly discussed. For example, 
Schrotter and Hürzeler [53] introduced the DT of the City of Zurich for 
collaboration on urban planning and public awareness on climate 
change. Longo, Nicoletti and Padovano [28] proposed a human-centric 
paradigm, where manufacturing employees are integral to the system, 
empowered with knowledge of manufacturing processes to enhance 
both production and business outcomes.

Excessive automation enabled by DTs could introduce societal 

challenges, such as unemployment. As Elon Musk [54] argued, closing 
the manufacturing control loop without human involvement could 
erode buying power and weaken business performance. Hence, while 
performance improvement is often the primary goal, human-centric 
design remains vital to achieving long-term benefits for organisations 
and society.

4.3.3. System architectures
The identification of twinning objects and purposes is often a 

straightforward process, but mapping them to a coherent system ar-
chitecture can present significant challenges. However, established 
concepts and practices from other fields offer valuable insights to 
address this issue. In system and software engineering, once the starting 
point (i.e., the twinning object) and the objective (i.e., the twinning 
purpose) are identified, the next step in conceptualisation is to compose 
a system architecture that enables the system’s expected functionalities 
[55]. To conceptualise DT architectures further, the academic commu-
nity has developed reference models [56,57], reference architectures 
[47,58] and architectural styles such as multi-layered [59] and service- 
oriented [60] approaches tailored to DT systems.

This taxonomy is well-described by Len Bass and Paul Clements 
(2003) in the book Software Architecture in Practice, where the 
completeness of a software system’s architecture is defined across three 
levels: reference model, reference architecture, and software architec-
ture. Architectural styles are linked to system quality attributes and act 
as the foundation for attribute-driven architecture design.

Building on these terminologies, researchers have worked to extract 
DT architectural features and develop classification frameworks. Eind-
hoven and Version [61] described a method to classify architecture 
frameworks for automotive software systems based on the level of 
abstraction, starting from logical architecture to functional architecture 
and finally implementation architecture. Tekinerdogan and Verdouw 
[62] proposed a pattern-oriented approach for architecting DT-based 
agricultural systems, featuring a catalogue of nine distinct architec-
tural design patterns tailored to various use cases (e.g., model, matching, 
proxy, monitor, control, autonomy). These patterns primarily employ 
multi-layered architectures, where each layer performs specific tasks, 
and additional layers accommodate higher levels of intelligence and 
complexity.

Similarly, Ghita, Siham and Hicham [63] presented a DT reference 
architecture inspired by RAMI 4.0 (Reference Architecture Model for 
Industry 4.0) and its variants. These architectures were designed for 
diverse industrial ecosystems, including industrial IoT, complex system 
engineering, and cloud services. They consist of two primary layers, 
each housing distinct functional elements. These elements provide var-
iable performance across contexts such as data management, multi- 
agent interoperability, security management, and functional suit-
ability. Ferko, Bucaioni and Behnam [45] conducted a systematic 
mapping of DT proposals in the literature, aligning them with archi-
tectural solutions, patterns, and quality attributes. Their study 
concluded that most DT architectures combine layered and service- 
oriented patterns to address attributes such as maintainability, perfor-
mance efficiency, and compatibility.

Multi-layered architectures are widely referenced in DT imple-
mentations. This approach organises modules or components with 
similar functionalities into horizontal layers, each performing a specific 
role [64]. In the manufacturing domain, DT architectures often share 
conceptual foundations with cyber-physical systems (CPS), both 
addressing physical-cyber integration challenges. While CPS emphasises 
real-time control and system automation, DT focuses on virtual repre-
sentation and predictive capabilities [33]. However, it is important to 
note that the relationship between CPS and DT varies across imple-
mentations and researchers’ perspectives. While some view DT as a 
specific realisation of CPS concepts [33], others position DT as a com-
plementary technology that can operate within or alongside CPS ar-
chitectures [65]. Many manufacturing implementations combine both 
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approaches, leveraging CPS infrastructure while providing additional 
capabilities for predictive modelling and virtual experimentation.

CPS, a core concept of Industry 4.0. CPS is based on the ISA-95 ar-
chitecture, has evolved into the 5C architecture, which comprises five 
layers: connection, conversion, cyber, cognition, and configuration. 
Component-based or module-based architectures are prevalent in 
manufacturing for constructing CPSs [66]. Meanwhile, service-oriented 
architectures, drawn from advances in computer engineering, have been 
applied to multi-service-based DT implementations. For instance, [67] 
proposed a software-intensive DT architecture to achieve contextual- 
awareness and automatic self-management.

It is important to note that DT architectures differ from pure software 
system architectures because they include physical twins and a range of 
hardware components for data acquisition, processing, and delivery. In 
conclusion, the system architectures of DTs should be evaluated based 
on their levels of completeness, architectural patterns, and quality at-
tributes in a comparative framework.

4.3.4. Data
Data acquisition and communication form the foundational layer for 

DT implementation, capturing behaviours of twinning objects and 
enabling the transformation from physical reality to digital representa-
tion. It is widely recognised that the foundation of DTs lies in data [29], 
with data quality and accessibility directly determining DT capabilities 
[65] and service sophistication [68].

Data approaches reflect varying domain constraints, revealing sys-
tematic patterns of technology adoption and adaptation. Manufacturing 
utilises advanced industrial IoT with standardised protocols (OPC UA, 
MQTT) and established formats (STEP, AutomationML) for precision 
control applications [69,70]. Agriculture employs resource-constrained 
approaches using low-power sensors with seasonal sampling frequencies 
matching biological growth cycles. Construction relies on high-fidelity 
reality capture technologies (laser scanning, photogrammetry) and IFC 
standards, though requiring significant enhancements for dynamic 
operational applications [49]. Healthcare implements privacy- 
preserving wearable devices with wireless communication (Bluetooth) 
while managing sensitive personal data. Cities integrate complex het-
erogeneous multi-source data streams through hybrid communication 
systems (NFC, Wi-Fi, NB-IoT, fibre optics) and geographic standards 
(GML) [71]. The domain-specific patterns reveal maturity gaps, as 
manufacturing benefits from decades of industrial automation invest-
ment, while agriculture and healthcare face fundamental economic and 
regulatory barriers that limit sophisticated data infrastructure 
deployment.

The first step in DT implementation is to acquire data capable of 
describing the conditions of the twinning object. The most common 
method is automated real-time data collection via sensors, including 
physical phenomenon detection and visual capture, such as cameras. 
Sensors are generally classified by mechanism (e.g., mechanical, elec-
tronic, chemical, and biosensors) and integrated into systems for reliable 
data collection. In some applications, retrieving historical or external 
data from databases is also required. For example, Newbery describes a 
chemical process, DT that receives live data from sensors attached to 
physical assets, historical data from external databases, and weather 
data (e.g., humidity and temperature) from national weather services.

Data acquisition is typically conducted through sensor networks 
deployed in various scenarios, such as cities, construction sites, farm-
land, factories, or even personal applications. These networks employ 
versatile sensors like gauges, high-resolution cameras, scanners, QR 
tags, and readers, selected based on the DT services required. Sampling 
frequency, highly tied to the timeliness of the digital representation of 
the physical entity, is determined by domain-specific characteristics. For 
instance, agriculture DTs do not require high sampling frequencies due 
to the slow growth process of crops, whereas manufacturing applica-
tions, such as 3D printing DTs, demand high sampling rates to reflect 
rapid manufacturing processes and ensure product quality.

Another critical factor is sensor placement, including the quantity 
and location of sensors, which directly impacts the accuracy and gran-
ularity of the DT. Optimal sensor placement remains a key research 
focus, as it varies significantly across domains. For example, acceler-
ometer placement for structural health monitoring (SHM) considers 
structural elements, material, geometry, and algorithms, while wearable 
sensor placement in healthcare depends on medical knowledge and 
patient conditions. Sensor energy management is another research 
hotspot, as a stable power supply remains challenging in many sce-
narios. Research focuses on three main solutions: renewable energy 
sources (e.g., wind, solar) for sensor nodes, ultra-low-power sensors 
capable of running for years on batteries, and self-powered or energy- 
harvesting sensors (e.g., vibration energy harvesters and self-powered 
biosensors).

Data transmission can use wired or wireless communication. While 
wired networks offer greater data volume capabilities, wireless 
communication enables monitoring in previously inaccessible areas. For 
example, wearable devices require wireless communication, such as 
Bluetooth, for mobility. Wireless communication is classified by range 
(short, medium, or long) or topology (cellular or non-cellular). The 
choice of communication technology depends on factors like data rates 
and delays. Low data rates may cause communication congestion when 
managing massive heterogeneous data, while high delays hinder DT 
synchronisation. DT communication systems often employ hybrid 
technologies; for instance, in smart cities, NFC handles resident identi-
fication, open Wi-Fi supports public communication, NB-IoT or LTE-M 
monitors infrastructure, and optical fibre connects gateways to cloud 
servers. In industries with advanced digitisation, standard protocols 
include OPC UA for industrial telecommunication, Ethernet/IP for in-
dustrial networks, TCP/IP for network interconnection, UDP for low- 
latency communication, and MQTT for lightweight publish-subscribe 
messaging.

Data storage represents the third critical component, encompassing 
the infrastructure and technologies for persistent data management. DT 
implementations utilise diverse storage approaches ranging from edge 
computing for real-time processing to cloud-based data warehouses for 
historical analysis. Storage requirements vary significantly across do-
mains: manufacturing requires high-performance time-series databases 
for real-time control, agriculture needs cost-effective long-term storage 
for seasonal data, healthcare demands secure, compliant storage for 
sensitive patient information, while cities require scalable distributed 
storage for massive heterogeneous datasets.

Unlike widely applicable transmission protocols, data formats and 
standards are domain-specific. In manufacturing, formats like STEP 
store lifecycle product information, while AutomationML manages 
production monitoring data for DT services [69,70]. These high-level 
models enable data exchange but rely on middleware for data extrac-
tion. In the city domain, Geography Markup Language (GML) supports 
geographic information modelling, transport, and storage for infra-
structure and civil engineering activities [71]. However, GML lacks asset 
management capabilities needed for dynamic DT applications. Simi-
larly, the Industry Foundation Class (IFC), widely used in construction, 
requires enhancements to transition from static data models to dynamic 
information-sharing paradigms [49]. Efforts like [72,73] have extended 
IFC models to include semantic structural descriptions and dynamic 
time-series sensor data. Overall, domain-specific data standards still face 
challenges in interoperability between interconnected DTs, while cross- 
domain efforts are addressing these limitations through initiatives like 
FIWARE Smart Data Models [74] serving as interoperable middleware 
and CDBB foundational data models [75] providing top-level ontologies. 
Data acquisition, transmission, and storage constitute the primary 
characteristics distinguishing DT data implementations across domains. 
Cross-domain analysis reveals systematic differences driven by domain 
constraints, with standardisation efforts facing ongoing interoperability 
challenges due to domain-specific requirements.
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4.3.5. Modelling
DT modelling represents the core differentiator of DT systems from 

conventional data-driven approaches [4], as virtual models enable the 
transformation of raw data into predictive insights and autonomous 
decision-making capabilities [65]. DT modelling replicates key aspects 
of the twinning object, such as physical geometries, properties, and 
behaviours. The model must be constructed at an appropriate level of 
abstraction using suitable modelling techniques [76]. Without robust 
virtual models, DT services may not significantly differ from traditional 
monitoring systems [2], making model construction and integration 
critical to DT functionality [77].

Literature review of DT modelling reveals three primary virtual 
model construction approaches, each addressing different system char-
acteristics and requirements. Physics-based modelling, as suggested by 
[65], remains central during design and construction phases, cat-
egorised into observed physics, modelled physics, and resolved physics 
based on the level of understanding of physical phenomena. These can 
be combined with data-driven modelling to reduce complexity while 
maintaining interpretability [78]. Hybrid approaches integrate both 
methodologies to create flexible frameworks for rapid adaptation while 
preserving predictive accuracy.

Broader frameworks were proposed by Qi et al. [68] and Liu et al. 
[77], both emphasising that a DT model integrates four sub-model 
types—geometry, physics, behaviour, and rules—each serving 
distinct functions. Model integration is key to resolving the contradic-
tion between simplified virtual models and the complex behaviour of 
twinning objects. For instance, Liu et al. [79] implemented model fusion 
through a mimic modelling method, merging geometric, behaviour, and 
context models to enable holistic information monitoring during 
machining processes.

In terms of domain-specific model construction, the observed pat-
terns reflect varying requirements for accuracy, real-time performance, 
and interpretability. Manufacturing utilises physics-based CPS models 
with high precision for control applications [33], agriculture employs 
empirical models based on environmental relationships for seasonal 
predictions [48], construction integrates BIM with physics-based struc-
tural models [49], healthcare applies data-driven models for complex 
physiological monitoring [11], and cities use agent-based models to 
capture complex socio-technical interactions [80].

Virtual model integration with DT services enables the DIKW pro-
gression from passive data collection to autonomous decision-making 
[68]. Models serve as computational engines that transform sensor 
data into Information-level insights through pattern recognition, 
Knowledge-level understanding through simulation and reasoning, and 
Wisdom-level capabilities through predictive optimisation and autono-
mous control [46]. This integration distinguishes DTs from conventional 
data systems by providing dynamic, predictive virtual representations 
rather than static data repositories [5]. Certain modelling techniques 
have been identified for their suitability in DT applications: 

• Finite Element Analysis (FEA): A physics-based technique for 
assessing the behaviour of assemblies under physical effects.

• Agent-Based Modelling: Applied in complex systems where multiple 
parts interact and influence each other.

• Discrete Event Modelling: Suitable for systems decomposable into 
autonomous processes that progress through time [81].

Modelling is typically performed using desktop-based tools, although 
web-based tools are gaining traction due to their lightweight, open- 
source nature and better interoperability with other systems. Exam-
ples include Xeokit for building information modelling and Cesium for 
geographic information modelling. These tools also serve as manage-
ment platforms for model evaluation and verification tasks. From a 
model engineering perspective, Zhang, Zhou and Horn [82] propose 
metrics to assess the “rightness” of DT models across their lifecycle, 
including model construction, evaluation, and management. Similarly, 

Tao et al.[83] performed multi-aspect analysis of the DT modelling via 
model construction, assembly, fusion, verification and modification. 
Model maintenance and updating represent ongoing challenges, 
particularly in operational environments where virtual models must 
continuously synchronise with evolving physical systems while main-
taining accuracy and reliability.

While other aspects of DT modelling are discussed in the literature, 
the types of models, modelling techniques, and tools constitute the 
primary characteristics that distinguish DT modelling.

4.3.6. Services
Once the model of the twinning object is complete, the final stage of 

DT implementation is to leverage the DT model and integrate it with 
domain-specific knowledge to provide service benefits to users. In this 
study, service benefits refer to the functions derived from the purposes of 
digital twinning that fulfil the potential of the DT data and modelling. 
Williams, Chatterjee and Rossi [84] identified key design dimensions 
that distinguish digital services. Two of these dimensions—service 
resource and service delivery—are particularly relevant to DT services. 
From the perspective of servitisation, Meierhofer et al. [85] considered 
DT as an enabler for the servitisation of manufacturing, hinged on its 
role in the value creation. The services, generated through data analytics 
or simulation, are delivered to the system actors, such as production 
lines, products, or users. Both studies highlight the origin of the service 
(resource) and its destination (delivery).

Comprehensive dimensions for DT services have also been derived 
from software engineering. Qi, Tao and Nee [86] analysed the workflow 
of DT services, identifying steps such as service request, resource 
collection, service encapsulation, and service delivery. Aheleroff et al. 
[47] proposed Digital Twin as a Service (DTaaS) paradigm on the basis 
of Everything-as-a-service (XaaS) − a general category of applications 
enabled by cloud computing. DTaaS delivers four categories of DT ser-
vices: data transformation using the DIKW hierarchy (data, information, 
knowledge, wisdom), integration of human workforce and cyberspace to 
enhance efficiency and accuracy, retrieval of semantic content across 
assets, and autonomous decision-making enabled by real-time 
connectivity.

The first main element of DT services is the resources from which the 
service is generated. These resources also indicate the service’s maturity 
level, which can be rated using the DIKW based on the extent of data 
value extraction. The DIKW framework provides an appropriate classi-
fication system because it captures both the cognitive sophistication and 
technical implementation requirements that determine service value 
and complexity. This alignment is evidenced by Qi et al. [68] who 
summarised enabling technologies for DT services as platform services, 
resource services, knowledge services and application services, directly 
reflecting DIKW progression. In addition, the DIKW framework aligns 
with the purposes and processes of digital twinning, where services 
evolve from basic data management to autonomous decision-making 
capabilities.

Based on the DIKW model, DT service maturity is categorised as 
follows: 

• Data service where the presentation of data is the priority, while 
processing data is set as a minimum requirement. Examples are a 
common data environment, data storage and retrieval, etc.

• Information service to provide semantics sourced from pattern 
recognition and statistical analysis, such as threshold-based di-
agnostics, visualisation of the current status of the system, etc.

• Knowledge service based on the construction of domain-specific 
modelling and behavioural analysis for problem investigation, ex-
amples are rule-mining, decision tree, expert system, etc.

• Wisdom service characterised by autonomous decision-making ca-
pabilities that integrate system knowledge with real-time adaptation. 
Examples include self-optimising control systems based on 
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performance feedback and predictive maintenance systems that 
autonomously schedule interventions.

It is important to note that the complexity of analysis does not 
automatically determine DIKW classification. For example, fault di-
agnostics can be simple threshold-based detection, as in Information 
services, while behavioural modelling for fault diagnosis represents 
knowledge services. Similar to simulation, basic trend extrapolation 
may be Information-level, while autonomous optimisation through 
simulation represents wisdom-level services. The classification depends 
on the degree of autonomous decision-making and system integration 
rather than purely on analytical sophistication.

The second key characteristic of DT services is service delivery, 
which defines the gateways through which data and information exit the 
DT. Technologically, DT services can be divided into machine-to-human 
and machine-to-machine [30]. 

• Machine-to-human services present outcomes to users visually, 
using tools like augmented reality and dashboards.

• Machine-to-machine services transmit actionable intelligence to 
autonomous machines that can communicate and share critical in-
formation required for asset operations [87].

5. Domain-specific DT analysis

In this section, thematic analysis was conducted on literature of each 
selected domain to identify archetypes of the domain-specific DT use- 
cases. Consequently, several collections of DT instances were 
compiled. The description of DT instances adheres to the dimensions 
defined in the synthesised comparative framework, aiming to present a 
detailed outline of DTs in each domain, which are used as groundings for 
the cross-domain comparison in Section 6.

5.1. Agriculture

As a process for cultivating soil to grow crops and rearing animals to 
provide food, agricultural DT could realise a sophisticated management 
system to maximise productivity while reducing labour requirements, 
energy usage, and losses. A similar concept—precision agriculture—was 
introduced before agricultural DTs, both focusing on a more timely 
understanding of farmland and livestock for optimised farming 
management.

The most discussed twinning object in the literature is farmland, 
which consists of crops and the environment. Services of agricultural DT 
emphasise visible and automated management of irrigation scheduling, 
fertiliser application, and the detection of infectious disease [88]. The 
implementation of the system architecture tends to utilise established 
platforms. A typical example is an irrigation DT implemented by, where 
they applied low-cost sensors designed by Sensing Change, an IoT 
platform built in the SWAMP project, and a data subscription service 
developed by FIWARE Foundation.

One distinctive characteristic of agriculture DTs is the direct 
involvement of living systems, including animals [36] and plants. Unlike 
human DTs in healthcare, agricultural processes tend to evolve rela-
tively slowly in the temporal dimension, so high-frequency interaction 
between the physical object and the DT is not as vigorously required 
[48]. This feature can affect the technical development of agriculture 
DTs, as data acquisition relies on IoT monitoring solutions featuring low 
power and long-range communication. The modelling of farming envi-
ronments could be based on empirical equations [89], and the service 
level mostly remains at sensing and basic analytics. More advanced 
services, usually in controlled environments where parameters are more 
manageable [90], include prediction and automation of nutrient appli-
cation [91].

5.2. Manufacturing

As a sector diligently pursuing production efficiency, manufacturing 
has been at the heart of industrial revolutions, starting from industri-
alisation to electrification, then automation and now digitalisation. In-
dustry 4.0 has provided numerous enablers for manufacturing DTs, 
including Internet of Things (IoT) for data acquisition, cloud computing 
for processing capabilities, artificial intelligence for analytics, and CPS 
concepts for physical-digital integration frameworks.

The digital twinning object in the manufacturing domain could be 
any of the following: product at the unit level [92], production line at 
the system level [93,94], or network of operational products at the 
System of Systems (SoS) level [35]. A product DT describes the geom-
etry, properties, and functional information of a product in the design, 
manufacturing, and use phases to monitor its status over the entire life 
cycle, for prognostic health management.

The integration of multiple unit-level DTs constitutes a system-level 
production DT, which could represent a manufacturing line, shop floor, 
or factory. The goals are to optimise the allocation of manufacturing 
resources and improve production efficiency through semi-automation, 
such as human-robot collaboration, and full automation based on the 
closed-loop cycle of sensing-analysis-decision-execution [33]. The pro-
posed system architectures have evolved to a relatively mature level, 
with a technical architecture and established architectural patterns.

Data collection benefits from developed technologies, including CPS 
and Industrial Internet of Things (IIoT), where data formats (e.g. STEP 
[69]) have been standardised. Blockchain also plays an important role 
by enabling the decentralised data storage for life-cycle product infor-
mation [92]. Services for a product DT range from web-based visual 
simulation to present the model construction at the design stage, data 
dashboards at the usage stage and predictive maintenance at the oper-
ational stage.

5.3. Construction

Digital twinning has been found to offer several applications in the 
design, construction, operation, and maintenance of assets in the con-
struction domain. While many researchers [73,95,96] have proposed 
combining DT and Building Information Modelling (BIM), which pro-
vides various digitised information of the physical assets, such as di-
mensions, material, and structural connections, contemporary 
perspectives emphasise that construction DTs represent fundamentally 
different paradigms from static BIM structures. Rather than positioning 
BIM as the foundation, emerging frameworks conceptualise building 
DTs as dynamic, operational models that enable real-time data and in-
formation exchange between physical and virtual building systems [97]. 
These systems function as closed-loop control mechanisms that contin-
uously monitor, analyse, and respond to operational conditions, moving 
beyond BIM’s primary role in design and construction documentation 
[98]. Data for construction DTs mainly reflect the operational status of 
the structure or facility, which is acquired via IoT sensors or reality 
capture technologies, such as laser scanning and photogrammetry. The 
modelling approach is typically a combination of the conventional 
structural model, BIM model, and machine learning algorithms to create 
dynamic operational representations. Industry Foundation Classes (IFC) 
provide data exchange standards, though enhanced frameworks are 
required to support the dynamic, time-series data requirements of 
operational DTs [15,99].

Construction involves a wide range of high-hazard activities, so 
addressing health and safety (H&S) is one of the main purposes of 
applying DT. Augmented Reality (AR) and Virtual Reality (VR) are 
crucial DT service delivery technologies to tackle H&S issues and can 
also improve collaboration among multiple stakeholders [100].

The system architecture of construction DT implementations dem-
onstrates evolution from conceptual frameworks(functional-level) to-
ward operational deployment(technical-level), though significant gaps 
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Fig. 5. Derivation of cross-domains DT solutions.
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remain between research prototypes and industry-scale implementa-
tion. Current efforts focus on developing interoperable platforms that 
can integrate diverse data sources while providing actionable insights 
for construction and facility management stakeholders.

5.4. Healthcare

Existing DT applications in the healthcare domain primarily focus on 
precision medicine and healthcare services management. Twinning 
objects in precision medicine are mainly organs and the human body, 
used for analysing and developing predictions to provide clinical advice 
for patients [11,101]. Real-time supervision of healthcare services [9] 
aims to characterise health service delivery processes for effective de-
mand management. The most proposed healthcare DT architecture is 
reference model, which suggests that DT applications generally remain 
at the conceptual level.

DT for patients relies on wearable devices to collect data, so wireless 
data communication (e.g., Bluetooth, Machine-to-Machine, etc.) is 
typically required. Data privacy and security are more sensitive in the 
healthcare domain, which can make it difficult to obtain patient data for 
validation of modelling and prediction [102].

DT modelling in the healthcare domain shares methodologies across 
disciplines, such as data-driven [11], discrete-time events [101], and 
agent-based [10]. DT in this domain is believed to be more challenging 
due to the high level of uncertainty. For example, the mechanism of 
human behaviour in a socio-technical system like an ICU is largely un-
known [9], which makes quantitative modelling of clinical decision- 
making difficult. As a result, approximate behavioural models are 
more feasible, even if this means fidelity may be compromised [102]. 
For similar reasons, full automation may not be favoured when the 
consequences of system errors are intolerable, so human-in-the-loop 
services are essential for healthcare DT [10].

5.5. City

A city-level DT encompasses several components, including one or 
multiple systems such as transportation, environment, and energy. 
When city-level DTs are integrated, they are often referred to as a “smart 
city.” A smart city assembles individual city-level DTs and their in-
terdependencies through a federated system, enabling a coordinated 
approach to planning, predicting, and managing the city. City digital 
twinning is sometimes confused with construction DT due to overlaps in 
their twinning objects, such as buildings and infrastructure. However, 
the two domains diverge in their focus. Construction DTs address the 
design and building processes of physical structures, whereas city DTs 
focus on the socio-economic impacts of urban infrastructure.

The purposes of city DTs include monitoring the current state of the 
urban environment, providing rapid and effective responses to emer-
gencies, conducting efficient design and planning assessments, and 
predicting situational developments. The potential value/benefits 
include optimising resource use, reducing service disruptions, 
increasing resilience, and improving the quality of life for citizens [80]. 
Contemporary frameworks increasingly emphasise structured datasets, 
particularly energy usage data, for AI-enhanced policy decision-making 
that supports carbon–neutral strategies and energy efficiency initiatives 
[103]. However, effectively materialising these benefits through policy- 
making remains a significant challenge [104]. Compared to other do-
mains, city DTs are more likely to rely on graphic visualisation data for 
acquiring information, as sensor-based reality information may be 
insufficient to provide dynamic spatiotemporal details about physical 
vulnerabilities [105]. The physical form of the city can represent the 
operational status of twinning objects in applications such as road traffic 
control. Visual data collected from the city environment is fed into 
machine learning-based computer vision models [106], requiring high- 
quality video transmission. Cabled internet connections (e.g., broad-
band, fibre optics) are typically prerequisites for smart city DTs. 

However, wireless telemetry may be applied in cases with relatively low 
data volumes, such as machine-to-machine(M2M) communication for 
harvesting energy usage data or billing customers for utilities.

The referenced twinning objects of city DTs are typically systems, 
and it is widely believed that achieving a large-scale, dynamic, and 
highly complex city-wide DT is the ultimate goal [80]. As a result, city 
DTs often employ systems engineering principles. Agent-based simula-
tions are commonly used for resource application modelling, where 
large systems consist of autonomous and interacting individuals. 
Geographic information system (GIS) modelling is extensively applied as 
the base layer for city DTs, with the topography, environment, and 
spatial structure of the city surveyed and mapped into GIS-based 
databases.

5.6. Cross-domain digital twin implementation summary

Table 7 summarises the key characteristics of DT implementations 
across all five domains using the six-dimensional framework, demon-
strating how each dimension manifests differently while revealing uni-
versal patterns. It validates that all domains follow similar six- 
dimensional development procedures with layered architectures, 
DIKW service progression, and IoT-based data acquisition. However, 
domain variations show different service sophistication levels, with 
manufacturing achieving the most advanced implementations while 
agriculture and healthcare focus on foundational monitoring capabil-
ities. Cities and construction demonstrate intermediate complexity in 
system requirements and stakeholder coordination needs.

The analysis also reveals a clear maturity hierarchy correlated with 
environmental controllability. Manufacturing benefits from controlled 
production environments, enabling autonomous operations, while 
agriculture faces uncontrolled natural systems limiting advancement. 
The comparison also shows architecture-purpose alignment across the 
Three Sector Model: primary sectors (agriculture) prioritise monitoring 
with simple layered architectures, secondary sectors (manufacturing) 
achieve optimisation through sophisticated CPS-based designs, and 
tertiary sectors require federated architectures for multi-stakeholder 
coordination.

These patterns and variations provide the foundation for identifying 
universal principles that can be standardised across domains, as well as 
key differentiators that explain implementation challenges and oppor-
tunities. Section 6 examines these cross-domain insights to develop 
unified solutions for DT development and interoperability.

6. Cross-domain analysis and unified implementation 
framework

As illustrated in Fig. 5, this section of the study starts from the 
observed ‘surface-level’ similarities and differences from domain- 
specific DTs, then commits to investigating ‘deeper-level’ correlations 
that assimilate or differentiate the DTs of different domains, to provide 
explanations on why DTs are the way they are. Finally, based on the 
commonalities shared across the domains, unified approaches to 
conceptualise and implement DTs are proposed, where the differences of 
a variety of DT instances are encompassed in the cross-domain solutions.

The derivation of cross-domain DT solutions follows a systematic 
analysis of commonalities and differentiators identified through the six- 
dimensional framework. As shown in Fig. 5, the first pipeline starts from 
commonality analysis (C1), where framework application across five 
domains demonstrates that DT implementations follow unified proced-
ures: object identification, purpose definition, architecture design, data 
acquisition, modelling, and service delivery. This procedural univer-
sality suggests standardisation opportunities across domains. On the 
other hand, differentiator analysis (D1 to D5 and D6) shows that 
maturity variations correlate with digitalisation capability and cost- 
benefit constraints, while tool diversity analysis reveals that the vari-
ety of data acquisition technologies and modelling tools differ from 
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domain to domain (D4). High-capability domains (manufacturing) show 
advanced maturity, while cost-constrained domains (agriculture) 
demonstrate slower adoption despite technical feasibility. Both pipe-
lines lead to solutions where the combination of procedural universality 
(C1) with identified constraint patterns (D5, D6) suggests that a unified 
platform approach can address both standardisation opportunities and 
constraint barriers (S1), while tool diversity requirements indicate that 
platforms must allow interfaces for external tools and applications (S6) 
to accommodate existing domain-specific infrastructures.

6.1. Commonalities for universal development principles

6.1.1. Requirement-driven digital Twin conceptualisation
Analysis from Section 5 demonstrates that the purposes of DTs within 

different domains are common, including real-time monitoring, inte-
gration tool, fault analysis, prediction, optimisation, etc. The classifi-
cation of the purposes is mainly based on the level of capability. Though 
DTs could potentially provide greater benefits by advancing through the 
DIKW hierarchy, this involves increased system complexity and devel-
opment costs [107]. Therefore, instead of pursuing higher levels of 
maturity and sophistication, the DT users and developers shall develop 
systems to meet the specific needs and purposes.

With guidance from the comparative framework described in Section 
4, requirements for DT frameworks can be derived from object con-
ceptual models, twinning purpose and system architectures. The object 
conceptual model may include any design related to the nature of the 
object, such as the federation and aspects that suggest appropriate 
modelling techniques [12]. Purpose specification identifying demands 
and values shall establish foundations and boundaries for developing 
DTs [20]. Architecture specification is closely linked to system quality 
attributes such as reusability, extensibility, interchangeability and 
maintainability across the entire DT lifecycle [45]. Requirements 
developed from the conceptualisation process set the baseline frame-
work, and all the aspects of these requirements shall be addressed in the 
DT development [108].

Requirement-driven development emerges as critical for DT success 
across domains. Cross-domain analysis reveals that DTs are developed 
for a range of purposes, aiming at different system attributes (D2), even 
when addressing identical physical objects. Process analysis demon-
strates that DT development is a highly requirement-driven process 
(D7), where purpose definition determines all subsequent design de-
cisions. Therefore, requirement analysis shall be applied as one part of 
the conceptualisation to every DT development to provide a better sense 
of how the system will operate to both users and developers (S2).

6.1.2. Reusable and interoperable data model and modelling library
The case studies in Section 5 reveal that neither raw DT data nor 

modelling data formats adhere to universal standards. Raw data formats 
are typically determined by their sources, which may include unstruc-
tured data (e.g., sensor data), semi-structured data (e.g., JSON), and 
structured data (e.g., spreadsheets). In contrast, modelling data formats 
are often domain-specific, such as IFC for the construction sector, GML 
for the city domain, and STEP/AutomationML for manufacturing ap-
plications. It can also be seen that diversified twinning objects and as-
pects lead to distinct data acquisition approaches (D3), where 
manufacturing emphasises geometric precision, healthcare focuses on 
behavioural dynamics, and cities require spatial–temporal integration. 
Despite this diversity, examination of twinning object categorisation 
patterns across domains shows that twinning objects and aspects can be 
described through structured hierarchical relationships (D8), enabling 
hierarchical decomposition and federated representation.

Cross-domain analysis also reveals modelling reuse opportunities. 
Certain modelling techniques appear across multiple domains: agent- 
based modelling in both healthcare (ICU management) and cities 
(traffic systems), discrete-event modelling in manufacturing (production 
lines) and healthcare (patient flow), and computer vision in agriculture 

(crop monitoring) and cities (infrastructure monitoring) (C4). This in-
dicates that DTs with similar federations and purposes typically employ 
common modelling approaches (C6), demonstrating predictable pat-
terns in technique selection. Raw data formats are domain-specific and 
heavily influenced by the types of sensors, actuators, and communica-
tion requirements. However, the potential for standardisation exists 
within the cyber layer of DT systems) intermediate data models con-
verting raw data from various sources to standard formats that DT en-
gines can understand; 2) generalised DT models (e.g. agent-based, 
discrete event, image processing, etc) which are scalable and extensible 
according to service requirements.

The case studies in Section 5 also highlight that the primary focus of 
digital twinning typically lies in the operational status of the twinned 
object. This status can be assessed through visual data (e.g., camera or 
video feeds) or performance indicators captured by sensors. This oper-
ational focus creates a common data requirement pattern across do-
mains, where status representation involves similar core properties 
(state, behaviour, performance metrics) despite domain-specific varia-
tions in measurement methods and data sources. Given this common-
ality in operational focus combined with the hierarchical object 
relationships identified across domains (D8), a hierarchical federation- 
based approach to data modelling would allow DT developers to select 
specific aspects relevant to their twinning purposes, supporting data 
semantics storage and streamlining modelling processes [109]. Simi-
larly, since modelling technique patterns emerge across domains with 
similar purposes and federations (C6), DT model libraries could store 
reusable model collections, enabling users to select and adapt models 
based on specific objectives [82]. Efforts to develop interoperable and 
reusable DT data models and libraries are already underway, including 
Smart Data Models and Foundation Data Models (Section 4.3.4), IBM 
Industry Data Models [41], semantic mediation solutions [110], reus-
able discrete event simulation models [111], and implemented frame-
works like Mesa [112].

Therefore, cross-domain analysis reveals systematic solutions for 
data and modelling standardisation challenges. Hierarchical federation- 
based data models enable standardised object abstraction with domain 
adaptation (S4), while model libraries providing management systems 
for model reuse and redevelopment are required (S5) to capitalise on 
identified commonalities and reduce duplicated development efforts. 
Despite progress, achieving true interoperability and reusability across 
domains remains challenging, requiring universal data formats and ex-
change protocols that balance domain-specific needs with cross-domain 
compatibility.

6.1.3. Dikw-based service architecture and value progression
Cross-domain architectural analysis reveals systematic patterns 

supporting service implementation. Analysis across domains demon-
strates that most DT instances follow a layered architecture (C2), con-
sisting of three fundamental layers: the physical space, the digital space, 
and the connections between them [68]. The physical space may include 
an edge layer to address local computing demands, while the digital/ 
cyber layer often encompasses cloud and application layers for data 
storage, processing, and functionality. Examination of purpose-service 
relationships shows that twinning purposes and services can be effec-
tively described by the DIKW model (C3), creating consistent classifi-
cation across diverse applications. This architectural convergence 
occurs because layered architecture is a natural fit for the DIKW data 
value chain (C5), where each processing layer corresponds to different 
levels of cognitive sophistication. Therefore, it is concluded that a 
layered architecture where each layer aligns with certain data value 
extraction requirements (S3) provides the optimal structural foundation 
for implementing DIKW-based services across domains.

Particularly, the cyber space’s architectural patterns can vary 
depending on the intended services, such as event-driven, service-ori-
ented, or big data-led designs. As summarised in Section 4.3.3, archi-
tectural classifications—reference models (logical), reference 
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architectures (functional), and software architectures (technical)—are 
key indicators of maturity. Publications before 2020 mostly proposed 
simpler architectures, such as reference models, whereas more recent 
works increasingly describe reference architectures that map system 
elements to functionalities, reflecting a step-up in the maturity of 
implementation.

Architectural maturity also varies across domains. Manufacturing 
DTs exhibit more advanced architectural solutions, evidenced by a 
higher prevalence of reference architectures. Conversely, city DTs, as 
systems of systems, demand interoperability, scalability for progressive 
subsystem integration, and often employ service-oriented architectures. 
Healthcare DTs, particularly medical systems, are largely event-driven 
to ensure responsiveness.

The Gemini Principles set the purpose of DTs as to provide deter-
minable insight into the built environment. It is noted that the DT ar-
chitecture and services are structured following the DIKW model, a 
hierarchical framework that can enable the extraction of insights and 
value from data, regardless of the domains. As a result, the services/ 
applications generated by the DT system could be classified based on the 

DIKW model, as described in Section 4.3.6.
Table 8 validates the six-dimensional framework’s universal appli-

cability by demonstrating systematic alignment between DIKW concepts 
and all framework dimensions. The mapping shows that twinning pur-
poses naturally progress from passive monitoring to proactive man-
agement, system architectures evolve from basic data acquisition to 
sophisticated service engines, and delivered services advance from 
simple storage to autonomous decision-making. This consistent align-
ment across purposes, architecture, and services dimensions confirms 
that the proposed framework captures fundamental DT development 
patterns regardless of domain.

The presented DIKW-framework correspondence reveals universal 
commonalities underlying domain diversity. All domains follow the 
same progression pathway: establishing data foundations, developing 
information processing capabilities, building knowledge through 
modelling, and achieving wisdom via integrated services. This univer-
sality validates the framework’s cross-domain applicability and provides 
a standardised development pathway that domains can follow.

Table 2 
Instances of agriculture DTs in the comparative framework.

Ref. Object Purpose Architecture Data Model Service

[36] Environmental 
factors of a pig farm

− Discover the best 
environmental conditions 
for growth 
− Improve animal welfare 
and minimise the 
unnecessary cost due to 
disease 

Layered reference 
model 
based on commercial 
DT platforms (e.g. GE 
Predix, Eclipse Ditto, 
IBM Watson IoT)

Sensors for measuring 
environmental factors (i.e., 
temperature, NH3, CO2, 
humidity, dust, etc.), which 
can affect the growth of 
livestock

Optimal environmental 
condition is determined via a 
big data model

− Simulation to 
suggest optimal 
temperature and CO2 
for 
livestock farms, and 
then operate fans and 
open windows as an 
execution 
− Visualise data and 
analysis results in a 
user-friendly way 
using 2D/3D

[89] Watershed’s water 
balance and 
Irrigation of 
farmland

− Present different aspects 
and parameters that 
impact the farm’s 
behaviour, yield 
production and resource 
consumption  

− Enable farmers to make 
better decisions and to 
decrease the 
environmental impact on 
water, land and soil 
resources

Five-layered reference 
model based on the 
SWAMP project with 
various hardware and 
software tools

Data collection via LPWAN 
sensors developed by 
Sensing Change to monitor 
soil, air and light. Including a 
Raspberry Pi-based 
monitoring  

Station and a smartphone 
application to view the real- 
time field data.

Watershed’s water balance is 
modelled based on–Penman- 
Monteith equation to calculate 
optimal soil moisture and 
control the irrigation based on 
the environment.

− IoT data visualised 
on the SWAMP 
environment 
− Data queries and 
subscription services 
via the FIWARE 
platform

[90] Controlled 
environment of a 
greenhouse

Optimise yields and quality 
of crops with the energy 
consumption of the 
greenhouse

Layered structure 
with functional 
hardware and 
software

− Temperature and humidity 
sensors, operation status of 
the exhaust fan and 
submersible pump. 
− Data storage in MySQL on 
server.

− Data-driven modelling based 
on a historical dataset in Energ 
yplus.net

− Crop growing modelling 
based on Soil–Plant– 
Atmosphere dynamics in Dssat. 
net

− Python-based CDE 
for data processing  

− Simulation of 
behaviour of heating 
and ventilation 
systems with Energ 
yPlus.net
− Simulation of 
growth and yield of 
crops for agricultural 
decision support with 
DSSAT.net

[91] Field state and corp 
health condition of 
the farm

− Monitor soil parameters 
− Automate the 
optimisation process of 
irrigation and fertilisation 
activities

Reference model 
showing the logical 
connection of system 
elements

− Images of plant leaves are 
captured by a drone and 
uploaded to a cloud server  

− Soil parameters are 
measured by WSN and sent 
to the cloud via LoRaWAN

− Images of plant leaves are 
processed by computer vision 
(e.g. MobileNet CNN) to detect 
disease and nutrient deficiency. 
− Correlation of the  

The result of the image 
processing is analysed with the 
data gathered from the WSN.

− Remote access to 
view the status of 
farmlands in near real- 
time  

− Automated 
detection of crop 
diseases based on 
images 
Recommends optimal 
irrigation and 
fertilisation strategies
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6.2. Differentiators for readiness levels and perspectives

While cross-domain analysis reveals universal DT development 
principles (Section 6.1), examination of domain-specific implementa-
tions identifies three critical differentiators that explain maturity vari-
ations and adoption barriers. Analysis shows that maturity levels 
presented in conceptual development differ significantly across domains 
(D1), requiring investigation of underlying constraints that create these 
variations.

From the conceptualisation perspective, the primary difference 
observed is the purposes of digital twinning, which is also the funda-
mental defined in Gemini Principles [20]. These variations correlate 
with the Three Sector Model categorisation. Primary sectors (agricul-
ture) face uncontrolled natural environments and prioritise production 
monitoring due to their dependence on extracting products from nature. 
Secondary sectors (manufacturing) benefit from controlled production 
environments (factories, shop floors), enabling demands for smarter 
management and autonomous operation. Construction concerns the full 
lifecycle of buildings from design to operation, requiring both real-time 
services and optimisation capabilities. Healthcare seeks precise and 
personalised services, while city DTs aim to enhance governance and 
cross-department collaboration. These variations come from the distinct 
value-creation goals of each sector.

Moreover, from the perspective of the twinning object, each domain 
requires DTs’ operation from the unit level to the system level. Unit-level 
DT monitor individual components, while system-level DTs ensure 

overall performance optimisation. Analysis indicates that differences at 
the conceptual level often correlate with the maturity and development 
of DTs in each domain, as evidenced by the implementation patterns in 
Tables 2–6.

The following sections identify and discuss three key differentiators 
influencing current readiness levels and future development of DTs, to 
explain why universal development principles manifest differently 
across domains.

6.2.1. Digitalisation capability and controllability
Cross-domain analysis reveals that automation and digitalisation 

capability serve as a prerequisite for DT adoption (D5). The readiness 
level of DTs across domains depends significantly on their digitalisation 
capability and controllability. Digitalisation involves converting phys-
ical objects into digital models that computers can process. These 
models enable computers to predict, optimise, and, through actuators, 
intervene in physical objects. Two core procedures—digitising and 
intervening—are critical to this process and vary significantly across 
domains.

DTs are easier to implement in domains where twinning objects are 
relatively static, which use simpler data structures and fewer parame-
ters, such as equipment monitoring [92] or simple system optimisation 
[94] in manufacturing. These models involve fewer variables and hence 
require less computational effort for predictions and simulations. In 
contrast, modelling a human body is far more complex due to constant 
molecular and physiological changes, making precise data extraction 

Table 3 
Instances of manufacturing DTs in the comparative framework.

Ref. Object Purpose Architecture Data Model Service

[35] Cyber-physical 
production system 
(CPPS)

− To achieve information 
symmetry between the CPPS 
and manufacturing 
employees  

− Implement ’human-in- 
the-loop’ perspective for 
better production 
performance

Service-oriented 
architectural pattern, 
Technological reference 
architecture

Data collection via IIoT 
in CoAP, data delivered 
to users in JASON

Ontology-based 
knowledge structure to 
map data generated by 
the CPPS.

− Augmented reality 
combined with a vocal 
interaction system to deliver 
manufacturing knowledge  

− Remote terminal units to 
serve as gateways to the 
knowledge model

[92] Life cycle operational 
data of all the 
manufactured turbine 
products.

To address the difficulty in 
the management of product 
lifecycle data, many 
participants constructing a 
complicated network with 
enormous data volume.

Service-oriented 
blockchain-structured 
data management 
architecture

Sensor data indicating 
the dynamic product 
profile of the turbines is 
stored in a specific 
block and chained in a 
peer-to-peer network

Not included − The data management 
platform can be accessed 
through a mobile device to 
monitor the states of the 
turbine 
− The entire blockchain can 
be presented on the 
platform, where a specific 
block can be explored 
through the search function  

− Performance optimisation 
and design improvements of 
the new turbine

[93] Operating status, 
including production 
elements and 
production processes, 
of the shop floor

− By continuously 
monitoring the status of the 
production process, shop- 
floor managers can make 
decisions timely manner 
− Accelerate response to 
production problems

A layered functional shop- 
floor data management 
model is constructed to 
indicate data flow among 
system components

Location of logistics, 
equipment start and 
stop signal, motion data 
of equipment sent to the 
data centre.

Discrete events 
modelling (i.e. ESHLEP- 
N) builds the operation 
logic of the shopfloor. 
Markov chain is used in 
the modelling of 
deduction rules.

− A 3D virtual scene of the 
shopfloor is shown in 
Unity3D 
− Prediction of shop-floor 
operating status using 
Markov chain to assist 
managers to identify 
bottlenecks and optimise the 
production processes

[94] Robotic operation of 
a micro smart factory

− To solve inefficiency in 
the current Factory-as-a- 
service paradigm  

− Real-time monitoring of 
the present, tracking 
information from the past, 
and operational decision- 
making support for the 
future

Conceptual-level four- 
layered interoperability- 
context system 
architecture.

Information exchange 
in JSON format. 
RESTful API is used as 
the network 
architecture for the IIoT 
network layer.

External (e.g. Mworks) 
robotics simulation 
engine.

Web-based communication 
environment for event 
handling and 
synchronisation.
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and modelling exceptionally challenging [117].
Similarly, implementing DTs for systems with numerous interacting 

factors, such as healthcare or smart cities, involves managing high- 
dimensional, complex, and dynamic data. This requires advanced 
modelling techniques, substantial computational resources, and robust 
data-handling capabilities. By contrast, system-level DTs in environ-
ments with predictable causal links, such as greenhouses or built envi-
ronments, are comparatively easier to develop than those in domains 
exposed to uncontrollable factors, like natural ecosystems [118].

Controllability also plays an important role in DT readiness level. For 
example, in manufacturing, production machines and products often 
feature bi-directional, automated connections to industrial IoT, enabling 
near real-time control [16]. Conversely, in construction, DTs rely on 
complex management tools to bridge the digital and physical environ-
ments. These tools often depend on human decision-making and manual 
intervention, complicating DT implementation [119].

Additionally, both digitalisation and controllability are tied to po-
tential misrepresentations in DTs. Small errors in data or models can 
amplify through interactive algorithms and cascading interactions, 
especially in systems or systems of systems [120].

6.2.2. Cost-benefit analysis
Systematic examination demonstrates that cost-benefits represent 

one of the main barriers for DT implementation (D6). Deploying sensors, 
communication networks, and software platforms involves substantial 
upfront investment, which varies depending on sector-specific resources 
and digital infrastructure availability [121].

Key factors to assess cost-benefit include integration level, granu-
larity (detail and accuracy), and complexity (resource requirements) to 
balance the cost of creating DTs against their potential business value 
[47]. For example, the large scale and the volatile nature of the sector 
make adopting DT in the construction industry a difficult task [15].

Sector-specific ecosystems and organisational structures further 
shape investment decisions. Domains like agriculture, manufacturing, 
and healthcare often have less inter-party collaboration, easing imple-
mentation. In contrast, construction and urban management require 
coordination among multiple stakeholders during design, operation, and 
maintenance phases. In such ecosystems, the initial costs of creating a 
DT often do not align with the immediate benefits for those tasked with 
collecting operational data. As a result, reaching collective agreements 
on DT implementation can be more challenging in these domains 
[122,123].

6.2.3. Socio-ethical risks
Beyond the technical and economic differentiators, socio-ethical 

challenges can also hinder the adoption of DTs in some domains.
In labour-intensive sectors, such as agriculture and manufacturing, 

psychological and skill-related barriers of producers could deter the 
implementation of DT. In agriculture, low-skilled workers on small-scale 
farms may resist the introduction of DTs, perceiving them as disruptive 
or difficult to adapt to [118]. In manufacturing, working alongside 
complex technological systems requires industrial workers to develop 
new competencies, necessitating additional training and learning [124]. 
While these challenges are notable, their impacts are often short-term 

Table 4 
Instances of construction DTs in the comparative framework.

Ref. Object Purpose Architecture Data Model Service

[44] Geometric and 
semantic information 
of the electrical and 
fire-safety equipment 
of the building

Acquiring information 
about the electrical and 
fire-safety equipment of 
the building

Reference model 
showing the 
components of the 
workflow

Capture 2D information 
from images and 3D 
information from laser- 
scanned point clouds

− Semantic information on 
the devices is extracted by 
AI-based image 
segmentation 
− Geometry of the devices is 
reconstructed using 
Structure-from-Motion 
(SfM) and Multi-View 
Stereo (MVS) software

The geometric and 
semantic information of 
electrical and fire-safety 
equipment is mapped to 
the 3D model of the 
building.

[72] Operation and 
maintenance (O&M) 
of buildings

Predicting a building’s 
O&M status and ensuring 
that the buildings work 
normally, as well as 
reducing the damage 
caused by functional 
errors.

Layered and 
component-based 
architecture with 
proposed 
implementation tools

− The surrounding 
environment recorded by 
sensors such as cameras, 
humidity, smoke, etc. 
− Building entity, stress 
sensors, strain sensors, n 
Equipment information 
such as water volume, 
electricity usage

Architectural structure 
model, building equipment 
model, energy consumption 
model, geometric model, 
physical model, machine 
learning (Neural Network)

Operating system 
development, status 
prediction, life 
prediction, disease 
analysis and risk analysis

[100] Construction 
environment and 
onsite-worker 
behaviour

Monitoring the 
construction environment 
for safety purposes

Reference architecture 
displaying the 
workflow

Recording video and a 
motion detection sensor

− Computer vision 
algorithm to detect unsafe 
factors and worker 
behaviours 
− 4D BIM simulation for 
construction activity

− Issue a warning for 
unsafe behaviours 
− Record the occurrence 
of misconduct to 
generate a knowledge 
base and training 
programs

[113] Structural behaviour 
of a railway bridge

Monitoring the structural 
health of the bridge  

Creating a collaborative 
environment for 
stakeholders at various 
stages of the project

No provided Strain/stress data collected 
by fibre optic sensor 
networks

Integrating both a physics- 
based finite element 
analysis model and a data- 
driven machine learning 
model

Real-time sensor data 
and associated bridge 
behaviour are visualised 
in a BIM software.

[114] Decision analysis 
framework for the 
O&M OF tunnels

Guiding and optimising 
the O&M management

Layered and service- 
oriented architecture 
with technical 
implementation 
details

Physical data from real- 
time sensor monitoring and 
semantic data extracted 
from manual inspection, 
construction and 
maintenance activities in 
IFC format.

− Physical rule-based 
structural model 
− Knowledge retrieval 
model 
− The visualisation model 
uses BIM

The extended COBie 
standard-based 
organisation, the 
semantic mapping-based 
ontological expression 
and the rule-  

based semantic 
reasoning of the tunnel
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and not significantly prohibitive.
Whereas in domains involving human lives and sensitive data, such 

as precision healthcare and urban management, ethical and governance 
challenges can pose significant barriers to the adoption of DTs. In pre-
cision healthcare, robust governance is critical to address ethical con-
cerns, including data privacy, inequality arising from limited 
accessibility [125], and the potential misuse of sensitive personal in-
formation [126]. Similarly, city-scale DTs, which handle private data 
and influence governance decisions, must meet relevant security stan-
dards [12] while ensuring transparency and accountability before 
deployment [120].

Therefore, to manage socio-ethical risks while supporting DT 
advancement, targeted strategies are essential. For labour-intensive 
sectors, overcoming resistance through targeted training and an ups-
killing programme can help workers adapt to new technologies. In do-
mains involving human data and impacts on human lives, establishing 
robust governance, transparency, and accessibility measures can miti-
gate concerns while enabling progress. These tailored approaches can 
help to address both technical and socio-ethical barriers, enabling 
smoother adoption of DT technologies across diverse fields while sup-
porting the universal development principles identified in Section 6.1.

6.3. Solutions for unified cross-domain implementation

Most DTs described in academic publications remain at the concep-
tual or prototyping level. Successful implementation requires developers 
to not only understand user requirements and domain-specific knowl-
edge but also possess expertise in emerging ICT technologies such as the 
IoT, web development, and machine learning.

The proposed cross-domain implementation solutions directly 
address the universal principles and domain-specific constraints iden-
tified through systematic analysis. Building on the unified procedures 
and standardisation opportunities (S1), requirements-driven develop-
ment needs (S2), layered architecture alignment (S3), federated data 
models (S4), model library management (S5), and external tool inte-
gration capabilities (S6), a comprehensive DT-PaaS approach emerges as 
the optimal solution for cross-domain DT development.

While adoption of DTs faces domain-specific challenges, shared 
principles exist in their conceptualisation and implementation across 
sectors. This creates opportunities to standardise processes and system 
components, integrating them into a unified framework to support re-
searchers and practitioners while enabling knowledge transfer from 
investment-rich domains to those with lower investment incentives.

Current implementation approaches typically follow domain-specific 
pathways: sectors independently develop conceptualisation 

Table 5 
Instances of healthcare DTs in the comparative framework.

Ref. Object Purpose Architecture Data Model Service

[9] Operation of ICU 
(Intensive Care 
Unit)

− Improve critical care 
delivery by effectively 
managing demand surge 
and alleviating physician 
burnout.  

− Evaluation of ICU 
capacity and data 
generation during 
extreme scenarios. 
− Optimisation of ICU 
services aligned with the 
priorities of all 
stakeholders.

Reference and 
functional 
architecture

Hospitalisation data, 
bed location data, and 
medication data,  

IoT sensors monitor the 
processes within the 
ICU.

A hybrid simulation model to 
simulate care delivery processes 
as discrete-time  

Events, combined with 
behaviours of clinicians and 
patients in the same simulation 
environment, to capture their 
interactions under a variety of 
ICU production conditions.

It is proposed that the 
services can be delivered by 
integrating the simulation 
with the hospital 
information system (e.g. 
EHR)

[10] Physiology of 
individual elderly 
patients and local 
medical resources

− Real-time supervision 
and accuracy of crisis 
warning for the elderly in 
healthcare services 
− Prediction and 
optimisation of medical 
resources for seasonal 
diseases.

Layered reference 
architecture 
compromising −
Healthcare resource 
layer 
− Perception layer 
− Virtualisation layer 
− Service layer 
− User interface layer 
− Application and 
user layer

− Wearable monitoring 
equipment for real-time 
physiological data 
− Digital healthcare 
records from institutions

− Iterative optimisation model 
to recommend dosage and 
frequency of medication 
− Disease incidence prediction 
model based on historical data 
for pre-arranged healthcare 
equipment and personnel 

− Real-time supervision for 
medication reminder and 
health physiotherapy 
− Crisis early warning 
(emergency, first-aid) 
− Medical resource 
scheduling and 
optimisation (bed 
planning, clinicians’ 
allocation)  

[11] Cardiology of 
patients

− Treatment and 
prevention of 
cardiovascular disease  

based on accurate 
predictions of the 
underlying causes of 
disease

Reference model with 
conceptual system 
design

Combined data 
resources from mobile 
health monitor, clinical 
reports, and medical 
images

Combining induction using 
statistical models learnt from 
data, and deduction, through 
mechanistic modelling and 
simulation, integrating 
multiscale knowledge and data.

Guide clinical decision- 
making

[101] Heart rhythms of 
patients

− Monitor health status 
and early detect abnormal 
situations  

− Enable healthcare 
professionals to prescribe 
suitable treatments and 
test them in a safe 
environment

Reference model with 
functional data flow 
chart

Heart rhythms are 
captured by IoT 
wearable sensors and 
transferred to a cloud 
database.

Data-driven classifiers and 
predictive models to detect 
anomalies and future conditions.

− Patents’ access to the 
cloud database where the 
machine learning models’ 
results are stored.  

− Healthcare professionals 
correct based on diagnosis 
− Healthcare professionals 
can compare similar cases 
for more advanced and 
accurate decisions.
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frameworks, select technologies without cross-domain reference, adopt 
sector-specific standards and protocols, and deploy solutions within 
organisational boundaries. This creates a fundamental disconnect be-
tween the aspirational vision of interoperable, federated DTs and the 
practical reality of fragmented, domain-isolated implementations. The 
absence of systematic implementation guidance that bridges high-level 
principles with operational requirements across domains represents a 
critical barrier to achieving the cross-domain potential that DT tech-
nology promises.

6.3.1. Limitations of current DT software and platforms
Early adopters of DTs, such as GE Predix, Bentley iTwin, and 

Microsoft Azure DT, have leveraged their expertise to offer software and 
platforms. However, these commercial solutions face the following 
limitations: 

1) Modelling Scope: Current platforms primarily focus on geometric 
and GIS-based modelling. For instance, Bentley’s iTwin can be in-
tegrated with Azure Digital Twins to enhance civil infrastructure 
design and operations, emphasising geometric modelling and real- 
time sensor data integration [127]. However, support for 
mechanism-based modelling—simulating the underlying physical 
processes of systems—is less prominent. Additionally, while data- 

driven modelling methods are emerging, their integration into 
these platforms is still developing.

2) Service Capabilities: The services offered often centre on data visu-
alisation and basic semantic information. For example, GE Predix 
provides threshold-based alarms, while Microsoft Azure DT supports 
ontology creation in JSON format and links it to telemetry data 
[128].

Despite these limitations, Azure Digital Twins demonstrates prom-
ising potential due to its openness through the Command Line Interface, 
which enables integration with IoT data, modelling tools, and service 
delivery hardware (e.g., mixed reality headsets).

Currently, most DT platforms focus on integrating IoT services with 
GIS/CAD-based modelling. However, advancements in openness and 
interoperability are expected, driven by the growing availability of 
open-source modelling tools. While these platforms have established a 
strong foundation for digital twin technology, further development is 
needed to support more complex modelling capabilities and advanced 
analytical services.

6.3.2. Proposed cross-domain DT-PaaS
Another key motivation for a cross-domain DT platform is the need 

for interconnected DTs to understand and predict complex systems. 

Table 6 
Instances of city DTs in the comparative framework.

Ref. Object Purpose Architecture Data Model Service

[7] Objects on the road 
that may affect the 
driving conditions 
of vehicles

To monitor the road 
conditions and enable the 
self-driving function of 
vehicles

A flow chart 
indicating the data 
interpretation 
process and the 
technical-oriented 
platform setup

Camera images of  

Vehicles and persons, 
including when and where 
an object appeared.

Machine learning models in 
JSON format (Single-Shot 
Detector and deep learning) 
model for car and person 
recognition, fused with GPS 
GPS-coordinated 3D road 
model.

− Citizens can view the 360◦

live streams of the road on 
the web page. 
− Authorities can be alerted 
to dangerous object and 
generate automatic 
statistical reports to optimise 
traffic planning

[8] Sustainable urban 
road planning

To provide a functional, 
economic, people-friendly, 
and eco-friendly urban 
road planning scheme, 
considering new road 
construction and existing 
old road widening to 
alleviate traffic congestion

Logical, functional 
and technical, 
layered and service- 
oriented

Geographic information, 
traffic information and 
environmental 
information

Multi-criteria decision 
making and GIS

Focuses on interpreting 
various data from multiple 
sources in the physical world 
into a digital expression

[95] Energy generation 
system (EGS) 
running status of 
the wind farm

− To develop energy- 
saving procedures and 
strategies 
− To integrate production 
systems from EGS

Logical, functional 
and technical 
layered and service- 
oriented

Wind and smart city data 
collection by IoT

Integration DT Model (BIM 
and GIS-based) and LEDs

− Provide energy-saving 
strategies  

− Optimising maintenance 
processes and energy 
efficiency in ports

[105] Distant objects in 
the city that may 
lead to hazards in 
extreme weather 
events

Effective risk-informed 
decision-making for better 
disaster risk management

A logically 
structured flowchart 
showing the data 
and process

Mapping and updating 
vulnerable objects rely on 
citizen reporting through 
2D map-based enquiry or 
participatory sensing and 
crowdsourced visual data 
analytics

A model update based on 
unstructured crowdsourced 
visual data analytics to 
understand the spatio- 
temporal information of 
physical vulnerabilities 
concerning neighbouring 
critical infrastructure

The public can access 
interactive 3D visualisation 
in a computer-aided virtual 
environment to view the 
vulnerable objects in their 
neighbourhood and the 
likelihood of affecting 
critical infrastructure during 
extreme weather events.

[115] Traffic loads of 
bridges in a 
regional 
transportation 
infrastructure 
network

Monitoring the traffic 
loads on physical bridge  

Evaluating the working 
status of physical bridges

Reference model, 
consisting of 
hardware and 
software

Information fusion of 
weigh-in-motion (WIM) 
and multi-source machine 
vision

− Statistical models to 
analyse bridge response 
− Machine learning model 
to identify traffic flow via 
machine vision

Issue a safety warning when 
damages are detected

[116] Flooding levels of 
rivers in the city 
and tidal levels near 
the coast

Monitoring flooding of 
rivers caused by rain and 
high tides, and quickly 
assess shelter requirements 
when a disaster occurs

Technical data flow 
chart centred on 
NEC’s Data 
Utilisation platform 
service

Real-time water and tide 
level sensors at the 
observation points. 
Rainfall data provided on 
the weather forecast 
website.

Not introduced. − Visualisation of disaster 
management data 
− Services developed based 
on FIWARE that can provide 
free access and use of public 
data services to citizens and 
businesses, and the 
government
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When two DTs interoperate with each other, we need to define their 
relationship to address global issues, such as pandemics and climate 
change. For instance, the National Digital Twin program initiated by the 
Centre for Digital Built Britain envisions an ecosystem of connected DTs, 
including building DTs, transport DTs, and healthcare DTs, to deliver 
cost savings and societal benefits for stakeholders [75].

Based on the six-dimensional comparative framework and insights 
from the comparative study, a proposed DT-PaaS illustrated in Fig. 6
integrates all derived solutions: unified procedures (S1), requirement- 
driven development (S2), layered architecture (S3), federated data 
models (S4), model libraries (S5), and external tool interfaces (S6). This 
platform is designed to provide standardised solutions for data models, 
modelling libraries, and various service applications to streamline and 
simplify DT development. In addition, it aims to enable multiple DTs, 
which are built upon similar procedures and standards, to work together 
seamlessly, exchanging data and coordinating actions. 

1) Conceptualisation: Prospective DT users begin by clarifying re-
quirements, defining the twinning purpose, conceptualising the 
twinning object, and specifying the system architecture.

2) Solution Development: Requirements are refined with input from 
domain practitioners and translated into application-specific data 
and modelling solutions. These are then fed into the corresponding 
engines on the DT-PaaS platform.

3) Utilisation of the standard solutions: The DT-PaaS platform supports 
the development process through three primary engines—Data En-
gine, Modelling Engine, and Service Engine—each offering stand-
ardised solutions along with peripheral functions, such as data 
storage, modelling management, service encapsulation, etc. DT 
instance can be created from standardised data models, modelling 
libraries and pre-defined services.

4) Security and Access Control: As multiple stakeholders and data 
contributors are involved, a robust security module that ensures 
authorised access and protects sensitive data during interoperation is 
needed.

5) Interoperation of DTs: DTs built on the DT-PaaS platform follow 
standardised procedures and data models, allowing them to intero-
perate seamlessly. Examples of cross-twin interoperation include:

• Data Synchronisation: Sharing real-time and/or historical data 
across DTs.

Ta
bl

e 
7 

Cr
os

s-
do

m
ai

n 
di

gi
ta

l t
w

in
 im

pl
em

en
ta

tio
n 

su
m

m
ar

y.

A
gr

ic
ul

tu
re

M
an

uf
ac

tu
ri

ng
Co

ns
tr

uc
tio

n
H

ea
lth

ca
re

Ci
tie

s

Tw
in

ni
ng

 
O

bj
ec

ts
Fa

rm
la

nd
, c

ro
ps

, l
iv

es
to

ck
Pr

od
uc

ts
, p

ro
du

ct
io

n 
lin

es
, f

ac
to

ri
es

Bu
ild

in
gs

, i
nf

ra
st

ru
ct

ur
e

Pa
tie

nt
s,

 IC
U

 s
ys

te
m

s
Tr

an
sp

or
ta

tio
n,

 e
nv

ir
on

m
en

t, 
en

er
gy

 
sy

st
em

s
Tw

in
ni

ng
 

Pu
rp

os
es

En
vi

ro
nm

en
ta

l m
on

ito
ri

ng
, y

ie
ld

 
op

tim
is

at
io

n
Pr

oc
es

s 
op

tim
is

at
io

n,
 p

re
di

ct
iv

e 
m

ai
nt

en
an

ce
Sa

fe
ty

 m
on

ito
ri

ng
, l

ife
cy

cl
e 

m
an

ag
em

en
t

Pr
ec

is
io

n 
m

ed
ic

in
e,

 r
es

ou
rc

e 
m

an
ag

em
en

t
U

rb
an

 p
la

nn
in

g,
 e

m
er

ge
nc

y 
re

sp
on

se

Sy
st

em
 

A
rc

hi
te

ct
ur

e
La

ye
re

d 
re

fe
re

nc
e 

m
od

el
s 

w
ith

 Io
T 

pl
at

fo
rm

s
CP

S-
ba

se
d,

 c
om

po
ne

nt
 a

rc
hi

te
ct

ur
es

, i
nd

us
tr

y-
sc

al
e 

im
pl

em
en

ta
tio

n
BI

M
-in

te
gr

at
ed

 la
ye

re
d 

sy
st

em
s,

 
op

er
at

io
na

l d
ep

lo
ym

en
t

Re
fe

re
nc

e 
m

od
el

s,
 r

es
ea

rc
h 

pr
ot

ot
yp

es
 a

nd
 c

on
ce

pt
ua

l 
fr

am
ew

or
ks

Fe
de

ra
te

d 
sy

st
em

s 
of

 s
ys

te
m

s,
 s

m
al

l- 
sc

al
e 

de
pl

oy
m

en
t

D
at

a
En

vi
ro

nm
en

ta
l s

en
so

rs
, d

ro
ne

 im
ag

er
y

In
du

st
ri

al
 Io

T,
 e

qu
ip

m
en

t s
en

so
rs

Io
T 

se
ns

or
s,

 la
se

r 
sc

an
ni

ng
W

ea
ra

bl
e 

de
vi

ce
s,

 c
lin

ic
al

 r
ec

or
ds

Ca
m

er
as

, s
at

el
lit

e 
da

ta
, m

un
ic

ip
al

 
se

ns
or

s
M

od
el

lin
g

Em
pi

ri
ca

l e
qu

at
io

ns
, c

om
pu

te
r 

vi
si

on
Ph

ys
ic

s-
ba

se
d,

 d
is

cr
et

e 
ev

en
t

BI
M

 m
od

el
s,

 p
hy

si
cs

-b
as

ed
, 

co
m

pu
te

r 
vi

si
on

D
at

a-
dr

iv
en

, a
ge

nt
-b

as
ed

G
IS

-b
as

ed
, a

ge
nt

-b
as

ed
 s

im
ul

at
io

n

Se
rv

ic
e

D
at

a 
−

En
vi

ro
nm

en
ta

l m
on

ito
ri

ng
; 

In
fo

rm
at

io
n 
−

D
is

ea
se

 d
et

ec
tio

n;
 

Kn
ow

le
dg

e 
−

Yi
el

d 
pr

ed
ic

tio
n;

 
W

is
do

m
 −

Li
m

ite
d 

se
rv

ic
es

D
at

a 
−

Eq
ui

pm
en

t m
on

ito
ri

ng
; I

nf
or

m
at

io
n 

– 
Fa

ul
t 

di
ag

no
st

ic
s(

th
re

sh
ol

d)
; K

no
w

le
dg

e 
−

Pr
oc

es
s 

op
tim

is
at

io
n;

 
W

is
do

m
 −

A
ut

on
om

ou
s 

co
nt

ro
l

D
at

a 
−

St
ru

ct
ur

al
 m

on
ito

ri
ng

; 
In

fo
rm

at
io

n 
−

Sa
fe

ty
 a

le
rt

s;
 

Kn
ow

le
dg

e 
−

Pe
rf

or
m

an
ce

 
m

od
el

lin
g;

 
W

is
do

m
 −

Li
m

ite
d 

se
rv

ic
es

D
at

a 
−

Vi
ta

l s
ig

n 
m

on
ito

ri
ng

; 
In

fo
rm

at
io

n 
−

H
ea

lth
 a

na
ly

si
s;

 
Kn

ow
le

dg
e 
−

Tr
ea

tm
en

t m
od

el
lin

g;
 

W
is

do
m

 −
Li

m
ite

d 
se

rv
ic

es

D
at

a 
−

In
fr

as
tr

uc
tu

re
 m

on
ito

ri
ng

; 
In

fo
rm

at
io

n 
−

Tr
af

fic
 a

na
ly

si
s;

 
Kn

ow
le

dg
e 
−

U
rb

an
 p

la
nn

in
g 

m
od

el
s;

 
Tr

af
fic

 o
pt

im
is

at
io

n 
W

is
do

m
 −

Li
m

ite
d 

se
rv

ic
es

Table 8 
DIKW-based Digital Twin Architecture and Services.

DIKW Level Reflection on six-dimensional framework

Purposes Architecture Services

Data Passive 
monitoring

Data acquisition in 
physical space

− Common data 
environment 
− Data storage and 
retrieval

Information Reactive 
analytics

Semantic information 
extracted from data via 
the data engine

− Visualisation and/ 
or notification of 
current system status 
− Threshold-based 
fault diagnostics

Knowledge Prediction of 
future status

Modelling engine to 
assist investigation of 
the reasons for certain 
system behaviours

− System behaviour 
modelling to provide 
reasoning via 
ontologies, etc. 
− An expert system 
that uses databases of 
expert knowledge to 
offer advice

Wisdom Proactive 
management

Service engine to 
generate user-required 
service based on data, 
information and 
knowledge

− Prediction of system 
behaviour on the basis 
of data and models 
− Decision-making 
based on multi- 
objective optimisation
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• Co-simulation: Simultaneous simulation of interconnected systems.
• Collaborative Learning: Sharing insights and improving algorithms 

collectively.
• Cross-Twin Predictions: Leveraging aggregated data for predictive 

analysis.
• Coordinated Decision-Making: Enabling joint optimisation and de-

cision processes.

The DT-PaaS platform simplifies DT development and fosters the 
creation of a robust DT ecosystem by promoting interoperability. This 
aligns with the Levels of Conceptual Interoperability Model (LCIM), 

which defines seven levels of interoperability: technical, syntactic, se-
mantic, pragmatic, dynamic, conceptual, and organisational. Theoret-
ical foundations from LCIM and prior research ([129–131]) emphasise 
that higher-level interoperation (e.g., model exchange, service requests) 
is essential for realising advanced DT applications.

The DT-PaaS platform envisions a future where digitalisation 
removes technological barriers between domains. Standardised tools 
empower developers to build interoperable DTs, while domain practi-
tioners remain essential for integrating physical objects through tasks 
like data acquisition, simulation, and actuation control.

Fig. 6. Illustration of DT-PaaS.
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6.3.3. Case study on DTs interoperation
As per the Three Sector Model, the primary forms of human eco-

nomic activity can be categorised into harvesting, production, and 
consumption. To validate the proposed framework, an example of 
interoperable DTs representing these three stages of economic 
activity—a Farm DT, a Food Factory DT, and a Care Centre DT—is 
presented in Fig. 7.

For each DT, the twinning purpose, object, and architecture have 
been conceptualised to define the necessary data, models, and services. 
By implementing these three DT instances, an interoperability engine is 
formed to facilitate data exchange and interaction across the inter-
connected ecosystem. This engine serves as the backbone of the DT 
network, enabling them to operate collectively as part of a larger, 
intelligent system.

Similar to single DT services, cross-twin services can also be cat-
egorised using the DIKW Model, reflecting the levels of intelligence 
achieved by the applications delivered through the DT ecosystem. By 
integrating their data, models, and services, the DTs of the farm, food 
factory, and care centre create a smart, adaptive supply chain that en-
hances efficiency, promotes sustainability, and improves the well-being 
of care centre residents.

7. Conclusion

A comprehensive literature review was conducted, encompassing 
both academic publications and industry reports from relevant com-
panies and organisations (i.e., FIWARE, Siemens, Digital Twin Con-
sortium, Centre for Digital Built Britain). Given the rapid evolution of all 
aspects of DT technology, there is an urgent need for methodologies to 
identify and refine common principles across diverse DT systems.

This paper three primary contributions to the DT research 
community: 

1. A six-dimensional DT framework: Grounded in established research 
and engineering principles, this framework captures the universal 
development process across domains. It serves as both a descriptive 
tool and a comparative metric.

2. Framework validation through cross-domain use-cases: The pro-
posed framework was validated through multiple DT use cases, 
systematically analysing similarities and differences. This led to an 
explanatory theory of variations in DT implementations across 
domains.

3. Proposal and case study for DT-PaaS: Leveraging cross-domain in-
sights, this paradigm standardised processes and tools while sup-
porting DT interoperability.

The comparative framework (Fig. 3) a practical guide for developing 
a DT from raw ideas through conceptualisation to implementation, 
regardless of the domain. The systematic analysis key differentiators 
(digitalisation capability, cost-benefit dynamics, socio-ethical risks) and 
universal principles (DIKW progression, layered architecture, federated 
data models) that shape DT development across sectors, forming a 
theoretical basis to underpin DT systems requirements, workflow, and 
real-world applications.

This study had several limitations that should be acknowledged. 
First, domain bias may have been present in the Section 5 analysis, with 
more examples from high-resource sectors like manufacturing, while 
fewer were available from resource-constrained domains such as agri-
culture. Second, the current snapshots of DT development may not have 
captured the dynamics of rapid advancement, requiring periodic up-
dates to maintain validity. Third, while Fig. 6 the conceptual architec-
ture for the DT-PaaS platform, detailed technical specifications for data 
model management and inter-engine communication represent impor-
tant areas for future implementation research.

This study the field by framing future DT use-cases within a cross- 
domain framework. Future research should address the detailed 

Fig. 7. Case study on the interoperation of connected digital twins.
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technical implementation of the DT-PaaS architecture, including data 
model federation mechanisms, inter-engine communication protocols, 
and service orchestration frameworks identified in the conceptual pro-
posal. Additionally, interoperability standards should be prioritised to 
enable data exchange between DTs, facilitating knowledge-sharing 
across sectors. Another future direction involves designing for wider 
societal value and wellbeing, including human-centric, resilient and 
sustainable approaches that align with Industry 5.0 [132], such as 
human-robot collaborative assembly [133] and embedding lifecycle and 
carbon footprint assessment metrics into DT decision loops.

8. Declaration of generative AI and AI-assisted technologies

During the preparation of this work, the author(s) used ChatGPT3.5 
and Claude AI to improve readability. After using this tool/service, the 
author(s) reviewed and edited the content as needed and take(s) full 
responsibility for the content of the publication.

CRediT authorship contribution statement

Guanyu Xiong: Writing – review & editing, Writing – original draft, 
Methodology, Conceptualization. Haijiang Li: Supervision, Conceptu-
alization. Yan Gao: Validation, Methodology.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors.

Data availability

No data was used for the research described in the article.

References

[1] L. Floridi, The fourth revolution: how the infosphere is reshaping human reality, 
(2014). https://philpapers.org/rec/FLOTFR-3 (accessed October 3, 2022).

[2] D. Jones, C. Snider, A. Nassehi, J. Yon, B. Hicks, Characterising the digital twin: a 
systematic literature review, CIRP J. Manuf. Sci. Technol. 29 (2020) 36–52, 
https://doi.org/10.1016/j.cirpj.2020.02.002.

[3] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne, L. Wang, 
DRAFT Modelling, simulation, information technology & processing roadmap - 
technology area 11, Natl. Aeronaut. Sp. Adm. (2010) 27. https://www.nasa.gov/ 
pdf/501321main_TA11-MSITP-DRAFT-Nov2010-A1.pdf.

[4] Grieves: Digital twin: manufacturing excellence through... - Google Scholar, (n. 
d.). https://scholar.google.com/scholar_lookup?title=Digital twin%3A 
manufacturing excellence through virtual factory replication 
&publication_year=2014&author=M. Grieves (accessed May 29, 2025).

[5] M. Grieves, J. Vickers, Digital Twin: mitigating unpredictable, undesirable 
emergent behaviour in complex systems, transdiscipl, Perspect. Complex Syst. 
New Find. Approaches. (2017) 85–113, https://doi.org/10.1007/978-3-319- 
38756-7_4.

[6] W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, Digital twin in 
manufacturing: a categorical literature review and classification, IFAC- 
PapersOnLine 51 (2018) 1016–1022, https://doi.org/10.1016/j. 
ifacol.2018.08.474.

[7] O. El Marai, T. Taleb, J. Song, Roads infrastructure digital twin: a step toward 
smarter cities realization, IEEE Netw. 35 (2021) 136–143, https://doi.org/ 
10.1109/MNET.011.2000398.

[8] F. Jiang, L. Ma, T. Broyd, W. Chen, H. Luo, Digital twin enabled sustainable urban 
road planning, Sustain. Cities Soc. 78 (2022) 103645, https://doi.org/10.1016/J. 
SCS.2021.103645.

[9] X. Zhong, F. Babaie Sarijaloo, A. Prakash, J. Park, C. Huang, A. Barwise, V. 
Herasevich, O. Gajic, B. Pickering, Y. Dong, A multidisciplinary approach to the 
development of digital twin models of critical care delivery in intensive care 
units, 60, 2022:4197–4213. doi: 10.1080/00207543.2021.2022235.

[10] Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang, M.J. Deen, 
A novel cloud-based framework for the elderly healthcare services using digital 
twin, IEEE Access 7 (2019) 49088–49101, https://doi.org/10.1109/ 
ACCESS.2019.2909828.

[11] J. Corral-Acero, F. Margara, M. Marciniak, C. Rodero, F. Loncaric, Y. Feng, 
A. Gilbert, J.F. Fernandes, H.A. Bukhari, A. Wajdan, M.V. Martinez, M.S. Santos, 
M. Shamohammdi, H. Luo, P. Westphal, P. Leeson, P. DiAchille, V. Gurev, 
M. Mayr, L. Geris, P. Pathmanathan, T. Morrison, R. Cornelussen, F. Prinzen, 
T. Delhaas, A. Doltra, M. Sitges, E.J. Vigmond, E. Zacur, V. Grau, B. Rodriguez, E. 
W. Remme, S. Niederer, P. Mortier, K. McLeod, M. Potse, E. Pueyo, A. Bueno- 
Orovio, P. Lamata, The “digital twin” to enable the vision of precision cardiology, 
Eur. Heart J. 41 (2020) 4556–4564B, https://doi.org/10.1093/eurheartj/ 
ehaa159.

[12] G. Mylonas, A. Kalogeras, G. Kalogeras, C. Anagnostopoulos, C. Alexakos, 
L. Munoz, Digital twins from smart manufacturing to smart cities: a survey, IEEE 
Access 9 (2021) 143222–143249, https://doi.org/10.1109/ 
ACCESS.2021.3120843.

[13] N. Taylor, C. Human, K. Kruger, A. Bekker, A. Basson, Comparison of digital twin 
development in manufacturing and maritime domains, Stud. Comput. Intell. 853 
(2020) 158–170, https://doi.org/10.1007/978-3-030-27477-1_12.

[14] J.M. Davila Delgado, L. Oyedele, Digital twins for the built environment: learning 
from conceptual and process models in manufacturing, Adv. Eng. Inform. 49 
(2021) 101332, https://doi.org/10.1016/j.aei.2021.101332.

[15] O.C. Madubuike, C.J. Anumba, R. Khallaf, A review of digital twin applications in 
construction, J. Inf. Technol. Constr. 27 (2022) 145–172, https://doi.org/ 
10.36680/j.itcon.2022.008.

[16] M.R. Enders, N. Hoßbach, Dimensions of digital twin applications - a literature 
review, 25th Am Conf. Inf. Syst. AMCIS 2019 (2019).

[17] D.M. Botín-Sanabria, S. Mihaita, R.E. Peimbert-García, M.A. Ramírez-Moreno, R. 
A. Ramírez-Mendoza, J. D.J. Lozoya-Santos, Digital twin technology challenges 
and applications: a comprehensive review, Remote Sens. 14 (2022) 1335, https:// 
doi.org/10.3390/RS14061335.

[18] M. Singh, E. Fuenmayor, E.P. Hinchy, Y. Qiao, N. Murray, D. Devine, Digital twin: 
origin to future, Appl. Syst. Innov. 4 (2021) 36, https://doi.org/10.3390/ 
ASI4020036.

[19] E. VanDerHorn, S. Mahadevan, Digital Twin: generalization, characterization and 
implementation, Decis. Support Syst. 145 (2021) 113524, https://doi.org/ 
10.1016/J.DSS.2021.113524.

[20] A. Bolton, L. Butler, I. Dabson, M. Enzer, M. Evans, T. Fenemore, F. Harradence, 
E. Keaney, A. Kemp, A. Luck, N. Pawsey, S. Saville, J. Schooling, M. Sharp, 
T. Smith, J. Tennison, J. Whyte, A. Wilson, C. Makri, Gemini Principles (2018), 
https://doi.org/10.17863/CAM.32260.

[21] H. Boyes, T. Watson, Digital twins: an analysis framework and open issues, 
Comput. Ind. 143 (2022) 103763, https://doi.org/10.1016/J. 
COMPIND.2022.103763.

[22] J.F. Yao, Y. Yang, X.C. Wang, X.P. Zhang, Systematic review of digital twin 
technology and applications, Vis. Comput. Ind. Biomed. 61 (61) (2023) 20, 
https://doi.org/10.1186/S42492-023-00137-4.
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[91] P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: A digital twin 
framework for smart agriculture, J. Wirel. Mob. Networks, Ubiquitous Comput. 
Dependable Appl. 11 (2020) 77–96, https://doi.org/10.22667/ 
JOWUA.2020.12.31.077.

[92] S. Huang, G. Wang, Y. Yan, X. Fang, Blockchain-based data management for 
digital twin of product, J. Manuf. Syst. 54 (2020) 361–371, https://doi.org/ 
10.1016/J.JMSY.2020.01.009.

[93] C. Zhuang, J. Liu, H. Xiong, Digital twin-based smart production management 
and control framework for the complex product assembly shop-floor, Int. J. Adv. 
Manuf. Technol. 96 (2018) 1149–1163, https://doi.org/10.1007/S00170-018- 
1617-6/METRICS.

[94] K.T. Park, Y.W. Nam, H.S. Lee, S.J. Im, S. Do Noh, J.Y. Son, H. Kim, Design and 
implementation of a digital twin application for a connected micro smart factory, 
Int. J. Comput. Integr. Manuf. 32 (2019) 596–614, https://doi.org/10.1080/ 
0951192X.2019.1599439.

[95] S. Agostinelli, F. Cumo, M.M. Nezhad, G. Orsini, G. Piras, Renewable energy 
system controlled by open-source tools and digital twin model: zero energy port 
area in Italy, Energies 15 (2022), https://doi.org/10.3390/EN15051817.

[96] R. Sacks, I. Brilakis, E. Pikas, H.S. Xie, M. Girolami, Construction with digital twin 
information systems, Data-Centric Eng. 1 (2020), https://doi.org/10.1017/ 
dce.2020.16.

[97] S. Yoon, J. Lee, J. Li, P. Wang, Virtual in-situ modelling between digital twin and 
BIM for advanced building operations and maintenance, Autom. Constr. 168 
(2024) 105823, https://doi.org/10.1016/J.AUTCON.2024.105823.

[98] J. Koo, S. Yoon, Virtual in-situ calibration for digital twin-synchronized building 
operations, Energy Build. 340 (2025) 115760, https://doi.org/10.1016/J. 
ENBUILD.2025.115760.

[99] D.G.J. Opoku, S. Perera, R. Osei-Kyei, M. Rashidi, Digital twin application in the 
construction industry: a literature review, J. Build. Eng. 40 (2021) 102726, 
https://doi.org/10.1016/j.jobe.2021.102726.

[100] L. Hou, S. Wu, G.K. Zhang, Y. Tan, X. Wang, Literature review of digital twins 
applications in constructionworkforce safety, Appl. Sci. 11 (2021) 1–21, https:// 
doi.org/10.3390/app11010339.

[101] H. Elayan, M. Aloqaily, M. Guizani, Digital twin for intelligent context-aware IoT 
healthcare systems, IEEE Internet Things J. 8 (2021) 16749–16757, https://doi. 
org/10.1109/JIOT.2021.3051158.

[102] K.P. Venkatesh, M.M. Raza, J.C. Kvedar, Health digital twins as tools for precision 
medicine: considerations for computation, implementation, and regulation, Npj 
Digit. Med. 51 (5) (2022) 1–2, https://doi.org/10.1038/s41746-022-00694-7.

[103] S. Choi, S. Yoon, AI agent-based intelligent urban digital twin (I-UDT): concept, 
methodology, and case studies, Smart Cities 8 (28) (2025), https://doi.org/ 
10.3390/SMARTCITIES8010028.

[104] L. Wan, T. Nochta, J.M. Schooling, Developing a city-level digital twin - 
Propositions and a case study, Int. Conf. Smart Infrastruct. Constr. 2019, ICSIC 
2019 Driv. Data-Informed Decis. (2019) 187–193. Doi: 10.1680/ 
ICSIC.64669.187/ASSET/IMAGES/SMALL/ICSIC.64669.187.F6.GIF.

[105] Y. Ham, A.M. Asce, J. Kim, S.M. Asce, Participatory sensing and digital twin city: 
updating virtual city models for enhanced risk-informed decision-making, 
J. Manag. Eng. 36 (2020), https://doi.org/10.1061/(ASCE)ME.1943- 
5479.0000748.

[106] A. Zahra, M. Ghafoor, K. Munir, A. Ullah, Z., Ul Abideen, Application of region- 
based video surveillance in smart cities using deep learning, Multimed. Tools 
Appl. (2021) 1–26, https://doi.org/10.1007/S11042-021-11468-W/FIGURES/9.

[107] G. Lay, Servitization in industry, Servitization Ind. 9783319069357 (2014) 
1–349. Doi: 10.1007/978-3-319-06935-7/COVER.

[108] J. Moyne, Y. Qamsane, E.C. Balta, I. Kovalenko, J. Faris, K. Barton, D.M. Tilbury, 
A requirements driven digital twin framework: specification and opportunities, 
IEEE Access 8 (2020) 107781–107801, https://doi.org/10.1109/ 
ACCESS.2020.3000437.

[109] S. Muralidharan, B. Yoo, H. Ko, Designing a semantic digital twin model for IoT, 
Dig. Tech. Pap. - IEEE Int. Conf. Consum. Electron. (2020), https://doi.org/ 
10.1109/ICCE46568.2020.9043088.

[110] U. Shani, H. Broodney, Reuse in model-based systems engineering, 9th Annu, 
IEEE Int. Syst. Conf. Syscon 2015 - Proc. (2015) 77–83, https://doi.org/10.1109/ 
SYSCON.2015.7116732.

[111] L. Boyle, M. Mackay, A Reusable Discrete Event Simulation Model for Improving 
Orthopedic Waiting Lists, (2023) 973–984. Doi: 10.1109/WSC57314.2022.1001 
5512.

[112] J. Kazil, D. Masad, A. Crooks, Utilizing Python for Agent-Based Modeling: The 
Mesa Framework, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. 
Intell. Lect. Notes Bioinformatics). 12268 LNCS (2020) 308–317. Doi: 10.1007/9 
78-3-030-61255-9_30/FIGURES/3.

[113] C. Ye, L. Butler, B. Calka, M. Iangurazov, Q. Lu, A. Gregory, M. Girolami, C. 
Middleton, A digital twin of bridges for structural health monitoring, Struct. Heal. 
Monit. 2019 Enabling Intell. Life-Cycle Heal. Manag. Ind. Internet Things - Proc. 
12th Int. Work. Struct. Heal. Monit. 1 (2019) 1619–1626. Doi: 10.12783/shm2 
019/32287.

[114] G. Yu, Y. Wang, Z. Mao, M. Hu, V. Sugumaran, Y.K. Wang, A digital twin-based 
decision analysis framework for operation and maintenance of tunnels, Tunn. 
Undergr. Sp. Technol. 116 (2021), https://doi.org/10.1016/J. 
TUST.2021.104125.

[115] D. Dan, Y. Ying, L. Ge, Digital twin system of bridges group based on machine 
vision fusion monitoring of bridge traffic load, IEEE Trans. Intell. Transp. Syst. 
(2021) 1–16, https://doi.org/10.1109/TITS.2021.3130025.

[116] I. Kazuhiko, Y. Atsushi, Building a common smart city platform utilizing FIWARE 
(case study of Takamatsu City), NEC Tech. J. 13 (1) (2018) 28.

[117] M. Segovia, J. Garcia-Alfaro, Design, modelling and implementation of digital 
twins, Sensors 22 (2022) 5396, https://doi.org/10.3390/S22145396.

[118] E.D. Lioutas, C. Charatsari, M. De Rosa, Digitalization of agriculture: a way to 
solve the food problem or a trolley dilemma? Technol. Soc. 67 (2021) 101744 
https://doi.org/10.1016/j.techsoc.2021.101744.

[119] M. Chiachío, M. Megía, J. Chiachío, J. Fernandez, M.L. Jalón, Structural digital 
twin framework: formulation and technology integration, Autom. Constr. 140 
(2022) 104333, https://doi.org/10.1016/J.AUTCON.2022.104333.

[120] D. Helbing, J. Argota Sánchez-Vaquerizo, Digital twins: potentials, ethical issues, 
and limitations, SSRN Electron. J. (2022), https://doi.org/10.2139/ 
SSRN.4167963.

[121] McKinsey, Digital twins: How to build the first twin, (2022). https://www.mckin 
sey.com/capabilities/mckinsey-digital/our-insights/digital-twins-how-to-build-th 
e-first-twin (accessed December 14, 2024).

[122] WSP, How Digital Twin technology will improve engagement with stakeholders 
and communities, (2021). https://www.wsp.com/en-us/insights/digital-twins 
-improve-engagement (accessed December 14, 2024).

[123] 12dsynergy, Digital Twins Explained: A Guide for the Built Environment - 12d 
Synergy, (2022). https://www.12dsynergy.com/innovation-showcase/digital-tw 
ins-explained/ (accessed December 14, 2024).

[124] E. Ras, F. Wild, C. Stahl, A. Baudet, Bridging the skills gap of workers in industry 
4.0 by human performance augmentation tools - challenges and roadmap, ACM 
Int Conf. Proceeding Ser. Part F 128530 (2017) 428–432, https://doi.org/ 
10.1145/3056540.3076192.

[125] E.O. Popa, M. van Hilten, E. Oosterkamp, M.J. Bogaardt, The use of digital twins 
in healthcare: socio-ethical benefits and socio-ethical risks, Life Sci. Soc Policy 17 
(2021) 1–25, https://doi.org/10.1186/s40504-021-00113-x.

[126] M.M. Helms, R. Moore, M. Ahmadi, Information technology (IT) and the 
healthcare industry: a SWOT analysis, Int. J. Healthc. Inf. Syst. Inform. 3 (2008) 
75–92, https://doi.org/10.4018/jhisi.2008010105.

[127] Microsoft, Bentley iTwin and iModel.js Integration with Azure Digital Twins | 
Microsoft Learn, (2022). https://learn.microsoft.com/en-us/shows/internet- 
of-things-show/bentley-itwin-and-imodeljs-integration-with-azure-digital-twins? 
utm_source=chatgpt.com (accessed December 17, 2024).

[128] Microsoft, Azure Digital Twins | Microsoft, Microsoft 2023. (2023). https://learn. 
microsoft.com/en-us/azure/digital-twins/concepts-models (accessed March 17, 
2023).

[129] A. Tolk, J. Muguira, The Levels of Conceptual Interoperability Model, (2003).
[130] L. Esterle, C. Gomes, M. Frasheri, H. Ejersbo, S. Tomforde, P.G. Larsen, Digital 

twins for collaboration and self-integration, Proc. - 2021 IEEE Int. Conf. Auton. 
Comput. Self-Organizing Syst. Companion, ACSOS-C 2021. (2021) 172–177. Doi: 
10.1109/ACSOS-C52956.2021.00040.

[131] I. David, G. Shao, C. Gomes, D. Tilbury, B. Zarkout, Interoperability of Digital 
Twins: Challenges, Success Factors, and Future Research Directions, (2025) 
27–46. Doi: 10.1007/978-3-031-75390-9_3.

[132] Industry 5.0 - European Commission, (n.d.). https://research-and-innovation.ec. 
europa.eu/research-area/industrial-research-and-innovation/industry-50_en
(accessed May 28, 2025).

[133] B. Wang, P. Zheng, Y. Yin, A. Shih, L. Wang, Toward human-centric smart 
manufacturing: a human-cyber-physical systems (HCPS) perspective, J. Manuf. 
Syst. 63 (2022) 471–490, https://doi.org/10.1016/J.JMSY.2022.05.005.

G. Xiong et al.                                                                                                                                                                                                                                   Advanced Engineering Informatics 68 (2025) 103726 

25 

https://doi.org/10.22667/JOWUA.2020.12.31.077
https://doi.org/10.22667/JOWUA.2020.12.31.077
https://doi.org/10.1016/J.JMSY.2020.01.009
https://doi.org/10.1016/J.JMSY.2020.01.009
https://doi.org/10.1007/S00170-018-1617-6/METRICS
https://doi.org/10.1007/S00170-018-1617-6/METRICS
https://doi.org/10.1080/0951192X.2019.1599439
https://doi.org/10.1080/0951192X.2019.1599439
https://doi.org/10.3390/EN15051817
https://doi.org/10.1017/dce.2020.16
https://doi.org/10.1017/dce.2020.16
https://doi.org/10.1016/J.AUTCON.2024.105823
https://doi.org/10.1016/J.ENBUILD.2025.115760
https://doi.org/10.1016/J.ENBUILD.2025.115760
https://doi.org/10.1016/j.jobe.2021.102726
https://doi.org/10.3390/app11010339
https://doi.org/10.3390/app11010339
https://doi.org/10.1109/JIOT.2021.3051158
https://doi.org/10.1109/JIOT.2021.3051158
https://doi.org/10.1038/s41746-022-00694-7
https://doi.org/10.3390/SMARTCITIES8010028
https://doi.org/10.3390/SMARTCITIES8010028
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000748
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000748
https://doi.org/10.1007/S11042-021-11468-W/FIGURES/9
http://Doi%3a+10.1007/978-3-319-06935-7/COVER
https://doi.org/10.1109/ACCESS.2020.3000437
https://doi.org/10.1109/ACCESS.2020.3000437
https://doi.org/10.1109/ICCE46568.2020.9043088
https://doi.org/10.1109/ICCE46568.2020.9043088
https://doi.org/10.1109/SYSCON.2015.7116732
https://doi.org/10.1109/SYSCON.2015.7116732
http://Doi%3a+10.1109/WSC57314.2022.10015512
http://Doi%3a+10.1109/WSC57314.2022.10015512
http://Doi%3a+10.1007/978-3-030-61255-9_30/FIGURES/3
http://Doi%3a+10.1007/978-3-030-61255-9_30/FIGURES/3
http://Doi%3a+10.12783/shm2019/32287
http://Doi%3a+10.12783/shm2019/32287
https://doi.org/10.1016/J.TUST.2021.104125
https://doi.org/10.1016/J.TUST.2021.104125
https://doi.org/10.1109/TITS.2021.3130025
http://refhub.elsevier.com/S1474-0346(25)00619-6/h0555
http://refhub.elsevier.com/S1474-0346(25)00619-6/h0555
https://doi.org/10.3390/S22145396
https://doi.org/10.1016/j.techsoc.2021.101744
https://doi.org/10.1016/J.AUTCON.2022.104333
https://doi.org/10.2139/SSRN.4167963
https://doi.org/10.2139/SSRN.4167963
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/digital-twins-how-to-build-the-first-twin
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/digital-twins-how-to-build-the-first-twin
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/digital-twins-how-to-build-the-first-twin
https://www.wsp.com/en-us/insights/digital-twins-improve-engagement
https://www.wsp.com/en-us/insights/digital-twins-improve-engagement
https://www.12dsynergy.com/innovation-showcase/digital-twins-explained/
https://www.12dsynergy.com/innovation-showcase/digital-twins-explained/
https://doi.org/10.1145/3056540.3076192
https://doi.org/10.1145/3056540.3076192
https://doi.org/10.1186/s40504-021-00113-x
https://doi.org/10.4018/jhisi.2008010105
https://learn.microsoft.com/en-us/shows/internet-of-things-show/bentley-itwin-and-imodeljs-integration-with-azure-digital-twins?utm_source=chatgpt.com
https://learn.microsoft.com/en-us/shows/internet-of-things-show/bentley-itwin-and-imodeljs-integration-with-azure-digital-twins?utm_source=chatgpt.com
https://learn.microsoft.com/en-us/shows/internet-of-things-show/bentley-itwin-and-imodeljs-integration-with-azure-digital-twins?utm_source=chatgpt.com
https://learn.microsoft.com/en-us/azure/digital-twins/concepts-models
https://learn.microsoft.com/en-us/azure/digital-twins/concepts-models
http://Doi%3a+10.1007/978-3-031-75390-9_3
https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en
https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en
https://doi.org/10.1016/J.JMSY.2022.05.005

	Cross-domain comparative analysis of digital twins and universalised solutions
	1 Introduction
	1.1 Digital twins evolution
	1.2 Research gaps
	1.2.1 Restricted domain focus
	1.2.2 Limited interdisciplinary insights
	1.2.3 Insufficient theoretical foundations
	1.2.4 Gap between high-level principles and implementation guidance

	1.3 Need for cross-domain analysis
	1.3.1 Interdisciplinary nature and global challenges
	1.3.2 Universal principles vs. domain fragmentation
	1.3.3 Knowledge transfer and multi-domain integration


	2 Methodology
	3 Selection of domains
	4 Synthesis of comparative framework
	4.1 Evaluation of existing DT frameworks
	4.2 Framework synthesis methodology
	4.3 Framework specification
	4.3.1 Twinning objects
	4.3.2 Twinning purposes
	4.3.3 System architectures
	4.3.4 Data
	4.3.5 Modelling
	4.3.6 Services


	5 Domain-specific DT analysis
	5.1 Agriculture
	5.2 Manufacturing
	5.3 Construction
	5.4 Healthcare
	5.5 City
	5.6 Cross-domain digital twin implementation summary

	6 Cross-domain analysis and unified implementation framework
	6.1 Commonalities for universal development principles
	6.1.1 Requirement-driven digital Twin conceptualisation
	6.1.2 Reusable and interoperable data model and modelling library
	6.1.3 Dikw-based service architecture and value progression

	6.2 Differentiators for readiness levels and perspectives
	6.2.1 Digitalisation capability and controllability
	6.2.2 Cost-benefit analysis
	6.2.3 Socio-ethical risks

	6.3 Solutions for unified cross-domain implementation
	6.3.1 Limitations of current DT software and platforms
	6.3.2 Proposed cross-domain DT-PaaS
	6.3.3 Case study on DTs interoperation


	7 Conclusion
	8 Declaration of generative AI and AI-assisted technologies
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


