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Abstract
Purpose: Cardiac diffusion tensor imaging (cDTI) can investigate the
microstructure of heart tissue. At sufficiently high b-values, additional informa-
tion on microstructure can be observed, but the data require a representation
such as diffusion kurtosis imaging (DKI). cDTI is prone to image corruption,
which is usually treated with shot rejection but which can be handled more gen-
erally with robust estimation. Unconstrained fitting allows DKI parameters to
violate necessary constraints on signal behavior, causing errors in diffusion and
kurtosis measures.
Methods: We developed robust constrained weighted least squares (RCWLS)
specifically for DKI. Using in vivo cardiac DKI data from 11 healthy volunteers
collected with a Connectom scanner up to b-value 1350 s∕mm2, we compared
fitting techniques with/without robustness and with/without constraints.
Results: Constraints, but not robustness, made a significant difference on all
measures. Robust fitting corrected large errors for some subjects. RCWLS was
the only technique that showed radial kurtosis to be larger than axial kurtosis
for all subjects, which is expected in myocardium due to increased restrictions to
diffusion perpendicular to the primary myocyte direction. For b = 1350 s∕mm2,
RCWLS gave the following measures across subjects: mean diffusivity (MD)
1.68 ± 0.050 × 10−3mm2∕s, fractional anisotropy (FA) 0.30 ± 0.013, mean kur-
tosis (MK) 0.36 ± 0.027, axial kurtosis (AK) 0.26 ± 0.027, radial kurtosis (RK)
0.42 ± 0.040, and RK/AK 1.65 ± 0.19.
Conclusion: Fitting techniques utilizing both robust estimation and convexity
constraints, such as RCWLS, are essential to obtain robust and feasible diffusion
and kurtosis measures from in vivo cardiac DKI.
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1 INTRODUCTION

Cardiac diffusion weighted imaging (cDWI) is a magnetic
resonance imaging (MRI) technique that can be used to
investigate cardiac tissue microstructure. Cardiac diffu-
sion tensor imaging (cDTI) is the most common cDWI
method used on the heart, from which measures such
as mean diffusivity (MD) and fractional anisotropy (FA)
can be derived. However, the diffusion-weighted signal
in tissue deviates from monoexponential decay at higher
diffusion weighting (as expressed by the b-values) due
to cell membranes and other restrictions in biological
tissue.1–3 Diffusion kurtosis imaging (DKI) can quantify
these deviations. Non-Gaussian diffusion models (includ-
ing DKI) have been shown to have a higher sensitivity
for the detection of hypertrophy in ex vivo rat hearts
compared with DTI.3 Kurtosis measures include mean
kurtosis (average kurtosis across all directions), axial kur-
tosis (kurtosis in the primary diffusion direction) and
radial kurtosis (average kurtosis in the plane perpen-
dicular to axial kurtosis).4–12 Anisotropic and isotropic
kurtosis can be also distinguished with q-space trajectory
imaging.13

Spin echo based DKI in the human heart in vivo
is challenging due to low SNR, a short myocardial T2
(approximately 46 ms at 3.0 T14) and long echo-times (TE),
required to achieve sufficient motion compensation and
b-values. Nonetheless, acquiring data with sufficiently
high b-values for cardiac DKI has been shown to be feasible
in healthy volunteers in vivo using ultra-strong gradients
(i.e. 300 mT/m) at echo times and resolutions compara-
ble to those commonly used for conventional cDTI.15–17

However, even for the brain, which has longer T2 and sig-
nificantly less motion, DKI is challenging: fitting methods
need to handle data corruptions,18 but also need to yield
a physically plausible signal if kurtosis measures are to be
meaningful.19

Image corruption is a common problem in cDWI.20

Furthermore, motion causes additional signal variations
sometimes referred to as physiological noise. In cDTI, shot
rejection is usually performed in an attempt to handle cor-
ruptions where noticeably corrupted images are removed
from datasets before fitting, a method that is typically time
consuming and subjective. In our experience, the reduced
signal at higher b-values simultaneously causes a larger
number of corruptions (including those from misregis-
tration) and a decreased ability to perform shot-rejection
effectively. Robust estimation, in which outlier signals are
identified and removed at the voxel level, is an alterna-
tive to shot rejection. Our recent work shows that robust

estimation is superior to shot rejection in cDTI,21 so robust
estimation in cardiac DKI is worth investigating, but has
not been done yet.

Although the DKI signal representation does not cor-
respond to a valid diffusion propagator, the fitted signal
should still adhere to the physical principles govern-
ing the data-generating process. If it does not, the fitted
parameters and any measures derived from them will lack
meaningful interpretation. For example, the compartment
model predicts that kurtosis should be nonnegative,2,4

and the diffusion tensor should be positive definite as in
DTI. For DKI, it is not known how to enforce constraints
on kurtosis via reparameterization of the fitting problem,
so constraints must consider whether the predicted signal
behavior is valid, for example, in,22 nonlinear optimiza-
tion is (infinitely) penalized if constraints are violated.
Recently, linear least squares methods have been devel-
oped for enforcing convexity constraints on the cumulant
generating function, leading to correction of significant
errors in brain DKI.19 These advantages should also apply
to cardiac DKI.

While preventing estimated parameters from vio-
lating constraints may be seen as a form of robustness,
constrained fitting itself is not inherently robust. This is
because the constraints do not change the shape of the
fitting cost function in parameter space, which is entirely
determined by the data. As a result, outliers can still have
a detrimental impact on parameter estimates. Further-
more, although robust fitting may reduce the frequency
and impact of constraint violations by removing outlier
signals, it cannot guarantee that the parameters that opti-
mize the cost function will not violate the constraints.
The objectives of this work are (1) to demonstrate a way
of combining robust fitting21 with convexity constraints19

using iteratively reweighted least squares (IRLS) to give
robust constrained weighted least squares (RCWLS) and
(2) to test various fitting methods (with/without robust-
ness and with/without constraints) on in vivo cardiac
DKI data collected on a Connectom scanner to deter-
mine the effects on diffusion and kurtosis measures. To
our knowledge, this is the first time that constrained
estimation has been combined with robust estimation
in MRI.

2 METHODS

We use the following notation: tensors are bold and upper-
case; vectors are bold and lowercase; tensor and vector
elements are italicized and indexed.
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COVENEY et al. 3

2.1 Diffusion kurtosis imaging

The DKI signal representation can be expressed as2:

ln S(q) = ln S0 −
3∑

i=1

3∑
𝑗=1

qiq𝑗Di𝑗

+ 1
6

D
2

3∑
i=1

3∑
𝑗=1

3∑
k=1

3∑
l=1

qiq𝑗qkqlWi𝑗kl (1)

where q =
√

b ⋅ (n1,n2,n3) is the (rescaled) wave vec-
tor (denoted this way for convenience in expressing the
constraints—see Section 2.3), and i, 𝑗, k, l index physical
space coordinates. The diffusion tensor D and kurtosis
tensor W are both symmetric, having 6 and 15 unique ele-
ments, respectively. The signal at b = 0s∕mm2 is denoted
by scalar quantity S0. The DTI signal representation is the
same as Equation (1) but without the term containing W.
Kurtosis is expressed in dimensionless form due to scaling
by the mean diffusivity D = (D11 + D22 + D33)∕ 3.

Expanding Equation (1) accounting for the symmetry
of D and W gives the following linear expression:

f𝜽(q) ≡ ln S(q) = 𝜽
T ⋅ x (2a)

𝜽 = (𝜃1, 𝜃2, … , 𝜃22)T (2b)

x =
(
−q2
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4
6

q3
1q3,

4
6

q3
2q1,

4
6

q3
2q3,

4
6

q3
3q1,

4
6

q3
3q2, q2

1q2
2, q2

1q2
3, q2

2q2
3,

2q2
1q2q3, 2q2

2q1q3, 2q2
3q1q2,−1

)T (2c)

The 22 coefficients in 𝜽 are related to the original
parameters as follows: 6 diffusion tensor parameters
(𝜃1, … , 𝜃6) = (D11,D12,D22,D13,D23,D33), 15 kurtosis
tensor parameters (𝜃7, … , 𝜃21) = D

2
⋅ (W1111,W2222,W3333,

W1112,W1113,W1222,W2223,W1333,W2333,W1122,W1133,W2233,

W1123,W1223,W1233), and intercept 𝜃22 = − ln S0. The
DTI expression would include only terms depending on
(𝜃1, … , 𝜃6) and 𝜃22.

2.2 Weighted least squares

Given N observations {qn, Sn|n = 1 … N}, the weighted
least squares (WLS) estimate of the coefficients 𝜽 in
Equation (2), denoted by 𝜽̂WLS, is given by:

𝜽̂WLS = arg min𝜽

N∑
n=1

wn
(

f𝜽(qn) − ln Sn
)2 (3)

The wavevectors qn of the nth observation can be con-
verted to xn using Equation (2c). Given design matrix
X = (x1, x2, … , xN)T , observation vector y = (ln S1, ln S2,

… , ln SN)T , and weights vector w = (w1,w2, … ,wN)T , a
weighted design matrix and observation vector can be
defined:

X′ = diag(
√

w) ⋅ X , y′ = diag(
√

w) ⋅ y (4)

The WLS estimate can then be written as

𝜽̂WLS = arg min𝜽

||||||X′ ⋅ 𝜽 − y′||||||2
= (X′T ⋅ X′)−1 ⋅ X′ ⋅ y′ (5)

For uniform weights wn = 1, Equation (5) gives the ordi-
nary least squares (OLS) estimate 𝜽̂OLS.

2.3 Convexity constraints

A useful constraint for DKI is to enforce convexity of the
cumulant generating function (q)19:

(q) ∶= ln S(
√
−1q) ≡ f𝜽(

√
−1q) (6)

This constraint can be enforced by using sum of squares
polynomials19; the mathematical background for this can
be found in.23 The semi-definite program for solving the
WLS problem subject to constraints, thus yielding the con-
strained WLS estimate 𝜽̂CWLS, can be written as follows:

𝜽̂CWLS = arg min𝜽,𝜶
||||||X′ ⋅ 𝜽 − y′||||||2 (7a)

subject to eT ⋅ (H(𝜽) + L(𝜶)) ⋅ e = h𝜽(q, s) (7b)
H(𝜽) + L(𝜶) ≽ 0 (7c)

where h𝜽(q, s) ∶= sT ⋅ H(q) ⋅ s (7d)
eT ⋅ H(𝜽) ⋅ e = h𝜽(q, s) (7e)
eT ⋅ L(𝜶) ⋅ e = 0 (7f)

Importantly, we have written the problem in terms of the
weighted design matrix X′ and observation vector y′.

We will briefly explain Equation (7) for DKI, leaving
details on the constraint matrices H(𝜽) and L(𝜶) (pre-
sented here for the first time) for Appendix B. Equation
(7d) defines h𝜽(q, s), where H(q) is the Jacobian of (q)
and the dummy variable s has the same dimensions
as q. Then, h𝜽(q, s) is just a polynomial. Convexity of
(q) requires that h𝜽(q, s) is nonnegative, which can be
enforced using a sum of squares polynomial representa-
tion, that is, Equation (7b) (see23). We can exactly represent
h𝜽(q, s) using a relatively small monomial basis for e (see
Appendix B). The convexity constraint is satisfied when
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4 COVENEY et al.

Equation (7c) holds, that is, when H(𝜽) + L(𝜶) is posi-
tive semi-definite (PSD). Note that Equation (7) involves
optimizing over coefficients 𝜽 and slack parameters 𝜶.
Appendix C explains how the numerical complexity of the
problem can be reduced.

2.4 Robust fitting

In DTI/DKI, WLS usually refers to solving Equation (5)
by weighting the (squared) residuals of the linearized
problem with the (squared) signal24:

wn =
(
exp f𝜽(qn)

)2
← 𝜽̂OLS (8)

where an initial OLS estimate 𝜽̂OLS is used to predict the
signals (since the true signals are not known). Hence-
forth, we will use “WLS” to refer to Equation (5) using
the weights in Equation (8). Correspondingly, “CWLS”
will refer to constrained WLS, that is, solving Equation (7)
using the weights given by Equation (8).

Importantly, neither WLS nor CWLS are intrinsi-
cally robust, and outlier data can have a detrimental
effect on the estimates 𝜽̂WLS or 𝜽̂CWLS. Robust estima-
tion can be implemented using iteratively reweighted
least squares (IRLS), using weights derived from a robust
estimator.18,21,25 Notably, for WLS in DTI/DKI, these
robust weight should be chosen so as to preserve the
cost function implied by Equations (3) and (8) (see21

for a derivation), such that IRLS solves the WLS/CWLS
problem in a robust way. Robust fitting in the DTI/DKI
literature is usually done in order to remove the influ-
ence of outlier data on the fitted signal, thus making it
easier to identify outlier data so that the original problem
can be solved without robust weights but also without the
outliers.

A robust weighting scheme accounting for the
DTI/DKI weights in Equation (8), based on the
Geman–McClure M-estimator, with K iterations, is21,25:

w1
n =

(
exp f𝜽(qn)

)2
← 𝜽̂OLS (9a)

wk
n =

(
𝜎̂∕ exp f𝜽(qn)

(𝜎̂∕ exp f𝜽(qn))2 + u2
n

)2

←

⎛⎜⎜⎜⎝
𝜽̂∗

un

𝜎̂

⎞⎟⎟⎟⎠
k−1

(9b)

wK−1
n =

{
1 if yn ∉ 

0 if yn ∈ 
(9c)

wK
n =

{(
exp f𝜽(qn)

)2
← 𝜽̂

K−1
∗ if yn ∉ 

0 if yn ∈ 
(9d)

where 𝜽̂k
∗ corresponds to the estimated coefficients for iter-

ation k (we define uk
n and 𝜎̂

k below). This scheme requires
at least 4 iterations (in which case, a single robustly
weighted fit will have been performed for k = 2). As with
Equation (8), the symbol ← in Equation (9) is used to
mean that the quantities on the right are used to evalu-
ate the expression for the weights on the left, for example,
w2

n would be calculated using 𝜽̂∗, un, and 𝜎̂ from the first
iteration. The residuals of the WLS problem are defined
as the difference between the log observed signal and log
predicted signal:

uk
n ∶= yn − f𝜽(qn) ← 𝜽̂

k
∗ (10)

The noise level 𝜎̂ is estimated at the kth iteration using
a robust estimator designed for the WLS problem25:

𝜎̂
k = 1.4826 N

N − m
× MED

[|||zn − MED
[

zn]
||| ] (11)

where zn ≡ exp(f𝜽(qn))un ← 𝜽̂
k
∗, MED is the median oper-

ator and m is the number of regressors, that is, m = 7 for
DTI and m = 22 for DKI.

Set  contains log-signals defined as outliers by a
3-sigma rule, applied after the last robustly-weighted fit:

yn ∈  if ||| exp(yn) − exp(f𝜽(qn))
||| > 3𝜎̂K−2 (12)

such that the estimated coefficients 𝜽̂∗ at iteration K −
2 are used to evaluate f𝜽(qn). If the nth log-signal yn is
defined as an outlier, then it receives a weight of zero in
the last two iterations in Equation (9).

The main insight in this paper is that we can use IRLS
with a robust weighting scheme designed specifically for
DTI/DKI, that is, Equation (9), but we are free to choose
whether to estimate the coefficients at each iteration using
(unconstrained) WLS with Equation (5) or CWLS with
Eqs (7). The constraints are independent of the weights,
which only enter the cost function Equation (7a) through
Equation (4). We will refer to IRLS with weights given by
Equation (9) as robust WLS (RWLS) if Equation (5) is used
at each iteration, or as robust constrained WLS (RCWLS) if
Equation (7) is used at each iteration. The estimated coef-
ficients obtained from the last iteration with weights wK

are denoted as 𝜽̂RWLS for RWLS and 𝜽̂RCWLS for RCWLS.
For convenience, the unconstrained OLS estimate 𝜽̂OLS is
used to define weights for the first iteration for both RWLS
and RCWLS. We modified DiPy26 to be able to solve RWLS
and RCWLS. These modifications have been incorporated
in DiPy as of v1.10.
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COVENEY et al. 5

2.5 Experimental setup
and recruitment

Cardiac diffusion-weighted images (cDWI) were acquired
on a Connectom 3T research-only MR imaging system
(Siemens Healthcare, Erlangen, Germany) with a maxi-
mum gradient strength of 300 mT/m and slew rate of 200
T/m/s. An 18-channel body receive coil was used in combi-
nation with a 32-channel spine receive coil. Eleven healthy
volunteers (with no known previous cardiac conditions)
were recruited for this study: age range 20.5 ± 1.9 years
(18 − 24 years), weight range 64.1 ± 11.4 kg (54 − 94 kg),
7 females. The study was approved by the local institu-
tional review board (Cardiff University School of Psychol-
ogy Research Ethics Committee) and all subjects provided
written consent.

A prototype pulse sequence was used that enables
diffusion encoding with user-defined second-order
motion-compensated (M0M1M2) diffusion gradient
waveforms, designed with the NOW toolbox27–30 (see
Figure A1). The maximum gradient strength used in
this study for the M0M1M2 waveform to generate the
b-value of 1350 s∕mm2 was 285.4 mT/m, and the maxi-
mum physiologically limited slew rate was 76.2 T/m/s.15

The cDWI parameters were TR = 3 RR-intervals, TE
= 61 ms, EPI readout, field-of-view = 320 × 120 mm2

using ZOnally-magnified Oblique Multislice (ZOOM,
tilted RF: excitation, tilt angle: 15◦, tilted slice thickness:
20 mm),29,31 in-plane resolution = 2.7 × 2.7 mm2, slice
thickness = 8 mm, 3 short axis slices (base, mid, and
apical), partial Fourier factor = 7/8, no parallel imaging,
bandwidth = 2354 Hz/pixel. Each full dataset comprised
of 5 b-values (b = 100, 450, 900, 1200, 1350 s∕mm2). For
b ≥ 450 s∕mm2, 30 directions per shell were acquired with
6 repetitions while b = 100 s∕mm2 consisted of 3 direc-
tions with 12 repeats. Data were acquired with ECG-gating
and under free-breathing (respiratory navigators were not
employed for this work). The trigger delay was adjusted
for cDWI acquisition in mid-end systole. Saturation bands
were placed around the heart. Fat suppression was per-
formed using the SPAIR method.32 The scan time for all
the diffusion weighted images was around 40 min depend-
ing on subject heart rate. Including cardiac planning, the
total scan time was around one hour.

2.6 Post-processing

Post-processing was done using in-house tools,20 with
rigid image registration utilizing SITK33 and fitting uti-
lizing DiPy (with our updates).26 Image registration was
performed by masking a suitable b = 100 s∕mm2 image,
registering all b = 100 s∕mm2 images to this reference

image, then using the average of registered b = 100 s∕mm2

images to register the entire dataset. Correlation was used
as the registration metric, since it outperformed mutual
information for high b-value images. The DTI signal rep-
resentation was then fit to b ≤ 450 s∕mm2 images using
RWLS, and the full image series was predicted. Each orig-
inal (unmodified) image was then registered to the cor-
responding predicted image. This method, similar to,34

improved the registration.
After registration, we fit the DTI signal representation

to the b ≤ 450 s∕mm2 data using RWLS. MD, FA, and helix
angle (HA) (using a cylindrical coordinate system with
origin on the LV blood-pool center) were calculated. Seg-
mentation of the LV contours was performed with care
taken to exclude voxels exhibiting strong partial-volume
effects. For regions strongly affected by artifacts, such as
aliasing or susceptibility-induced warping, fitting results
do not reliably represent tissue properties. Artifact masks
were defined using sectors centered on the LV blood pool,
in order to ignore these parts of the myocardium when
calculating voxel statistics. This masking was performed
by considering the image series, as well as utilizing MD,
FA, HA, root mean square error and coefficient of deter-
mination (R2) from the RWLS DTI fit to b ≤ 450 s∕mm2

data. Across all subjects an average of 25% of voxels were
excluded. We have not utilized DKI results to identify arti-
facts in any way since this would likely bias comparison
between the fitting methods under study.

Having registered the images and segmented the
myocardium, we performed further fitting experiments on
myocardial voxels only. Defining bmax as the maximum
b-value images that were utilized in a given fit (such that
all images with a lower b-value were also included), we
performed the following: DTI using WLS and RWLS for
bmax = 450 s∕mm2; DKI with WLS, RWLS, CWLS, and
RCWLS, for bmax values 900, 1200, and 1350 s∕mm2. For
RWLS and RCWLS, we used K = 10 iterations. We cal-
culated the following measures in each voxel: mean dif-
fusivity (MD), fractional anisotropy (FA), mean kurtosis
(MK), axial kurtosis (AK), radial kurtosis (RK), and radial
/ axial kurtosis (RK/AK).2,4 We then calculated the average
of these measures over non-artifact myocardial voxels.

2.7 Statistical methods

In order to make tractable comparisons between differ-
ent fitting methods and to isolate the specific effects of
constraints and robustness, we applied paired tests to
measures obtained from different fitting methods for the
same bmax, and different bmax for the same fitting method.
Specifically, we used the Wilcoxon signed-rank test since
non-robust methods often produced results that violate
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6 COVENEY et al.

the assumption of normality (which was tested with the
Shapiro-Wilk test).

In this work, we potentially face the “multiple com-
parisons problem” since we compare many diffusion and
kurtosis measures, for many bmax values and fitting meth-
ods. It is not obvious how to adjust significance levels
in the context of comparing multiple fitting methods on
the same data (particularly given that multiple different
measures are calculated from the same set of estimated
coefficients, and that higher bmax fits included all data with
lower b-values). Methods for adjustment of significance
levels rely on independence assumptions that do not seem
to apply here, especially for a comparison of fitting meth-
ods. We therefore take care to draw conclusions that are
supported by the overall results.

3 RESULTS

3.1 Group analysis

Figure 1 shows boxplots of the average DTI/DKI mea-
sures for all 11 subjects. All fitting methods are shown for
all bmax values. The black markers drawn along the bot-
tom of each subplot indicate non-normality of the data
in each boxplot. Figures 2–4 show the results of signif-
icance tests between measures from the different fitting
methods and different bmax shown in Figure 1. Figure 2
shows the p-values between different methods within each
bmax in order to demonstrate whether different methods
make a significant difference given the same bmax. Figure 3
shows the p-values between different bmax within each
method, to see whether bmax made a significant differ-
ence in measures given the method. Additionally, Figure 4
shows p-values between DKI methods and DTI methods
for MD and FA only, grouped by bmax of the DKI fits.
For b = 1350 s∕mm2, RCWLS gave the following measures
across subjects: MD 1.68 ± 0.050 × 10−3mm2∕s, FA 0.30 ±
0.013, MK 0.36 ± 0.027, AK 0.26 ± 0.027, RK 0.42 ± 0.040,
and RK/AK 1.65 ± 0.19.

3.1.1 Constraints

(i) Adding constraints to a method, that is, going from WLS
to CWLS and from RWLS to RCWLS, made a statistically
significant difference on all measures, for all bmax values,
as shown in Figure 2. Figure 1 shows that constraints
increased all kurtosis measures MK, AK, RK, and RK/AK,
the latter results showing that constraints result in increas-
ing RK more than AK. Increased kurtosis is consistent with
the constraints ensuring that fitted parameters correspond
to nonnegative kurtosis. (ii) For constrained fitting, MK,

F I G U R E 1 Average of DTI/DKI measures over myocardial
voxels for all subjects. Colored points show the average over
subjects, colored by bmax. DTI fits W(RW)LSDTI show WLS (left) and
RWLS (right) together for convenience. The black triangles (stars)
show where the Shapiro-Wilk test p-value ≤ 0.05 (≤ 0.01), that is,
the hypothesis of normality is rejected.

RK, and AK all decrease with bmax, with Figure 3 showing
these changes are significant for both CWLS and RCWLS.
However, Figure 1 indicates that the ratio RK/AK appears
to increase with bmax for both constrained and uncon-
strained fitting, although this difference is not significant
between bmax = 1200 s∕mm2 and bmax = 1350 s∕mm2.

3.1.2 Robustness

(i) Robust fitting by itself, that is, going from WLS to RWLS,
and CWLS to RCWLS, gave large changes in measures
for some subjects (in particular, reducing MD and MK)
but did not significantly change the mean measure values
over subjects. Robust fitting generally reduces the spread
of the measures over the group by correcting errors in mea-
sures for some subjects, as is visually clear in Figure 1.
Non-normality of measures was only found for non-robust
methods (with the single exception, out of such 36 tests,
being AK for RCWLS at bmax = 1350 s∕mm2). (ii) Robust-
ness may has an effect on RK/AK; Figure 2 shows the
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COVENEY et al. 7

F I G U R E 2 p-values from comparing DKI measures from
different fitting methods given the same bmax (units s∕mm2).

following p-values comparing CWLS and RCWLS: bmax =
900 s∕mm2 (p = 0.032), bmax = 1200 s∕mm2 (p = 0.068),
and bmax = 1350 s∕mm2 (p = 0.024). However, in the con-
text of multiple comparisons, where no effect of robustness
was seen on other measures and a 0.05 significance thresh-
old was not met for all bmax, this result cannot be ascribed
significance.

3.1.3 MD and FA

For RWLS DTI fits, we obtained MD 1.53 ± 0.074 ×
10−3mm2∕s and FA 0.31 ± 0.017. When considering robust
methods, (i) MD increases from DTI (bmax ≤ 450 s∕mm2)
to unconstrained DKI (see Figure 4), and from uncon-
strained DKI to constrained DKI (see Figure 2); FA
increases from DTI to unconstrained DKI (see Figure 4)
but constrained DKI results in lower FA than DTI fit-
ting (see Figure 4). (ii) For constrained methods, as bmax
increases MD decreases slightly, but there is little change
in FA (see Figure 3).

F I G U R E 3 p-values from comparing DKI measures from
different bmax (units s∕mm2) given the same fitting methods.

F I G U R E 4 p-values from comparing MD and FA from DKI
fitting methods for each bmax used for DKI fitting (units s∕mm2)
against DTI fitting methods (bmax = 450 s∕mm2).

3.2 Example maps

Figures 5–8 show example measure maps for 4 different
subjects. The colormap ranges were chosen based on the
boxplots in Figure 1, in particular to emphasize whether
values are above zero for MK or above one for RK/AK.
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8 COVENEY et al.

F I G U R E 5 Maps for the mid slice
of a single subject, for
bmax = 1350 s∕mm2. The first column
shows MD and FA from DTI RWLS
fitting (bmax = 450 s∕mm2) for
reference. All other columns show
measures from DKI fits. In this
example, robust fitting decreases MK,
while constrained fitting increases MK.
Using robust and constrained fitting
(RCWLS) gives the most plausible
results, with mostly RK/AK > 1 values.

F I G U R E 6 Measure maps for the
mid slice of a single subject, for
bmax = 1350 s∕mm2. The first column
shows MD and FA from DTI RWLS
fitting (bmax = 450 s∕mm2) for
reference. All other columns show
measures from DKI fits. Around 2 to 6
o’clock for the DKI fits is a region of
implausibly low MD, high FA, and
negative MK, for unconstrained fits.
Constraints correct this region towards
plausible values, with robust fitting
visibly improving the region further in
the same direction.

Figure 5 shows basal-slice maps for bmax =
1350 s∕mm2 for the subject with the second high-
est MD and MK for non-robust fitting WLS/CWLS in
Figure 1. Robust fitting gave large changes over the whole
myocardium, bringing measures into better agreement
with other subjects, such that for robust fitting meth-
ods this subject is no longer an outlier in the boxplots of
Figure 1. MD and MK are reduced, and FA is increased,

for robust methods vs non-robust methods. Constraints
increase MK and RK/AK, which is most noticeable
between RWLS and RCWLS. In particular for RCWLS,
RK/AK > 1 in nearly every voxel and is relatively homo-
geneous. This example shows that kurtosis can appear to
be positive for non-constrained methods, but these kur-
tosis measures can still be corrupted. Going from WLS to
RWLS results in a large reduction of MK, indicating that
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COVENEY et al. 9

F I G U R E 7 Mean kurtosis (MK) and radial kurtosis / axial
kurtosis (RK/AK) maps for the basal slice of a single subject, for all
bmax values (units s∕mm2) used for DKI fitting methods.
Constraints increase MK given the same bmax. For constrained
fitting (CWLS and RCWLS), MK decreases with bmax in most voxels
but increases between 8 and 12 o’clock. RCWLS for
bmax = 1350 s∕mm2 has the most spatially homogeneous MK.

its consistently positive value for WLS was likely due to
corruptions in the data (which, in this case, also caused an
inflation of MD). By adding constraints to robust fitting,
that is, going from RWLS to RCWLS, consistently positive
MK is recovered, but with much lower values than from
the WLS fit.

Figure 6 shows mid-slice maps for bmax = 1350 s∕mm2

where robust fitting had large effects in a localized region

(around 2 to 6 o’clock) with low MD, high FA, and nega-
tive MK for WLS. Here, both robust fitting and constraints
independently increase MD, reduce FA, and increase MK,
such that RCWLS gives the most spatially uniform val-
ues. The regions where RK/AK is around 1 for RCWLS
coincide with relatively lower FA.

Figure 7 shows MK and RK/AK basal-slice maps for
different bmax. Constraints give positive MK and make
RK/AK > 1 overall. Reading across the rows, constraints
increase MK and RK / AK given the same bmax. Dif-
ferences between unconstrained and constrained fitting
decrease with bmax. Reading down the RCWLS column,
MK decreases with bmax for most voxels but increases
between 8 and 12 o’clock. These opposing effects result in
RCWLS for bmax = 1350 s∕mm2 having the most homoge-
neous MK.

Figure 8 shows MD and FA maps in a basal slice for dif-
ferent bmax and for DTI fitting (bmax = 450 s∕mm2). Robust
fitting corrects elevated MD in the top-left (10–12 o’clock),
but constraints are needed to correct the reduced MD and
elevated FA on the right (12–5 o’clock). The effects on
MD and FA are consistent with the overall group trends.
RCWLS gives the most homogeneous MD and FA, with the
least variation with bmax.

4 DISCUSSION

Our results show that both robust fitting and convexity
constraints affect DTI/DKI measures in important ways.
Figure 5 helps to show that the RCWLS results are not
just the robust result with the negative kurtosis turned to
zero—the kurtosis becomes convincingly positive, and all
measures change when adding constraints. In this case,
robust fitting reduced inflated MK caused by corruptions,
while adding constraints increased MK. Figure 6 demon-
strates a region where only robust fitting and constraints
together appear to fully resolve a region of corrupted mea-
sures. In theory, RCWLS provides advantages greater than
the sum of its parts: convexity constraints should make
outlier identification easier, which should improve the
weights in the final WLS fit.

4.1 Constraints

Imposing convexity constraints resulted in statistically sig-
nificant differences in all measures for all bmax values. The
precise changes, notably increased MK and RK/AK, are
important. Only constrained fitting reliably shows RK >

AK (for RCWLS bmax = 1350 s∕mm2, RK/AK mean and
median are 1.65 and 1.70 respectively), despite this being
expected in myocardium since there are fewer restrictions
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10 COVENEY et al.

F I G U R E 8 Mean diffusivity (MD) and
fractional anisotropy (FA) maps for the basal
slice of a single subject, for all bmax values (units
s∕mm2) used for DKI fitting methods. Also
shown are MD and FA from RWLS DTI fitting
(bmax = 450 s∕mm2) for reference. Robust
fitting corrects elevated MD in the top-left
(10–12 o’clock), but constraints are needed to
correct the reduced MD and elevated FA on the
right (12–5 o’clock).

to diffusion parallel to the long axes of cardiomyocytes.3,35

It is worth emphasizing that adding constraints does
not just turn negative kurtosis into zero kurtosis in cer-
tain voxels (something that could be trivially obtained
in post-processing the fitting results), but fundamentally
alters the optimum coefficient vector (Figures 5 and 6).

4.2 Robustness

Robust fitting can have large overall and regional benefits
on individual subjects, which is invaluable for potential
clinical applications. Variation between subjects within

a group ought to represent physiological variation (and
non-gross measurement error) rather than the effects of
image corruptions. In the context of a study comparing
different groups (e.g., healthy volunteers vs. disease), the
reduction in the spread of measures from robust fitting can
increase statistical power and lower the probability of a
type 2 errors (false negatives).21

4.3 MD and FA

While it is known that MD and FA obtained from fitting
the DKI signal representation can be different compared to
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COVENEY et al. 11

those obtained from the DTI signal representation,36 con-
straints further modify these values: MD increases from
DTI to DKI and from unconstrained to constrained fit-
ting, but while FA increases from DTI to DKI, it decreases
from unconstrained to constrained fitting, resulting in
RCWLS giving the lowest FA values. This shows that the
FA changes from DTI to DKI were largely in the context
of parameter fits that violated constraints. To the best of
our knowledge, other works noting differences in MD and
FA between DTI and DKI have not utilized constraints or
robust fitting.

4.4 bmax effect

Varying bmax allowed for investigating the importance
of constraints and robustness for different experimental
designs: higher bmax data is more informative about kur-
tosis but has lower SNR. While previous work has noted
the dependence of the performance of (simplified models
of) cardiac DKI on bmax,3 it is noteworthy that MK and RK
appear to increase with bmax for unconstrained fitting, but
decrease with bmax for constrained fitting. This only serves
to emphasize the importance of using fitting constraints.
Due to these opposite trends, the differences between
unconstrained and constrained fitting get smaller as bmax
increases, suggesting fewer and milder constraint viola-
tions as data become more informative about kurtosis.

4.5 Limitations

Although the differences between non-robust and robust
methods were generally insignificant at the group level,
the errors from non-robust methods would make the
detection of any actually existing differences quite chal-
lenging, which is perhaps ironic. It is also true that sum-
mary statistics such as mean measures over all voxels can
be insensitive to the improvement in measure maps when
using robust fitting, and yet post hoc statistical analysis of
regions of interest (where measures were most changed by
robust methods) would also seem problematic. The only
measure that indicated any potential effect (at the group
level) from robust fitting alone was RK/AK, particularly
for bmax = 1350 s∕mm2 (p = 0.024), but we cannot rule
out a false positive here due to multiple comparisons of
many measures. The ratio RK/AK might be more sen-
sitive to changes from robust fitting, but more subjects
would be required to have sufficient statistical power to
determine this.

Higher bmax fits included all lower b-values, and so
there is more data available for these fits. Our study sought
to determine how the results changed as more information

about kurtosis was available, specifically in the context of
understanding the effects of robust fitting and constrained
fitting, so the conflation from having both higher b-value
data (which has lower SNR) and more data overall was
not of particular concern. To perform an analysis about the
suitability of different data designs, we believe many more
subjects would be required, as well as a more nuanced
analysis of trends with bmax (rather than just paired tests).
This work could be restricted to robust and constrained
fitting methods.

A limitation of signal representations, such as DTI and
DKI, is a lack of clear insight into the specific quantita-
tive links to the underlying biology: differences in kurtosis
measures between groups can be observed and reasoned
about, but the absolute values are not ascribed any particu-
lar meaning.3 Nonetheless, we can speculate that kurtosis
measures (derived from appropriate fitting techniques)
may be a way to increase the biomarker space and gain
insight into disease; further work is required.

5 CONCLUSION

In this work, we have developed robust constrained
weighted least squares (RCWLS), the first robust esti-
mation technique for DKI that incorporates necessary
constraints on the signal behavior. Using in vivo human
cardiac DKI data from healthy volunteers collected with
a Connectom scanner, we determined that RCWLS is
the most suitable fitting technique compared with oth-
ers that lack either robustness or constraints. For b =
1350 s∕mm2, RCWLS gave the following measures across
subjects: MD 1.68 ± 0.050 × 10−3mm2∕s, FA 0.30 ± 0.013,
MK 0.36 ± 0.027, AK 0.26 ± 0.027, RK 0.42 ± 0.040, and
RK/AK 1.65 ± 0.19. Constraints, but not robustness, had
a significant effect on all diffusion and kurtosis measures.
However, robust fitting corrected large errors for some sub-
jects and generally improved diffusion and kurtosis maps.
Only RCWLS convincingly showed radial kurtosis to be
larger than axial kurtosis for all subjects, something that
is expected in myocardium due to increased restrictions
to diffusion in the plane perpendicular to the primary
myocyte direction. RCWLS also showed the best correc-
tion of corrupted regions in diffusion parameter maps for
individual subjects. Future work on in vivo cardiac DKI
should utilize fitting techniques that are both robust and
constrained, such as RCWLS.
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APPENDIX A. GRADIENT WAVEFORMS

Figure A1 shows the gradient waveforms used in this
work. The timing of the diffusion encoding waveform is
17, 8, and 17 ms for the pre-, pause-, and post-duration,
respectively.

F I G U R E A1 Numerically optimized second-order motion
compensated waveform for bmax = 1350 s∕mm2, Gmax =
285.4 mT∕m and maximum slew rate 76.2 T∕m∕s.

APPENDIX B. CONSTRAINT MATRICES

Many basis elements can be excluded a priori because
they cannot contribute, leaving:

e = (s1, s2, s3, q1s1, q1s2, q1s3,

q2s1, q2s2, q2s3, q3s1, q3s2, q3s3)T (B1)

We can parameterize the matrix H(𝜽) as

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1 𝜃2 𝜃4 0 0 0 0 0 0 0 0 0
𝜃2 𝜃3 𝜃5 0 0 0 0 0 0 0 0 0
𝜃4 𝜃5 𝜃6 0 0 0 0 0 0 0 0 0
0 0 0 𝜃7 𝜃10 𝜃11 𝜃10 𝜃16 𝜃19 𝜃11 𝜃19 𝜃17

0 0 0 𝜃10 𝜃16 𝜃19 𝜃16 𝜃12 𝜃20 𝜃19 𝜃20 𝜃21

0 0 0 𝜃11 𝜃19 𝜃17 𝜃19 𝜃20 𝜃21 𝜃17 𝜃21 𝜃14

0 0 0 𝜃10 𝜃16 𝜃19 𝜃16 𝜃12 𝜃20 𝜃19 𝜃20 𝜃21

0 0 0 𝜃16 𝜃12 𝜃20 𝜃12 𝜃8 𝜃13 𝜃20 𝜃13 𝜃18

0 0 0 𝜃19 𝜃20 𝜃21 𝜃20 𝜃13 𝜃18 𝜃21 𝜃18 𝜃15

0 0 0 𝜃11 𝜃19 𝜃17 𝜃19 𝜃20 𝜃21 𝜃17 𝜃21 𝜃14

0 0 0 𝜃19 𝜃20 𝜃21 𝜃20 𝜃13 𝜃18 𝜃21 𝜃18 𝜃15

0 0 0 𝜃17 𝜃21 𝜃14 𝜃21 𝜃18 𝜃15 𝜃14 𝜃15 𝜃9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B2)

The “slack matrix” L(𝜶) is determined by Equation (7f).
We can write L(𝜶) =

∑
u=1 𝛼uLu, such that eT ⋅ Lu ⋅ e = 0.

There are 18 such matrices, so we parameterize L(𝜶) as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 𝛽10 𝛽11 0 𝛽13 𝛽14 0 𝛽16 𝛽17

0 0 0 𝛼10 0 𝛽12 𝛼13 0 𝛽15 𝛼16 0 𝛽18

0 0 0 𝛼11 𝛼12 0 𝛼14 𝛼15 0 𝛼17 𝛼18 0
0 𝛼10 𝛼11 0 0 0 0 𝛽1 𝛽2 0 𝛽4 𝛽5

𝛽10 0 𝛼12 0 0 0 𝛼1 0 𝛽3 𝛼4 0 𝛽6

𝛽11 𝛽12 0 0 0 0 𝛼2 𝛼3 0 𝛼5 𝛼6 0
0 𝛼13 𝛼14 0 𝛼1 𝛼2 0 0 0 0 𝛽7 𝛽8

𝛽13 0 𝛼15 𝛽1 0 𝛼3 0 0 0 𝛼7 0 𝛽9

𝛽14 𝛽15 0 𝛽2 𝛽3 0 0 0 0 𝛼8 𝛼9 0
0 𝛼16 𝛼17 0 𝛼4 𝛼5 0 𝛼7 𝛼8 0 0 0
𝛽16 0 𝛼18 𝛽4 0 𝛼6 𝛽7 0 𝛼9 0 0 0
𝛽17 𝛽18 0 𝛽5 𝛽6 0 𝛽8 𝛽9 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B3)

where 𝛽i𝑗 = −𝛼i𝑗 (where 𝛽i𝑗 are only used here to assist with
display, they are not additional parameters).

The reason for writing the sum of squares representa-
tion as matrix H(𝜽) + L(𝜶) in Equation (7b), and therefore
introducing parameters 𝜶, can be understood by consid-
ering (7e): there are (infinitely) many choices for H(𝜽)
given basis Equation (B1), but we must implement a spe-
cific matrix H(𝜽) (e.g., Equation B2). The flexibility is then
explicitly parameterized via L(𝜶).
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APPENDIX C. REDUCED CONSTRAINED
PROBLEM

As explained in the appendix of,19 the size of
the semidefinite programming problem can be reduced
(giving significant computational savings) by replacing
Equation (7a) with

arg min𝜽,𝜶
||||||V′T ⋅ 𝜽 − V′T ⋅ 𝜽̂WLS

||||||2 (C1)

where 𝜽̂WLS is the unconstrained WLS solution given by
Equation (5) and V is given by the Cholesky factorization(

X′T ⋅ X′
)
= V ⋅ VT . For RCWLS the problem is reduced

at each iteration (the unconstrained fit result 𝜽̂WLS depends
on the previous constrained fit). The semi-definite pro-
gram Equation (7) only needs solving if the WLS estimate
violates the constraints.
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