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Abstract  

 

Positron Emission Tomography (PET) of 18 kDa translocator protein (TSPO) has been 

investigated as putative marker of neuroinflammation but faces substantial methodological 

challenges. These include issues with arterial blood sampling for kinetic modeling, the absence 

of suitable reference regions, genetic polymorphisms affecting tracer affinity, altered blood-to-

brain tracer delivery in inflammatory conditions, and high signal variability. This study 

presents a novel blood-free reference-free method for TSPO PET quantification, leveraging a 

logistic regression model to estimate the probability of TSPO overexpression across brain 

regions. Validation was performed on 323 human brain scans from five datasets and three 

radiotracers. The quantified TSPO topology in healthy controls showed strong concordance 

with constitutive TSPO gene expression for all tracers. When using [11C]PBR28 PET data, the 

method replicated previous findings in schizophrenia, Alzheimer’s disease, chronic pain, and 

XBD173 blocking. However, model extension to [18F]DPA-714 and [11C]-(R)-PK11195 

revealed small effect sizes and high variability, suggesting the need for tracer-specific model 

optimization. Finally, validation in a rat model of lipopolysaccharide-induced 

neuroinflammation confirmed previous evidence of increased brain TSPO uptake after 

systemic challenge.  

This novel non-invasive method provides individualized TSPO PET quantification, 

demonstrating broad applicability across TSPO PET tracers and imaging sites, assuming 

sufficient training data for model development. 
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1. Introduction  

 

Positron Emission Tomography (PET) imaging targeting the 18 kDa translocator protein 

(TSPO) has been widely investigated as a potential tool for the derivation of quantitative 

biomarkers of neuroinflammation1,2. Clinical interest in TSPO arises from the fact that TSPO 

is upregulated by microglia, astrocytes, and macrophages during neuroinflammatory 

processes3–5. Although TSPO lacks specificity for proinflammatory microglia5–8, regional 

increases in TSPO PET signal have been associated with elevated densities of glial and immune 

cells7,9, a hallmark of neuroinflammatory response. Despite many debates and concerns about 

its biological interpretability, TSPO PET imaging has been investigated as a putative biomarker 

of neuroinflammation across a wide spectrum of neurodegenerative, psychiatric, and 

inflammatory disorders, as well as chronic pain conditions8,10–14. A recent meta-analysis 

identified more than 150 individual case-control studies, encompassing over five thousand 

scans of healthy controls and patients15. 

 

However, quantification for this class of radioligand remains challenging. Standard blood-

based kinetic modeling has practical and methodological problems16,17, including the need for 

invasive catheterization for arterial blood sampling, the challenges of accurately measuring 

radioactivity in blood and plasma, and the need to correct for the radioactivity of tracer 

metabolites as well as for the plasma protein binding. The latter is particularly challenging, as 

the magnitude of TSPO radiotracers free plasma fraction is generally modest (<5%)10,18,19 and 

sensitive to the presence of inflammatory proteins20–22. An alternative to blood-based modeling 

is the use of a reference region with perfusion and non-displaceable binding properties similar 

to the tissues of interest but minimal or no expression of the ligand's target23,24. However, while 

TSPO expression in the brain is relatively low, it is ubiquitously expressed across most cell 

types25, which significantly complicates reference-based quantification. Additionally, the 

normalization for the signal in the reference region might limit, in some cases, the ability to 

detect the brain-wide effects of a disease26. 

 

The large and often unpredictable intra- and inter-individual biological variability in the TSPO 

PET signal adds to this complexity. This variability hampers the statistical power to detect 

group effects linked to specific disorders and may have contributed to inconsistent evidence 

regarding the role of neuroinflammatory processes in both physiological conditions and various 

brain pathologies27. One possible explanation for this variability might be related to the unclear 



relationship between peripheral and central inflammation, as well as the role of blood-brain-

barrier (BBB) alterations, which affect the rate of tracer delivery from blood to parenchyma 

and thus the measured activity of the tracer in the tissue22,28–30. Another source of variability 

arises from human genetic differences in tracer affinity due to the single nucleotide 

polymorphism in the TSPO gene (rs6971)31, which affect the utility of the newer-generation 

TSPO radiotracers developed to address the limitations of [11C]-(R)-PK11195, such as its high 

non-specific binding and low target affinity10,19. Genotype analysis allows for the stratification 

of subjects into more homogeneous cohorts (high-affinity binders (HAB), mixed-affinity 

binders (MAB), and low-affinity binders (LAB)). However, for several tracers LABs must be 

excluded from the study due to the impossibility of providing a reliable signal, although third-

generation radioligands like ER176 have sufficient sensitivity to image LABs. Other factors 

such as subjects’ sex, age, and body mass index (BMI) have been shown to affect the baseline 

brain inflammatory load and, consequently, TSPO binding32–34. Taken together, this evidence 

underscores the importance of understanding the physiological mechanisms underlying TSPO 

PET variability to enable more accurate quantification of individual neuroinflammatory status. 

 

In this work, we propose a new non-invasive blood-free reference-free analytical framework 

for the quantification of dynamic TSPO PET imaging based on a logistic regression model. 

The use of a logistic function transforms the linear combination of a set of independent 

variables (i.e., the model covariates/predictors) into a probability value between 0 and 1. Here, 

we defined a logistic regression model that takes brain TSPO PET raw time activity curves 

(TACs) as predictors to provide a probability measure of the tissue to manifest an 

overexpression of TSPO. The model is enriched with additional inputs, including the estimate 

of tracer perfusion and tracer blood-to-brain extraction, and a set of individual covariates 

representing possible confounders of interest for the brain TSPO signal.  

 

Our approach was tested using historical TSPO databases from two academic institutions (i.e., 

the Centre for Neuroimaging Sciences at King’s College London (KCL) and the Athinoula A. 

Martinos Center of Biomedical Imaging, Massachusetts General Hospital (MGH) on a total of 

323 human brain PET scans, from 5 different PET scanners, and utilizing three TSPO tracers 

(i.e., [11C]PBR28, [18F]DPA-714, and [11C]-(R)-PK11195). Firstly, the model was defined, 

optimized, and tested on [11C]PBR28 data from healthy controls and patients with brain 

disorders. Specifically, the physiological topology of the brain TSPO density was investigated 

in healthy conditions while the ability of the model to unveil alterations in regional 



neuroinflammatory load was tested for different published studies on patients with risk of 

psychosis and schizophrenia35, Alzheimer’s disease36, and a chronic pain condition (i.e. 

fibromyalgia37), as well as on a target blocking38 and a test-retest study36. Then, the possibility 

of generalizing the model to different TSPO tracers was evaluated on [18F]DPA-714 and [11C]-

(R)-PK11195 PET scans on healthy volunteers, individuals with mild cognitive impairment39, 

and depressive disorder patients40. Finally, the ability of the logistic model to unveil the TSPO 

PET signal increase linked to brain inflammation was tested on a rat model of 

lipopolysaccharide (LPS) induced neuroinflammation.  

 

 

 

2. Materials and Methods 

 

 

2.1. Logistic regression model 

 

Our novel approach for TSPO PET quantification exploits the theory of logistic regression 

models41. These regression approaches allow the prediction of the probability 𝑝 that a given 

input belongs to a particular class based on a set of covariates describing that specific input. 

This is done by adopting a logistic function that transforms the linear combination of the input 

variables into a probability 𝑝 ranging between 0 and 1. The mathematical formulation of the 

model is reported in Eq.1, where Xj and βj represents respectively the j-th input covariate and 

its corresponding coefficient, β0 represents the model intercept, n is the number of input 

covariates, and ln represents the natural logarithm function.  

 

ln (
p

1−p
) =  β0 + ∑ βjXj

n
j=1       (Eq.1) 

 

Once the model coefficients have been estimated, the model can be adopted to predict the 

probability p on new data with the following equation:  

 

p =
𝑒
(β0+∑ βjXj

n
j=1 )

1+𝑒
(β0+∑ βjXj

n
j=1 )

              (Eq.2) 

 



 

This approach is generally adopted in classification tasks: upon selection of a threshold for the 

probability p of the input belonging to a specific class (pTH), we assign the input to the class 

(outcome 1) if p> pTH, otherwise to the complementary class (outcome 0). Here, we adapted 

the logistic model for brain TSPO PET imaging, to distinguish between regions with normal 

TSPO expression (outcome 0) from regions with TSPO overexpression (outcome 1). The 

probability distribution of the latter is hence used as a proxy of neuroinflammatory load.  

 

The model relies on the following assumptions: 

1. The higher the PET signal measured by the scanner in a given volume of the brain, the 

higher the concentration of radiotracer in that volume. 

2. The overall concentration of the tracer in a given volume of brain is the sum of many 

components, which include the inflammatory status of brain parenchyma as well as the 

tracer perfusion and extraction through the brain barriers and non-displaceable binding in 

the tissue. 

3. The explicit modeling of TSPO tracer kinetics through individual covariates allows us to 

explain the variability of constitutive TSPO signal, and to distinguish between normative 

conditions and altered states.  

4. The effect of each covariate – including age, sex, genotype, and the ratio between injected 

dose and subject’s weight - is equivalent for all the regions across the brain and cerebellum 

cortex (model coefficients are fixed for all regions). 

 

These assumptions translate into a logistic model that takes as predictors the brain regional 

TSPO TAC and provides the probability of a specific region manifesting an overexpression of 

TSPO (pTSPO). Additional predictors, representing possible confounders for the brain TSPO 

signal, included a measure of the regional tracer blood-to-brain delivery rate provided by the 

kinetic parameter K1, computed with a novel noninvasive methodology adopting an image-

derived input function (IDIF)42, and a set of individual covariates including age, sex, TSPO 

genotype (HAB and MAB), and the injected dose normalized for patient weight. A schematic 

representation of the logistic regression model can be found in Figure 1. 

 

Operationally, the proposed methodological framework involves two main steps. Firstly, the 

logistic regression model is trained on a population of healthy controls (HCs) for the 

classification of regions of interest (ROIs) with known TSPO expressions, organized into two 



separate classes with constitutive low and high TSPO expression and representing regions with 

low or high measured TSPO PET signal, respectively. As previously described, the 

classification will be based on the parameter p (Eq. 2), which will be indicated as pTSPO, 

representing the probability for the region of interest to manifest a high expression of TSPO. 

Once the model coefficients are defined, the logistic regression can be applied to unseen data 

(either new PET scans of independent subjects or brain region TACs not included in the 

model), where for a given TAC, it returns pTSPO, which is used as the main parameter of 

interest. Conceptually, this is similar to the supervised clustering approach already used in 

TSPO PET studies24. Both approaches use a pre-defined set of classes with known TSPO 

density as a proxy of normal and inflamed brain tissues. However, while with supervised 

clustering the tissue classification focuses on identifying a tissue with low TSPO density to be 

used as a reference region for tissue modeling, here the classification turns into an indirect 

quantification of TSPO density. 

 

[insert Figure 1] 

 

 

2.2. Study participants and datasets 

 

A total of 323 TSPO PET scans were included in this study. Data included five datasets of 

[11C]PBR28, [18F]DPA-714, and [11C]-(R)-PK11195 dynamic PET scans gathered from King’s 

College London (KCL) and Athinoula A. Martinos Center for Biomedical Imaging, 

Massachusetts General Hospital (MGH) historical databases. Information for each of the five 

datasets is summarized in Table 1; additional details can be found in Supplementary 

Materials S1. Each study was approved by local ethics committees and institutional review 

boards before starting, including the Queen Square London Ethical Committee, South Central 

Berkshire NRES Committee, Hammersmith Research Ethics Committee, London-Bloomsbury 

ethics committee, National Research Ethics Service Committee East of England Cambridge 

Central, and the UK Administration of Radioactive Substances Advisory Committee for KCL 

data,  the institutional review board, the Radioactive Drug Research Committee, the Food and 

Drug administration and the Partners Human Research Committee for MGH data. All the 

studies were conducted in accordance with the Declaration of Helsinki, and all participants 

provided informed consent to participate. Despite differences across imaging sites in scanner 

types, data acquisition, and PET reconstruction parameters, all protocols included a continuous 



dynamic acquisition (90 or 60 minutes duration) following a bolus injection of the tracer. PET 

data were corrected for random and scattered coincidences and tissue attenuation. Given the 

genetic rs6971 polymorphism of the TSPO gene31,43, all participants scanned with [11C]PBR28 

or [18F]DPA-714 were genotyped before scanning, and no LABs were included in the original 

studies. Structural T1-weighted (T1w) Magnetic Resonance (MR) images were also acquired 

for each participant and used for image processing and atlas-based anatomical brain 

segmentation.  

 

 

2.3. Image preprocessing 

 

For all scans, after preprocessing of dynamic PET images, the CIC atlas version 2.0 44 was 

adopted for the extraction of regional TACs. An image-derived input function (IDIF) was also 

extracted, following the approach described in 42. Finally, regional tracer delivery rate (kinetic 

microparameter K1) was computed for each ROI by application of a recently developed non-

invasive and simplified methodologic framework consisting of fitting the first minutes (within 

10 minutes) of the tracer kinetics in the tissue with a simplified compartmental model with 1 

single irreversible compartment and IDIF42. Further details on image preprocessing and 

analysis are provided in Supplementary Materials S2. 

 

 

2.4. Validation of the logistic regression with [11C]PBR28 PET imaging 

 

Model training  

 

A TSPO expression map was derived from mRNA data of 6 post-mortem brains from the Allen 

Human Brain Atlas (https://human.brain-

map.org/microarray/search/show?exact_match=false&search_term=%22TSPO%22&s

earch_type=gene) with the Abagen toolbox using the CIC volumetric atlas in MNI space. 

TSPO expression map allowed for the investigation of the topological pattern of TSPO 

expression and the identification of a subset of ROIs with the lowest (low-expression ROIs) 

https://human.brain-map.org/microarray/search/show?exact_match=false&search_term=%22TSPO%22&search_type=gene
https://human.brain-map.org/microarray/search/show?exact_match=false&search_term=%22TSPO%22&search_type=gene
https://human.brain-map.org/microarray/search/show?exact_match=false&search_term=%22TSPO%22&search_type=gene


and highest (high-expression ROIs) TSPO expression to be adopted for model training, with 

pre-assigned outcomes 0 (i.e., non-inflamed class) and 1 (i.e., inflamed class), respectively.  

 

The training was performed on a dataset of 72 [11C]PBR28 PET scans of HCs (Dataset 1).  

The model regressors included:  

a) Regional TACs time samples; each ROI TAC was normalized to standardized uptake value 

(SUV) to correct for differences in dose-over-weight ratio and then interpolated on a sparser 

time grid ([1.25 4.5 13.5 30 50 75] min) to reduce collinearity between variables 

b) Regional K1 estimates to account for tracer blood-brain delivery 

c) Subjects’ age, sex, and genotype to account for individual characteristics associated with 

TSPO variability 

d) Tracer dose over subjects’ weight ratio to account for experimental differences 

A stepwise feature selection was performed to select the most informative predictors.  

  

Once the model set-up was optimized, the logistic model was trained and tested on [11C]PBR28 

PET scans on 72, 27, and 26 HCs from three independent datasets (Dataset 1, Dataset 2, and 

Dataset 3). Specifically, the pooling of multisite data opened the necessity to deal with possible 

batch effects.  A hierarchical model was thus adopted, with the inclusion of a random effect in 

the logistic regression model, to account for eventual differences due to the scanner and 

protocols used for the acquisition of the three datasets45,46.  

Model performance was evaluated in terms of accuracy, sensitivity, and specificity of 

classification for all the hierarchical and non-hierarchical models. Details on feature selection, 

model validation, and post hoc analyses on model covariates are provided in Supplementary 

Materials S3 and S4.  

 

 

Application to healthy controls 

 

A leave-one-out approach was adopted for the application of the model to each HC. The model 

was applied for the prediction of the probability pTSPO for all the ROIs belonging to the cortex 

and cerebellum (CC ROIs). Hence, the ROIs average pTSPO across HCs for each dataset was 

correlated with the measure of TSPO expression provided by mRNA data from the Allen 

Human Brain Atlas, to assess pTSPO ability to serve as a proxy of cortical TSPO density in 

healthy brain.  



Applications to pathological conditions  

 

To evaluate the actual feasibility of adopting ROIs pTSPO as a biomarker of regional 

neuroinflammatory load in clinical populations, the logistic regression approach was applied 

to [11C]PBR28 data acquired in ultra-high-risk of psychosis (UHR), schizophrenia (SCZ), 

Alzheimer’s disease (AD), and fibromyalgia (FM) patients as well as to data acquired with 

TSPO blocking agent XDB173. A reproducibility analysis was also conducted on test-retest 

[11C]PBR28 data from AD patients. This step aimed to test the ability of the metric pTSPO to 

unveil changes in TSPO density and replicate results from previous studies. A summary of the 

information for each group is reported in Supplementary Table 1. 

 

Based on the findings reported in the original references, we expected to find:  

• Increased TSPO expression in total, frontal, and temporal gray matter for UHR and SCZ 

compared to controls35,47 

• Modest widespread cortical increase in TSPO density, with the most pronounced 

elevation in the frontal and parietal lobes, for FM patients compared to HCs37 

• Increased TSPO density in AD patients compared to controls in frontal, parietal, temporal, 

and occipital regions48; no increase was reported for cerebellum12  

• Widespread reduction of tracer-specific binding following XBD173 administration38. 

 

Between-group differences in CC ROIs pTSPO were analyzed by qualitative comparison of 

pTSPO distributions (histograms normalized as relative probability) and by testing of statistical 

differences between the distributions with a non-parametric test – i.e., the Wilcoxon rank sum 

test or the Wilcoxon signed-rank test when a paired test was necessary (e.g., for the XBD173 

blocking study). For each study, a deviation distribution was also computed as the between-

groups bin-by-bin difference (case group less control group) of the groups’ relative probability 

histograms of the CC ROIs pTSPO. At this point, a measure of the magnitude of between-group 

deviation of CC ROIs pTSPO (Δ𝑃) was defined as the percentage sum of the difference 

distribution for pTSPO values higher than 0.5. The Δ𝑃 provides a measure of increase of the 

relative probability of high pTSPO values (higher than 50% probability) for the case group with 

respect to the control group. Finally, a non-parametric Cohen’s d-consistent effect size (γ) was 

adopted for the quantification of between-group differences in regional pTSPO estimates, given 

the non-Gaussianity of group pTSPO distributions. The mathematical formulation of γ is 



provided by Lin and colleagues49. Unlike traditional effect sizes like Cohen’s d, which rely on 

means and standard deviations, γ focuses on quantiles and dispersion measures that are less 

sensitive to non-normality (e.g., the median and median absolute deviation) and is thus more 

suitable to accommodate non-Gaussian skewed distributions. The γ effect is also consistent 

with Cohen’s d in the case of normal distributions. In the case of non-independent distribution, 

a paired version of the γ effect size was adopted. 

 

Comparison of CC ROIs pTSPO distribution was also repeated for each brain lobe (frontal, 

temporal, parietal, and occipital lobe), as well as for cerebellum ROIs.  

In order to test the reproducibility of model estimates, distributions of CC ROIs pTSPO from 

test-retest data on AD patients36 were compared, and the intraclass correlation coefficient  

(ICC) was computed between test and retest pTSPO estimates for each CC ROI. 

 

 

2.5. Expanding the logistic regression model to [18F]DPA-714 and [11C]-(R)-PK11195 PET 

imaging 

 

The hierarchical logistic regression model was applied to all 5 datasets, expanding the model 

to the quantification of [18F]DPA-714 and [11C]-(R)-PK11195 data. The previous model setup, 

in terms of both TACs subsampling and feature selection, was maintained since the small 

sample size did not allow for tracer-specific training and optimization of the model. The 

genotype predictor was set to 1 (HAB class) for [11C]-(R)-PK11195, as the tracer is not 

susceptible to TSPO polymorphism31. The hierarchical model was adopted for the prediction 

of CC-ROIs pTSPO for all HCs (with a leave-one-out approach, excluding the test subject from 

the training set) and patients (after training the model on all the HCs). The logistic model was 

thus applied to cross-sectional analyses - by comparison of ROIs pTSPO - of 2 studies: the 

analysis of differences between carriers of the p.R47H genetic variant of the triggering receptor 

expressed on myeloid cells 2 immune receptor (TREM2) and non-carriers with mild cognitive 

impairment (MCI) from [18F]DPA-714 Dataset 4; the study of mild/moderate depressed 

subjects (MD) from [11C]-(R)-PK11195 Dataset 5. Details on compared groups for each study 

are reported in Supplementary Table 2.  

 

Consistently with literature findings, we hypothesized (1) a widespread mild reduction of 

TSPO signal, as well as a focal reduction in brain regions consistent with pathology of Braak 



II (i.e.,  hippocampus) and Braak III stages (i.e., posterior parahippocampal gyrus) in TREM2 

patients compared to MCI39, and (2) a modest increase (given the range of Cohen’s reported in 

40) of TSPO signal in the insula, prefrontal cortex (PFC), and anterior cingulate cortex (ACC) 

in depressed subjects compared to HCs. Consequently, distributions of CC ROIs pTSPO were 

compared between the MCI and TREM2 groups, and ad hoc analyses of differences in pTSPO 

for Braak II and Braak III regions were performed. Concerning the depression study, pTSPO of 

insula, PFC, and ACC was compared between the depressed and HC groups.  

 

 

2.6. Model application to the LPS rat model  

 

Data included a total of 20 dynamic [18F]DPA-714 brain PET scans on rats gathered from a 

previous study of LPS-induced neuroinflammation5. The first dataset included 4 PET scans 

carried out 4 days after intracerebral (ic) administration of LPS from Escherichia coli 0111: B4 

(Sigma) (ic-LPS) into the right dorsal striatum. The second dataset included 8 PET scans 

carried out around 24 hours after peripheral administration of LPS with intraperitoneal (ip) 

injection (ip-LPS) and 8 control scans performed 24 hours after ip vehicle injection (Vehicle).  

More details on experimental protocols, data acquisition, and image analyses can be found in 

the original reference5. Overall, the data analysis focused on 13 ROIs TACs extracted for each 

animal using the 3D rat brain atlas template as employed by the VivoQuant 2.0 (Invicro LLC) 

software.  

 

Previous evidence has shown that the ic-LPS striatal injection challenge induces a robust focal 

inflammatory lesion in the ipsilateral hemisphere, while the contralateral side shows no 

inflammatory reaction5,50. Model training was thus performed on ic-LPS scans. A subset of the 

13 ROIs in the ipsilateral side of the lesion and the respective ROIs in the contralateral (non-

lesioned) side were assumed as high- and low-expression ROIs, respectively. Specifically, 

TACs AUC was compared between the two hemispheres for each brain ROI with a paired t-

test, and ROIs showing a statistically significant difference in the TAC AUC after false 

discovery rate (FDR) correction for multiple comparisons were selected for model training. 

Starting from the logistic regression model setup and features selection adopted in human 

studies, the model was further simplified by the exclusion of age and sex (which were 

standardized in the group of animals) but also genotype from model predictors. After model 



training, given the small sample size of the ic-LPS training set, the significance of predictors 

was tested by application of the Wald test. 

The model was applied for the computation of brain ROIs pTSPO for ip-LPS and Vehicle scans. 

Then, regional pTSPO estimates were compared between the two groups for each ROI by 

application of the Wilcoxon rank-sum test and FDR correction for multiple comparisons. 

 

 

 

3. Results 

 

 

3.1. Logistic regression model for [11C]PBR28 PET quantification 

 

Model training 

 

Analysis of the topological pattern of TSPO gene expression (Figure 2), derived from the data 

of the Allen Human Brain Atlas, reveals high TSPO expression in subcortical regions, 

particularly in the pallidum and thalamic regions. Brain cortex ROIs exhibit lower but highly 

variable levels of gene expression. The cerebellum shows low, though not negligible, TSPO 

expression, except in the medial regions. Following this pattern, the occipital lobe, along with 

the dorsal and ventrolateral regions of the cerebellum, were selected as low-expression ROIs, 

while the thalamic and pallidus regions as high-expression ROIs. These regions, which are 

expected to manifest respectively low and high density of TSPO in physiological conditions, 

were used to train the logistic model. Starting from the initial selection of model predictors (i.e. 

ROIs TACs samples at 1.25, 4.50, 13.50, 30, 50, and 75 minutes as well as ROIs K1 and 

subjects’ age, sex, genotype, and tracer dose over subjects’ weight ratio), the set of features 

resulting as significant predictors after feature selection included ROIs TAC samples at 1.25, 

13.5 and 50 minutes, together with age, genotype, and the K1 microparameter. Notably, sex 

resulted in a non-significant predictor. Both hierarchical and non-hierarchical models showed 

good classification performances in terms of accuracy (>0.9), sensitivity (>0.8), and specificity 

(>0.8) (Supplementary Figure 1). 

 

[insert Figure 2] 

 



Validation in healthy controls  

 

To evaluate the ability of the logistic regression approach to provide a physiological measure 

of TSPO density, firstly the model was applied to the quantification of [11C]PBR28 scans on 

HCs employing a leave-one-out approach for model training and prediction. Results of leave-

one-out training show low variability among the various iterations in model coefficient 

estimates (coefficient of variation cv=1.5±0.4%; mean±std across model predictors), as 

represented in Figure 3a. Coefficients related to ROI TAC samples are the highest in absolute 

value, particularly for samples at 13.5 minutes (tstat=-20.9) and 50 minutes (tstat=24.9). 

However, while the model coefficient shows a positive sign for the TACs sample at 50 min, an 

inverse relationship is reported for the early samples of tissue kinetics. Lower but non-

negligible contribution is given by age (tstat=-9.5), genotype (tstat=-15.31), and K1 predictors 

(tstat=-13.35).  

 

As expected, in a healthy condition the predicted pTSPO shows values close to zero and 1 

respectively for the low- and high-expression ROIs, as clearly visible from histograms of pTSPO 

for the HC cohorts of the three different [11C]PBR28 datasets (Dataset 1, 2 and 3) reported in 

Figure 3b. Histograms of CC ROIs pTSPO, on the other hand, show high variability in the pTSPO 

values. This variability partially reflects the topological pattern of TSPO gene expression in 

the brain, as shown by the high correlation between the across-subjects average of CC ROIs 

pTSPO and the pattern of gene expression from the Allen Human Brain Atlas for each of the 

three HC cohorts (Dataset1: =0.47; Dataset2: =0.41; Dataset3: =0.48, all p<0.05; Figure 

3c).   

 

[insert Figure 3] 

 

 

Validation in clinical populations  

 

Consistent with the study hypothesis, the comparison of group distributions for CC ROIs pTSPO 

(Figure 4) shows statistically significant increases in UHR, SCZ, AD, and FM patients with 

respect to HCs. In contrast, cortical and cerebellar pTSPO demonstrates a significant reduction 

after target blocking via XBD173 administration. The magnitude of between-group deviations 



Δ𝑃 and the effect size γ revealed the highest deviation in the case of XBD173 blocking (Δ𝑃=-

52%, γ=-1.3), followed by AD (Δ𝑃=+32%, γ=1.2), SCZ (Δ𝑃=+29%, γ=1.0), and UHR 

(Δ𝑃=+18%, γ=0.5) patients; a mild effect was reported for FM patients (Δ𝑃=+13%, γ=0.3). 

Between-group comparisons of CC ROIs pTSPO for each anatomical lobe show a significant 

increase for the UHR, SCZ, and AD with respect to HCs and a significant decrease in the case 

of XDB173 blocking for all four lobes (Supplementary Figure 3). FM patients show a 

significant increase only in the frontal, occipital, and parietal lobes. In all studies, significant 

differences were also found when comparing cerebellum pTSPO between the two groups.  

The analysis of test-retest data on AD patients showed high reproducibility both in terms of the 

similarity of CC ROIs pTSPO histograms (Wilcoxon rank sum test p-value>0.05, Δ𝑃=-2%) and 

ICC, with 74% ROIs having ICC≥ 0.7 (Supplementary Figure 4).  

Comparison with previous evidence in terms of the effect size of between-group differences 

for each case study is summarized in Supplementary Table 3. 

 

[insert Figure 4] 

 

 

3.2. Expanding the hierarchical model to [18F]DPA-714 and [11C]-(R)-PK11195 

 

Re-training without feature optimization of the hierarchical model with the inclusion of HC 

cohorts from [18F]DPA-714 and [11C]-(R)-PK11195 datasets gave consistent results to the 

[11C]PBR28 model training (Figure 5). Coefficient estimates show a comparable pattern to the 

one obtained from training on [11C]PBR28 HCs in terms of coefficients sign, absolute value, 

and variability among leave-one-out estimates. As for the [11C]PBR28 model, histograms of 

predicted ROIs pTSPO in HCs of each of the five datasets show values respectively close to zero 

and 1 for the low- and high-expression ROIs, and relatively low but highly variable values for 

CC ROIs pTSPO. Across-subjects average of CC ROIs pTSPO shows a good correlation to the 

regional level of TSPO gene expression (Dataset 1: =0.46; Dataset 2: =0.41; Dataset 3: 

=0.49; Dataset 2: =0.62; Dataset 3: =0.56).   

Results of model application to cross-sectional analysis on [18F]DPA-714 (Dataset 4) show a 

significant but modest increase of CC ROIs pTSPO for the TREM2 with respect to the MCI 

group (Wilcoxon rank sum test p-value<10-5, Δ𝑃=+6%) and no statistical difference when 

comparing Braak2 and Braak3 regions, differently from the original publication. Cross-



sectional analysis of [11C]-(R)-PK11195 scans showed a modest increase of pTSPO of insula 

(γ=0.1), PFC (γ=0.6), and ACC (γ=0.1) for depressed subjects compared to HCs but none of 

these regions reach statistical significance due to the high intersubject variability in pTSPO 

(IQR= interquartile range; insula: IQRHC = [0.128 0.497], IQRMD = [0.143 0.374]; PFC: IQRHC 

= [0.111 0.526], IQRMD = [0.169 0.443]; ACC: IQRHC = [0.097 0.568], IQRMD= [0.123 0.379]). 

 

[insert Figure 5] 

 

 

3.3. Model application to the LPS rat model  

 

ROIs TACs AUC showed significant differences between the ipsilateral and contralateral 

hemispheres for cortex, basal ganglia, corpus callosum, amygdala, septal area, ventricles, and 

white matter (Figure 6a). These regions were thus employed for model training. Only the TAC 

sample at 13.5 min resulted as a statistically significant predictor from the Wald test (z-

score>1.96) and was included in the final model. Model application to LPS and vehicle ip-

administered rat scans showed a significant increase in pTSPO values in the ip-LPS with respect 

to the Vehicle group (Figure 6b). 

 

[insert Figure 6] 

 

 

 

4. Discussion     

 

We developed a novel TSPO PET analytical framework that exploits the raw PET signal to 

provide a statistical measure of brain TSPO density. We tested it on multiple TSPO 

radiotracers, scanners, and imaging facilities, replicating literature findings in different (even 

if not all) clinical cohorts. The method does not utilize blood-based kinetic modeling and 

requires dynamic scanning of a maximum of 60 minutes from tracer injection, reducing 

experimental time.  

 

 



Proposed improvements 

 

The proposed analytical framework could potentially address the following limitations of 

standard TSPO PET quantification:   

1. In contrast to standard kinetic modeling, the method does not require any arterial blood 

samples, nor laborious procedures for the quantification of plasma tracer activity and the 

correction of metabolite radioactivity. The use of the 1T1K-IDIF method42 allowed for a 

non-invasive estimation with an IDIF of the K1 microparameter. 

2. The approach does not require the identification of a reference region, which is particularly 

challenging for TSPO PET imaging, and, as it avoids any normalization for the reference 

TAC, helps in the identification of mild global effects related to a disorder. Even when 

more sophisticated data-driven approaches like supervised clustering are adopted for the 

identification of the reference region, the identified region is often still contaminated at 

some level by specific binding of the tracer.  

3. The inclusion in the model of the K1 microparameter - despite limitations of the 1T1K-IDIF 

approach adopted for the estimation42 - allows taking into account possible alterations of 

the tracer delivery rate linked to modulation of cerebral blood flow or BBB permeability in 

pathological conditions. Interestingly, the model coefficient for K1 shows an inverse 

association between tracer blood-to-brain exchange K1 and the pTSPO, indicating that lower 

tracer delivery values are associated with a higher inflammatory load. This is consistent 

with the theory linking peripheral with central inflammation proposed by Turkheimer et 

al30. 

4. The adoption of a regression approach, with genotype and age included as model predictors, 

allows us to explain part of the inter-individual variability in the TSPO PET signal in both 

physiological and pathological conditions that limits the tracer statistical power in assessing 

the presence and progression of neuroinflammation in clinical applications. 

5. The definition of a hierarchical model allows the modeling of possible batch effects linked 

to differences in scanners and protocols adopted for data acquisition.  

 

The proposed methodology has the potential to serve as a standardized tool for 

neuroinflammation assessment, facilitating its integration into clinical research and potentially 

into routine clinical practice for more personalized and accurate diagnosis and/or monitoring 

of neuroinflammatory conditions. 



Highlights from HC analysis 

 

The validation of the logistic regression model (both hierarchical and non-hierarchical) shows 

excellent performance of classification of low- and high-expression ROIs in HCs in terms of 

specificity and sensitivity of the model. The preliminary interpolation of the ROI TACs on a 

less dense time grid allows for a reduction of the number of model predictors but also of 

possible problems of collinearity between variables. The stepwise feature selection analysis 

allows for further reduction in the number of variables and possible overfitting issues. 

 

The application of the approach to the quantification of [11C]PBR28, [18F]-DPA714, and [11C]-

(R)-PK11195 on healthy control scans showed a good concordance between the pattern of 

TSPO expression predicted by the model and the topology of gene expression defined by 

mRNA data from the Allen Human Brain Atlas. Previous studies have already investigated the 

concordance between PET imaging and genetic data on regional TSPO expression with 

inconsistent results51,52. This new quantification approach can map constitutive TSPO density 

better than any previous quantification method. The model demonstrated the ability to replicate 

the expected topological pattern of TSPO in healthy individuals.  

 

The training of the hierarchical model on [11C]PBR28 data, as well as the retraining of the 

hierarchical model with the inclusion of [18F]DPA-714 and [11C]-(R)-PK11195 HC scans, gave 

consistent results, both in terms of CC ROIs pTSPO distributions and model coefficient 

estimates. Specifically, the analysis of model coefficient estimates provides some insights into 

the model. Given comparable brain regional inflammatory status and TSPO concentration, the 

model covariates ensure the balancing of regional pTSPO estimates obtained under different 

conditions of aging, tracer affinity, and tracer delivery. In practice, the negative sign of the β 

coefficients for age, genotype and K1 predictors indicates that, given the same level of TSPO 

PET signal, the model will give as output lower pTSPO estimates at increasing subject’s age (to 

compensate for increases in TSPO uptake linked to age), at increasing tracer delivery (to 

compensate for the higher availability of tracer in parenchyma) as well as lower values for 

HAB with respect to MAB participants (to compensate for a higher tracer affinity, and thus 

measured radioactivity in brain parenchyma). The magnitude of model coefficients, which are 

optimized with the training of the model, determines the strength of this regularization. 



Cross-sectional analysis on [11C]PBR28 data 

 

The application of the method to cross-sectional analyses on [11C]PBR28 data gave promising 

results, replicating evidence from previous studies for different cohorts and showing good 

reproducibility of ROIs pTSPO estimates. As expected from previous evidence35, a widespread 

increase in TSPO density was reported in the whole cortex when comparing ultra-high-risk of 

psychosis and schizophrenia patients to healthy controls. Similarly, a reduction in the whole 

brain TSPO PET signal was shown after XDB173 target blocking38. An increase in pTSPO 

reflecting an increase in TSPO density for frontal, parietal, temporal, and occipital lobes was 

reported for Alzheimer’s disease patients in line with previous general references12. Regarding 

fibromyalgia patients, a widespread gray matter pTSPO increase and an increase for frontal and 

parietal lobes were shown, in line with the results from the original reference37. In all cases, 

computed γ effect sizes show consistent group effects with previous evidence, despite slight 

variations in their magnitude due to intrinsic differences in markers and quantification 

approaches employed.    

 

 

TSPO expression in the cerebellum 

 

It is worth mentioning that, in all the [11C]PBR28 cross-sectional studies performed, 

statistically significant differences between groups in cerebellum ROIs pTSPO were reported. 

Given the ubiquitous expression of TSPO in the brain, no anatomical region has been 

demonstrated to completely lack any specific binding to the target. The cerebellum has often 

been adopted as a pseudo-reference region for the computation of relative measures of TSPO 

load and has been validated for use in Alzheimer’s disease studies53. However, given the high 

cellular heterogeneity and TSPO displacement, the cerebellum may not represent an ideal 

reference region for TSPO PET imaging studies, and its adoption should be carefully checked 

for each brain condition38. The cerebellum is also close to the confluences of sinuses, where 

increases in TSPO PET signal, possibly from cerebrospinal fluid coming out of the inflamed 

brain, have been found to be associated with both central and peripheral inflammation28.   

 

 



Extension to other tracers  

 

While the logistic model successfully detected TSPO alterations in cross-sectional studies with 

[11C]PBR28 data, we were not able to fully replicate results for [18F]DPA-714 and [11C]-(R)-

PK11195 datasets. This discrepancy could be due to several factors. First, the sample size was 

relatively small, with only 8 [18F]DPA-714 scans for the TREM2 carriers and mild cognitive 

impaired subject groups, and only 25 healthy controls for [11C]-(R)-PK11195 data. Second, the 

model settings – ranging from the time grid adopted for TACs subsampling to the selection of 

features – were optimized specifically for [11C]PBR28 and could be suboptimal for the 

quantification of [18F]DPA-714 and [11C]-(R)-PK11195. Differences between tracers extend 

beyond variations in affinity to the specific pharmacokinetics of each tracer as well as its 

dependencies on genetic polymorphism, thus opening the necessity for the development of 

tracer-specific optimization and training of the model. Consequently, the possibility of 

adopting the model for the quantification of TSPO density from [18F]DPA-714 and [11C]-(R)-

PK11195 should be further explored. Larger cohorts of HCs and patients will be necessary for 

model optimization and training on [18F]DPA-714 and [11C]-(R)-PK11195 data. Finally, it is 

worth mentioning that original studies for both the TREM2 and the depression cohorts reported 

very mild alterations in TSPO density; testing the method on new cohorts with evidence of 

stronger effects of the disease will help to clarify the actual feasibility of expanding the method 

to other TSPO tracers. 

 

 

Model application to the LPS rat model 

 

A slightly different approach was adopted for the application of the logistic regression method 

to rat models of neuroinflammation to account for differences between species and adapt the 

model to the peculiar experimental protocol. Regional TACs derived from ic-LPS scans from 

ipsilateral (lesioned) and contralateral (non-lesioned) hemispheres - with respect to LPS ic-

injection – provide examples of [18F]DPA-714 kinetics from inflamed and not-inflamed 

regions, respectively, and were thus adopted for model training. Despite the small sample size 

of the ic-LPS dataset, this choice guaranteed a more controlled setting for the training of the 

logistic regression model, as the reference classes for TSPO constitutive expression (class 0) 

and overexpression (class 1) were histologically validated. Moreover, given the standardized 



characteristics of rats, sex and age were not included as model predictors, simplifying the 

model construction and, therefore, its parameter identification.  

Despite the simplifications and the small sample size of the training set, the logistic regression 

model replicated the regional pattern of TSPO expression in vehicle scans reported in the 

original reference5. Additionally, the model allowed us to unveil the expected widespread 

increase in brain inflammatory load 24h after the intraperitoneal LPS challenge, corroborating 

the original results. 

 

 

Limitations and future directions 

 

The use of pre-existing data, which were collected with the use of different scanners and 

specific acquisition protocols, represents a limitation of this study. Image characteristics in 

terms of spatial and temporal resolution and signal-to-noise ratio would particularly affect the 

IDIF extraction and 1T1K-IDIF K1 estimation. However, the use of a hierarchical model 

allowed us to partially account for possible differences linked to discrepancies in data 

collection. Moreover, cross-sectional analyses were always conducted between scans sharing 

the same scanner and acquisition protocol. The only exception was represented by the shorter 

acquisition length of [11C]PBR28 AD scans, with only 60 minutes against the 90 minutes of 

acquisition of the HC group, despite general analogies between the acquisition protocols and 

the use of the same scanner for the data collection. Since the final configuration of the designed 

model included only TAC samples corresponding to the mid-frame time of 1.25, 13.5, and 50 

minutes, we were still able to apply the logistic regression method to the AD cohort.  

Regarding quantification, different modeling approaches (from blood-based to reference region 

methods) were employed as reference standards, according to the specific aims and 

experimental designs of each original study. Due to the lack of methodological standardization 

and the high heterogeneity inherent in TSPO PET imaging analysis, future research should 

systematically assess the consistency of results across various quantification methods. Such an 

investigation, however, was beyond the scope of the present study. 

Another general limitation of the study concerns model assumptions. By design, the model 

assumes a consistent effect of the covariates across regions. This limitation is inherent to the 

methodology itself, as the model training on healthy control scans requires the simultaneous 

inclusion of a subset of brain regions with either very low or very high expected TSPO 

expression, serving as a proxy for non-inflamed or inflamed regions, respectively. This leads 



to the identification of a single model for the regional prediction of the pTSPO parameter. 

Performing a region-specific training of the logistic regression model would require the 

availability and adoption of TSPO PET scans with a known absence or presence of a chronic 

inflammatory response for each specific region of interest. Being aware of the limitations of 

this approach, the model was designed to be applied only to cortical regions of the brain and 

cerebellum, where a more homogeneous effect of model covariates is reasonably expected. 

Nevertheless, alternative normative modelling and more complex methodological frameworks, 

allowing for a regional modulation of model coefficients, should be explored in future works. 

Similarly, different formulations accounting for possible non-linear relationships and 

interactions between covariates should be tested. The model could also be improved with the 

inclusion of further covariates such as BMI, stress, and the presence of comorbidities, which 

were not available for the data under study but could represent significant factors affecting 

brain TSPO load. Moreover, additional data and analyses will be fundamental to test the 

possibility of extending the methodological framework from ROI- to voxel-wise quantification 

and derive parametric maps of TSPO density. Furthermore, the analysis of subject-specific 

distributions of pTSPO metrics could allow for the derivation of individual scores of 

neuroinflammation, but this would require additional investigation. 

 

It must also be highlighted that the Allen Human Brain Atlas gene expression data – adopted 

for model validation - have been derived from only six postmortem adult brains, with data 

related to the right hemisphere only available for two donors. This highlights the intrinsic 

limitation of this data in the investigation of gene expression in the human brain. 

 

A final major limitation concerns the biological interpretation of regional TSPO protein density 

as a marker of neuroinflammation. Although TSPO PET imaging is widely used to study 

inflammatory responses across various clinical domains, the biological interpretation of TSPO 

PET signal elevations is still unclear. Skepticism arises from the lack of cellular specificity of 

brain TSPO expression: despite being highly expressed in microglia, TSPO is also 

constitutively expressed by several other cell types, including astrocytes, some neurons, 

endothelial cells, and infiltrating macrophages5,9. Additionally, a recent study suggested that 

TSPO overexpression characterizing human neuroinflammatory conditions does not 

necessarily mirror the proinflammatory activation of microglia cells7. Nevertheless, the same 

study showed that regional TSPO signal elevations correspond closely with increased densities 

of glial and immune cells7. This finding was replicated in other independent post-mortem 



work9, showing a significant positive correlation between regional [11C]-(R)-PK11195 binding 

potential ante-mortem and the burden of post-mortem CD68+ phagocytic microglia, as well as 

microglial TSPO levels. Increases in immune cell density are a well-established hallmark of 

neuroinflammation, which may involve microglia, as well as other CNS-resident 

immunocompetent cells (e.g., astrocytes) and recruited peripheral immune cells. However, a 

recent study in Alzheimer's disease patients reported a significant association between TSPO 

PET and cerebrospinal fluid inflammatory proteins involved in biological processes related to 

neurodegeneration and neuroinflammation in Alzheimer's disease54, thus confirming that 

TSPO PET signal elevations are likely mostly driven by microglia. TSPO PET imaging can 

thus still provide a valuable, even if non-specific, measure of regional neuroinflammatory load.  

Beyond the debate on the validity of TSPO density and TSPO PET imaging as a marker of 

neuroinflammation, this work provided an alternative methodological tool that could facilitate 

the use of TSPO PET imaging in both experimental medicine and clinical trials. Additionally, 

while the limitation of TSPO as a neuroinflammatory target persists, this approach would 

remain valid in the event of the development of a better molecular target for imaging 

neuroinflammation with PET.  

 

 

Conclusions 

 

We developed a new blood- and reference-free analytical framework for the quantification of 

regional brain density. Model validation supports the use of the pTSPO metrics in the study of 

neuroinflammation and the application of this approach to data collected with different 

scanners and acquisition protocols. This method could be applied to the quantification of 

different TSPO tracers, given an adequate reference sample size for tracer-specific model 

optimization and parameter training. Further studies and larger sample sizes are necessary for 

the optimization of the methodology and the derivation of subject-specific scores of 

neuroinflammation. 
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Titles and legends to figures  

 

 

Figure 1. Logistic regression model for TSPO PET quantification 

The figure reports a schematic representation of the logistic regression model, with the inputs 

and outputs of the model. The method takes as input ROIs TSPO TACs, ROIs K1, computed 

with a novel noninvasive methodology adopting an IDIF, and a set of individual covariates and 

gives as output ROIs pTSPO. [ROI=region of interest; K1=blood-to-brain delivery rate; 

IDIF=image-derived input function; pTSPO= ROI probability of manifesting an overexpression 

of TSPO] 

 

 

Figure 2. TSPO gene expression map 

The figure shows regional TSPO gene expression derived from the Allen Human Brain Atlas 

for anatomical ROIs defined by the CIC atlas. A graph showing regional values of gene 

expression in the left hemisphere is shown on the left. Representative slices of the map of TSPO 

expression are represented on the right. Low- and high-expression ROIs are highlighted in the 

graph. 

 

 

Figure 3. Leave-one-out training and application to [11C]PBR28 healthy control scans 

Panel A reports the results of the coefficient estimates for each predictor: colored bars represent 

the values of 𝛽 estimates obtained when training on the whole HC cohort, while error bars 

represent the variability of estimates between the different iterations of the leave-one-out 

approach; panel B shows the relative probability of low-expression (green), high-expression 

(orange) and CC (yellow) ROIs pTSPO for each of the three datasets; panel C represents 

correlation between HCs’ average CC ROIs pTSPO and the regional TSPO gene expression 

[HC=healthy control]. 

 

 

Figure 4. Cross-sectional analysis – Comparison of CC ROIs pTSPO relative distribution 

Each panel shows, for each study under investigation, the comparison of the group relative 

probability of CC ROIs pTSPO (on the left) and the difference between the two relative 

probabilities (on the right) [HC=healthy control; UHR=ultra-high risk of psychosis; 



SCZ=schizophrenia; AD=Alzheimer’s disease; FM=fibromyalgia; * Wilcoxon (paired or 

unpaired) test pvalue<0.0001]. 

 

 

Figure 5. Leave-one-out training and application to [11C]PBR28, [18F]DPA-714 and [11C]-

PK11195 healthy control scans 

Panel A reports the results of the coefficient estimates for model training on [11C]PBR28, 

[18F]DPA-714, and [11C]-(R)-PK11195 HCs (green), compared to results of training on only 

[11C]PBR28 data (blue): colored bars represent the values of 𝛽estimates obtained when training 

on the whole HC cohort, while error bars represent the variability of estimates between the 

different iterations of the leave-one-out approach; panel B shows the relative probability of 

low-expression (green), high-expression (orange) and CC (yellow) ROIs pTSPO for each of the 

three datasets; panel C represents correlation between the across HCs average of CC ROIs 

pTSPO and the regional TSPO gene expression [HC=healthy control].  

 

 

Figure 6.  Application to a rat model of LPS-induced neuroinflammation 

Panel A shows the comparison of the area under the curve of TACs in SUV of homologous 

ROIs in ic-LPS rats; a significant difference is reported for cortex, basal ganglia, corpus 

callosum, amygdala, septal area, ventricles and white matter. Panel B shows the comparison of 

regional pTSPO between the Vehicle and ip-LPS groups. 

 

 

 

 

 

 

  



Tables  

 

Table 1: Demographic and acquisition information for the 5 datasets under study 

 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

 

Number Scans 118 46 26 57 76 

Tracer [11C]PBR28 [11C]PBR28 [11C]PBR28 [18F]DPA-714 [11C]-(R)-

PK11195 

Affiliation KCL MGH MGH KCL KCL 

Scanner  Siemens 

Biograph™ 

TruePoint™ 

PET·CT 

scanner 

dedicated brain 

PET scanner 

within the bore 

of a Siemens 3T 

Tim Trio MRI 

scanner 

Siemens 

Biograph 

mMR whole-

body PET/MR 

scanner 

SIEMENS 

Biograph mMR 

PET/MRI 

GE SIGNA 

PET/MR 

Age (mstd) 38 ± 19 47 ± 13 55 ± 15 39 ± 19 37 ± 8 

Sex (#M,#F) 84 , 34 15 , 31 12 , 14 31 , 26 26 , 50 

Genotype 

(#HAB,#MAB) 

87 , 31 30 , 16 13 , 13 37 , 20  / 

Dose 

(meanstd) 

328.10 ± 32.79 488.16 ± 54.99 519.44 ± 63.04 186.88 ± 10.00 365.53 ± 50.89 

Clinical 

populations 

HC, UHR, SCZ, 

XDB173 

blocking, AD  

HC, FM HC HC, TREM2, 

MCI 

HC, MD 

 

HC=healthy control; UHR=ultra-high risk of psychosis; SCZ=schizophrenia; 

AD=Alzheimer’s disease; FM=fibromyalgia; TREM2=TREM2 p.R47H carriers; MCI=mild 

cognitive impairment; MD=mild depressive disorders; m=mean; std=standard deviation; 

HAB=high affinity binding; MAB=mixed affinity binding; M=males; F=females. 

 

 

 

 

 

 

 

 

 

 

 

 


