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fNIRS reproducibility varies with data
quality, analysis pipelines, and researcher
experience
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As data analysis pipelines grow more complex in brain imaging research, understanding how
methodological choices affect results is essential for ensuring reproducibility and transparency. This is
especially relevant for functional Near-Infrared Spectroscopy (fNIRS), a rapidly growing technique for
assessing brain function in naturalistic settings and across the lifespan, yet one that still lacks
standardized analysis approaches. In the fNIRS Reproducibility Study Hub (FRESH) initiative, we
asked 38 research teams worldwide to independently analyze the same two fNIRS datasets. Despite
using different pipelines, nearly 80% of teams agreed on group-level results, particularly when
hypotheses were strongly supported by literature. Teams with higher self-reported analysis
confidence, which correlated with years of fNIRS experience, showed greater agreement. At the
individual level, agreement was lower but improved with better data quality. The main sources of
variabilitywere related tohowpoor-quality datawerehandled, how responsesweremodeled, andhow
statistical analyses were conducted. These findings suggest that while flexible analytical tools are
valuable, clearer methodological and reporting standards could greatly enhance reproducibility. By
identifying key drivers of variability, this study highlights current challenges and offers direction for
improving transparency and reliability in fNIRS research.

Failures to replicate or reproduce published work have raised major con-
cerns across several fields in science1–3. These reports have catalyzed both
meta-research to explore the factors leading to diminished replication and
reproduction rates4–8, and the launch of initiatives focused on improving
these critical aspects of scientific research9–11. In particular, the field of
functional neuroimaging has progressively intensified its efforts to address
the challenges of replicability and reproducibility12,13.

A significant part of the problem in neuroimaging relates to the
complexity of the analysis. As neuroimaging data analysis has grown
increasingly complex over recent decades14,15, it has become essential to
ensure transparency in reporting analysis details to support
reproducibility12,16–19. Current analysis pipelines encompass multiple
stages, including data selection criteria, preprocessing options, selection
of data elements (e.g., regions of interest), subsequent post-processing
options, and an array of statistical models for hypothesis testing, with a
multitude of parameters for each of these stages14. This diversity in
processing and analysis options provides considerable flexibility in
analyzing the same dataset in various ways15,16,19, thereby enabling the
exploration of a broader spectrum of research questions and accom-
modating different assumptions.

While analytical flexibility represents a significant advancement in the
evolution of quantitative science, especially in handling high-dimensional
data, it also poses challenges. Varying analysis pipelines can produce
markedly divergent results, potentially leading to altered interpretations or
even contradictory outcomes15,20,21. Analytical flexibility also leads to ana-
lytical variability: when researchers can select from a broad spectrum of
possible and justifiable analytical options, they are likely to make different
choices. This freedom diminishes the comparability of results between
studies, and even within the same study22–27. Moreover, due to the extensive
array of preprocessing and analysis options, researchersmight be inclined to
initially test pipelines aligning most with their expectations and exclusively
report these outcomes. This approach, influenced by expectation and
selection bias, results in undisclosed manipulation of analytical flexibility,
ultimately undermining its reliability and credibility13.

Experiments conducted in collaboration with research communities
have been instrumental in assessing the impact of analytical variability. In
these studies, researchers are given the same dataset and test pre-specified
hypotheses using analytical methods that they consider most suitable.
Such experiments have been conducted with some neuroimaging techni-
ques, including functional magnetic resonance imaging (fMRI) and
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electroencephalography (EEG), and they have shown that researchers use a
wide array of analysis pipelines, which can lead to substantial differences in
the reported findings and conclusions drawn from the same data25,26,28–32.

Functional Near-Infrared Spectroscopy (fNIRS) is another neuroi-
maging tool that has seen significant growth over the past decades. This
optical imaging method utilizes near-infrared light to measure changes in
brain hemoglobin concentrations33–35. The portability, ease of use, accessi-
bility, and relatively low cost of fNIRS, compared to fMRI, highlight its
substantial potential for routine use in scientific, clinical, and commercial
settings. It is particularly advantageous in populations or experimental
paradigms where fMRI is less suitable, for instance, in low-to-middle
income countries, or for neurodevelopmental research on infants and
children. This adaptability allows for more complex paradigms with high
ecological validity and low restrictions on natural movements and beha-
viors, but can also introduce additional variability into data analysis. The
quality of fNIRS signals can be influenced by hair and skin characteristics36,
requiring tailored preprocessing and analysis approaches, which further
adds to the variability across analysis pipelines. Moreover, the ongoing
development of new hardware and analytical pipelines contributes to this
variability.

Despite sharing similarities with EEG and fMRI, fNIRS has unique
features and has been used in experimental designs that necessitate careful
consideration regarding analytical flexibility. Directly applying conclusions
from other techniques to fNIRS is not straightforward. As the adoption of
fNIRS expands across various fields, research at the community level is
needed to assess a) how analytical variability manifests across the spectrum
of analytical choices and b) how these different choices affect analysis results
and conclusions that can be drawn from identical fNIRS data. Initial
investigations suggest considerable analytical variability across fNIRS
pipeline settings37–39.However, a detailedanalysis focusing on this variability
within fNIRS has yet to be conducted.

Building upon previous investigations, the fNIRS Reproducibility
Study Hub (FRESH) project explored the wide-ranging analysis methods
employed within the fNIRS research community. By extending previous
efforts, we quantified the variability in results when different researchers
assessed the same dataset both at the group and individual levels. Given the
complexity of experimental protocols and data analysis pipelines and the
lack of standardization in fNIRS research40,41, understanding these varia-
tions is essential for progress.More importantly, addressing such variability
in a period of increasing fNIRS significance in neuroscience is a crucial step
toward establishing standards in the field.

For this purpose, this study invited members of the global fNIRS
community to participate in a multi-lab analysis experiment. Researchers
were provided with two fNIRS datasets, a brief description of the experi-
mental protocols, and a list of pre-defined group-level and individual-level
hypotheses related to research questions that could be investigated with
these datasets. Researchers were assigned the task of testing these hypoth-
eses. Importantly, researchers were not provided with instructions on how
to perform these tasks other than based on their own expertise and best
judgment.

Details of the experimental protocol and fNIRS acquisition are pro-
vided in theMethods section. The first dataset (Dataset I) comprised fNIRS
recordings obtained from an auditory paradigm, which included speech,
auditory noise stimuli, and silence, each lasting ~5 s. The hypotheses tested
using this dataset were focused on group-level analyses:

H1. Speech stimuli evoke responses in the left Heschl’s gyri (HG);
H2. Speech stimuli evoke larger responses in the left HG than the noise

stimuli;
H3. Speech stimuli evoke larger responses in the left HG than the

right HG;
H4. Speech stimuli evoke response in the left inferior frontal

gyrus (LIFG);
H5. Speech stimuli evoke larger responses in the LIFG than noise;
H6. Speech stimuli evoke responses in the occipital cortex;
H7. The silence condition evokes a response in the occipital cortex.

Among these, H142,43 and H2 are strongly supported by existing
literature44,45, while H7 is strongly negated. Hypotheses H3-H6 are expected
to be true but have less robust support from prior studies46–49.

The second dataset (Dataset II) was derived from a motor experiment
in which participants performed repeated right- and left-hand finger tap-
ping for 2 and 3 s. The hypotheses for this dataset focused on individual-
level analysis:

H1. Left-hand finger tapping (FT) of 2 s duration evokes a response in
the contralateral primary motor cortex;

H2. Left- and right-hand FT of 2 s duration, conditions combined,
evokes a response in the contralateral primary motor cortex;

H3. Left- and right-hand FT of 2 and 3 s duration, conditions com-
bined, evokes a response in the contralateral primary motor cortex;

H4. Left- and right-hand FT of 3 s duration, conditions combined,
evokes a greater response in the contralateral primary motor cortex than
left- and right-hand FT of 2-s duration, conditions combined.

The first three hypotheses are strongly supported by existing literature,
while support for H4 is less conclusive50–53.

After completing data analysis, researchers were asked to submit their
results using a specifically designed form that inquired about the statistical
outcomes for all pre-specified hypotheses. In a follow-up questionnaire,
researchers were requested to provide further details about their analysis
pipeline, including specifics about preprocessing and analysis steps theyhad
performed.

In this work, we synthesize and interpret the diversity of analysis
approaches within the fNIRS community. Briefly, we observed substantial
variability in analysis pipelines, with no two teams using the same approach.
Despite this, we found high agreement on group-level results, especially for
hypotheses strongly supported by prior research. Agreement is lower for
individual-level analyses but improves with better data quality. The main
sources of variability across teams are linked to pruning choices, hemody-
namic response function models, and the analysis space used for statistical
inference. These findings reveal the extent and nature of analytical varia-
bility and its potential implications for research outcomes based on fNIRS.

Results
Of the 223 researchers who initially registered for the study, 102 ultimately
submitted their results. Eight researchers presented their work individually,
while the rest formed30groups, resulting in 38unique analysis submissions.
Details from researchers’ backgrounds can be found in theMethods section.

Hypotheses testing outcomes exhibit great variability across
analysis pipelines
Figure 1 presents the descriptive statistics depicting variability in hypothesis
testing results among different groups. In the group-level analysis ofDataset
I (Fig. 1C), at least 80% of the groups agreed on five out of seven hypotheses.
Among these, three hypotheses (H1, H2, and H7) were strongly supported
by existing literature. The outcomes from teams aligned with this literature
support, with the highest agreement observed for the first two hypotheses
(81% and 58%, respectively) and a strong consensus in rejecting H7 (80%).
In contrast, hypotheses with weaker or inconsistent literature support
exhibited lower agreement, with teams predominantly rejecting them
despite their expected validity.

Upon conducting individual-level analysis using Dataset II, over 60%
of the groups demonstrated agreement in all ten participant datasets for H1
and H4. For H2 andH3, a consensus was observed in seven and four out of
ten participants, respectively (Fig. 1C). Although the percentage agreements
for individual-level hypotheses were lower compared to the group-level
hypotheses, they aligned with prior knowledge. The mean ± standard
deviation of percentage agreement to the expected hypotheses outcomes for
the first three hypotheses were 0.44 ± 0.26, 0.51 ± 0.19, and 0.54 ± 0.17,
respectively, while H4 showed a lower agreement of 0.22 ± 0.07.

To assess potential systematic differences between participants in
testing individual-level hypotheses, we calculated the mean signal-to-noise
ratio (SNR) for each participant and categorized them into two groups: high

https://doi.org/10.1038/s42003-025-08412-1 Article

Communications Biology |          (2025) 8:1149 2

www.nature.com/commsbio


SNR (participants 1, 2, 6, 7, 8, and 9) and low SNR (participants 3, 4, 5, and
10).We then computed themeanpercent agreement for eachhypothesis for
both groups. For the high SNR group, the mean percent agreements were
52% for H1, 58% for H2, 59% for H3, and 21% for H4. For the low SNR
group, the corresponding agreements were considerably lower: 31% forH1,
41% for H2, 47% for H3, and 24% for H4.

Variability across different analysis pipelines is driven by both
signal processing and statistical analysis choices
To better comprehend the influence of analytical choices on the variability
of the outcomes for hypothesis testing, we examined the choices made at
various stages of fNIRS data analysis. Typically, these stages contain pre-
processing methodologies such as motion artifact correction, pruning and
filtering before extraction of the hemodynamic responses and statistical
testing. The detailed choices in preprocessing (Fig. 2) and statistical testing
(Fig. 3) are visualized using Sankey diagrams.

The Sankey diagrams illustrate the global distribution and hetero-
geneity of choices along the multi-staged analysis pipelines. We grouped
pipeline stages that belong to a typical categoryof fNIRSmethods, regardless
of the order they appeared in the analysis. The resulting diagrams show the
absolute frequency of each method employed across all submitted analysis
reports. In some stages, researchers reported combining multiple proce-
dures (e.g., Scalp Coupling Index (SCI) and Peak Spectral Power (PSP) for
joint channel quality assessment). In the diagrams, these multiple choices
are grouped (merged vertically) and labeled accordinglywith a square brace.
To improve interpretability within these groups, reported numbers are
given as absolute frequencies for each method across all submitted reports,
not their relative frequencywithin the group. For example, 46%of all reports
used multiple combined methods for channel pruning, and 37% used only

one method; 16% of all reports used the SCI combined with other metrics,
and an additional 11% of all submissions used the SCI as the only metric.
Therefore, SCIwas applied as amethod in 27%of all reported pipelines, and
17% of all reports used the PSP as a metric for pruning, however, only in
combination with other metrics and never alone.

Homer3, AnalyzIR, and MNE were the most frequently used general-
purpose fNIRS toolboxes for analysis, and Quality Testing of Near Infrared
Scans (QT-NIRS) was the most-commonly used toolbox for quality
assessment, specifically for channel pruning. Approximately a quarter of all
researchers utilized in-house custom MATLAB scripts for their analyses.

The majority of groups reported pruning poor-quality channels
(91.4%) and mitigating motion artifacts (88.6%). For this, a wide range of
approaches was used, leading to high variance in these pipeline stages.
Regarding the hemodynamic response due to stimulation, about 79% of
analyses were performed using a general linear model (GLM), for which a
slightmajority used theAutoregressive IterativelyReweighted Least Squares
(AR-IRLS) method for solving the model rather than an ordinary least
squares (OLS) solution.About 71%of thosewhoused aGLMalso employed
short channels or the principal component of short channels as physiology
regressors - either alone or in combination with other regressors. It is also
noteworthy that 20% of all analyses were performed using block-averaging,
i.e., without any physiological model for the HRF extraction.

Figure 3 visualizes the reported choices for the hypothesis testing and
statistical analysis. MATLAB, R, and Python were the most frequently used
languages for statistical analysis, and Homer3 and NIRS Brain AnalyzIR
were the top cited toolboxes. It is worth noting that the largest heterogeneity
in the statistical analysis pipeline is in the reported choices of methods
employed for statistical testing. About 34% of all groups reported using/
combiningmultiple different statisticalmethods. Approximately 72%of the

Fig. 1 | Variability in hypothesis testing results across teams. A Proportion of
teams supporting each group-level hypothesis, H, in Dataset I (see text for the
description of each hypothesis). B Percentage of teams supporting each
individual-level hypothesis in Dataset II, separated by subject, S. In both panels,
bar segments indicate the fraction of teams that supported (‘YES,’ green),
rejected (‘NO,’ blue), or did not test (‘Not Investigated,’ navy), and the numbers
in each bar represent the percentage of each response. C Proportion of teams

reporting a significant result among those that tested the hypothesis in Dataset I
(n = 31 (H1, H2), n = 30 (H3), n = 35 (H4-H7)). D Proportion of teams
reporting a significant result among those that tested the hypothesis in Dataset
II (n = 30–34 (H1, depending on the subject), n = 28–33 (H2, depending on
subject), n = 28–38 (H3), n = 27–32 (H4)). Each color represents a different
participant. (FT finger tapping, PMC primary motor cortex, LIFG left inferior
frontal gyrus, HG Herschl’s gyrus).
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groups reported using a test of the t-Test family, and 37% used a type of
mixed effects model. Most researchers (52%) chose to infer brain activation
using only HbO, while 40% used both HbO and HbR signals. Statistical
analyses were performed in channel or ROI spaces for most cases (only 3%
reported analysis of ROIs in image space). 69% of all statistical tests were
performed on the estimated HRF beta weights fromGLM analysis, and less
than one third on windowed signal amplitudes or other metrics. Most
groups (84%) did not test for normality and used a significance threshold of
α = 0.05 (93%). Only 48% of all groups reported corrections for multiple
comparisons in their analyses.

Aside from the selection of methods for analysis, the choice of para-
meters for each method plays an important role, as they can significantly
alter analysis outcomes. Figure 4 summarizes how often groups reported
choosing “default settings/parameters” provided by the analysis toolboxes
and at which analysis step. About 27% of all analyses were performed by
groups manually configuring all parameters, i.e., without using default
settings in their pipeline. About 50% of groups reported using default
parameters for their filter settings and artifact correctionmethods, and a bit
under a third of the groups used default parameters for signal quality/
pruningmethods. Almost a third of all groups used default settings in three

or more signal-processing steps. A post-hoc analysis did not show any
significant correlation between the frequency of using default values and the
researcher’s self-reported confidence level in their results or analysis skills.

Choice of Analysis Pipeline Affects Hypothesis Testing
Outcomes
We investigated the effect of the choice of the major analysis steps on the
resulting hypothesis testing outcomes across teams using a logistic regres-
sion approach. The results reveal differential impacts of these processing
steps on the logistic regression fit, with significance determined at a
threshold of p < 0.05. Table 1 summarizes the number of hypotheses for
which each distinct category under each analysis step significantly explains
the variation in hypothesis testing outcomes across teams. Notably, for the
HRF Estimation step, “Block Averaging” emerged with nine significant
contributions, considering “GLM” as the reference category. Similarly, for
the HRF regressor, “Flexible” and “None” (i.e., block averaging, which does
not have any HRF regressor), each emerged with four significant con-
tributions, with “Fixed” as the reference category. (Please note that, for the
regression analysis, we merged the HRF regressor categories “Consecutive
Gaussians” and “FIR model” into a single category called “Flexible”, and
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new sample rate for analysis. Filtering – temporal filtering. Physio. Preproc. – Other
preprocessing methods for removal of physiological nuisance signals before HRF
extraction. HRF Estimation –method for extraction/estimation of the hemodynamic
brain response, GLM General Linear Model. Solvers/Modifiers – details for HRF
estimation. (OLS) Ordinary Least Squares solution, (AR-IRLS) Autoregressive
Iteratively Reweighted Least Squares. HRF Regressors – (only GLM) choice of
regressors to model the hemodynamic response; (Consec. Gaussian) Consecutive
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Other Regressors – (only GLM) choice of additional regressors to model physiology;
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“Gamma,” “Canonical,” “SPM” and “Glover” into a single category called
“Fixed”.) For the Signal Space, the choice of “Channel” exhibited nine sig-
nificant contributions, with “ROI” as the reference category. The “Combo”
category under “Pruning” demonstrated three significant contributions,
while the “Visual” category yielded four. “Multiple Comparisons Correc-
tion” yielded two contributions for both “Benjamini–Hochberg” and
“Bonferroni”, with “No Correction” as the reference category. For the
“MotionArtifact Correction”, “Filtering,” and “StatisticalMethod” steps, no
category showed a significant impact. After applying the
Benjamini–Hochberg correction for multiple comparisons54 to adjust for
the false discovery rate, none of the p-values from the 47 independent
logistic regression analyses were found to be statistically significant.

To see the overall effect of each step on hypotheses outcomes, we
first tested for any multicollinearity between the processing pipeline steps
that explain the variability in the hypothesis testing outcomes. We found
a significant association between the HRF Estimation Method and
Pruning (chi-squared statistic = 8 and p = 0.04), HRF regressor (chi-
squared statistic = 30 and a p < 0.001) and Multiple Comparisons Cor-
rection (chi-squared statistic = 16 and a p = 0.001). Excluding these three
due to the found associations, we then performed a multiple logistic
regression, including the HRF estimation method and Signal Space as
independent variables in the model. “Block Averaging,” when contrasted
with “GLM” as the reference category, yielded five significant outputs,

and “Channel” against “ROI” as the reference category yielded five sig-
nificant outputs when all categories under HRF Estimation Method and
Signal Space were jointly included in the regression model.

Figure 5 compares choices in pipelines based on agreement or dis-
agreement in hypothesis outcomes, grouped by the strength of prior lit-
erature support (i.e. strong or weak literature support). The differences in
the distributions of methodological choices based on agreement or dis-
agreement with expected hypothesis outcomes visually complement the
findings from our logistic regression analysis. For instance, variations are
observed in the selection of HRF estimationmethods and regressors (Fig. 5,
Row 2), the choice of signal space (e.g., using ROI; Fig. 5, Row 3), and the
application of multiple comparisons correction (Fig. 5, Row 4).

In particular, where these differences are most pronounced, an
inverse trend emerges between agreement and disagreement for
hypotheses with strong literature support versus hypotheses with weak
literature support. For instance, in the case of HRF extraction (Fig. 5,
Row 2, Column 1), 46% of researchers used the AR-IRLS method (refer
to Figs. 2 and 3 for total numbers). Among these, the testing outcomes for
hypotheses with strong literature support (H1, H2, and H7) aligned with
expected results more than three times as often (36%) as outcomes that
disagreed with expectations (10%). Conversely, for hypotheses with weak
literature support, the majority of AR-IRLS users reported outcomes in
disagreement with expectations. This trend aligns with AR-IRLS being
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recognized as a statistically robust approach, offering superior control
over false positives40,55.

Theconsistencyofhypothesis testingoutcomes ishigheramong
researchers with high self-reported confidence
To explore potential factors influencing variability in hypothesis out-
comes, we also tested several specific hypotheses beyond our primary
research questions. Figure 6 displays the hypothesis testing results with
respect to the groups’ self-reported confidence both in their analysis skills
and in their reported results for the group-level (Fig. 6A, B) and
individual-level hypotheses (Fig. 6D, E). In addition to the hypothesis
testing results, Panel C illustrates Sørensen-Dice Similarity matrices
arranged according to the groups’ self-reported confidence in their
analysis skills, providing a visual representation of how different levels of
self-reported confidence correspond to the similarities between the
hypothesis testing outcomes (Fig. 6C, F). Notably, the Sørensen-Dice
Similarity matrix for the group-level analysis shows increased similarity
with increasing self-reported confidence in analysis (Fig. 6C). Table 2,
summarizing Fig. 6C, presents self-reported confidence levels and the
corresponding Sørensen-Dice coefficients for Dataset I (group-level
analysis) and Dataset II (individual-level analysis). The average
Sørensen-Dice coefficient for group-level Analysis (Mean ±
SD: 0.59 ± 0.24, n = 595) was significantly higher than the one for
individual-level Analysis (Mean ± SD: 0.52 ± 0.20, n = 561) (two-sided

unpaired t-test, t = 5.7, p < 0.001, Cohen’s d = 0.34, 95% CI [0.049, 0.100],
p < 0.001). In Dataset I (group-level analysis), higher self-reported con-
fidence levels (4 and 5) demonstrated improved Sørensen-Dice coeffi-
cients. For Dataset II (individual-level analysis), the Sørensen-Dice
coefficients varied slightly across self-reported confidence levels, with
self-reported confidence level 5 showing the highest coefficient
(Mean ± SD: 0.58 ± 0.16). Two-sided unpaired t-tests performed to
compare similarity values obtained from Sørensen-Dice analysis between
the sets of self-reported confidence levels {2, 3} and {4, 5} yielded a
significant difference for the group-level analysis (Mean ± SD (Low
Confidence): 0.50 ± 0.20, n = 37; Mean ± SD (High Confidence):
0.61 ± 0.27, n = 148; t =−2.5, p = 0.015, Cohen’s d =−0.45, 95% CI
[−0.209, −0.023]) but not for the individual-level analysis (Mean ± SD
(Low Confidence): 0.52 ± 0.19, n = 31; Mean ± SD (High Confidence):
0.48 ± 0.20, n = 141; t = 1.0, p = 0.32, Cohen’s d = 0.20, 95% CI
[−0.039, 0.118]).

Further analysis revealed differences in the percent agreement with the
expected outcomes between teamswith low self-reported confidence (levels
{2, 3}) and high self-reported confidence ({4, 5}) across the group-level
hypotheses, particularly for those with strong support from the literature.
For H1, which has strong literature support, teams with high self-reported
confidence showed 90% agreement, compared to 60% for teams with low
self-reported confidence. For H2, which also has strong literature support,
high-confidence teams achieved 67% agreement, while low-confidence

Table 1 | Pipeline factors significantly influencing hypothesis testing across teams

Pruning # of H HRF regressor # of H HRF estimation # of H Signal space # of H Multiple comparisons # of H

Auto REF Fixed REF GLM REF ROI REF None REF

Combo 3 Flexible 4 Block Averaging 9 Channel/ROI 0 Benjamini–Hochberg 2

Visual 4 None 4 Image/ROI 0 Bonferroni 2

None 1 Channel 9 Benjamini–Yekutieli 0

None 0

The number of hypotheses (among the total 47 hypotheses [7 group-level and 40 individual level]) that any given analysis pipeline step significantly contributed to the variance of results across teams
(p < 0.05). The analysis steps were modeled separately.

47.1%

44.3%

28.6%

28.6%

11.4%

2.9%

Frequency of use of “default” 
settings per method

27.1%24.3%

18.6% 2.9%
5.7%

no use of 
defaults

21.4%

Intersection sizes: Multiple uses of “default” settings

1x 2x 3x 4x 5x

∑

Fig. 4 | Reported use of toolbox default settings across analysis pipelines. UpSet
plot showing the use of default parameters and settings in the groups’ analysis pipelines
based on n = 38 pipelines for each of the two datasets. Rows display individual cate-
gories for which default settings could be chosen, and horizontal bar plots their
cumulative frequency (e.g., groups chose default filter parameters in 47% of all reported
analyses). The pie chart shows the fraction of groups that used default settings in 1, 2, 3,

4 and 5x categories (matching the color code of the intersection size bars, e.g. 2.9% used
defaults for 5 categories). Connected black dots in columns display intersection
(combination) of categories and vertical bar plots the frequency (intersection size) of
these combinations. For example, three groups reported using default settings for the
GLM method, artifact correction, and filter parameters combined, and four groups
reported using the default settings only for the AR Model Order.
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Fig. 5 | Distribution of pipeline choices by agreement with literature support.
Radar Charts of the distribution of choices in the analysis pipelines based on their
(dis-)agreement with expected hypotheses outcomes, grouped by different pipeline
stages based on n = 38 pipelines. A Results for Hypotheses 1, 2, and 7 of Dataset I,
which have been supported by prior literature and therefore have a high expectation

of being confirmed. B Results for Hypothesis 3–6 of Dataset I, which are expected to
be true but are only weakly supported by prior literature. C Results for all four
hypotheses analyzed at the individual level in Dataset II. In all cases, radial axes
numbers represent joint probabilities of pooled individual hypothesis outcomes for a
chosen category among all users in percent.
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teams reached 40%. For H7 (expected to be false according to literature),
83% of high-confidence teams disagreed with the hypothesis, compared to
73% of low-confidence teams.

Both self-reported confidence in analysis skills and in results were
significantly correlated with the average number of years of fNIRS experi-
ence among team members. Specifically, confidence in analysis skills cor-
related with experience (r = 0.36, p < 0.002, 95% CI [0.14, 0.55], n = 69), as
did confidence in results (r = 0.27, p < 0.027, 95% CI [0.03, 0.47], n = 69).
These n values reflect combined group-level and individual-level data,
including only groups that reported confidence ratings.

Furthermore, there was a statistically significant positive correlation
between confidence in analysis skills and confidence in the resulting out-
comes (r = 0.62, p < 0.001, 95% CI [0.44, 0.74], n = 69 (group-level and
individual-level combined, including only those groups that reported con-
fidence)), indicating that teams who felt more confident in their analytical
abilities also tended to exhibit greater confidence in their results.

Greater hypothesis outcome agreement is associated with spe-
cific analytical practices
Wehave also examined themethodological choices across different research
groups, focusing on those with high similarity in hypothesis outcomes
compared to the rest. Our findings revealed notable differences in

approaches to data analysis, particularly in pruning, artifact rejection, and
the use of General Linear Models (GLM), which may contribute to the
variability in fNIRS data interpretation.

Pruning strategies varied significantly; no groups with high Sørensen
similarity scores used Signal-to-Noise Ratio (SNR) as their sole quality/
pruning metric, preferring to combine it with other metrics. Conversely,
21.7%of groupswith lowSørensen scores relied solely on SNR.Groupswith
high Sørensen scores were more likely to employ multiple channel quality
metrics compared to their low-score counterparts (61.5% vs 34.8%). Con-
versely, manual selection for pruning was exclusively observed in the low
Sørensen group. In terms of artifact rejection, only one group from the high
Sørensen subset applied whole trial rejection, indicating this practice is not
widespread.

The application of General Linear Models was more common among
the high Sørensen groups than the low (92.3% vs 78.3%), with a corre-
sponding decrease in block averaging usage. Regarding hemodynamic
response function (HRF) regressors, a significantly larger portion of high
Sørensen groups utilized a Gamma HRF regressor compared to their low
Sørensen counterparts (30.8% vs 4.3%).

Our analysis revealed that a larger percentage of high Sørensen groups
employed various short-separation regression methods (77.0% total; dis-
tribution: 46.2% short-separation only, 15.4% short-separation combined

Fig. 6 | Relationship between hypothesis testing outcomes and self-reported
confidence. Panels A–C represent group-level hypotheses, while panels
D–F illustrate individual-level hypotheses. Hypothesis testing results grouped by
teams’ self-reported confidence in their analysis skills presented for group-level
hypotheses (A) and individual-level hypotheses (D). Same results grouped by
confidence in the reported outcomes presented for group-level hypotheses (B) and
individual-level hypotheses (E). Sørensen-Dice similarity matrices illustrating the

consistency of hypothesis outcomes across teams, organized according to self-
reported confidence in their analysis skills presented for group-level hypotheses (C)
and individual-level hypotheses (F). The colorbar represents the Sørensen-Dice
coefficient values, ranging from 0.5 to 1. Please note that not all groups reported
confidence; hence the number of groups in this plot is smaller than the total number
of groups, which is 38.
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with other regressors, 7.7% PCA of short-separation combined with other
regressors, and 7.7% PCA of short-separation only) compared to low
Sørensen groups (69.5% total; distribution: 47.8% short-separation only,
13.0% short-separation combinedwith other regressors, 4.3%PCAof short-
separation combined with other regressors, and 4.3% PCA of short-
separation only). This demonstrates the high Sørensen groups’ inclination
towards incorporating short-separation measurements in their analysis to
potentially reduce confounding factors.

Discussion
Noninvasive neuroimaging techniques have revolutionized our under-
standing of the human brain, opening up new avenues in various scientific
fields. As technology has advanced, facilitating more flexible experimental
protocols, it has also increased variability in data analysis, affecting the
consistency of conclusions drawn from neuroimaging techniques, as seen
with fMRI and EEG.

Our results show that fNIRS faces similar challenges. Over the past
decade, fNIRS has become a reliable and widely adopted tool35, particularly
in experiments where other techniques fall short, due to its flexibility and
lower operational threshold compared to fMRI. However, while it is easy to
acquire interpretable signals, assessing their meaningfulness remains diffi-
cult. In addition, rapid technological advances have outpaced the standar-
dization of data analysis, making it crucial to understand how different
analysis pipelines impact scientific consistency. The results presented in this
work shed light on this issue and provide insights for other neuroimaging
techniques by exploring the influence of analysis flexibility and other key
factors that contribute to variability in outcomes, such as researcher
confidence.

Overall, we observed substantial variability across teams in hypothesis
testing, particularly at the individual level. It is important to note that,
because the data originated from different sources, any direct comparison
between group- and individual-level agreement is prone to bias from con-
founding factors such as variations in data quality. Despite this limitation,
higher agreement rates (>80%)were seen inmost group-level hypotheses (5
out of 7 hypotheses), indicatingmore consistent outcomes when individual
variations are treated as noise or measurement error.

Notably, the high percentage of agreement among teams for hypoth-
eses with strong literature support reinforces the potential of fNIRS as a
reliable neuroimaging technique, especially in the context of group-level
analysis grounded in well-supported research contexts. As the strength of
evidence for a hypothesis correlates with the contrast-to-noise ratio (CNR),
these results imply that higher expected CNRs tend to result in greater
agreement among teams, regardless of differences in the analysis pipelines
used for fNIRS group-level studies.

In contrast, individual-level hypotheses showed lower overall agree-
ment, with only two hypotheses achieving levels of agreement comparable
to those observed at the group level, and in only two out of 10 participants.
This discrepancy likely arises from the greater sensitivity of individual-level
analyses to intrinsic differences in anatomy and physiology, which makes
individual outcomes more dependent on specific choices in the analysis

pipeline (e.g., exclusion criteria resulting in the removal of different trials
and/or fNIRS channels across subjects).

Despite the lower agreement observed in individual-level analyses
compared to group-level analyses, the degree of agreement among groups
consistently mirrored the strength of literature support for each hypothesis,
with weak hypotheses resulting in lower agreement. Importantly,
individual-level analyses revealed a clear effect of data quality (assessed by
SNR) on the consistency of hypothesis testing outcomes: participants with
higher SNR yielded greater agreement in their results.While this alignswith
the expectation that higher-quality data produce more reliable outcomes, it
is important to acknowledge that many factors influence SNR in fNIRS,
including those related to population diversity and specific physiological or
anatomical characteristics. These challenges are particularly relevant when
collecting data from globally representative populations, where achieving
high SNR can be more difficult. In our study, the limited number of par-
ticipants in Dataset II constrained our ability to statistically examine the
relationship between participant demographics, SNR, and outcome agree-
ments. Nonetheless, the observed impact of data quality on reproducibility
does not diminish the importance of advancing equity and inclusion in
neuroimaging research, and further highlights the need to develop more
robust data analysis methods and increase sample size.

No two teams adopted identical workflows, echoing findings from a
previous study on variability in fMRI25. The flexibility in choosing analysis
pipelines led to considerable differences in themethods used, particularly in
signal preprocessing and statistical testing. Recent efforts to establish best
practices aim to enhance reproducibility, particularly for these stages40. For
instance, the impact of confounding systemic signals on fNIRS is well-
recognized, alongwith the importance ofmethodologically addressing these
by including additional systemic information in the analysis whenever
possible, such as short-channel measurements as proxies for systemic
physiology, which can greatly reduce false discovery rates56,57. Many groups
(79%) used GLM for regression of systemic signals, while only a few (20%)
used less robust methods like block averaging, which does not account for
systemic physiological effects.

Among GLM users, a slight majority (46% versus 33%) opted for AR-
IRLS over OLS, as it effectively reduces false positives by accounting for the
intrinsic temporal correlation of fNIRS signals through autoregressive
models with optimal order selection58. Choices for theHRF regressor varied
across six variants, from those allowing extensive shape fitting like the FIR
model, to thosewithminimal parameters such as theCanonicalmodel. This
variety highlights the need to establish a consensus on selecting HRF
regressors. Regarding the additional regressors to the HRF, 70% of the
groups that employed GLM used short-channel-based information.

It is also worth noting that the majority of groups applied temporal
smoothing (90%) to the fNIRS signal, using band-pass (70%) or low-pass
(20%) filtering. Therefore, these filter weights need to be accommodated in
the estimation of temporal correlation with GLM40,58. Ignoring these cor-
relations can lead to biased estimates of degrees of freedom and standard
error, thereby invalidating statistical tests.

A slight majority (52%) used HbO for statistical testing, as it generally
shows a stronger response than HbR, though it is more susceptible to task-
related systemic physiological changes39, potentially leading to a higher false
discovery rate. Groups also varied in their approach to defining the signal
space for statistical testing, with 53% using Regions of Interest (ROIs) to
reduce spontaneous noise and improve reliability, while 29% conducted
their analyses at the channel level, which can increase sensitivity to spatial
variability, especially in studies with low-density fNIRS setups lacking
detailed spatial information. Pre-experiment optode registration can reduce
this issue by ensuring consistent placement of optodes, thus enhancing
reproducibility59. When anatomical registration is properly performed,
translating data from the channel space to either the ROI or voxel spaces
generally results in less variability60,61. A small amount (15%) utilized a
combination of both ROI and channel-based methods.

Additionally, 52% of all groups did not performmultiple comparisons
correction, increasing the risk of false positives56,57. The statistical tests of this

Table 2 | Agreement in results as a function of analysis
confidence

Dataset I Dataset II

Confidence Group-level analysis
(mean ± SD)

Individual-level analysis
(mean ± SD)

2 0.57 ± 0.00 0.50 ± 0.21

3 0.49 ± 0.20 0.52 ± 0.19

4 0.57 ± 0.27 0.46 ± 0.20

5 0.80 ± 0.16 0.58 ± 0.16

Average 0.59 ± 0.24 0.51 ± 0.20

Mean and standard deviation (SD) of the Sørensen-Dice Similarity for different self-reported
confidence in analysis skills.
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study were based onmeasurements frommultichannel fNIRS systems (e.g.,
64 source-detector combinations, or channels, were used for the motor
dataset. When a significance threshold of uncorrected p = 0.05 was applied,
on average, 5% of the 64 channels (i.e., 3 channels) could be false positives).
The number of false positives increases even further when using voxels in
the case of reconstructed image space from diffuse optical tomography or
interpolating kernels. This issue, referred to as themultiple testing problem,
can be addressed using methods that control the family-wise error rate at
level α (e.g., corrected p = 0.05), such as Benjamini–Hochberg, Bonferroni
correction, or random field theory62. These methods calculate the prob-
ability that t-values exceed a given threshold across a set of channels, voxels,
or clusters.

Our logistic regression analysis revealed that variability in hypothesis
testing outcomeswas partially explained by the choices at different stages of
data processing, particularly methods for data pruning and the choices for
HRF estimation, HRF regressor, signal space for statistical testing, and the
use of multiple comparisons correction. Specifically, opting for block
averaging rather than a GLM in HRF estimation contributed to the varia-
bility in the hypothesis outcomes. Similarly, the choice of performing sta-
tistical testing on individual channels over ROIs explained some of the
variability in the hypothesis outcomes.

The broader utilization of GLM as an HRF estimation method among
the groups that showed high similarity in hypothesis testing outcomes and
who, at the same time, has longer experience in the field, indicates a pre-
ference for robust statistical frameworks that may better accommodate the
confounding signals in the fNIRS data. The inclusion of short-separation
(SS) regression techniques by a significant majority of this group further
supports this. The pronounced difference in the use of Gamma
HRF regressors between this group and the rest of the groups (30.8% vs
4.3%) points towards a methodological divergence in addressing hemody-
namic response modeling.

When we break down the hypothesis testing results by self-reported
confidence, higher confidencewas associatedwithmore consistent results at
the group level.Confidencewas also significantly correlatedwith the average
number of years of fNIRS experience of the teammembers, suggesting that
lower variability in hypothesis testing outcomes may be due to fewer errors
in analysis pipelines and/or convergence towards certain analysis methods
as experience in the field grows.

Interestingly, teams with greater confidence demonstrated better
alignment with expected outcomes, particularly for well-supported
hypotheses, highlighting the role of experience and self-assurance in
achievingmore reproducible outcomes. However, while confidence is often
linked to higher decision-making accuracy63, we cannot conclusively attri-
bute these observed consistencies to result accuracy without further vali-
dation, such as using a synthetic dataset with known ground truth.

It is worth noting that a few aspects of our study design should be
considered before generalizing the findings above. First, the recruitment of
researcherswasbasedonanopencall through conferencesand socialmedia,
and while the sample was diverse and global, certain regions, particularly
Asia and Africa, were underrepresented. Second, the datasets used in this
study were chosen based on their availability and adherence to current best
practices in fNIRS acquisition. Both datasets were collected in healthy,
young adults using commercial continuous-wave fNIRS devices from the
same manufacturer. While this choice helped control for some sources of
variability, it limits the generalizability of ourfindings to datasets collected in
other populations (e.g., infants, elderly) or acquired with other devices or
fNIRS modalities, such as time-domain (TD) or frequency-domain (FD)
fNIRS. For instance, TD-fNIRS allows for selective sensitivity to deeper
regions64,65, while FD-fNIRS incorporates phase information that can
enhance sensitivity and specificity in functional neuroimaging66,67. These
modality-specific features could influence certain steps in the analysis
pipelines discussed in this work.

Regarding the experimental paradigm, we selected the finger-tapping
task for its standard use in fNIRS, ensuring familiarity among researchers
and offering little novelty from a neuroscience perspective. Similarly,

auditory stimulation is a primary brain function and is expected to yield
more consistency than cognitive tasks, for example, even though it is less
common in fNIRS. However, both datasets used a similar block design with
short stimulation times andhad been previously published,whichmayhave
introduced anchor bias, despite instructions not to consult the original
results. That said, our hypothesis-driven framework, with predefined
regions of interest, minimized the risk of double-dipping (i.e., the inap-
propriate reuse of data for both ROI selection and hypothesis testing)68. We
found no evidence of such practices in the submitted reports. While this
approach reduced the risk of circular analysis, it also limited our ability to
assess how frequently suchmethodological pitfalls occur within the broader
fNIRS community. The short task durations also resulted in lower SNR than
most traditional fNIRS studies, potentially affectingpipelinesdifferently and
contributing to dataset-specific variability.

Overall, these design choices were intended to minimize other sources
of variability unrelated to analysis pipelines, as more complex paradigms
might have introduced additional variability or limited the number of
researchers able to participate. This focus on simplicity, while suitable for
our goals, limits the exploration of more advanced approaches, such as the
ones employing multimodal analysis and artificial intelligence. These
emerging methods represent exciting avenues for fNIRS research in the
coming years and may even help standardize pipelines.

Lastly, the formulation of the hypotheses might have influenced ana-
lytical choices. Althoughwe aimed to provide clear, objective hypotheses for
testing and offered an open forum for clarifications, varying interpretations
across groups could lead to differences in testing and reporting.

Taken together, our findings suggest substantial levels of analytical
variability in fNIRS, moderated by researchers’ experience and confidence.
Researchers use the degrees of freedom available in analyzing complex,
high-dimensional fNIRS datasets, some of which were identified only after
specifically querying them in a follow-up questionnaire. These results
highlight the need for greater transparency and support for the adoption of
open-science practices to enhance reproducibility and replicability in fNIRS
research19,40,41. These efforts can reduce variability and enhance reproduci-
bility, particularly in typical functional neuroimaging protocols1,69. How-
ever, it is important to recognize that consistency and reproducibility in
outcomes do not equate to accuracy, as consistent results do not auto-
matically reflect “ground truth”. Moving forward, future efforts should shift
from describing variability to assessing the accuracy of data analysis pipe-
lines and evaluatinghowdifferent processing steps influencehowclosely the
results align with expected outcomes.

While standard approaches and best practices have their place, it is
important to also recognize the value of methodological diversity that
converges to similar outcomes in the hypotheses studied. This emphasizes
the robustness of fNIRS to some of the flexibility available in data analysis,
which is beneficial for thefield. In addition, encouraging a rangeof analytical
pipelines allows for innovation and flexibility in addressing unique chal-
lenges posed by different research questions. Data and code sharing should
further be promoted to allow researchers to reproduce published work or
test new methodologies. While tools to do so are increasingly available19,
more community efforts are required for their successful, widespread use,
along with appropriate training opportunities at various levels to help
researchers effectively and responsibly utilize these tools.

Moreover, global data pooling initiatives such as consortia would
greatly increase possibilities for meta-analytical and mega-analytical
research. Global consortia such as ENIGMA (Enhancing NeuroImaging
Genetics through Meta Analysis) have become the gold standard in other
fields suchas clinicalMRI research70,71. Consortia can aggregate large sample
sizes and test and standardize data-quality control procedures. They yield
robust, generalizable results, which has also motivated other imaging fields
such as EEG to form consortia72. Similar developments would be desirable
for fNIRS research40,41.

Adopting any or all of these tools requires a cultural shift in the fNIRS
community thatmust be supportedbykey stakeholders, including academic
societies and institutions, through educational initiatives within the
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community1,73. Without such collective effort, the full potential of these
advancements cannot be achieved.

Methods
Participating researchers
A total of 223 researchers registered to analyze the fNIRS datasets. Ulti-
mately, 102 researchers (55 female) submitted their results. Eight
researchers submitted their work individually, while the remainder formed
30 groups with two to eight researchers each, resulting in 38 unique analysis
submissions (35 unique submissions per study, as groups could submit
results for either study or both).

The 38 submissions originated from 40 independent institutions
worldwide, including nine different countries in Europe (accounting for
52.5% of the total submissions), the USA (20%), Canada and the Middle
East (7.5% each), Asia and Latin America (5% each), and Australia (2.5%).
Of the 30 groups that submitted their analysis, 27% (8 groups) participated
in inter-institutional collaborations, while the rest of the groups were
composed primarily of researchers from the same institution. In addition,
59% of the groups included at least one member who reported being an
expert in fNIRS.

Regarding the demographics of the 102 researchers (Fig. 7), nearly half
(49%) were affiliated with institutions in Europe, followed by 34% in the
USAorCanada.Researchers from institutions in theMiddleEast comprised
10%, while those from the Asia-Pacific region accounted for 5%, and 2%
were associated with Latin American institutions.

Considering fNIRS experience, the researchers reported an average of
5.7 years (median = 4.0 years, standard deviation = 5.1 years), with a range
spanning from novice (0 years) to highly experienced (25 years). The

majority (60%) of these researchers had earned a Doctorate, 21% held a
Master’s degree as their highest academic qualification, and 15% had
completed an undergraduate degree. In addition, less than 5% of the
researchers were undergraduate students.

Regarding their primary research focus, 66% of the researchers
reported using fNIRS for applied research. These researchers reported
working in a range of disciplines and application fields, including devel-
opmental and/or cognitiveneuroscience (42%), clinical neuroscience (14%),
motor processing (12%), auditory and speech processing (12%), visual
processing (7.1%), sport science and rehabilitation (3.5%), educational
neuroscience (3.5%), other topics in psychology not mentioned above
(3.5%), sleep science (1.2%), and social neuroscience (1.2%).

The remaining 34%of researchers reported being primarily focused on
developing neuroimaging data-analysis methods and/or instrumentation.
Their areas of specialization included fNIRS methods and data analysis
(59%), development of neuromodulation strategies involving fNIRS (14%),
multimodal imaging (12%), signal processing and biostatistics (3.9%), sys-
tems neuroscience (3.9%), computational neuroscience (3.9%), and
machine learning (3.9%).

fNIRS Datasets
The datasets analyzed by the groups for this study are publicly available at
https://osf.io/b4wck74. The data are stored in SNIRF format21 and organized
according to BIDS compliance75. The SNIRF files were validated using
pysnirf2 version 0.7.4.

Dataset I (auditory tasks) contains fNIRS data from 17 healthy adults
(age: 22-40 years) with no history of auditory disorders. Data were collected
under the Macquarie University Ethics Committee and are published

Fig. 7 | Demographic profile of participating researchers. A total of 102
researchers, grouped in 38 teams, submitted reports for analysis. Plots show their
A geographic affiliation, B years of experience in fNIRS, C highest education

qualification, and D self-reported fields of study. (LA: Latin America, APAC: Asia
and Pacific, ME: Middle East, HS: High School, UG: Undergraduate).
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elsewhere76. The experimental paradigm consisted of three conditions:
speech, noise, and silence (control). The speech stimulus consisted of three
concatenated sentences with a total duration of 5.25 s. The noise stimulus
consisted of a uniform distribution of frequency content between 300 and
700Hz and was of 5 s duration. The control condition was a 5 s duration of
silence. Stimuli were presented in a random order with an inter-stimulus
interval ranging between 10 and 20 s. Each condition was presented
20 times.

The fNIRS probe for Dataset I contained 12 sources and 12 detectors
resulting in 24 source-detector long-separation channels and 8 short-
separation channels, and covered the left inferior frontal gyrus (IFG), the left
and right superior temporal gyri (STG) and the occipital lobe. Data were
acquired using a continuous-wave fNIRS device with source wavelengths of
760 and 850 nm (NIRScout,NIRxTechnologies, Germany) and exported in
nativeNIRx format. The datawere then converted to BIDS format using the
fNIRS-App sourcedata2bids using version 0.4.475.

Dataset II (motor tasks) comprises fNIRS measurements from ten
healthy, right-handed adults (age: 20-35 years) with no history of neuro-
logical or motor disorders. A subset of the dataset was previously published
elsewhere59. In the experimental protocol, each subject completed four runs
of a randomized block-designed protocol consisting of sequences of right-
and left-hand finger tapping lasting 2 s and 3 s. The tasks were interleaved
with rest periods ranging from10 to20 s, repeated 30 (2 s) and25 (3 s) times.
The protocol was approved by the University of Campinas Ethics Com-
mittee, where the experiment was carried out.

Data inDataset IIwere acquiredusing a continuous-wave fNIRSdevice
with sourcewavelengths of 760 and850 nm(NIRScout,NIRxTechnologies,
Germany) at 8.9 Hz and exported in native NIRx format. For each parti-
cipant, optodes positions were independently registered using an electro-
magnetic tracking device (Fastrak, Polhemus, USA), and these coordinates
weremanually integrated into the original data. The fNIRS probe contained
14 sources and 32 detectors covering the motor cortex, which allowed 64
source-detector pairs at approximately 3 cm and four pairs at 0.8 cm (short
channels). After collection, the data were converted to BIDS format using
MNE-BIDS version 0.10.

Hypothesis Outcomes Reporting
We collected data from groups through two separate questionnaires: an
Initial Survey and a Follow-up Questionnaire. The Initial Survey required
groups to indicate for each hypothesis 1) whether it was confirmed (“yes”),
refuted (“no”), or “not investigated”, 2) the outcome of any statistical tests
(e.g., p-value, credible interval, or confidence intervals), if they were con-
ducted, and 3) additional notes, along with a description of their analysis.
The hypotheses given to the groups for the auditory andmotor datasets are
detailed in the Introduction section. Specifically for the motor dataset,
groups had to submit individual reports for each of the ten participants.

The Follow-up Questionnaire was sent to all groups approximately six
weeks after the Initial Survey’s deadline, requesting that theyprovide further
details on the (1) programming language and/or analysis toolboxesused, (2)
various steps of their analysis pipeline (from preprocessing to statistical
analysis), and (3) their self-reported confidence both in their analysis skills
and in the results submitted. For each analysis step mentioned in the
questionnaire, groups could specify whether they employed the default
settings of the analysis toolbox or, if not, the parameters used in their
analysis.

Analysis of Hypothesis Outcomes
The data collected from the questionnaires were analyzed by an indepen-
dent group of researchers who had not submitted any reports themselves.
This meta-analysis included a description of the demographics of the
researchers, an examination of the responses to hypothesis testing and their
association with the self-reported confidence levels, and an exploration of
the different stages of the analysis pipelines and their effect on hypothesis
testing outcomes. All analyses were carried out either in MATLAB (2023a,
MathWorks, Natick, MA, USA) or in Python.

Sørensen-Dice similarity. The Sørensen-Dice similarity coefficient was
used to assess the similarity of hypothesis results among groups. Pairwise
similarity coefficients for each pair of vectors containing the results of all
hypothesis tests were calculated as:

SD Vi;Vj

� �
¼ 2 ×

jVi \ Vjj
jVij þ jVjj

where Vi;Vj 2 fV1;V2; . . . ;Vng represent the responses of the n groups,
∣Vi∣ and jVjj are the sizes of vectors Vi and Vj, respectively, and jVi \ Vjj
denotes the cardinality of the intersectionbetweenVi andVj. Sørensen-Dice
calculations were performed in MATLAB.

Logistic regression. The relationship between the analysis steps
(independent variables) and the hypothesis testing outcomes (dependent
variable) across teams was investigated using binary logistic regression. The
outcomeofhypothesis testingwas indicatedby abinary variable, as reported
by each team. As each independent variable includes multiple sub-
categories (e.g., filtering can be divided into four categories - band-pass,
high-pass, low-pass, and no filtering), we selected the most-commonly
chosen category by the teams as the reference category. The logistic
regression model was performed with the ‘fitglm’ function in MATLAB.
Given the binary nature of the dependent variable, the binomial distribution
was selected to appropriatelymodel the response. The logistic link function,
specifically the logit link, was applied to establish the connection between
the linear predictor and the probability of observing a significant hypothesis
testing outcome. This analysis was performed separately for each of the 47
hypotheses (7 at the group level and 40 at the individual level [i.e., 4
individual-level hypotheses x 10 subjects]).

We also employed multiple logistic regression to account for multiple
independent variables, each representing a distinct step in the analysis. This
method allowed us to assess the simultaneous impact of these analysis steps
on the probability of obtaining a significant result in hypothesis testing.
Prior tomultiple logistic regression, we tested anymulticollinearity between
the processing pipeline steps that explain the variability in the hypothesis
testing outcomes significantly (i.e., Pruning, HRF Estimation Method, and
Signal Space) via a chi-squared test. This test is often applied to explore the
association between categorical independent variables by identifying sig-
nificant relationships between pairs of such variables. In this study, we
conducted contingency table analysis to generate frequency distribution
tables that illustrate the joint occurrences of categories for each pair of
categorical independent variables. Subsequently, the chi-square test of
independence was applied to evaluate the presence of significant associa-
tions between the categorical variables,which yieldedboth a test statistic and
a p-value.

We established a p-value threshold of 0.05 for both the logistic
regression analysis and the chi-square test.

Visualization of processing steps. We used Sankey diagrams (Python)
to visualize essential processing steps and parameters the participating
groups employed for signal analysis and statistical testing (Figs. 2, 3). The
reported choice ofmethods, parameters, or regressors are encoded as nodes
in the diagram. Each node belongs to one of several categories (for instance,
a category of methods, such as “Artifact Rejection”), which make up the
diagram’s vertical stages. This visualization enables botha quantitative and a
qualitative assessment of the (co)occurrence and divergence of methodo-
logical choices across stages/categories in the analyses. It should be pointed
out that the implied directionality of the stages is primarily a logical and not
a temporal one and thus not strictly directional (for instance: “Motion
Artifact Rejection” typically follows “Pruning”; the choice of a method for
HRF estimation precedes the choice of a solver and the choice of regressors).
The data were conditioned as follows before the construction of the Sankey
diagrams: 1)Missing inputs, i.e., fields that were left empty and not reported
otherwise by the researchers, were interpreted and categorized as a step not
performed (e.g., no response in “Method used for artifact removal” implied
no motion artifact removal performed). 2) Functionally equal or highly
similar categories or nodes were joined (e.g., in “Quality Assessment and
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Pruning”, “Manual Selection” and “Visual Inspection of Time Domain”
were joined into “Manual Pruning”). 3) In some categories,multiple choices
and combinations of methods were reported. To account for this, we report
the absolute frequencies of each method in % (i.e., the number of users that
made that choice as a fraction of all users) and separately report numbers for
both its individual use and its use in combination with others.

Groups reported using “default settings” for methods and parameters
from different toolboxes and software packages used for analysis. We used
an UpSet plot to report the frequency and intersections of categories for
which the use of default settings was reported. The horizontal dimension
visualizes the frequency for each individual category (e.g., about 47% of
users applying default settings for “Filter Parameters”). The vertical
dimension visualizes the intersection with other categories and how often
these combinations were reported (e.g., 7 groups reported using default
settings for all three categories “Filter Parameters”, “Artifact Correction
Parameters,” and “Pruning Parameters”, but no other).

Association with self-reported confidence. Pearson’s correlation coeffi-
cient was employed to quantify the association between the self-reported
confidence levels in analysis skills and the submitted results.We used the ‘corr’
function in MATLAB to compute the correlation matrix between the inde-
pendent responses, from which we extracted Pearson’s correlation coefficient.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The fNIRS datasets analyzed by the groups for this study are publicly
available at https://osf.io/b4wck74. Themetadata containing the anonymized
reports analyzed in this work is publicly available as a .csv file (FreshDa-
ta.csv) at https://github.com/ibs-lab/FRESH/tree/main/data.

Code availability
All the Python and MATLAB scripts used to perform the analysis and to
produce the figures and tables in this work are publicly available at https://
github.com/ibs-lab/FRESH/.
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