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Abstract 
The central nervous system (CNS), comprised of both the brain and spinal cord, and is a 
complex network of white and gray matter responsible for sensory, motor, and cognitive 
functions. Advanced diffusion MRI (dMRI) techniques offer a promising mechanism to non-
invasively characterize CNS architecture, however, most studies focus on the brain or 
spinal cord in isolation. Here, we implemented a clinically feasible dMRI protocol on a 3T 
scanner to simultaneously characterize neurite and soma microstructure of both the brain 
and spinal cord. The protocol enabled the use of Diffusion Tensor Imaging (DTI), Standard 
Model Imaging (SMI), and Soma and Neurite Density Imaging (SANDI), representing the first 
time SMI and SANDI have been evaluated in the cord, and in the cord and brain 
simultaneously. Our results demonstrate high image quality even at high diffusion 
weightings, reproducibility of SMI and SANDI derived metrics similar to those of DTI with 
few exceptions, and biologically feasible contrasts between and within white and gray 
matter regions. Reproducibility and contrasts were decreased in the cord compared to that 
of the brain, revealing challenges due to partial volume effects and image preprocessing. 
This study establishes a harmonized approach for brain and cord microstructural imaging, 
and the opportunity to study CNS pathologies and biomarkers of structural integrity across 
the neuroaxis.  
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Introduction 
 The central nervous system (CNS), comprised of both the brain and spinal cord, is a 
highly interconnected network that facilitates a range of sensory, motor, and cognitive 
functions (Nieuwenhuys et al., 2008). The CNS is composed of two main types of tissue, 
white matter (WM) and gray matter (GM). White matter is made up of a network of nerve 
fibers (i.e., myelinated axons) that facilitate communication between areas of the brain 
and spinal cord, while the gray matter is composed of neuronal cell bodies (i.e., soma) and 
dendrites responsible for processing and integrating neural information (Felten, 2021) 
(Figure 1). The brain and cord are highly interconnected, and any changes in the 
organization and microstructure in one region, such as the brain, could propagate and 
impact the structure and function of the spinal cord, or vice-versa. Therefore, it is crucial to 
examine both structures together when studying anatomy or pathology of the CNS. In this 
study, we aim to characterize the microstructural organization of both the brain and spinal 
cord using clinically feasible diffusion MRI (dMRI), identifying what aspects of tissue 
microstructure can be reliably detected and characterized in both regions.  
 Diffusion MRI has proven to be a powerful tool to study the microstructural 
organization of the CNS (Beaulieu, 2002; Le Bihan & Iima, 2015). Several signal 
representations and microstructural models have been developed and applied to study 
CNS in health and disease (Novikov, Fieremans, et al., 2018; Novikov, Kiselev, et al., 2018) 
(Figure 2). Among the earliest, diffusion tensor imaging (DTI) (Basser et al., 1994; Pierpaoli 
et al., 1996) captures the anisotropic diffusion of water in tissue as a (covariance matrix of 
a) 3D Gaussian distribution (Figure 2, top). From DTI, scalar indices of diffusivity can be 
derived including axial (AD), radial (RD), and mean diffusivities (MD), as well as indices of 
orientation anisotropy like fractional anisotropy (FA) (Pierpaoli et al., 1996). Acquisition 
requirements for DTI analysis are not relatively demanding, requiring only ~15-30 diffusion-
weighted images with a single b-value shell (typically b~1000s/mm2), conditions that are 
readily achievable on clinical scanners (Jones & Cercignani, 2010; Jones et al., 1999). 
Because of this, DTI has been applied extensively in both the brain (Mori & Zhang, 2006) 
and spinal cord (Vedantam et al., 2014) to study injury, neurological disease, and 
developmental processes in both WM and GM tissues. While DTI-based indices sensitively 
reflect tissue properties, such as myelination and fiber density (Beaulieu, 2002), they lack 
specificity and are confounded by orientation and partial volume effects (Jones & 
Cercignani, 2010).  
 To overcome this limited specificity, several multi-compartmental approaches have 
been developed to explicitly model certain aspects of the tissue environment (Novikov, 
Fieremans, et al., 2018; Novikov, Kiselev, et al., 2018). Among others (Jelescu, Veraart, et 
al., 2016; Jespersen et al., 2007; Kroenke et al., 2004; Novikov, Veraart, et al., 2018; Reisert 
et al., 2014; Sotiropoulos et al., 2012), models such as neurite orientation dispersion and 
density imaging (NODDI) (Zhang et al., 2012), multi-compartment spherical mean 
technique (SMT) (Kaden, Kelm, et al., 2016; Kaden, Kruggel, et al., 2016), or White Matter 
Tract Imaging (WMTI) (Fieremans et al., 2013; Fieremans et al., 2011), have become 
popular in both the brain and spinal cord because they can be employed using a clinically 
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feasible two-shell (two b-values) acquisition. While there are unique differences in 
constraints, assumptions, and derived indices, many of these models fall under the 
umbrella of the so-called Standard Model of neuronal tissue (Novikov, Fieremans, et al., 
2018). In Standard Model Imaging (SMI) (Figure 2, middle), axons are represented as 
impermeable zero-radius sticks arranged in coherent bundles and embedded within an 
extra-axonal space described by an axially symmetric diffusion tensor, along with a third 
cerebral spinal fluid (or free water) compartment. Thus, SMI results in indices of axonal (or 
signal) fraction (𝑓𝑓), along-axon diffusivity (𝐷𝐷!), extra-axonal parallel (𝐷𝐷"∥) and perpendicular 
(𝐷𝐷"$) diffusivities, free water (signal) fraction (𝑓𝑓%), and a measure of fiber dispersion (𝑝𝑝&). 
These indices have been shown to be highly specific to normal anatomical variation 
(Coronado-Leija et al., 2024) and disease processes such as demyelination (𝐷𝐷"$) 
(Fieremans et al., 2012; Jelescu, Zurek, et al., 2016), axonal loss (𝑓𝑓) (Fieremans et al., 
2012), and axonal beading (𝐷𝐷!) (Lee et al., 2020), with reproducible and robust estimates 
on clinical scanners (Coelho et al., 2022). However, SMI has not yet been demonstrated in 
the spinal cord, where descriptions of normal variation and reproducibility could well-
compliment the same measures derived in the brain. Additionally, the standard model is 
based on geometrical assumptions specific to white matter and may not be entirely 
appropriate for gray matter tissue.   
 More recently, the Soma and Neurite Density Imaging (SANDI) model (Palombo et 
al., 2020) has emerged as a promising technique for studying both white matter and gray 
matter architecture in the CNS. By distinguishing between water diffusion within neurites 
(stick-like axons and dendrites) and soma (spherical neuronal cell bodies), SANDI provides 
a more comprehensive characterization of tissue microstructure than previously 
mentioned models, extending the standard model to also include soma fraction (𝑓𝑓'()!) 
and soma radii (𝑅𝑅'()!) estimates (Figure 2, bottom). However, this comes at the cost of a 
significantly increased scan time, requiring a minimum of 5 diffusion shells, with b-values 
6-10x higher than those typical of clinical acquisitions. In the original paper (Palombo et 
al., 2020), the SANDI model was fit on data with b-values up to 10,000s/mm2 acquired on a 
high-performance scanner, showing white and gray matter contrasts that paralleled those 
obtained from myelo-architectural and cyto-architectural stains. More recently, Genc et 
al., (Genc et al., 2021) revealed that these maps were highly repeatable and reproducible 
using much lower b-values of b=6000s/mm2, but still acquired using high performance 
systems. Finally, Schiavi et al. (Schiavi et al., 2023) demonstrated the feasibility of 
acquiring SANDI metrics on a clinical scanner, highlighting biases due to noise and 
acquisition schemes, but resulting in reliable and reproducible measures in both white and 
gray matter. However, again, these were demonstrated in the brain, and feasibility of 
SANDI modeling has not been done on the cord.  
 Motivated by these works in the brain, and the desire to study both the brain and 
spinal cord in parallel with a harmonized acquisition, we aim to characterize neurite and 
soma organization in the brain and spinal cord using diffusion MRI on a clinical scanner. In 
agreement with existing literature, we show that DTI, SMI, and SANDI are feasible, 
reproducible, and result in biologically meaningful measures of the brain, but address 
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challenges in image acquisition and image processing (Cohen-Adad et al., 2021; Kurt G 
Schilling et al., 2021) to demonstrate similar application of these models in the cord. We 
first describe the acquisition which enables application of these models in the gray and 
white matter, then show and assess data quality and resulting indices in both the brain and 
cord. Next, we assess reliability and repeatability of these models, and finally compare 
model indices to known anatomy and expected contrast within and between white and 
gray matter tissues.  
 
 
Methods 
 
Brain and Cord - acquisition 

Eleven healthy controls participated in this study, with six scanned twice for scan-
rescan reproducibility assessment. All experiments were performed on a 3.0T whole body 
MR scanner (Philips dStream Ingenia, Best, Netherlands). A two-channel body coil was 
used for excitation and a 16-channel SENSE neurovascular coil was used for reception. 
The maximum gradient strength of the system was 80 mT/m at a slew rate of 100 mT/m/s. 
All data were acquired under a protocol approved by the local institutional review board 
(IRB #111087) and informed consent was obtained prior to the study. 

Brain imaging consisted of a T1-weighted image using a three-dimensional (3D) T1-
MPRAGE image (TR=6.3ms, inversion time = 1060ms, TE = 2.9ms, flip angle 8 degrees, 
spatial resolution 1x1x1mm3, acquisition time = 5m37s). The diffusion protocol consisted 
of a pulsed-gradient spin-echo sequence with single-shot echo planar imaging (EPI) 
readout with the following parameters: repetition time 4400 ms, echo time 100 ms, pulse 
duration 24 ms, pulse separation 60 ms, spatial resolution 2.5 x 2.5 x 2.5mm3, 62 slices, 
whole-brain coverage, axial orientation, SENSE=2.2, Multiband=2, partial Fourier =0.70, 
with 7 (non-zero) b-values of 0/100/500/1000/2000/3000/4000/6000 with 
22/8/8/16/24/32/40/48 measurements per shell, acquired with phase encoding in the 
anterior-posterior direction, with a scan of 6 b=0s/mm2 images with reversed phase 
encoding. The total scan time for brain diffusion data was 16.5 minutes. We note that the 
sequence was separated into three sequential acquisitions, with constant pre-scan 
settings, because the software did not allow >128 diffusion-weighted volumes in a single 
acquisition. Scans were simply concatenated prior to preprocessing (mrcat from MRTrix3 
(Tournier et al., 2019) tools).  

Cord imaging consisted of a high-resolution (0.65 × 0.65 × 5 mm3) multi-slice, multi-
echo gradient echo (mFFE) anatomical image (Held et al., 2003)  
(TR/TE/ΔTE = 753/7.1/8.8 ms, α = 28°, number of slices = 14, 6:12 min) for co-registration 
and to serve as a reference image for segmentation. The diffusion protocol was matched to 
the brain, and consisted of a pulsed-gradient spin-echo sequence with single-shot EPI 
readout with the following parameters: repetition time 4400 ms, echo time 100 ms, pulse 
duration 24 ms, pulse separation 51 ms, spatial resolution 1.1 x 1.1 x 5mm3, 18 slices, 
axial orientation, SENSE=1.8, Multiband=None, partial Fourier = 0.69, with 7 (non-zero) b-
values of 0/100/500/1000/2000/3000/4000/6000 with 22/8/8/16/24/32/40/48 gradient 
directions performed per shell, acquired with phase encoding in the left-right direction, 
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with a scan of 6 b=0s/mm2 images with reversed phase encoding. All images were 
centered at the C3/C4 intervertebral disc. Reduced field-of-view was applied using an 
outer volume suppression technique (Wilm et al., 2007) and fat suppression was achieved 
using SPIR. The acquisition was not cardiac triggered in order maximize acquisition per 
time (Kurt et al., 2023). The total scan time for cord diffusion data was 16.5 minutes. Again, 
the sequence was separated into three sequential acquisitions, with constant pre-scan 
settings, and concatenated prior to preprocessing. 
 Data is made available in BIDS format in the Zenodo sharing platform 
(https://doi.org/10.5281/zenodo.15512428). 
 
Brain and Cord - Preprocessing 
 Brain data preprocessing started with running FreeSurfer 6.0 (Fischl, 2012; Fischl et 
al., 2002) in order to derive 24 regions-of-interest (ROIs) from the lobe-based parcellation 
including 12 gray matter labels (bilateral Frontal, Parietal, Occipital, Temporal, Cingulate, 
Subcortical) and the corresponding 12 white matter labels. The diffusion dataset was 
preprocessed using a combination of FSL (6.0.7.9) (Jenkinson et al., 2012) and MRTrix3 
software (Tournier et al., 2019), and included MPPCA denoising (Veraart, Novikov, et al., 
2016), Gibbs-Ringing correction (Kellner et al., 2016), and correction of motion, eddy 
currents, and susceptibility distortion(Andersson et al., 2003; Andersson et al., 2016), 
followed by a final round of denoising using Patch2Self (Fadnavis et al., 2020), which can 
be applied at any point in the preprocessing pipeline. Noise maps were estimated from the 
MPPCA denoising process.  
 Spinal cord data preprocessing utilized tools from the Spinal Cord Toolbox (v6.2) 
(De Leener et al., 2017). Preprocessing started with vertebral labelling 
(sct_label_vertebrae) (Ullmann et al., 2014) on the structural mFFE and subsequent 
registration (sct_register_to_template) to the PAM50 template (De Leener et al., 2018). 
From this regions of interest were defined  within cervical levels 3 (C3) and 4 (C4). For each 
of these two levels, 12 distinct ROIs were defined: 6 in gray matter (consisting of bilateral 
Ventral Horns, Intermediate Zones, and Dorsal Horns) and 6 in white matter (bilateral 
Dorsal Columns, Lateral Columns, and Ventral Columns). This resulted in a total of 24 
ROIs across C3 and C4. Diffusion preprocessing included MPPCA denoising (Veraart, 
Fieremans, et al., 2016), Gibbs-Ringing correction (Kellner et al., 2016), motion correction 
(using SCT sct_dmri_moco (Xu et al., 2013) including slice-wise regularized registration 
along the SI-axis, iterative averaging of the target volumes, and group-wised alignment of 
DWIs with grouping g=8), followed by Patch2Self denoising (Fadnavis et al., 2020). Noise 
maps were estimated from the MPPCA denoising process. For region-wise metric 
extraction, a maximum a posteriori method was used to mitigate partial volume effects 
(Lévy et al., 2015) (sct_extract_metric). 

All data was quality checked at every point in the process, with manual inputs to 
vertebral alignment, masking, and alignment parameters if needed.  
 
Microstructure Modeling 
 The DTI, SMI, and SANDI models were fit to the preprocessed data for both brain 
and cord.  
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 DTI was fit using FSL toolbox command dtifit, using only b-values b<=2000 (b=100, 
500, 1000, 2000) and simultaneously fitting both the Diffusion and Kurtosis tensors (Jensen 
et al., 2005) using linear least squares on the log-transformed signal. This resulted in maps 
of FA, MD, AD, and RD, describing the degree of diffusion anisotropy, the mean of the three 
eigenvalues of the diffusion tensor, the diffusion parallel to the principal diffusion 
direction, and the diffusion perpendicular to the principal diffusion direction, respectively. 
Finally, from the kurtosis tensor (Jensen et al., 2005), the mean kurtosis (MK) describing 
the average of the diffusion kurtosis along all directions. Kurtosis describes non-
Gaussianity of the diffusion process and has been interpreted as a more complex diffusion 
pattern within the imaging voxel (due to hindrances and restrictions). 
 SMI fitting was performed using the Standard Model Imaging Matlab toolbox 
(https://github.com/NYU-DiffusionMRI/SMI; 998a4c2 release) (Coelho et al., 2022) 
providing b-values b<=3000 (b=100, 500, 1000, 2000, 3000) and the estimated noise map 
for Rician bias correction prior to fitting. This toolbox used root-mean-squared error 
(RMSE) machine-learning based estimators for parameter estimation (Reisert et al., 2017). 
This resulted in maps characterizing intracellular space including axonal fraction (𝑓𝑓) 
describing the relative signal contribution of intra-axonal space, intra-axonal diffusivity 
(𝐷𝐷!) along axons, and orientational coherence parameter (𝑝𝑝&). Maps characterizing 
extracellular space included the radial diffusivity (𝐷𝐷"$) and axial diffusivity (𝐷𝐷"∥). And finally, 
the free water fraction (𝑓𝑓%) describing the signal fraction of an isotropic free water 
component.  
 To fit the SANDI model we used the SANDI Matlab Toolbox 
(https://github.com/palombom/SANDI-Matlab-Toolbox-Latest-Release; 67d599c release), 
using as input the respective preprocessed diffusion data and noise maps for the brain and 
cord. The toolbox similarly uses machine-learning based estimators for parameter 
estimation. We fixed the intra-soma diffusivity to 3 um2/ms, and upper bounds for 𝐷𝐷*+ and 
𝐷𝐷"to 3 um2/ms, and soma radius upper bound automatically set by default to a maximum 
value given the diffusion time and intra-soma diffusivity.  
 
Analysis 
 To evaluate image quality, the apparent signal-to-noise ratio (SNR) (the SNR after 
the adopted image preprocessing) was calculated following (Schiavi et al., 2023), using 
two consecutive b=0 images: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 	
1
√2
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,-.(𝑆𝑆/(𝑏𝑏 = 0) + 𝑆𝑆&(𝑏𝑏 = 0))
𝑠𝑠𝑠𝑠𝑠𝑠,-.(𝑆𝑆/(𝑏𝑏 = 0) − 𝑆𝑆&(𝑏𝑏 = 0))

 

 
where S1 and S2 are the first two consecutive b=0 images. The SNR was calculated in three 
regions-of-interest (ROIs), including white matter, gray matter, and their sum, for both the 
brain and spinal cord. 
 The reliability of each diffusion metric, for all models, in both the brain and cord, 
was evaluated using the three commonly used statistical measures in medical imaging 
(Palombo et al., 2023; Schiavi et al., 2023; Schiavi et al., 2022; Veraart et al., 2021): 
Pearson correlation r, the test-retest variability (TRV), and intraclass correlation coefficient 
(ICC). The Pearson correlation r was computed using the MatLab corrcoeff function using 
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the test-retest values of the 24 brain ROIs (12 WM and 12 GM) and 24 cord ROIs (12 WM 
and 12 GM). As in (Schober et al., 2018), we interpreted r less than 0.4 as weak correlation, 
r between 0.4 and 0.69 as moderate correlation, r between 0.70 and 0.89 as strong 
correlation, and r greater than 0.90 as very strong correlation. 

 TRV was compute across the 24 ROIs (for both brain and cord) for each parameter 
𝜃𝜃 as: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 	
√𝜋𝜋
2𝑁𝑁=

|∆0(𝑥𝑥*)|
𝜇𝜇0(𝑥𝑥*)

1

*2/

 

where ∆0(𝑥𝑥*) and 𝜇𝜇0(𝑥𝑥*) were the difference and average of the test and retest estimates 
of the parameter 𝜃𝜃in the ith ROI 𝑥𝑥*. 
 Finally, ICC was calculated using a two-way mixed effects, single measurement 
model, using the Matlab ICC function available through Mathworks File Exchange 
(Salarian, 2024).  As in (Schiavi et al., 2022; Veraart et al., 2021), we interpreted ICC less 
than 0.5 as poor reliability, ICC between 0.5 and 0.75 as moderate reliability, ICC between 
0.75 and 0.9 as good reliability, and ICC greater than 0.9 as excellent reliability.  
 Finally, to assess variation across the brain and cord, we plot the distributions of 
parameters, for each model, across the 12 WM and 12 GM regions of interest. To 
statistically determine if the mean values of each derived metric differed significantly 
across these anatomical regions, a separate one-way repeated measures Analysis of 
Variance (RM-ANOVA) was performed for each metric within each tissue type (WM and 
GM) and structure (brain and cord). The within-subjects factor for these ANOVAs were the 
regions of interest. Prior to interpreting the ANOVA results, Mauchly’s test was used to 
assess the assumption of sphericity. If sphericity was violated (p < 0.05), the Greenhouse-
Geisser correction was applied to the degrees of freedom. A significant RM-ANOVA (p < 
0.05) indicated that the mean of the metric was not consistent across all anatomical 
regions examined.  
 
 
Results 
 
Acquisition is feasible, resulting in high image quality, even at high b-values 

Figure 3 shows example diffusion weighted images in the brain and cord for 5 
randomly selected subjects, at all b-values. In the brain, contrast is observed across white 
matter regions with varying orientations, with high signal in pathways orthogonal to the 
diffusion sensitization directions, even at b=6000. In the cord, contrast is observed across 
white and gray matter tissue, with the gray matter ‘butterfly’ visible at lower diffusion-
weighted signal indicative of less restrictions and greater diffusivity. However, there is 
significant partial volume between the tissues due the small size of the intra-cord 
structures. Regardless, signal remains when diffusion sensitization is orthogonal to the 
cord, even at b=6000. Table 1 reports the apparent SNR in the cord for all subjects and 
rescans. In line with existing literature in the brain, our apparent SNR in WM and GM of 42.8 
and 42.8, respectively. The SNR of the cord was lower, with an average value in WM and 
GM of 16.5 and 24.0, respectively, in line with the lower voxel sizes acquired in the cord.  
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DTI and multi-compartment models show reasonable contrast between and within tissues 
 Figure 4 shows DTI parameter maps for 5 subjects. In the brain, white and gray 
matter contrast is visible in all maps, with values typical of that in the literature (Alexander 
et al., 2007; Kim et al., 2025; Pierpaoli et al., 1996; Song et al., 2002).  In the cord, white 
and gray matter contrast is most visible in FA and AD maps, although partial volume 
effects are apparent. White matter cord values of FA, MD are qualitatively similar to that of 
the brain, although AD appears to be greater in the cord. 
 Figure 5 shows SMI parameter maps for 5 subjects. Again, in agreement with the 
literature, not only is there white matter/gray matter contrast, but variation across white 
matter, particularly within neurite fraction (𝑓𝑓) and orientation dispersion (𝑝𝑝&). Freewater 
fraction (𝑓𝑓%) is 0 or near-0 in white matter. Figure 5 displays the first SMI-derived maps of 
the spinal cord. Here, some contrast is noticeable between tissues, with gray matter 
visually having reduced neurite fraction (𝑓𝑓) and 𝐷𝐷"$, although the full gray matter butterfly is 
not clearly delineated. The freewater fraction is non-negligible throughout the cord, 
particularly on voxels neighboring the CSF, but also throughout the entire tissue, further 
suggesting partial volume effects in the cord.  
 Figure 6 shows SANDI model parameters for 5 subjects. Neurite fraction and 
diffusivities in the white matter of the brain well-match those of the simpler SMI model. 
Unique from SMI, we now have soma fraction and soma radii, both of which are increased 
in gray matter, with some variation across lobes. SANDI in the cord suggests less visible 
contrast between tissue types, particularly with soma size and fraction, although the cord-
averaged value appears to be in line with that of the brain white matter. Some intra-cord 
contrast is visible with 𝐷𝐷"  and 𝑓𝑓+"34*5" 	parameters, although again, partial volume effects 
are clear, and the GM shape is not clearly delineated. All descriptors of neurites and soma 
are relatively homogenous across the cord, and qualitatively similar to the values in WM of 
the brain. 
 
DTI is highly reproducible in the brain, SMI and SANDI reproducibility is comparable to that 
of DTI 

To assess reproducibility of the microstructural measures in the brain provided by 
SMI and SANDI, we compared test-retest reproducibility with those obtained from DTI (the 
gold standard in clinical practice) as done in (Schiavi et al., 2022). This is shown as scatter 
plots and Pearson correlation coefficient r shown in Figure 7. Pearson r measures range 
from 0.63-0.98 for DTI-derived measures, with the highest for FA, describing orientation 
coherence. Both SMI and SANDI have similar reproducibility, with Pearson r ranging from 
0.62-0.96 (with the exception of 𝐷𝐷"$), and 0.45-0.98, respectively. For both, neurite 
fractions are highly reproducible, as are orientation dispersion (𝑝𝑝&) from SMI and soma 
fraction (𝑓𝑓'()!) from SANDI, with the lowest reproducibility associated with extracellular 
diffusivities.  
 
DTI is moderately reproducible in the cord, SMI and SANDI reproducibility less than that of 
DTI 
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 Similarly, reproducibility of diffusion measures in the cord are assessed using test-
retest scans and are shown in scatter plots in Figure 8. Overall, reproducibility is reduced 
but remains moderate for most measures. DTI ranges from 0.33-0.75 with lowest 
reproducibility of MD, SMI ranges from 0.33-0.77 with lowest also for extracellular 
diffusivity measures, and SANDI from 0.12-0.64, with low reproducibility for intracellular 
diffusivity (𝐷𝐷*+) and 𝑓𝑓'()!. 
 
Measures show low test-retest variability, moderate ICC 
 TRV and ICC for DTI, SMI, and SANDI models, in the brain and cord, are shown in 
Table 2. Test-retest variability of SANDI and SMI is on par with that of DTI. TRV ranges of 
DTI, SMI, and SANDI in the cord are 7.5-11.3, 3.4-31.1, and 3.9-12.0 while those in the brain 
are 5.2-13.1, 3.6-28.2, and 2.0-19.69. Thus, while Pearson r across regions is low, the 
metrics themselves show little deviation between scan and rescan, and similar values in 
the spinal cord as in the brain. In general, ICC decreases from DTI, to SMI, to SANDI, and 
decreases from brain to cord (although this is not true across all measures), with 
particularly low reliability (low ICC) of 𝐷𝐷*+ and 𝑓𝑓'()!in the cord. 
 
Soma and Neurite Density and organization show contrast within and between tissue types 
in the brain 
 Figure 9 shows distributions across the sample population of microstructural 
measures across the brain, for both WM (Figure 9, left) and GM (Figure 9, right) regions. For 
all models, several measures show clear trends across white and gray matter regions. For 
example, DTI measures of FA and AD, SMI measures of 𝑓𝑓, 𝐷𝐷"∥, and 𝑝𝑝&, and SANDI measures 
of 𝑓𝑓+"34*5", 𝑓𝑓"654!, and 𝑓𝑓'()!show clear variation across white matter (while many others 
also reach statistical significance). These same metrics additionally show trends across 
gray matter regions, with SANDI offering additional soma-based contrast that varies across 
the cortex. In all cases, measures are more similar to contralateral regions than across 
regions of the same hemisphere.  
  
Soma and Neurite Density and organization show contrast within tissue types in the cord 
 Figure 10 shows regional values of DTI, SMT, and SANDI-derived microstructural 
measures across the cord, for both WM (Figure 10, left), and GM (Figure 10, Right). As in the 
brain, all models show regional heterogeneity in both tissue types, although with less 
visible contrast than that in the brain. For example, DTI (AD, MD),  and SMI (𝐷𝐷!, 𝑓𝑓, 𝐷𝐷"$, 𝑓𝑓%), 
show contrast across white matter pathways (with none reaching statistical significance in 
WM for SANDI), while most measures show contrast across gray matter regions. All SMI 
measures show clear gray matter trends, and the soma-based SANDI measures also show 
differences across the ventral horn, intermediate zone, and dorsal horns. Again, measures 
are more similar to contralateral regions than across regions of the same hemisphere. 
 
Discussion 

We implemented a clinically feasible diffusion protocol for the in vivo human brain 
and spinal cord that enables modeling of the white and gray matter tissue microstructure 
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of a large portion of the central nervous system. Specifically, this protocol enables DTI, the 
standard model of white matter (SMI), and its extension to gray matter via the SANDI 
model. We show that derived microstructural measures exhibit reasonable and expected 
tissue contrast in the brain and cord, with contrast across and within both white and gray 
matter of both structures. Notably, this study also represents the first images of SMI and 
SANDI modeling of the spinal cord, and the resulting contrasts and values are reasonable 
and within expectations given knowledge of brain data.  However, the partial volume 
effects and small intra-cord structures provides insight into the current challenges and 
requirements for improvements to better characterize the entire central nervous system.  

 
Acquisition and considerations 

The data acquisition takes approximately 16 minutes for each anatomy (brain and 
cord), and includes 6 b-values, 176 total diffusion weighted images, and 24 b=0 images. 
While we implement DTI, SMI, and SANDI, this acquisition also enables commonly 
employed multicompartment models that require only multiple shells using standard 
PGSE sequences, for example Neurite Orientation Dispersion and Density Imaging 
(NODDI) (Zhang et al., 2012), Freewater DTI (Pasternak et al., 2009), Spherical Mean 
Technique (SMT) (Kaden, Kruggel, et al., 2016), White Matter Tract Imaging (WMTI) (Jelescu 
et al., 2015), among others.  

The protocol was inspired by optimization performed by Schiavi et al. (Schiavi et al., 
2022), who optimized a protocol for the human brain for the SANDI model, within the 
constraints of their 3T scanner equipped with 80mT/m gradients. By generating simulated 
tissue substrates, they assess bias and reproducibility of various acquisition schemes, 
ranging from 14 shells down to 6, and showing that at realistic noise levels (SNR = 100 after 
spherical averaging over all directions) reducing from 14 to 6 shells has no major impact on 
parameter estimation. However, a major challenge to acquisition on these systems is the 
long diffusion times, 𝛿𝛿 =24 ms and Δ =51 ms, which lead to an increased TE (and 
decreased SNR) but also an increased sensitivity to exchange, which may violate 
assumptions of the model and bias parameter estimation. Optimistically, with exchange 
between compartments on the scale of ~20-50ms (as estimated in rat brain cortex (Jelescu 
et al., 2022)), biases due to exchange are lower than the impact of noise, however, biases 
still range on the order of 5-15% for most parameters. Similarly, the authors (Schiavi et al., 
2022), and others (Dhital et al., 2019; Howard et al., 2022), highlight that measures such as 
𝐷𝐷*+ are neither accurate nor precise without alternative acquisitions (linear and planar 
encodings, or varying diffusion times (Coelho et al., 2019)), which matches our results 
where 𝐷𝐷*+ has lowest scan-rescan reproducibility in both the brain and cord. 
 While the protocol matched that of Schiavi et al. (Schiavi et al., 2022) in the brain, 
several innovations were needed in the spinal cord. Typical spinal cord diffusion protocols 
suggest cardiac triggering during the same point in the cardiac cycle to minimize 
susceptibility to motion effects (Cohen-Adad et al., 2021), however, this reduces scan 
efficiency and would result in tremendously long scan times to acquire ~200 total image 
volumes. Recent work (Kurt et al., 2023) suggests that removing cardiac triggering, which 
enables acquiring ~60% more data, combined with denoising, motion correction, and 
outlier removal and replacement, results in measures of similar DTI indices, with similar 
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reproducibility as triggered acquisitions. In this work, we removed triggering (which also 
enables harmonization between brain and cord by keeping TR similar), applied MPPCA 
denoising (Veraart, Novikov, et al., 2016), used spinal cord-specific motion correction (Xu 
et al., 2013) with slice-wise regularization along the cord and grouping of 8 successive low 
SNR volumes to improve robustness, and finally implemented a Patch2Self denoising 
algorithm that replaces outlier signals (i.e. slice dropouts) (Fadnavis et al., 2020; Pizzolato 
et al., 2023; Kurt G. Schilling et al., 2021). We note that we did not apply distortion 
correction, as these algorithms have not been fully optimized in the cord and do not 
quantitatively nor qualitatively improve derived metrics (Schilling et al., 2024; Snoussi et 
al., 2019; Snoussi et al., 2021). Overall, the acquisition and subsequent preprocessing 
resulted in high-fidelity images with white and gray matter contrast in diffusion weighted 
images, and facilitated DTI, SMI, and SANDI-based modeling on a clinical scanner.  
 
Brain and Cord 
 A major innovation in this work is the feasibility of a harmonized acquisition that will 
enable characterization and quantification of diffusion-based measures of soma and 
neurite densities and organizations, and possible biomarkers, throughout the neuroaxis 
from brain to cervical cord. Most studies of the central nervous system study the brain or 
cord in isolation, whereas both structures may contribute to clinical deficits. We 
hypothesize that the ability to simultaneously examine both will advance our 
understanding of various central nervous system pathologies.  

One such example is multiple sclerosis (MS). Conventional MRI facilitates lesion 
visualization and quantification, in both brain and cord, yet lacks specificity to axonal 
content, both within lesions and in normal appearing tissue. Because of this, conventional 
T1 or T2 weighted measures of lesion load in the brain or in the cord only reveal low to 
moderate associations with cognitive or motor functions (Hackmack et al., 2012; Johnen et 
al., 2019; Mollison et al., 2017). Utilizing advanced diffusion MRI to provide measures of 
neurite and soma organization, size, and density, and subsequent neurite/soma loss, 
swelling/shrinking, or edema may enable higher sensitivity to functional changes with the 
increased specificity to tissue microstructural changes. Recent changes to the McDonald 
criteria for MS diagnosis (in 2017 and 2024) included dissemination of lesions in space by 
including both brain and spinal cord lesions (in structural images), with the goal of moving 
towards a biological diagnosis (as opposed to clinical means/symptoms); expanding the 
arsenal of tools to query tissue microstructure is a prerequisite to provide a more 
comprehensive picture of the disease. 

 Our results show some consistency between these two structures connected by 
the ascending and descending projection pathways. Using our protocol, the white matter 
of the cord exhibits anisotropies (FA, 𝑝𝑝&) within the range expected of white matter in the 
brain. Similar results are observed for diffusivities, both axonal and extra-axonal, as well as 
neurite fractions. Future work may investigate a pathway-specific analysis of the 
decussating and non-decussating corticospinal tracts to assess the feasibility of studying 
the length of this pathway from the cortex to the cord. Overall, our results show reasonable 
contrast from the brain to the cord, with values within expected ranges (despite 
differences in SNR and resolution) for white and gray matter microstructures.  
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Multicompartment modeling of the spinal cord 
 This is the first application of the SMI and SANDI models in the in vivo human spinal 
cord. Previous works have characterized white and gray matter in the cord using NODDI 
and SMT, providing evidence of dispersion and neurite density changes in disease (MS) in 
both lesion and normal appearing tissue, as well as providing normative values metrics in 
the healthy cord(By et al., 2017, 2018; Grussu et al., 2017; Grussu et al., 2015; Kurt G 
Schilling et al., 2021). Here, we show that SMI and SANDI similarly provide contrast among 
the various white matter pathways and gray matter regions where heterogenous axonal 
environments are expected.  
 The advantage of SMI is that it encompasses a number of WM models made to 
capture Gaussian compartments, with axons represented by sticks (Coelho et al., 2022). 
While other models impose constraints on parameters, between parameters, or on forms 
of the fiber distribution to improve robustness, they may introduce biases into the 
parameter estimation. Here, supervised machine learning is used to improve precision of 
parameter estimates (Coelho et al., 2022), while also providing microstructural maps 
without constraints or priors. We find neurite fractions of ~.4-.5, axial diffusivity >2 (and 
greater than extra-axonal parallel diffusivity), orientation dispersion (𝑝𝑝&) ~0.7, and a 
relatively large partial volume fraction with free water (~.15-.2). These maps are all in line 
with that observed in the brain white matter (Coelho et al., 2022)  (although with larger 
partial volume fraction with free water, and subsequently smaller neurite fraction), with 
maps that are anatomically and microstructurally feasible.  
 The advantage of the SANDI model is explicit modeling of compartments that are 
prevalent in the gray matter, in particular soma size and soma fraction (Palombo et al., 
2020). This necessitates the high b-value data, for increased sensitivity to the small, 
restricted spherical compartments. Here, the disadvantage is the increased TE to reach 
this diffusion weighting, decreasing signal and increasing diffusion times. SMI, above, may 
benefit from a multi-shell acquisition that is limited to a b-value of ~2000-3000 instead of 
occurring the signal loss associated with also modeling SANDI. The increased diffusion 
times increase biases due to exchange, for which there is no consensus on the time scale 
in the cord, and limits sensitivity to smaller soma. Despite this, this model also results in 
an intracellular diffusivity slightly greater than extracellular parallel diffusivity, and a 
neurite fraction of ~.3-.45.  
 On the optimistic side, both models result in quantitative differences across both 
white and gray matter tissues, which is expected in the cord. For example, differences in 
locations of sensory synapses (dorsal horn) and motor cell bodies (ventral horn), along 
with branching nerve roots are expected to result in different microstructural environments 
across these structures. Moreover, reproducibility (particularly TRV) of most measures 
derived from SMI/SANDI was similar to that of DTI, with generally similar values between 
brain and cord. However, ICC was (in general) lower in the cord than brain.  Some of this 
can be attributed smaller voxel volume in the cord, smaller tissues of interest and 
potentially incompletely mitigated motion.     
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Similarly, for white and gray matter contrast, partial volume effects from the small 
size and incompletely mitigated motion (across volumes), geometric distortion, and atlas-
based tissue segmentation play a role. Together, this makes localization of specific 
changes in the small (often less than the size of a voxel) ascending/descending pathways 
or gray matter horns challenging, losing some of the spatial specificity but gaining 
mictostructural specificity gained with multi-compartment modeling. Another challenge is 
the large axons of the spinal cord, with a volume-weighted mean axon diameter often on 
the order of 2-5um depending on pathway, which may violate assumptions of a zero-radius 
cylinder (i.e., a stick) for the neurite compartment. Veraart et al. (Veraart et al., 2019; 
Veraart et al., 2020), show that in vivo human brain, this assumption holds valid when 
using clinical scanners and subsequently long diffusion times, with the neurites 
indistinguishable from sticks. Similar studies should be performed in the cord to assess 
sensitivity to non-negligible axon radii.  
 
Limitations and Future 
 There are several limitations that must be acknowledged. First, is the limited 
sample size (N=11) of the current study. While 11 subjects (and N=5 rescans) is sufficient 
to assess reproducibility (Koller et al., 2021; Schiavi et al., 2022; Veraart et al., 2021), it is 
not sufficient to provide comprehensive normative values across the population, nor is this 
a validation of the derived indices. However, the goal was to demonstrate the potential of 
capturing newly-developed contrasts within and across tissue types on a clinical scanner. 
Second, these models may not be suitable for this acquisition – with these noise 
properties, diffusion times, and PGSE acquisition. For gray matter in particular, the long 
diffusion times increase susceptibility to water exchange biases. While reported exchange 
times vary (Jelescu & Novikov, 2020; Novikov, 2021), some estimates (often from ex vivo 
studies) are as fast as ~10 ms (Olesen et al., 2022; Williamson et al., 2019), much shorter 
than our acquired diffusion times. As these models do not account for time dependence, 
their accuracy in GM is limited should such fast exchange occur in vivo. In addition to 
biases described above due to long diffusion times, variance due to noise in parameter 
estimation, and possibly invalid stick-like assumptions in neurites, the use of alternative 
diffusion weightings (planar, spherical) may better condition model-fitting (Coelho et al., 
2022), and should be investigated in the future. 
 Next, while a ~16 acquisition time per anatomical structure is comparable to 
advanced research protocols, the total duration for comprehensive brain and cord 
imaging, combined with 80mT/m gradient systems and multi-stage processing, may limit 
widespread clinical adoption. Further research is necessary to validate the specific clinical 
utilized of the derived SMI or SANDI metrics for various neurological conditions. 
Improvements in spinal cord image processing are also needed, including optimizing 
preprocessing associated with high b-value data, which challenges distortion and motion 
correction when most volumes are expected to be at the noise level. Finally, future studies 
should investigate the clinical utility of combining brain and cord features in studying 
neurological disorders, and use similar acquisitions to investigate the relationship 
between brain and cord. 
 



 14 

Conclusion 
 We have presented and evaluated a harmonized diffusion protocol to study the 
brain and spinal cord on a clinical scanner. The protocol enables DTI modeling, as well as 
advanced SMI and SANDI models to improve specificity in characterizing neurite and soma 
organization. We demonstrate feasibility of acquiring multi-shell diffusion data at high b-
values and high SNR, show qualitatively reasonable contrast across brain and cord, and 
show SMI and SANDI have moderate reproducibility relative to DTI, with higher scan rescan 
variability in the cord than in the brain. Finally, we demonstrate that soma and neurite 
density with these models shows contrast across white matter pathways, and across gray 
matter regions in both structures, which is expected given known variation in neurite 
densities and diameters and cellular architectures and densities. This protocol can be 
employed in a reasonable amount of time to study CNS pathologies and investigate 
biomarkers of structural integrity throughout the neuroaxis. 
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Figure 1. The brain and spinal cord are composed of highly organized white matter 
pathways, with varying neuronal densities, diameters, and orientations, as well as gray 
matter regions with varying cell densities and distributions. Created in BioRender. Witt, A. 
(2025) https://BioRender.com/s48o463

Figure 2. Diffusion MRI-based models of tissue microstructure. Diffusion Tensor Imaging 
(DTI) models the anisotropic diffusion of water in tissue as a (covariance matrix of a) 3D 
Gaussian distribution, from which axial (AD), radial (RD), mean diffusivities (MD), and
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fractional anisotropy (FA) can be derived. Standard Model Imaging (SMI) represents tissue 
as zero-radius sticks embedded within an extra-axonal space described – and results in 
indices of axonal fraction (𝑓𝑓), along-axon diffusivity (𝐷𝐷!), extra-axonal parallel (𝐷𝐷"∥) and 
perpendicular (𝐷𝐷"$) diffusivities, free water (signal) fraction (fw), and a measure of fiber 
dispersion (𝑝𝑝&). Soma And Neurite Density Imaging (SANDI) models water diffusion within 
neurites (stick-like axons and dendrites) and soma (spherical neuronal cell bodies), 
extending the standard model to also include soma fraction (𝑓𝑓'()!) and soma radii (𝑅𝑅'()!).  
 

 
Figure 3. Data acquisition is feasible on a clinical scanner in the brain and spinal cord. A 
representative axial slice of 5 subjects is shown for the brain and cord, along with a 
diffusion weighted image sensitized along the Left/Right direction at b-values ranging from 
0 to 6000 s/mm2. Contrast is visible within and across tissue types.  
 

 
Table 1. Apparent SNR for WM and GM in the brain and cord.  
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S001 11.8 19.3 12.5 42.1 47.4 43.0
S002 25.0 34.9 26.0 36.2 39.9 36.1

S002-rescan 16.1 22.9 16.9 48.6 48.9 46.5
S003 11.9 18.9 12.5 44.6 48.6 44.8
S004 11.7 17.5 12.3 60.6 60.0 57.2
S005 10.9 14.0 11.2 56.7 59.7 55.8

S005-rescan 19.6 28.4 20.5 36.3 34.7 33.6
S006 25.0 35.6 26.1 NaN NaN NaN

S006-rescan 15.5 20.9 16.1 47.9 49.2 46.8
S007 9.8 13.9 10.3 41.6 38.2 38.0

S007-rescan 13.5 18.3 14.1 42.2 39.2 39.1
S008 16.5 26.8 17.4 44.6 41.7 41.7

S008-rescan 28.3 36.8 29.3 30.7 35.2 32.2
S009 16.8 29.5 17.8 43.7 45.9 43.0

S009-rescan 11.9 18.5 12.5 37.3 34.3 33.7
S010 18.8 25.3 19.4 45.4 41.3 41.4
S011 17.4 27.2 18.2 25.7 21.3 21.5
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Figure 4. DTI shows reasonable contrast between and within tissues in the brain and spinal 
cord. A representative axial slice of 5 randomly-selected subjects (5 rows) is shown for the 
brain and cord, showing the structural image and the corresponding DTI-based contrasts. 
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Figure 5. SMI shows reasonable contrast between and within tissues in the brain and 
spinal cord. A representative axial slice of 5 randomly-selected subjects (5 rows) is shown 
for the brain and cord, showing the structural image and the corresponding SMI-based 
contrasts. 

Figure 6. SANDI shows reasonable contrast between and within tissues in the brain and 
spinal cord. A representative axial slice of 5 randomly-selected subjects (5 rows) is shown 
for the brain and cord, showing the structural image and the corresponding SMI-based 
contrasts.
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Figure 7. Repeatability of microstructural measures in the brain. Scatter plots of scan-
rescan microstructural measures extract from 12GM and 12WM regions are shown for DTI, 
SMI, and SANDI models. Points are colored based on subjects. 
 
 

 
Figure 8. Repeatability of microstructural measures in the cord. Scatter plots of scan-
rescan microstructural measures extract from 12GM and 12WM regions are shown for DTI, 
SMI, and SANDI models. Points are colored based on subjects. 
 

 
Table 2. Reproducibility and Intraclass Correlation Coefficient of microstructural 
measures in the brain and cord. 
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Figure 9. DTI (top), SMI (middle), and SANDI (bottom) show contrast between and within 
white matter regions (left) and gray matter regions (right). Plots are colored based on 
location in the lobes of the brain and corresponding white matter regions. For each metric, 
asterisks in the plot title indicate the level of overall statistical significance for differences 
across regions, as determined by a one-way repeated measures ANOVA (*p < 0.05, **p < 
0.01, ***p < 0.001). 
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Figure 10. DTI (top), SMI (middle), and SANDI (bottom) show contrast within and between 
the somatotopically organized white and gray matter regions. Plots are colored based on 
location in the white matter (bilateral Dorsal Columns, Lateral Funiculi, Ventral Funiculi) 
and gray matter (dorsal horn, intermediate zone, and ventral horns). For each metric, 
asterisks in the plot title indicate the level of overall statistical significance for differences 
across regions, as determined by a one-way repeated measures ANOVA (*p < 0.05, **p < 
0.01, ***p < 0.001).
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