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Highlights 

• IBB-based LBM with VOF is developed for simulating floating/partially submerged structures. 

• It is thoroughly discussed under hydrostatic and dynamic conditions and validated against 

experiments. 

• Galilean-invariant momentum exchange method is extended for floating structures. 

• A set of gas-liquid-solid interface identification rules is proposed to avoid unphysical liquid 

adhesion. 

• Dynamic-pressure framework and consistent initial condition are incorporated for reducing force 

fluctuation. 
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Abstract: Within the Lattice Boltzmann method (LBM), we develop a new numerical model for accurately 

and robustly simulating the coupled interaction between air-water flows and partially submerged floating rigid 

bodies. The computational approach integrates the interpolated bounce-back fluid-structure interaction (FSI) 

method with a volume of fluid (VOF) approach for simulating two-phase immiscible fluid flows. We introduce 

the consistent initial condition iteration as the refilling scheme for new-born fluid nodes and implement a 

dynamic-pressure framework in present numerical model, both for mitigating severe force fluctuations caused 

by the staircase approximation and force imbalance between hydrostatic pressure gradient and gravity. To 

accurately evaluate hydrodynamic forces acted on floating bodies, which depend on submerged depth, a 

hydrostatic pressure-related molecular equilibrium distribution function implemented in a sub-grid system is 

incorporated into the Galilean-invariant momentum exchange method (GIMEM). Moreover, a set of gas-

liquid-solid interface identification rules is proposed to mitigate spurious currents that cause unphysical liquid 

adhesion to the solid surface. The developed LBM model is validated through five benchmark cases in both 

hydrostatic and dynamic scenarios, systematically progressing from fully submerged to partially submerged 

structures and from stationary to moving configurations: a free-settling immersed circular particle, water exit 

of a circular cylinder with prescribed velocities, dam-break flow over an obstacle, and water enter of a circular 

cylinder, and water wave interaction with a free-floating rectangular box. The numerical results compared to 

available experiments demonstrate the model’s accuracy and robustness in predicting nonlinear free surface 

deformations and the motion responses of partially submerged structures interacting with air-water flows.  

 

Keywords: Floating structures; Fluid-structure interaction (FSI); Free surface flows; Galilean-invariant 

momentum exchange method (GIMEM); Volume-of-fluid (VOF) method; Lattice Boltzmann method (LBM) 

 

1. Introduction 

Partially submerged structures interacting with free surface flows are extensively related to various research 

topics in ocean and coastal engineering, such as evaluating slamming forces on ship hulls or landing seaplanes 

[1], extracting power from offshore wave energy converters [2, 3], and assessing the coastal protection 

provided by ‘bio-shields’ like mangroves [4]. For efficient numerical fluid simulations on parallel computing 

architectures, the Lattice Boltzmann method (LBM) has developed as a promising alternative to classical 

discrete Navier-Stokes equation (NSE)-based approaches for computational fluid dynamics (CFD). Since each 

computational lattice in LBM updates its hydrodynamic quantities independently, it indicates no requirement 

of special treatment to complex boundaries and enables massive parallelization without complex data 

dependencies [5]. Like pseudo compressible methods, the LBM does not involve the Poisson pressure equation 
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to impose the fluid incompressibility constraint [6, 7]. Despite sacrificing exact geometric incompressibility, 

the computational efficiency of LBM has been considerably enhanced for numerical fluid simulations [8]. In 

recent years, LBM has been extensively developed for modeling free surface flows and immersed structure-

fluid interactions [9-13]. However, its application to partially submerged or floating structures, as those 

aforementioned cases [1-4], remains challenging due to complex coupling treatments between interface 

capturing and fluid-structure interaction techniques.  

Within the LBM, various approaches for single-phase FSI have been proposed for immersed structures-fluid 

interactions, without involving free surface flows [7]. These approaches typically consist of three imperative 

aspects in the treatment of the fluid-solid interface: 1) reconstructing the unknown distribution functions (DFs), 

adhering to the no-slip boundary conditions at the moving fluid-solid interface; 2) determining the motion of 

rigid bodies which requires accurately calculating the hydrodynamic forces; and 3) refilling scheme, i.e., 

constructing the distribution functions for the fresh nodes that are converted from previous solid nodes as 

structures move relative to the fixed Eulerian fluid grids. Boundary conditions (BCs) are broadly classified 

into direct and indirect methods, based on the common hybrid framework of the Eulerian description for fluid 

and Lagrangian description for solid. Classically, a bounce-back (BB) scheme originally proposed by Ladd 

[14] is the most popular and extensively-used direct approach in LBM simulations due to its straightforward 

implementation and intuitive kinematic principle. However, the original BB scheme demonstrates limitations 

in accuracy as it employs a simplest cut-cell meshing technique, namely the staircase approximation, compared 

to other more accurate piecewise linear cut-cell approaches [15]. Various interpolation method have been 

proposed to improve the numerical accuracy on complex curved geometries, e.g., Mei’s scheme [16], Yu’s 

double interpolation [17], and Ginzburg’s multireflection [12]. On the other hand, indirect approaches use an 

equivalent force to recover the fluid-solid interface with the desired properties. Most of indirect methods 

applied in LBM can be categorized as the generalized immersed boundary methods (IBM), including the 

diffuse- and sharp- interface IBM [18]. The diffuse-interface IBM employs the delta function for force 

spreading and velocity interpolation between Eulerian grids and Lagrangian boundary markers [7] as the 

classic IBM in Navier-Stokes (NS) solvers initially proposed by Peskin [19]. Moreover, some sharp-interface 

IBMs which extrapolates the fluid properties to virtual fluid node inside a solid, have also been developed for 

eliminating numerical slipping along the solid boundary [18]. Regarding the hydrodynamic force evaluation, 

The diffuse-interface IBM involves integral of the boundary forces at Lagrangian solid nodes or Eulerian fluid 

nodes, while the stress integration method (SIM) and momentum exchange method (MEM) can be used for 

sharp-interface IBM and BB schemes [20]. SIM, originating from NS solvers, integrates stress and pressure 

along the fluid-solid interface. This implementation requires tedious extrapolation from fluid nodes to solid 

boundaries, potentially resulting in inefficiency and instability [13, 20]. On the other hand, the hydrodynamic 

force calculation by MEM, inherited from kinetic theory, involves counting all momentum change between 

post-streaming and post-collision DFs along the links intersected with the solid boundary [20, 21]. The 

conventional MEM violates local Galilean invariance, predicting an inaccurate hydrodynamic force in the 

moving frame of reference. To address this, Galilean-invariant momentum exchange method (GIMEM) is then 

proposed by Chen et al. [22] and Wen et al. [23], via introducing a solid velocity-related term into the 

momentum flux. Updating the position of structure relative to Eulerian grid, the refilling algorithm must then 

be implemented to construct the unknown DFs for fresh nodes uncovered from the solid, which generally 

includes the normal extrapolation, averaged extrapolation, and constructed non-equilibrium DFs [12]. 

Compared to these BCs, BB scheme and sharp-interface IBM methods must implement the refilling scheme 

for moving solids [7], while the diffuse-interface IBM does not require the refilling implementation and 

ensures mass conservation [18]. However, the diffuse-interface IBM is usually accompanied with a numerical 
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slipping issue, resulting in a relatively lower accuracy with respect to interpolated bounce back (IBB) or sharp-

interface IBM [13]. Overall, FSI approaches within LBM have been well-validated to simulate immersed 

structures interacted with both laminar and turbulent single-phase flows [12, 13, 24-26].  

When incorporating free surface flows into FSI problems, a significant challenge arises in accurately capturing 

the air-water interface. Within LBM, a sharp-interface approach, specifically the volume-of-fluid (VOF)-based 

method, proposed by Korner et al. [27] have been well-developed to stably and accurately capture the interface 

between two immiscible fluids with large density and viscosity ratios. This approach has gained considerable 

attention due to its computational efficiency for solving hydordynamic problems in civil and ocean 

enguneering, including applications of wave propagation [9, 28], dam-break flows [29, 30], hydraulic jump 

over a weir [31]. Korner’s free surface model [27] discretises the advection equation of volume fraction using 

DFs, and it is a single-phase model in which the flow dynamics of gas phase are neglected and a free surface 

dynamic boundary condition is imposed to balance the hydrodynamic forces and surrounding gas pressure at 

the gas-liquid interface. Integrating the VOF and BB FSI approaches, for example, Thorimbert et al. [32] 

investigated wave interaction with a fixed oscillating water column WEC. Liu et al. [28] simulated water wave 

deformation over a submerged trapezoidal breakwater based on an improved dynamic-pressure LBM for 

resolving numerical energy dissipation and spurious currents. Janssen et al. [33] extended a hybrid LBM-FVM 

model to simulate dam-break flows interacting with stationary obstacles, combining LBM for flow field 

solution with Piecewise Linear Interface Reconstruction (PLIC)-VOF for capturing free surfaces. The dam-

break flows were  also simulated in a cumulant LBM model proposed by Sato et al. [29]. In addition to BB 

FSI approaches, Badarch et al. [34] applied the Partially Saturated method (PSM), a unique variant of diffuse-

interface IBM [35], to predict wave loads on stationary vertical breakwaters in a VOF model. These studies 

primarily focused on stationary structures interacting with free surface flows, involving only phase state 

conversions between gas, liquid, and an intermediate interface state, inherent to the VOF method. 

    

Figure 1. Two sets of phase state conversions related to the VOF and FSI algorithms, the solid double-arrow 

lines denote the phase state conversion inherent in two algorithms, and dashed lines denote the additional 

conversion in coupling treatments algorithms for the present study. 

 

For moving structures interacting with free surface flows, an additional set of phase state conversion between 

solid and fluid must be addressed as required in FSI approaches. Xiao et al. [36] and Hao et al. [37] separately 

integrated IBM and BB approaches into the VOF model to simulate a water exit case of an immersed cylinder. 

These studies validated the respective FSI implementations by comparing free surface elevation, wake vortex 

formation, and drag force on the cylinder. In such cases, the coupling interaction between moving immersed 

structures and free surface deformation is indirect, indicating that the FSI and VOF methods operate 

independently without requiring any modification. However, for partially submerged moving structures, 

numerical simulations become significantly more complex. These scenarios demand compatibility between 

two sets of phase state conversion rules related to transitions such as ‘interface to solid’, ‘gas to solid’, and 

‘liquid to solid’, as shown in Fig. 1. Furthermore, appropriate boundary conditions must be implemented for 
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the triple junctions where a computational cell simultaneously contains three phases: gas, liquid, and solid. To 

address these challenges, Xiao et al. [36] proposed an artificially filling interior domain algorithm for the 

application of diffuse-interface IBM in water entry of rigid bodies. Their approach involves filling the solid 

with virtual fluid and artificially adjusting the gas-liquid interface to ensure the structure is completely 

immersed in liquid, thereby allowing the FSI and VOF implementations to remain independent, as in the case 

of immersed structures. Liu et al. [38] combined a sharp-interface IBM, i.e., the ghost method, with VOF to 

model floating structures interacting with free surface flows. In addition to IBM [36, 38], Bogner and Rüde 

[39] incorporated the BB methods into VOF model within LBM to track gas-liquid-solid interface. In their 

model, dynamic cell conversion rules were introduced to determine whether a previous solid cell should be 

converted into a gas, liquid, or interface state based on the neighbouring phase state. Hydrostatic stability cases 

in low-Reynolds-number flows were simulated to validate this model. Despite these advancements, Bogner 

and Rüde [39] reported significant challenges, including severe force fluctuations and spurious currents along 

solid boundaries, which were attributed to the limitations of refilling techniques and the effects of hydrostatic 

pressure gradients. These issues highlight the need for further refinement of the model to achieve accurate and 

stable simulations, particularly for complex dynamic scenarios and free surface flows at high Reynolds 

numbers. 

As reviewed in the literature above, various FSI approaches have been extensively developed and applied to 

moving fully immersed structures [12, 18, 40]. However, simulating partially submerged moving structures in 

free surface flows remains scarce within the LBM framework. These scenarios involve complex phase state 

conversions and boundary condition implementations at the gas-liquid-solid interface, which are not yet fully 

addressed. Thus, the objective of this study is to develop an LBM framework for simulating partially 

submerged/floating structures in free surface flows, including hydrostatic and dynamic scenarios with special 

treatment for the triple junctions.  

The remaining structure of this paper is organised as follows: Section 2 details the Multi-Relaxation-Time 

(MRT) LBM model, free surface capturing method, fluid-structure interaction method, and numerical 

strategies for coupling VOF and FSI. Section 3 conducts five benchmark cases for model validation with 

increasing complexities. Finally, the conclusions are summarized in Section 4. 

2. Numerical methods 

A numerical model based on LBM is established for studying hydrodynamics of floating rigid bodies 

interacting with free surface flows, as sketched in Fig. 2. The single-phase VOF model [27] is implemented to 

capture the free surface. For fluid-structure interactions, the interpolated bounce-back method (IBB) is 

imposed at solid boundary for no-slip condition and the Galilean Invariance momentum exchange method 

(GIMEM) is extended to hydrodynamic force evaluation of partially submerged bodies within the present 

modified-pressure LBM [28]. The numerical implementation of coupling fluid-structure-interaction and gas-

liquid interface capturing are shown below. 
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Figure 2. Schematic diagram of floating structures in free surface flows with the D2Q9 lattice model. 

2.1 MRT Lattice Boltzmann Equation 

The continuous Boltzmann Equation with Bhatnagar-Gross-Krook (BGK) collision model [41] is expressed 

as, 

 
𝜕𝑓

𝜕𝑡
+ 𝒆 ∙

𝜕𝑓

𝜕𝒙
+𝓕 ∙

𝜕𝑓

𝜕𝒆
= −

𝑓−𝑓eq

𝜏
 (1) 

where 𝑓(𝒙, 𝒆, 𝑡) is the molecular distribution function at position x and time t for molecular velocity e, and 𝓕 

is the external body force per unit mass; 𝑓eq is the equilibrium distribution function and 𝜏 is the relaxation 

time. Ensuring conservation laws at the statistical or macroscopic level, it can be firstly discretised in the 

velocity space by Hermite series expansion [5]. The method of characteristics and trapezoidal time integration 

scheme can then be adopted to obtain the Lattice Boltzmann Equation (LBE) with second-order time and space 

accuracy [7]. The LBE with force or source term of Guo’s scheme [42] is expressed as follows, 

 𝑓𝛼(𝒙 + 𝒆𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝛼(𝒙, 𝑡) = −
𝛿𝑡

𝜏+0.5𝛿𝑡
(𝑓𝛼(𝒙, 𝑡) − 𝑓𝛼

eq(𝒙, 𝑡)) + (1 −
𝛿𝑡

2𝜏+𝛿𝑡
 )ℱ𝛼𝛿𝑡 (2) 

in which 𝑓𝛼 and ℱ𝛼 are the discretised molecular distribution function 𝑓(𝒙, 𝒆, 𝑡) and force term ℱ(𝒙, 𝒆, 𝑡) in 

the αth lattice direction with 𝒆𝛼 being discretised molecular velocity. 𝛿𝑡 and 𝛿𝑥 = √3𝑐𝑠𝛿𝑡 are the time step and 

lattice spacing, respectively, 𝑐𝑠 = √𝑅𝑇0 is the sound speed where R and T0 are the specific fluid constant and 

reference temperature. Various constructions of molecular structure, molecular velocities, and equilibrium 

distribution are available. The most popular lattice model in two-dimensional space is the D2Q9 model (nine 

velocities in two space dimensions), as shown in Fig. 2. The corresponding second-order equilibrium 

distribution functions 𝑓𝛼
eq

 and force term ℱ𝛼 are expressed as, 

 
𝑓𝛼
eq(𝒙, 𝑡) = 𝑤𝛼𝜌 [1 +

𝒆𝛼∙𝒖

𝑐𝑠
2 +

𝒖𝒖 ∶ (𝒆𝛼𝒆𝛼−𝑐𝑠
2𝑰)

2𝑐𝑠
4 ]

ℱ𝛼 = 𝑤𝛼𝜌 [
𝒆𝛼∙𝓕

𝑐𝑠
2 +

𝒖𝓕 ∶ (𝒆𝛼𝒆𝛼−𝑐𝑠
2𝑰)

𝑐𝑠
4 ]

 (3) 

where 𝜌 and 𝒖 are macroscopic density and velocity of the fluid; 𝑤𝛼 is the weight coefficient; I is the identity 

tensor and the operator ∶  denotes the double dot product. The macroscopic quantities, including density, 

velocity and stress tensor 𝜎𝑖𝑗, are evaluated from the velocity moments of 𝑓𝛼, as:  

  

𝜌 = ∑ 𝑓𝛼𝛼

𝜌𝑢𝑖 = ∑ 𝑒𝛼𝑖 (𝑓𝛼 +
ℱ𝛼𝛿𝑡

2
)𝛼

𝜎𝑖𝑗 =
2𝜏

2𝜏+𝛿𝑡
∑ 𝑒𝛼𝑖𝑒𝛼𝑗 (𝑓𝛼 − 𝑓𝛼

eq
+
ℱ𝛼𝛿𝑡

2
)𝛼

 (4) 

In single-relaxation-time model, these modes relax to equilibrium state with the same rate. In fact, inherited 

from kinetic theory, the various physical processes may relax with different transport coefficients. Such a 

model is termed as multi-relaxation-time (MRT) LBM. The LBE in Eq. (2) is then rewritten as, 

 𝑓𝛼(𝒙 + 𝒆𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝛼(𝒙, 𝑡) = −𝑴
−1[𝑺(𝒎−𝒎eq)] +𝑴−1 (𝐈 −

𝑺

2
)𝜱𝛿𝑡 (5) 

𝑺 = diag(1, 𝜔𝑒 , 𝜔𝜖 , 1, 𝜔𝑞 , 1, 𝜔𝑞 , 𝜔𝜈 , 𝜔𝜈)  is a relaxation matrix, where 𝜔𝑒  and 𝜔𝜈 = 1/(𝜏/𝛿𝑡 + 0.5)  are 

related to bulk and shear viscosities, respectively; Within the assumption of low Mach number, 𝜔𝑒, 𝜔𝜖 and 𝜔𝑞 

can be adjusted for numerical stability and accuracy. More details regarding the MRT-LBM model can be 

found in [7, 28, 43]. For the standard MRT model, nine independent modes in moment space for D2Q9 model 

are: 
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 𝒎 = 𝑴𝑓 = (𝜌, 𝑒, 𝜖, 𝜌𝑢𝑥, 𝑞𝑥, 𝜌𝑢𝑦, 𝑞𝑦, 𝑝𝑥𝑥, 𝑝𝑥𝑦)
T
 (6) 

where 𝑒 and 𝜖 are connected to the kinetic energy and kinetic energy squared; 𝒒 is related to the energy flux; 

𝑝𝑥𝑥 and 𝑝𝑥𝑦 are related to the diagonal and non-diagonal components of the stress tensor. Corresponding to 

those moments, the transformation matrix (M) mapping distributions 𝑓𝛼 to the moment space, the equilibrium 

moments 𝒎eq = 𝑴𝑓eq, and force term in the moment space 𝜱 = 𝑴ℱ, can be expressed as, referring to the 

LBM model in [5, 44],  

{𝑴𝛼
𝒎eq

𝜌

𝜱

𝜌
} =

{
 
 
 
 
 

 
 
 
 
 
1 1 0
‖𝒆𝛼‖

2 − 4 ‖𝒖‖2 − 2  2(𝓕 ∙ 𝒖)
1

2
‖𝒆𝛼‖

4 −
7

2
‖𝒆𝛼‖

2 + 4 1 − ‖𝒖‖2  −2(𝓕 ∙ 𝒖)

𝑒𝛼,𝑥 𝑢𝑥  ℱ𝑥
(‖𝒆𝛼‖

2 − 5)𝑒𝛼,𝑥 −𝑢𝑥  −ℱ𝑥
𝑒𝛼,𝑦 𝑢𝑦 ℱ𝑦
(‖𝒆𝛼‖

2 − 5)𝑒𝛼,𝑦 −𝑢𝑦 −ℱ𝑦

𝑒𝛼,𝑥
2 −  𝑒𝛼,𝑦

2 𝑢𝑥
2 − 𝑢𝑦

2 2(ℱ𝑥𝑢𝑥 − ℱ𝑦𝑢𝑦)

𝑒𝛼,𝑥𝑒𝛼,𝑦 𝑢𝑥𝑢𝑦 ℱ𝑦𝑢𝑥 + ℱ𝑥𝑢𝑦 }
 
 
 
 
 

 
 
 
 
 

 (7) 

The present study applies the dynamic-pressure scheme that introduces the gravity 𝒈 into pressure gradient 

term, to eliminate spurious current and energy dissipation which results from the inconsistency of gravity and 

pressure gradient [28]. Based on this modified-pressure LBM, the N-S equations can then be recovered from 

MRT-LBE through the Chapman-Enskog expansion [7] as follows, 

 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0

𝜕𝜌𝑢𝑖

𝜕𝑡
+
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝∗

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) + (𝜇B −

2𝜇

3
)𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
) + 𝜌ℱ𝑖

 (8) 

with 𝑝 = 𝜌𝑐𝑠
2 , shear viscosity 𝜇 = 𝑝𝜏 = 𝑝(

𝛿𝑡

𝜔𝜈
− 0.5𝛿𝑡) , bulk viscosity 𝜇B =  𝑝 (

𝛿𝑡

𝜔𝑒
− 0.5𝛿𝑡) −

𝜇

3
  and ℱ𝑖  is 

the external force excluding gravity. 𝑝∗ = 𝑝 − 𝜌0𝒈(𝒙 − 𝒙ref) is the dynamic pressure. This dynamic pressure 

scheme is also beneficial to correct the fluid forces highlighted by Bogner and Rüde [39] as the staircase 

approximated geometry description interacted with hydrostatic pressure gradient leads to inaccurate buoyancy 

force. 

Free surface flows are typically characterized by high Reynolds numbers, making their turbulent nature 

computationally demanding to simulate accurately. To achieve a balance between the simulation detail and 

computational efficiency in practical numerical fluid simulations, this study employs the Large Eddy 

Simulation (LES) approach integrated into the Lattice Boltzmann framework, as proposed by Krafczyk et al. 

[45]. In the LES-LBE, turbulence modelling is based on a filtered Lattice Boltzmann equation applied over a 

finite spatial region, resolving only turbulent structures larger than a specific sub-grid scale (SGS) length. The 

smaller turbulent structures, those below the filter length, are approximated using a simple turbulence closure 

model. In this framework, the total viscosity can be expressed as 𝜇 = 𝜇f + 𝜇t  and the eddy viscosity is 

calculated by the magnitude of the mean strain rate tensor 𝑺̅, 

 𝜇t = 𝜌(𝐶s𝛿)
2‖𝑺̅‖ = 𝜌(𝐶s𝛿)

2 ‖𝝈̅‖

2𝜇T
 (9) 

where 𝜇 represents the total viscosity; 𝜇f is the fluid viscosity, which is 10-3 kg/(m·s) for water; and 𝜇t is the 

turbulent eddy viscosity. 𝐶s is the Smagorinsky coefficient; 𝛿= 𝛿𝑥 is the filter length; and ‖ 𝝈̅‖ = √2𝜎̅𝑖𝑗𝜎̅𝑖𝑗. 
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Substituting 𝜎𝑖𝑗 in Eq. (4) into Eq. (9), it yields, 

 𝜏 =
1

2
(𝜏f − 0.5𝛿𝑡) +

1

2
√(𝜏f + 0.5𝛿𝑡)

2 +
2(𝐶𝑠𝛿)

2

𝜌𝑐𝑠
4 √2𝜎̂𝑖𝑗𝜎̂𝑖𝑗 (10) 

where 𝜎̂𝑖𝑗 = ∑ 𝑒𝛼𝑖𝑒𝛼𝑗 (𝑓𝛼 − 𝑓𝛼
eq
+
ℱ𝛼𝛿𝑡

2
)𝛼 . 

The details of non-dimensional system can be found in [5, 44].  

2.2 Free surface capturing method 

A sharp-interface approach, the volume-of-fluid method applicable to high-density ratio fluid flows, is 

extensively applied in NS-based solvers and is recently introduced to LBM by Korner et al. [27]. Korner et al. 

[27] assumes that the heavier phase completely dominates the flow dynamic of two immiscible fluids. This 

system reduces to single-phase flow with a free surface boundary. The lighter phase thus neither contains DFs 

nor participate in the LBM evolution. To determine the phase state of the local cell, a volume fraction 𝜀 is 

defined as the ratio of liquid volume and fluid-accessible volume, as follows 

 𝜀(𝒙, 𝑡) =
𝑉liquid

𝑉−𝑉solid
=

𝑚(𝒙,𝑡)

𝜑(𝒙,𝑡)𝜌(𝒙,𝑡)𝛿𝑥2
 (11) 

where 𝑚 and 𝜌 are the mass and density of liquid phase, respectively; 𝜑(𝒙, 𝑡) = 1 − 𝜀s is the porosity and 𝜀s 

is the solid fraction 𝜀s = 𝑉s/𝛿𝑥
2. Concerning floating solids in free surface flows, a cell may be occupied by 

gas, liquid and solid phases at the same moment, so the concept of porosity and solid fraction is introduced 

here. For convenience of numerical implementation, a phase state function 𝑠(𝒙, 𝑡) is defined in present single-

phase model according to the fluid fraction, 

 𝑠(𝒙, 𝑡) = {

gas 𝜀(𝒙, 𝑡) = 0
interface 0 < 𝜀(𝒙, 𝑡) < 1
liquid 𝜀(𝒙, 𝑡) = 1

 (12) 

In this VOF-LBM method, the free surface movement is governed by the advection equation of the liquid mass 

of interface cells, as follows, 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0 (13) 

Integrating this equation over the control cell and applying the divergence theorem to convert the convective 

term to a surface integral, it can be discretised using first-order explicit Euler time difference scheme as follows, 

 𝑚(𝒙, 𝑡 + 𝛿𝑡) = 𝑚(𝒙, 𝑡) + 𝛿𝑡 ∑ 𝜓𝛼𝛼  (14) 

where 𝜓𝛼  is the liquid flux in the 𝛼th  direction in the present LBM system and computed from the LBM 

streaming step as, 

 𝛿𝑡𝜓𝛼(𝒙, 𝑡) = (𝑓𝛼̅
∗(𝒙 + 𝒆𝛼𝛿𝑡, 𝑡) − 𝑓𝛼

∗(𝒙, 𝑡)) 𝐴𝛼  𝛿𝑥 (15) 

where 𝒆𝛼̅ = −𝒆𝛼; 𝑓𝛼
∗ is the post-collision DF; and 𝐴𝛼 denotes the face fill level determined by 

 𝐴𝛼 =

{
 

 
0 𝑠(𝒙 + 𝒆𝛼𝛿𝑡) = gas
𝜀(𝒙)𝜑(𝒙)+𝜀(𝒙+𝒆𝛼𝛿𝑡)𝜑(𝒙+𝒆𝛼𝛿𝑡)

2
𝛿𝑥 𝑠(𝒙 + 𝒆𝛼𝛿𝑡) = interface

𝜑(𝒙)+𝜑(𝒙+𝒆𝛼𝛿𝑡)

2
𝛿𝑥 𝑠(𝒙 + 𝒆𝛼𝛿𝑡) = liquid

 (16) 

In this formulation, for an interface cell at x, first and third conditions indicate that the face between 𝒙 and  

𝒙 + 𝒆𝛼𝛿𝑡  is considered completely dry or fully submerged, respectively, depending on whether the 

neighbouring cell is identified as gas or liquid. The second condition corresponds to a neighbouring interface 
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cell, for which partial submergence is determined based on the average volume fraction. 

This is a single-phase model without solving LBE at gas phase, and a free surface boundary condition needs 

to be implemented at the gas-liquid interface to recover atmospheric pressure at gas-liquid interface. Those 

missing distributions streaming from gas phase with invalid information are reconstructed by the free surface 

dynamic boundary condition originally proposed by Korner et al. [27] (FSK), 

 𝑓𝛼̅(𝒙, 𝑡 + 𝛿𝑡) = −𝑓𝛼
∗(𝒙, 𝑡) + 𝑓𝛼

eq(𝜌G, 𝒖G) + 𝑓𝛼̅
eq(𝜌G, 𝒖G) (17) 

where 𝒖G is the free surface velocity extrapolated from liquid nodes. In modified-pressure LBM, surrounding 

atmospheric pressure 𝜌G is expressed as 𝜌G = 𝜌0 − 𝜌0𝒈(𝒙 − 𝒙ref)/𝑐𝑠
2, instead. 

After the mass exchange and DFs reconstruction are completed, the liquid fraction 𝜀 can be updated by Eq. 

(11). An interface cell will finally be converted to gas or liquid cell when it gets empty, 𝜀(𝒙, 𝑡 + 𝛿𝑡 ) < 0 −

 𝛿𝜀 , or filled, 𝜀(𝒙, 𝑡 + 𝛿𝑡 ) > 1 +  𝛿𝜀 , where 𝛿𝜀  is a conversion threshold designed to prevent oscillatory 

transitions, set to 0.001 following the value commonly used in existing literature (see [27, 39]). A liquid cell 

cannot be converted a gas cell directly and vice versa. When the neighbour of a gas (or liquid) cell gets filled 

(or empty), the gas (or liquid) cell itself must be converted to an interface cell to maintain a closed interface 

layer to separate the liquid and gas phase. In addition, to alleviate the unphysical bubble and spatter, interface 

cells are also identified as different node quality: standard, no-air neighbour, no-liquid neighbour. For the 

interface cell at x that has no gas neighbour, it obtains more mass from neighbouring interface cells, while the 

interface cell at x that has no liquid neighbour, loses more mass, as suggested in [10, 27]. 

We do not modify the DFs when liquid cells are converted to the interface cell, and vice versa. In contrast, 

when a gas cell is converted to an interface cell, its DFs need to be initialized because the gas cell has no valid 

information in the present single-phase model. The DFs are initialized by equilibrium DFs as expressed in Eq. 

(3), in which the macroscopic quantities are extrapolated from neighbouring liquid and interface cells as 

follows, 

  𝜑̅(𝒙) =
∑ 𝑤𝛼𝜑(𝒙+𝒆𝛼𝛿𝑡)𝛼∈𝒮

∑ 𝑤𝛼𝛼∈𝒮
, 𝒮1 = {𝛼|𝑠(𝒙 + 𝒆𝛼𝛿𝑡) = liquid, interface}   (18) 

The volume fraction of an empty or filled cell is set to 𝜀(𝒙, 𝑡) = 0 or 𝜀(𝒙, 𝑡) = 1 following the state conversion, 

respectively, which causes an excess mass 𝑚ex of, 

  𝑚ex = {
𝑚 − 𝜌(𝒙, 𝑡)  𝑠(𝒙) gets filled
𝑚                    𝑠(𝒙) gets empty

     (19) 

Concerning the mass conservation, interface and new-interface cells need to accept the excess mass allocated 

from surrounding empty (𝜀 < 0) and filled (𝜀 > 1) cells. In present study, the normal direction-based algorithm 

is applied as suggested in [27]. More details regarding the free surface model can be found in [27, 30, 39]. 

It should be noted that an empty or filled cell must be marked as a transmitted state before allocating excess 

mass to ensure consistency in parallel computing. The free surface algorithm described above guarantees 

exclusive memory access at each thread during parallel computing, not involving non-local write operations 

in mass allocation and state conversion. In addition, the Weber number of each test case in this work is 

significantly greater than 1, indicating that surface tension effects are negligible and thus were not included. 

 

2.3 Fluid-Structure interaction method  

For modelling the motion of the rigid bodies interacting with fluid flows, it requires addressing three aspects 
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of numerical implementations: the no-slip fluid-solid boundary condition, the hydrodynamic force evaluations 

and the initialization for new-born fluid nodes. To facilitate the description of liquid-solid dynamics, the cell 

type of solid is incorporated into the phase state function 𝑠(𝒙, 𝑡), extending its representation beyond gas-

liquid interactions, 

 𝑠(𝒙, 𝑡) =

{
 

 
solid,               𝒙 ∈ Ωsolid

fluid{

gas 𝜀(𝒙, 𝑡) = 0
interface 0 < 𝜀(𝒙, 𝑡) < 1
liquid 𝜀(𝒙, 𝑡) = 1

 (20) 

where Ωsolid represents the solid region. 

For a fluid node at the position 𝒙, the unknown DFs streaming from the solid need to be reconstructed to satisfy 

the no-slip and impermeable boundary conditions. If the node along the opposite direction at 𝒙 + 𝒆𝛼̅𝛿𝑡 has 

valid fluid information, the united interpolated bounce back (UIBB) scheme is imposed,  

 {
𝑓𝛼̅(𝒙, 𝑡 + 𝛿𝑡) =

𝑞𝑓𝛼
∗(𝒙,𝑡)+𝑞𝑓𝛼̅

∗(𝒙,𝑡)+(1−𝑞)𝑓𝛼
∗(𝒙+𝒆𝛼̅𝛿𝑡,𝑡)−2𝑤𝛼𝜌w𝒆𝛼∙𝒖w

1+𝑞
𝑠(𝒙 + 𝒆𝛼̅𝛿𝑡) = liquid, interface

𝑓𝛼̅(𝒙, 𝑡 + 𝛿𝑡) =
𝑓𝛼
∗(𝒙,𝑡)+𝑞𝑓𝛼̅

∗(𝒙,𝑡)−2𝑤𝛼𝜌w𝒆𝛼∙𝒖w

1+𝑞
 otherwise

 

  (21) 

where the relative distance q is defined as 𝑞 = |𝒙 − 𝒙w|/|𝒆𝛼𝛿𝑡|, 𝒖w is the solid boundary velocity at 𝒙w and 

𝜌w  is the fluid density at solid boundary, estimated as the nearest local liquid density 𝜌(𝒙, 𝑡)  (i.e., using 

constant extrapolation), in the present nearly incompressible flows.   

The momentum change of DFs (between post-collision𝑓𝛼
∗(𝒙, 𝑡) and post-streaming 𝑓𝛼̅(𝒙, 𝑡 + 𝛿𝑡)) denotes the 

discrete net force acted on solid in a momentum-exchange method (MEM). Peng et al. [12] compared different 

MEM methods and pointed out the Galilean-invariant momentum exchange method (GIMEM) ensures the 

local Galilean invariance and partially reduces unphysical force fluctuation when implementing IBB scheme 

at moving fluid-solid boundary. Therefore, GIMEM is applied in the present study, as:  

 {
𝑭α̅(𝒙, 𝑡 + 𝛿𝑡) = −

𝛿𝑥2

𝛿𝑡
(𝑓𝛼̅(𝒙, 𝑡 + 𝛿𝑡)(𝒆𝛼̅ − 𝒖w) − 𝑓𝛼

∗(𝒙, 𝑡)(𝒆𝛼 − 𝒖w))

𝑴α̅(𝒙, 𝑡 + 𝛿𝑡) = 𝑭α̅(𝒙, 𝑡 + 𝛿𝑡)(𝒙w − 𝑹)
 (22) 

Where 𝑭α̅  and 𝑴α̅  denote the discrete net force and torque at 𝒙w , respectively;  𝒆𝛼  is the discrete velocity 

pointed to solid nodes; 𝒙w is the intersection of 𝒆𝛼 links and solid boundary; and R is the rotational center. 

For a fully immersed structure, the contribution of atmospheric pressure to the hydrodynamic forces cancels 

out. However, for a floating one, we need to get rid of the effect of absolute atmospheric pressure and take 

hydrostatic pressure gradient into account in the present modified-pressure LBM model. One correction 

introducing the equilibrium distribution function 𝑓𝛼
eq
(𝜌G,w, 𝒖w) into GIMEM can eliminate the contribution 

of absolute atmospheric pressure and correctly evaluate the hydrostatic buoyancy as,  

 

{
 
 

 
 𝑭α̅ = −𝜀

𝛿𝑥2

𝛿𝑡
((𝑓𝛼̅(𝒙, 𝑡 + 𝛿𝑡) − 𝑓𝛼̅

eq
) (𝒆𝛼̅ − 𝒖w) − (𝑓𝛼

∗(𝒙, 𝑡) − 𝑓𝛼
eq
)(𝒆𝛼 − 𝒖w))

or 𝑭α̅ = −
𝛿𝑥2

𝛿𝑡
(𝑓𝛼̅(𝒙, 𝑡 + 𝛿𝑡)(𝒆𝛼̅ − 𝒖w) − 𝑓𝛼

∗(𝒙, 𝑡)(𝒆𝛼 − 𝒖w)) + 𝑭α̅,H 

𝑴α̅ = 𝑭α̅(𝒙w − 𝑹)

 (23) 

where 𝜌G,w = 𝜌0 − 𝜌0𝒈(𝒙w − 𝒙ref)/𝑐𝑠
2 and 𝑭α̅,H = 𝜀

𝛿𝑥2

𝛿𝑡
(𝑓𝛼̅

eq
 (𝒆𝛼̅ − 𝒖w) − 𝑓𝛼

eq(𝒆𝛼 − 𝒖w)). 

Then the total hydrodynamic forces and torque acting on the object are summed as, 
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 {
𝑭 = ∑ ∑ 𝑭α̅(𝒙, 𝑡 + 𝛿𝑡)𝛼∈𝒮2G(𝒙)

𝑴 = ∑ ∑ 𝑴α̅(𝒙, 𝑡 + 𝛿𝑡)𝛼∈𝒮2G(𝒙)
, 𝒮2 = {𝛼|𝑠(𝒙 + 𝒆𝛼𝛿𝑡) = solid} (24) 

where G(𝒙) denotes the set of non-solid nodes which directly link to solid nodes. When the hydrodynamic 

force and torque are known, the accelerations are calculated according to the motion equation of the rigid body 

and then the velocity and position are updated implementing forward Euler or Runge-Kutta second-order time 

integration scheme. 

 {
𝑚s

𝑑𝒖s

𝑑𝑡
= 𝑭 +𝑚s𝒈

𝐼s
𝑑𝝎s

𝑑𝑡
+𝝎s × 𝐼s𝝎s = 𝑴+𝑚s(𝒙m − 𝒙s) × 𝒈

  (25) 

Where 𝒙s and 𝒙m denote the position vectors of rotational center and mass center, respectively;  𝑚s and 𝐼s are 

the mass and moment of inertia; 𝒖s and 𝝎s is the velocity and angular velocity. Once the motion equation 

above is solved, the solid position and surface velocity can be updated by, 

 

𝑑𝒙s

𝑑𝑡
= 𝒖s

𝒖𝑝 = 𝒖s +𝝎s × (𝒙 − 𝒙s)
  (26) 

As stated by Bogner and Rüde [39], hydrodynamic force errors are partially attributed to the hydrostatic density 

gradient interacted with the inaccurate geometric description for the solid boundary. It can be reduced by a 

sub-grid method for the hydrostatic pressure field on present modified-pressure LBM. In sub-grids, the 

equilibrium DFs based on hydrostatic pressure is 𝑓𝛼,sub
eq

= 𝑓𝛼
eq
(𝜌G,w,sub, 𝒖w,sub)  where 𝜌G,w,sub = 𝜌0 −

𝜌0𝒈(𝒙w,sub − 𝒙ref)/𝑐𝑠
2 and 𝒙w,sub,ref is the coordinates of  𝒙w,sub relative to the reference surface within the 

modified-pressure LBM. The hydrostatic buoyancy force 𝑭α,H  in each grid cell can then be calculated by, 

 𝑭α̅,H = ∑
𝛼,sub→solid

𝜀
𝛿𝑥2

𝑛𝛿𝑡
((𝑓𝛼̅,sub

eq
) (𝒆𝛼̅,sub − 𝒖w,sub) − (𝑓𝛼,sub

eq
)(𝒆𝛼,sub − 𝒖w,sub)) (27) 

where n denotes the sub-grid spacing is 𝛿𝑥/𝑛 ; 𝒆𝛼,sub is the lattice link between liquid sub-grid and solid sub-

grid, and 𝒖w,sub  is velocity at solid boundary 𝒙w,sub   intersected with the lattice link, as shown in Fig. 3. 

Similar modification is carried out for the torque 𝑴α̅,H.  

 
Figure 3. Local sub-grids schematic. The blue arrows denote the links 𝒆𝛼,𝑠𝑢𝑏 of sub-liquid nodes to solid, 

and the solid blue line is the gas-liquid interface. 

Following the update of solid position and velocity, new-born liquid or interface cells must be initialized as 

previous solid cells have no valid DFs, known as the refilling scheme. The average density of surrounding 

liquid or interface nodes is used as the initialized density. The initialized velocity can be the closest solid 

boundary velocity or local average value. Then the DFs are reconstructed as the equilibrium distribution 

functions 𝑓𝛼(𝒙, 𝑡 + 𝛿𝑡) = 𝑓𝛼
eq
(𝜌avg, 𝒖avg) as Eq. (3).  Such a refilling scheme without non-equilibrium term 

may result in the severe force fluctuation and we hence use the consistent initial condition presented by Mei 
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et al. [46] and Chen et al. [18]. It is an iteration process: the equilibrium DFs and macroscopic variables above 

are used as the initial input for those fresh nodes, then the collision is carried out at the fresh nodes and 

streaming is carried out at fresh nodes as well as surrounding liquid and interface nodes, as,  

 𝑓𝛼
∗(𝒙, 𝑡) = 𝑓𝛼(𝒙, 𝑡) −𝑴

−1[𝑺(𝒎−𝒎eq)] +𝑴−1 (𝐈 −
𝑺

2
)𝜱𝛿𝑡,   𝑠(𝒙) ∈ fresh cells (28a)  

 𝑓𝛼(𝒙 + 𝒆𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝛼
∗(𝒙, 𝑡) ,   𝑠(𝒙) ∈ fresh cells and surrounding valid cells (28b) 

The iteration will end if a stable density field at those fresh nodes reaches the following condition, 

 ∑
|𝜌(𝑡+𝛿𝑡)−𝜌(𝑡)|

|𝜌(𝑡+𝛿𝑡)+𝜌(𝑡)|𝒙 < 𝛿 (29) 

where 𝛿 is a tiny quantity as the convergence criteria, set to 10−8. 

2.4 Coupling treatments of VOF and FSI 

The gas-liquid interface has been built meticulously using the single-phase VOF model. When mapping solid 

to the fluid grids, it must ensure the interface to separate liquid from gas. Referring to Bogner and Rüde [39], 

a set of phase state conversion rules dependent on neighbouring node states (liquid, interface, or gas) is 

implemented to address this issue. Such dependence requires tiny motion of solid during a time step so that 

the cell state conversion occurs at solid and fluid nodes which directly link to each other. Destruction is 

straightforward and generally safe, i.e., fluid types to the solid types. However, inappropriate creation may 

cause damaged gas-liquid interface. The solid nodes at present time step, which are to be uncovered at next 

time step, are identified for updating as follows, 

1. A node having no liquid neighbour is marked as ‘SolidToGas’ node as shown in light grey in Fig. 4; 

2. A node having no gas neighbour is marked as ‘SolidToLiquid’ node as shown in light blue in Fig. 4; 

3. A node having both gas and liquid neighbours is marked as ‘SolidToInterface’ node as shown in pink. 

Similar to the numerical implementation in free surface algorithms, certain transmitted states (SolidToLiquid, 

SolidToGas and SolidToInterface) are also introduced for ensuring consistency of parallel computing. After 

initialization for those uncovered nodes, they are then converted into liquid, gas, and interface, respectively. 

It should be noted that the green node is unable to be determined according to the rules described above if the 

solid has large motion. In fact, the small-motion assumption can be naturally satisfied for the simulation with 

low Mach number. if the TBD node exists, it means the velocity of object exceeds √3𝑅𝑇0 , violating the 

requirement of low Ma number. 

 

Figure 4. Cell states conversion after the rigid object moves. The solid and dashed black lines denote the 

object boundary at new moment and old moment separately, the green node (TBD) indicates a cell whose 

state is to be determined, and the solid blue line is the gas-liquid interface. 
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The algorithm described so far can be implemented to track the gas-liquid-solid interface. However, one 

unphysical phenomenon occurs where the solid perturbs liquid before actual contact and the liquid always 

adheres to the solid surface. One reason is that the mass change of interface cell depends on neighbouring cell 

states in the present free surface model. As illustrated in Fig. 5, although the solid has not penetrated the gas-

liquid interface, the pink interface node identified as ‘no-gas neighbour’ gains more mass from surrounding 

interface cells marked ‘standard’. The second reason is that such dependency on neighbouring node states also 

exists on hydrodynamic force evaluations as the blue link between interface and ‘GasToSolid’ nodes shown in 

Fig. 5. According to Eq. (24), the liquid unphysically exerts hydrodynamic force to solid at this moment.  

 

Figure 5. Node quality changes when neighbouring gas cells are converted to solid cells. The solid and 

dashed black lines separately denote the object boundary at new moment and old moment, and the solid blue 

line is the gas-liquid interface. 

To effectively mitigate the spurious currents, the following identifications are incorporated into the gas-liquid-

solid model above. When the neighbour (𝒙 + 𝒆𝛼𝛿𝑡) of an interface node is a solid node, 

1. 𝒏 ∙ 𝒆𝛼 > 0: the solid node is located outside the gas-liquid interface and the solid node is regarded as 

a gas node when we identify the node quality at 𝒙 , as the light grey in Fig. 6, where 𝒏 is the outward 

normal direction at the interface cell.  

2. 𝒏 ∙ 𝒆𝛼 < 0: the solid node is located inside the gas-liquid interface and the solid node is regarded as a 

liquid node when we identify the node quality at 𝒙; 

For convenience, the above rules are called as ‘node quality identification method’ (NQIM) rules. 

3. 𝑓𝛼̅(𝒙, 𝑡 + 𝛿𝑡) with𝒏 ∙ 𝒆𝛼 > 0  is reconstructed by free surface scheme FSK in this link, instead. 

Correspondingly, this link should be removed from G(x) in Eq. (24) evaluating hydrodynamic forces. 

One case is presented in Fig. 6, in which those black arrows denote their opposite 𝑓𝛼̅(𝒙, 𝑡 + 𝛿𝑡) are 

reconstructed by IBB and blue ones represent the FSK scheme is imposed. It is critical to ensure that 

the solid is not surrounded by gas and interface nodes. This rule for an interface cell which also 

contains gas and solid phases is called as ‘boundary conditions identification method’ (BCIM) rule. 
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Figure 6. Implementation of boundary conditions for those interface nodes linking to solid nodes according 

to the rules. 

The entire framework coupling VOF and IBB-GIMEM for simulating floating rigid bodies in free surface 

flows is concluded as follows:  

 

Figure 7. Flow chart of gas-liquid-solid model within the dynamic-pressure LBM. 

 

3. Model validation  

To validate the developed 2D LBM model for simulating the floating structures in free surface flows, the 

validation procedure is organised progressively as follows: (1) submerged structures interacted with single-

phase flows, (2) submerged structures interacted with free surface flows, (3) partially submerged stationary 

structures interacted with free surface flows, (4) partially submerged structures with single degree of freedom 

in free surface flows, and (5) freely floating structures interacted with water waves. 

3.1 Free settling of an immersed solid 

The first benchmark evaluates a submerged structure interacting with single-phase flows without a free surface, 

aiming to verify the accuracy of FSI algorithm and the proposed method for hydrostatic buoyancy evaluations. 

The benchmark case chosen involves an immersed cylinder freely-settling in a vertical channel [12, 23]. As 

shown in Fig. 8, the channel has a width of 4D and a length of 25D, where D represents the cylinder diameter. 

The cylinder diameter D is 0.1 cm, and its density ρs is 1.03 times the fluid density ρ0. The cylinder initially 
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positioned 0.076 cm relative to the left wall, is released to translate and rotate under its own weight and the 

fluid forces. The kinematic viscosity of fluid is 0.01 cm²/s and gravity acceleration is set as 980 cm/s². The 

relaxation coefficients of single-phase flows are chosen as them used in [12, 23] for the purpose of 

reproducibility, i.e., 𝑺 = diag(1, 1.64, 1.54,1, 1.9,1, 1.9,𝜔𝜈 , 𝜔𝜈). No-slip BCs are applied to the left and right 

wall boundaries, while periodic BCs are used for top and bottom boundaries. The lattice grid resolution is set 

as D/30. Figs. 9 shows the time histories of center trajectory, velocities and hydrodynamic forces where gravity 

is not involved in the numerical simulation and the hydrostatic buoyancy is theoretically given. It is observed 

that the asymmetric flow field causes the cylinder to drift toward the vertical centerline of the channel, 

eventually reaching a steady state characterized by a constant vertical settling velocity. The numerical results 

exhibit excellent agreement with those reported by Wen et al. [23], thereby validating the accuracy and 

reliability of the present model for simulating fluid-structure interactions involving immersed bodies. 

 

Figure 8. A schematic diagram of cylinder sedimentation in a vertical channel, where g is the gravity; W and 

L are the channel width and height respectively. 
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Figure 9. Time evolution of position, velocities, and forces of the circular cylinder during freely settling, 

compared with them of Wen et al. [23]. (a) Centroid trajectories, (b) velocities, and (c) acting forces. 

 

Unlike fully immersed objects, the hydrostatic buoyancy FH and MH of a partially submerged object is 

dependent on the submerged depth and thus cannot be theoretically determined. To validate the proposed 

method for calculating buoyancy, as expressed in Eq. (27), Fig. 10 presents the comparison of total fluid forces 

and torque between cases where hydrostatic buoyancy is numerically evaluated and theoretically prescribed. 

The case of n =1 represents a scenario without the sub-grid system while the dashed line corresponds to a 

numerical simulation that excludes gravity and the hydrostatic buoyancy is theoretically determined. The total 

fluid forces computed with numerical hydrostatic buoyancy exhibits fluctuations around the results obtained 
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when FH and MH are set to their theoretical values. As expected, force fluctuations resulting from the 

hydrostatic pressure gradient significantly diminish with increasing refinement levels. These results 

demonstrate that the developed force evaluation method within the modified-pressure LBM is feasible to 

calculate the hydrostatic buoyancy and the sub-grid technique can effectively alleviate the force error induced 

by hydrostatic pressure gradient. 
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Figure 10. Time evolution of hydrodynamic forces with different sub-grid refinement n=1, 5, 9 and 15. (a) 

horizontal force Fx, (b) vertical force Fy and (c) torque Mz. 

3.2 Static buoyant circular cylinder 

To further verify the accuracy of the hydrostatic buoyancy force (i.e., Archimede force) computed by Eq. (27), 

with and without the sub-grid system, two simple benchmark simulations are performed. Case 1 considers a 

stationary circular cylinder partially submerged in static water, while case 2 involves the same cylinder fully 

submerged. The theoretical solutions for both cases are known from the Archimede’s principle, equal to the 

weight of the displaced fluid. Under the hydrostatic pressure field, the buoyant force is calculated by the 

modified GIMEM, and is compared against the results from NS-based IBM developed by Calderer et al. [47] 

and Borazjani et al. [48]. Despite the simplicity of such a hydrostatic problem, its accuracy is critical for 

reliably and stably simulating rigid body motion, as it highly relevant to force fluctuation. In both cases, the 

diameter is D =0.125 m. The simulation domain is 10D × 11D with a water depth of 8D, where the gravity is 

9.81 m/s². The relative force error between the evaluated and theoretical values is defined as, Error = |FH - 

FH,thero|/|FH,thero|, where FH,thero is the theoretical Archimede force. In the present steady-state Archimedes test 

case, a L2-norm relative residual is defined as, 

  ResidualL2 =
√∑ (𝜑(𝑛)(𝒙)−𝜑(𝑛−1)(𝒙))

2

𝒙

√∑ (𝜑(𝑛)(𝒙))
2

𝒙

  (30) 

where 𝜑(𝑛)(𝒙)  represents the physical quantities such as density and velocity at the 𝑛th  time step. The 

convergence criterion is considered to be satisfied when the maximum residual among all monitored quantities 

falls below a threshold of 0.001. 
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(a) Fully submerged cylinder (b) Partially submerged cylinder 

Figure 11. Vertical velocity field around a stationary cylinder at the 60000th time step. 
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(a) Fully submerged cylinder (b) Partially submerged cylinder 

Figure 12. Grid convergence of the error of hydrostatic buoyancy for a stationary cylinder, compared with 

IBM of Calderer et al. [47] and Borazjani et al. [48], where CURVIB and PPBC are the curvilinear 

immersed boundary method and pressure projection boundary condition, respectively. 

 

Fig. 11 illustrates the vertical velocity field around the stationary cylinder at the 60000th time step, representing 

the stable hydrostatic flow field obtained by the developed model. Fig. 12 presents the grid convergence of 

buoyancy error computed over a series of successively refined uniform meshes with spacing of 𝛿𝑥 =

𝐷/16, 𝐷/32,𝐷/64,𝐷/128,𝐷/256. To evaluate the effectiveness of the sub-grid system, additional tests are 

conducted on the coarsest mesh 𝛿𝑥 = 𝐷/16, using the sub-grid spacings defined by 𝛿𝑥/(𝐷/16) = 1, 3, 9, 27. 

In Fig. 12, the present method achieves a convergence rate better than first order for both cases, with or without 

the sub-grid system. Although the rate is slightly lower than that reported in [47], the resulting force errors are 

over one order of magnitude smaller across all grid resolutions. These results confirm that the modified 

GIMEM can accurately compute the Archimede force and that the integration of a sub-grid system significantly 

enhances the accuracy of hydrostatic force computations even on coarse meshes. 

3.3 Water exit of a circular cylinder  

Subsequently, a submerged cylinder rising in still water is used to validate the accuracy and stability of IBB 
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and VOF implementations, in the absence of coupling treatments of them. The cylinder diameter is D =0.125 

m. Four cases with different prescribed exit velocities V (V = 0.5124 and 0.7644 m/s), and Reynolds numbers 

Re (Re =1000 and Re = 𝑉𝐷/𝑣  with water viscosity 𝑣 = 10−6 m2/s ) are carried out and compared with 

available data in Ref. [49-51]. Following the numerical simulation by Zhang et al. [49] and Zhu et al. [50], the 

cylinder is initially at rest at Vt/D = 3 and is then accelerated harmonically to a constant velocity at Vt/D = 2.5. 

The simulation domain is 40D × 11D with a water depth of 8D and the mesh size is D/80. Here, the left and 

right boundaries are imposed as Neumann outflow condition, and no-slip boundary condition is implemented 

on the cylinder and bottom boundaries. In the following numerical simulations involving free surface flows, 

for better numerical stability, the recommended relaxation coefficients in [9] are used, i.e., 𝑺 =

diag(1, 0.3, 1,1,1,1,1,𝜔𝜈 , 𝜔𝜈). Fig. 13 illustrates the free surface deformation and vortex distributions when 

the cylinder velocity is 0.7644 m/s. It can be observed for Re =1000 that the results from the present model 

are in good agreement with those of Smoothed Particle Hydrodynamics (SPH) model reported in [49]. In both 

models, the top free surface elevates and both sides cave in, and the wake vortex behind the cylinder gradually 

stretches and broadens as the cylinder approaches the free surface during cylinder rising. Compared with Re 

=1000, the case of higher Reynolds number exhibits stronger turbulence and slightly weaker vortex stretching.  

 

   

   

   

   

(a) Present model Re = 𝑉𝐷/𝑣 (b) Present model Re =1000 (c) SPH (Re =1000) [49] 

Figure 13. Free surface deformation during water exit of the cylinder with prescribed velocity V =0.7644 

m/s, where color denotes the vorticity distribution at four different instants Vt/D = -0.5, 0.0, 0.5 and 1.0. 
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The vertical drag force coefficient 𝐶e = 𝐹𝑦/(0.5𝜌𝑉
2𝐷)  is illustrated in Figs. 14 and 15. A longer acceleration 

distance of one Radius is applied to reach specific velocity for stabilizing the drag force in the initial phase. 

For Re = 1000 in Fig. 14, the present results using mesh sizes 𝛿𝑥 = 𝐷/80 and 𝛿𝑥 = 𝐷/160 agree well with 

that those reported by Zhang et al. [49]. However, the LBM model with lower grid resolution 𝛿𝑥 = 𝐷/40 

shows significant high-frequency force fluctuations. This phenomenon, also observed in studies involving 

immersed solids interacting with single-phase flows [12, 23], is an inherent drawback of numerical simulations 

with fixed meshes when tracking moving solids. Breugem [52] refers to this issue as “grid locking”, which 

arises because the interpolation operation is not strictly Galilean invariant when a solid object crosses over the 

grid mesh. Xie et al. [53] discussed this in more detail which is related to the mass conservation of the fresh 

or dead cut cells. Refining grid can effectively mitigate this issue as 𝛿𝑥 = 𝐷/80 and 𝐷/160, though it comes 

at the cost of increased computational resources for the uniform grid system. Since the mean drag force across 

the different gird resolutions is approximately identical, a mesh size of 𝐷/80  is then adopted to reduce 

computational costs. Fig. 15 illustrates the time histories of 𝐶e for realistic water flows Re = 𝑉𝐷/𝑣 with 𝜈 =

10−6 m2/s, showing good agreement between the LBM model and the experimental results by Miao [51]. The 

numerical models for both cases (V = 0.5124 and 0.7644 m/s) are also in accordance with each other, 

demonstrating that the proposed GIMEM, with its revised hydrostatic buoyancy formulation, can robustly and 

stably compute hydrodynamic forces in free surface flows even at high Reynolds numbers, though the flow 

structures may not be fully resolved at this stage.  
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Figure 14. Comparison of vertical drag force coefficient Ce for Re = 1000, between numerical model by 

Zhang et al. [49] and the present model. (a) V = 0.5124 m/s and (b) V = 0.7644 m/s. 
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Figure 15. Comparison of vertical drag force coefficient Ce obtained from the present model with 𝑅𝑒 =

𝑉𝐷/𝑣 (𝑣 = 10−6 𝑚2/𝑠), numerical model of Zhu et al. [50] and experiment of Miao [51], where CIP is the 

constrained interpolation profile method. (a) V = 0.5124 m/s, and (b) V = 0.7644 m/s. 

3.4 Dam-break flows over an obstacle  

The validation continues with a partially submerged stationary structure, where the model’s response to violent 

free surface deformations is assessed. The classical dam-break flow over an obstacle is simulated in this section. 

This experiment was carried out by Koshizuka [54] and was used by Greaves [55], Issakhov et al. [56] and 

Meng et al. [57] to validate their NS-based VOF and CLSVOF (coupled level set and volume of fluid) models. 

Fig. 16 shows the initial conditions and obstacle positions where the initial width (a) of water column equals 

to 0.146 m. The width and height of this rectangular obstacle are set as 0.024 m and 0.048 m, respectively. The 

BB scheme is imposed to the slip domain boundaries and non-slip obstacle boundaries. The predicted water 

surface deformation is compared with experimental results recorded by Koshizuka [54] in Fig. 17, where 

numerical results obtained with two grid resolutions of δx = a/73 and a/146 are provided. After the dam-break 

flow encounters the stationary obstacle, the water flow elevates and appears to a highly curved jet flow. It 

finally collides with the top and left domain boundaries and falls under the gravity. The simulated jet geometry 

agrees wells with experimental observations, as illustrated in Fig. 17.  

 

 

Figure 16. Initial condition of water column and the obstacle position. 
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(a) Present model δx = a/73 (b) Present model δx = a/146 (c) Experiment [54] 

Figure 17. Comparison of free surface deformation between the present numerical results and experimental 

observations [54] at different time instants. 𝑡√2𝑔/𝑎 = 1.16, 2.31, 3.47, and 4.63.  

 

3.5 Water entry of a free-falling circular cylinder 

In the final two simulations, the entire algorithms involving complex free surface evolution and the motion 

response of partially submerged floating structures are tested. The water entry of a free-falling circular cylinder 

has been studied using NS-based model (Larsen [58]), SPH model (Sun et al. [59]), and experiment by 

Greenhow and Lin [60]. This benchmark case is repeated in this subsection to validate the present gas-liquid-

solid model. In the experiment conducted by Greenhow and Lin [60], a cylinder with a diameter D of 0.11 m 

was initially at rest, dropping freely from a height of 0.5 m above the still water surface. In numerical model, 

an equivalent case was simulated in [58, 59]: the initial velocity was set to 2.938 m/s and the initial bottom of 

cylinder was just above the free surface. The simulation region is defined as 20D × 8D with water depth of 5D 

and the mesh size of D/200. The boundary conditions are set the same as that in the water exit case. Since the 

solid density directly influences the penetration depth, two cases are considered for comparison: one where the 

solid density equals the water density (i.e., a neutrally buoyant cylinder), and another where it is half that of 

water (i.e., a half-buoyant cylinder). It is worth noting that the perfectly matched layer technique [61] is applied 

at the bottom of the simulation tank to absorb the reflected acoustic wave which commonly exists in the 

compressible fluid solver [59].  

We first validate the effectiveness of the proposed model described in Section 2.4. The free surface profiles 
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are compared among the original model, the proposed model with NQIM and the proposed model with both 

NQIM and BCIM, as shown in Fig. 18. Without the implementation of NQIM and BCIM, the water adheres 

to the cylinder surface without separation, preventing the formation of the expected jet flow. This unphysical 

flow pattern leads to the absence of a cavity, resulting in incorrect hydrodynamic forces and penetration depths. 

Implementing the NQIM can partially correct the jet separation, though some bubbles appear near solid in the 

absence of BCIM. When both BCIM and NQIM are employed, the jet flow and separation points align well 

with the experimental snapshots from Greenhow and Lin [60] (see Fig. 19 (c)). Furthermore, Fig. 19 presents 

the pressure distribution at the initial phase, compared with the numerical results by Sun et al. [59]. It can be 

observed that the present model yields a symmetrical flow, with pressure decreasing consistently from the 

symmetric line (x/D = 2.5) to far field below the cylinder. Figs. 20 and 21 illustrate the time histories of 

hydrodynamic force and penetration depth for neutrally buoyant and half-buoyant cases. The neutrally buoyant 

cylinder, possessing a larger inertia force, penetrates deeper and experiences a greater vertical drag force 

compared to the half-buoyant cylinder, demonstrating good agreement with the numerical results by Larsen 

[58]. However, for the half-buoyant case, the numerical simulations predict a deeper penetration compared to 

the experiment. As noted by Larsen [58], This discrepancy can be attributed to the slightly smaller initial 

slamming velocity, as the cylinder appears to begin affecting the water surface at t = 0.285 s in Greenhow’s 

experiment [60].  

 

Figure 18. Free surface deformation at t = 0.015 s for neutral buoyancy. (a) Original algorithm, (b) NQIM 

without BCIM, (c) NQIM and BCIM. 

 

   

 

 

 

(a) Present model (b) SPH [59] (c) Experiment [60] 

Figure 19. Free surface deformation during the initial instant of a cylinder’s water entry, where the color 
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represents the pressure. The first row: neutrally buoyant cylinder at t = 0.015 s. The second row: half-

buoyant cylinder at t = 0.03 s. The green line in experiment results denotes numerical solutions from a 

boundary element method in [62]. 

 

0.00 0.05 0.10 0.15
0

10

20

30

40

F
y/

(r
g
p

D
2
/4

)

  Present model (neutrally)

  Present model (half)

  Larsen (FVM, neutrally)

  Larsen (FVM, half)

t(g/D)0.5

(a)

 
0.0 0.5 1.0 1.5 2.0 2.5

0

10

20

30

40

F
y/

(r
g
p

D
2
/4

)

  Present model (neutrally)

  Present model (half)

  Larsen (FVM, neutrally)

  Larsen (FVM, half)

t(g/D)0.5

(b)

 

Figure 20. Total vertical force versus t during the water entry of the cylinder compared with numerical 

results by Larsen [58].(a) The initial phase and (b) overview.  
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Figure 21. Penetration depth ξ versus t during the water entry of the cylinder compared with published 

results in Larsen [58], Sun et al. [59], and Greenhow and Lin [60]. (a) Neutrally buoyant cylinder and (b) 

half-buoyant cylinder. 

 

3.6 Free-floating box interacted with water waves 

To validate the complete gas-liquid-solid model under dynamic conditions, the sway, heave, and roll motions 

of a rectangular floater under nonlinear waves are numerically investigated, and compared with experimental 

and numerical results by Ren et al. [63, 64]. As illustrated in Fig. 22, a classic momentum source method is 

implemented in the wave generation domain and the sponge layer to generate and dissipate the incident waves, 

respectively. In this approach, the equivalent generating 𝑺g and damping 𝑺d forces as expressed in Eq. (31) 

are incorporated into the Lattice Boltzmann Equation [28, 65]. The half-buoyant box-shaped structure has a 

draft of 0.1 m, density of 500 kg/m3 and width of 0.3 m. Table 1 summarizes all parameters of the box and 

the numerical wave tank (NWT), and the mesh size is set as 𝛿𝑥 = 𝑑/200. The Neumann outflow condition is 

implemented at left and right boundaries and no-slip condition is imposed at the box and tank bottom.  
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{
𝑆g,𝑥 = 𝑔(2𝛽(𝑥 − 𝑥s))𝑒

−𝛽(𝑥−𝑥s)
2 𝛿

𝐴𝜔
(𝐴1cos𝜃 + 𝐴2cos2𝜃)

𝑆g,𝑦 = 0

𝑺d = −𝐵1𝒖
𝑒
|
𝑥−𝑥0
𝐿s

|
𝑛s

−1

𝑒−1

 (31) 

where 𝛽 = 20/𝑊2 is a coefficient of source width W; 𝑥s is the centre of wave generating area. The distribution 

source density 𝛿 and angle 𝜃 can be expressed as, 

 𝛿 =
2𝐴(𝜔2−𝛼1𝑔𝑘

4𝑑3)

𝜔𝐼𝑘(1−𝛼(𝑘𝑑)2)
   (32) 

 𝜃 =
𝜋

2
−𝜔𝑡 − arcsin [(−𝐴1 +√𝐴1

2 + 8𝐴2
2) /(4𝐴2) ] (33) 

where 𝐴 is the first-order wave amplitude; 𝐴1 = 𝐴 and 𝐴2 =
𝐴2𝑘 cosh𝑘𝑑

4 sinh3 𝑘𝑑
; 𝛼 = −0.38955 and 𝛼1 = 𝛼 + 1/3 is 

a coefficient of the basic Boussinesq equation; d is the still water depth; k =2π/λ is the wavenumber and λ is 

the wavelength;  𝐼 = √𝜋/𝛽𝑒−𝑘
2/4𝛽. 

For the damping force 𝑺d, B1 and ns are empirical coefficients; x0 and Ls are the starting location and width of 

the sponge layer, respectively.  The corresponding details can be found in [28, 65].  

Table 1. Parameters for the free-floating box interacting with waves. 

NWT 

Length (m)  Height (m) d (m) 

Box 

D (m) B (m) Hb (m) 

10L 1.5d 0.4 0.1 0.3 0.2 

Wave 

Absorption 

B1 (s-1) ns Ls (m) Wave 

Generation 

W (m) 

20 2 2L L 

 

 

Figure 22. Sketch of the NWT and a rectangular box placed inside. 

 

In the absence of wave generation, a rolling oscillation of this floating box damped by water viscosity is first 

simulated to validate rotation mode as a supplement to the translation mode discussed in Section 3.4. The box 

is homogeneous, with its center fixed at the initial position, and the initial angle of inclination set to 0.209 

radians (12°). The time history of the rolling angle, simulated using the developed LBM model, is compared 

with the numerical and experimental result by Ren et al. [63, 64] in Fig. 23. It can be observed the present 

LBM model accurately predicts both the damped response amplitude and the natural rolling period.  
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Figure 23. Time histories of the roll angle during damped rolling oscillation of the floating box, obtaining 

from the present model, the SPH model and experiment by Ren et al. [63, 64]. 

All simulations based on LBM are performed on the UK National High-Performance Computing service, 

Archer2. Each node of Archer2 is equipped with dual AMD EPYCTM 7742 64-core CPUs. For the 2D wave-

box interaction, a simulation consisting of 3.5 million grid cells and 0.7 million time steps, costs approximately 

4 hours using 4 nodes. Table 2 lists the wall time and mesh configuration of two representative cases, 

incorporating the complete gas-liquid-solid coupling under wave dynamics conditions. These cases correspond 

to the weakest and strongest nonlinear wave conditions in the free-floating box interacting with Stokes waves.  

Table 2. Wall time and mesh sizes for two representative wave conditions (low and high nonlinearity) in free-

floating box simulations with Stokes waves. 

Wave height H (m) Lattice cells Wall time TW (hr) 

0.04 10000 × 350 3.89 

0.10 10000 × 350 4.12 

 

Due to the mean horizontal drift force, a floating structure subjected to Stokes waves will move forward in the 

direction of wave propagation [63, 64]. This wave-structure interaction case serves to validate results for the 

floating structure interactions with free surface flows. Here, xc, yc and θc are represented as the horizontal 

displacement and vertical displacement and rolling angle of this floating box, respectively. Fig. 24 presents 

horizontal motion xc of the free-floating box under regular waves with a wave period of T= 1.2 s and wave 

heights of H= 0.04, 0.06, 0.08, 0.1 m, In Fig. 24, the floating box drifts in the direction of wave propagation 

accompanied by a periodic sway motion. Also, the drift speed increases with the increase of wave height as 

the mean drift force increases with wave steepness. Fig. 25 further illustrates the heave motion and roll motions 

under the highest wave with the strongest wave nonlinearity, H = 0.1 m. It can be observed that the oscillation 

period of the floating box is slightly longer than wave period of the incident wave. It is induced by the drift 

motion. To be specific, as the floating body drifts forward after one wave period, the next train of incident 

waves requires additional time to catch up and reach the floating body. Fig. 26 illustrates the motion attitude 

of this floating box and the wave surface elevation during a motion cycle. At the initial time t = 0, the wave 

crest approaches the floating box with a rolling angle of zero. The box first rotates clockwise and drifts 

rightwards from 0  to T/4, then rotates anticlockwise while continuing to drift forwards from T/4  to T/2. 

Following the wave trough, the box drifts leftwards from T/2  to 3T/4, and finally rotates clockwise from 3T/4  

to 1.1T to return to the initial state at 1.1T. Compared to the motion trajectory and free surface elevation with 

experimental and numerical results, the present LBM model can well predict the oscillation period, oscillation 
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amplitude, and drift motion of the floating box under nonlinear waves. In conclusion, this model validation 

demonstrates that the present model is capable of accurately and stably simulating floating rigid bodies 

interaction with water waves. 
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Figure 24. Time histories of the sway motion of the floating box for different wave heights, obtained from the 

present model and the experiment [63]. (a) H =0.04 m, (b) H =0.06 m, (c)H =0.08 m and (d) H =0.1 m, 

with T =1.2 s. 
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Figure 25. Time histories of the heave and roll motions of the floating box under the wave condition of H 

=0.1 m and T =1.2 s, obtained from the present model and the experiment [63]. 
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(a) Present model  (b) Experiment [63] 

Figure 26. Comparison of floating box locations and wave surface elevation between the present LBM, and 

experiment [63] at five instants, t=0, 0.25T, 0.50T, 0.75T, and 1.10T for H =0.1 m and T =1.2 s.  

4. Conclusions  

In this study, the volume-of-fluid method (VOF) and interpolated bounce back- Galilean-Invariant momentum 

exchange method (IBB-GIMEM), are incorporated into Multi-Relaxation-Time Lattice Boltzmann Method 

(MRT-LBM) in the dynamic pressure framework, for investigating floating rigid bodies interacting with free 

surface flows. For extension to partially submerged bodies, the GIMEM in the IBB-based FSI approaches is 

revised to take the absolute atmospheric pressure and hydrostatic pressure gradient into account. For accurately 

identifying gas-liquid-solid interface near a floating structure, we present and couple phase state conversion 

rules for gas-liquid and liquid-solid interfaces in VOF and FSI approaches, and appropriately address the 

boundary conditions of a triple junction cell which is occupied by three phases - gas, liquid, and solid according 
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to geometric parameters, i.e., the free surface normal vectors. The IBB-LBM solver was validated through five 

classical fluid-structure interaction cases, covering scenarios from immersed structures to floating ones, and 

from single-phase flows to free surface flows including water waves.  

First, the free settling of an immersed circular solid in single-phase flows was simulated to verify the code 

implementation and the revised GIMEM. Next, a rising cylinder with a prescribed constant velocity in free 

surface flow was simulated, involving the indirect interaction between IBB-based FSI and VOF approaches. 

The consistent wake vortex and free surface elevation with those published results presented the reliability of 

this model on simulating immersed structure in free surface flows. Following the immersed bodies, studies on 

partially submerged structures coupling with free surface flows were then conducted, ranging from stationary 

to moving ones, including dam-break flows over obstacles, a freely falling cylinder, and wave interaction with 

a floating box. The violent free surface deformation observed in dam-break flows demonstrated stability and 

accuracy of the current LBM model for free surface simulations and their interaction with fixed structures. 

Partially submerged moving structures require coupling treatment of VOF and IBB-based FSI approaches. To 

validate the proposed gas-liquid-solid treatments, the free-falling cylinder of which the motion is determined 

by the hydrodynamic force and gravity, was simulated. The resulting jet flow, liquid separation points at 

cylinder, and penetration depth aligned well with the experimental data, demonstrating the effectiveness of this 

model in addressing unphysical free surface deformation, with the revised GIMEM proving effective for 

floating bodies. Moreover, wave interaction with a free-floating box was investigated for validating the 

capability in complex dynamic conditions and motion responses.  

Overall, a two-dimensional free surface FSI-LBM model has been proposed for investigating floating bodies 

interacting with free surface flows. Due to LBM’s inherently modular and localized computational framework, 

it offers a flexible basis for extending the developed model to engineering applications, such as renewable 

energy systems (e.g., offshore wind turbines and wave energy farms) and marine aquaculture systems. Further 

efforts are focused on two aspects: (1) extending the current model into a three-dimensional framework and 

also by integrating it with a pneumatic model to study wave interactions with an elastically constrained floating 

oscillating water column wave energy converter; (2) further reducing the force fluctuation issue causing by the 

mass conservation error of the fresh or dead cut cells. 
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