
Graphical Models 141 (2025) 101296

A
1
n

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

Review Article

Feature line extraction based on winding number
Shuxian Cai a, Juan Cao b, Bailin Deng c, Zhonggui Chen a ,∗

a School of Informatics, Xiamen University, Xiamen, 361005, China
b School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China
c School of Computer Science and Informatics, Cardiff University, Cardiff, CF24 4AG, United Kingdom

A R T I C L E I N F O

Keywords:
Feature detection
Feature extraction
Feature lines
CAD models
Winding number

 A B S T R A C T

Sharp feature lines provide critical structural information in 3D models and are essential for geometric
processing. However, the performance of existing algorithms for extracting feature lines from point clouds
remains sensitive to the quality of the input data. This paper introduces an algorithm specifically designed to
extract feature lines from 3D point clouds. The algorithm calculates the winding number for each point and
uses variations in this number within edge regions to identify feature points. These feature points are then
mapped onto a cuboid structure to obtain key feature points and capture neighboring relationships. Finally,
feature lines are fitted based on the connectivity of key feature points. Extensive experiments demonstrate
that this algorithm not only accurately detects feature points on potential sharp edges, but also outperforms
existing methods in extracting subtle feature lines and handling complex point clouds.

Contents

1. Introduction .. 1
2. Related work... 2
3. Method ... 3

3.1. Feature point detection ... 3
3.2. Feature line extraction .. 4

4. Experiments .. 6
4.1. Experiment setup ... 6
4.2. Comparisons .. 6

4.2.1. Feature point detection... 6
4.2.2. Feature line extraction.. 7

4.3. Influence of parameter settings.. 9
4.4. Influence of normal estimation methods ... 9
4.5. Influence of point density ... 9
4.6. Robustness to real-world objects .. 9
4.7. Computational efficiency... 10

5. Conclusion .. 10
 CRediT authorship contribution statement ... 11
 Declaration of competing interest .. 11
 Acknowledgments .. 11
 Data availability .. 11
 References... 12
1. Introduction

Advances in 3D scanning technology have greatly facilitated the
digitization and reconstruction of the real world, impacting fields such

∗ Corresponding author.
E-mail addresses: caishuxian0202@163.com (S. Cai), juancao@xmu.edu.cn (J. Cao), DengB3@cardiff.ac.uk (B. Deng), chenzhonggui@xmu.edu.cn (Z. Chen).

as 3D modeling, aerospace, and industrial design. Point clouds, which
serve as the raw output from 3D scanners, are a primary data type used
in graphics and visual tasks. However, issues like instrument accuracy,
https://doi.org/10.1016/j.gmod.2025.101296
Received 26 June 2025; Received in revised form 26 July 2025; Accepted 29 July
vailable online 13 August 2025
524-0703/© 2025 The Authors. Published by Elsevier Inc. This is an open access
c/4.0/).
2025

article under the CC BY-NC license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/gmod
https://www.elsevier.com/locate/gmod
https://orcid.org/0000-0002-9960-4896
mailto:caishuxian0202@163.com
mailto:juancao@xmu.edu.cn
mailto:DengB3@cardiff.ac.uk
mailto:chenzhonggui@xmu.edu.cn
https://doi.org/10.1016/j.gmod.2025.101296
https://doi.org/10.1016/j.gmod.2025.101296
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

S. Cai et al. Graphical Models 141 (2025) 101296
lighting variations, occlusions, and human error can result in noisy
and uneven point cloud data. Consequently, extracting sharp features
from imperfect point clouds remains a challenging task in geometry
processing.

Sharp edges are key geometric features in 3D models that can
abstractly represent complex shapes and aid in tasks such as surface
reconstruction, shape classification, and normal vector estimation. Cur-
rent methods for extracting these edges typically involve two main
steps: detecting feature points and extracting feature lines. The process
begins by identifying feature points located at sharp edges or corners.
These points are then connected using a predefined topology, and the
connections are subsequently converted into parameterized curves via
spline fitting to effectively capture the model’s sharp geometric details.

Recent methodologies use deep neural networks to detect edge
points, followed by grouping, inferring line endpoints, and curve fit-
ting [1–3]. However, these approaches require high-quality, noise-free
point cloud data and may still produce unsatisfactory results even after
denoising. In contrast, traditional methods often show greater robust-
ness and adaptability to varying point cloud qualities. Nevertheless,
accurate feature curve fitting depends on precise feature detection, and
many previous methods have struggled with detecting distinct feature
points, leading to redundant points that affect the accuracy of the final
fitting.

We observe that in previous detection methods [4–6], an improper
neighborhood search radius is a primary reason for inaccurate feature
point detection. Due to the varying shape complexities of point clouds,
employing a uniform search radius often overlooks sharp features. To
address this, we propose filtering feature points based on winding
numbers. Winding numbers play a crucial role in tasks such as normal
estimation [7], point cloud denoising [8], and edge detection [9].
Points on sharp edges have distinct winding numbers compared to those
on planar surfaces, enabling consistent detection of accurate feature
points in complex models.

Building on this foundation, this paper introduces FlexLine, a novel
framework for extracting feature lines from 3D point clouds. It consists
of two main components: feature point detection and feature line
extraction. Initially, the winding number of the input point cloud
is computed. By applying a threshold, points exhibiting significant
differences in winding number are identified as detected feature points.
These feature points are then partitioned into cuboids to infer adjacency
information. Next, key feature points are selected from the feature
points within each cuboid. Finally, based on the adjacency information,
the key feature points are interconnected to extract piecewise linear
curves, which are then fitted with B-splines to generate feature lines.

In summary, our contributions are as follows:

• We propose a method for detecting feature points using winding
numbers, which enhances the accuracy of feature detection in
complex models and supports subsequent steps.

• We design a cuboid structure to accurately capture neighboring
point information and introduce an adaptive metric for point
cloud quality, enabling precise topological connections and fea-
ture line extraction.

• We introduce a multi-step framework for extracting feature lines
from 3D point clouds, which remains robust to varying point
cloud qualities and accurately extracts sharp geometric features.

The remainder of this paper is structured as follows: Section 2
reviews relevant research on feature point detection and feature line
extraction. Section 3 introduces our framework in detail. Section 4
presents experimental configurations and results. Finally, Section 5
concludes with a summary, limitations, and future prospects.
2
2. Related work

Feature point detection. Feature points are defined as points located
on potential sharp edges within point clouds, and they are essential
for tasks such as point cloud processing, feature enhancement, and
preservation-based reconstruction. Traditional approaches typically be-
gin by computing the neighborhood of each point in the point cloud and
then identify sharp feature points based on residuals from polynomial
fitting within these neighborhoods [10,11]. Weber et al. used Gaussian
graph clustering within local neighborhoods to filter out points that are
unlikely to be sharp features [12]. Mérigot et al. and Bazazian et al.
defined covariance matrices based on Voronoi cells [13] and k-nearest
neighbors [14] of the point cloud, respectively, to capture sharp feature
information. Hackel et al. employed a binary classifier to predict the
contour score of each point, selecting the most significant ones [15].
Xia et al. detected candidate edges by analyzing the ratio of eigenvalues
derived from the gradient of the point cloud [16].

Network-based methods often partition the point cloud into multi-
ple patches and use edge-aware joint loss functions to facilitate net-
work training [17,18]. Raina et al. utilized sharpness fields defined
through Moving Least-Squares to identify sharp edges [19]. Wang et al.
ranked elements in an over-complete set of edges and corner points
to determine feature points [1]. PCEDNet encoded shape differential
information around each point in a Scale Space Matrix (SSM), enabling
the neural network to learn edge characteristics [20]. Hurtado et al.
applied feature candidate selection and neighborhood clustering to
assist in network-based feature prediction [21]. MSL-Net developed a
deep learning approach using intrinsic neighbor shape descriptors to
detect sharp features from 3D point clouds [22]. In addition, graph
convolutional networks [23], multilayer perceptrons [24,25], capsule
network architectures [26], and multitask neural networks [27] have
also been employed to distinguish edge points from non-edge points in
point clouds.

Despite these advancements, the feature points identified by above
methods often lack continuity and may include wrong points. These ap-
proaches are either constrained by global parameters, which can lead to
the oversight of local features, or require extensive manual parameter
tuning, which is inconvenient. Our method leverages winding numbers
for feature point detection, which better accounts for local details and
produces clearer and more comprehensive feature points.
Feature line extraction. Feature lines are crucial for summarizing the
geometric shapes of 3D models and represent a key data type in re-
verse engineering. Traditional methods often utilize the raw structural
information from point clouds to aid in feature line extraction. For
instance, Gumhold et al. analyzed point relationships to fit wedges to
crease lines and angles at connections to reconstruct feature lines [28].
Pauly et al. developed a multi-scale classification operator combined
with an adaptive active contour model [29]. Demarsin et al. employed
first-order segmentation to extract candidate feature points, which
were then processed as a graph to recover sharp feature lines [30].
Daniels et al. applied robust Moving Least-Squares to locally fit po-
tential surface features [31]. Nie introduced a Smooth Shrink Index
(SSI) and integrated it with principal component analysis (PCA) [6].
Xia et al. proposed a graph-based edge connection algorithm to link
detected feature points [16]. Additionally, generating initial feature
line segments and subsequently fitting complete curves based on these
segments can also produce reliable results [32,33].

In contrast, deep learning-based methods handle diverse input data,
such as point clouds, images, or meshes. PIE-NET employs an end-to-
end learnable approach to identify feature edges in 3D point cloud
data and derive a set of parametric curves [1]. DEF calculates a dis-
tance scalar field from a point to the feature line and extends these
distance features to large-scale point clouds [34]. NEF uses rendering-
based differentiable optimization and iterative methods to extract final
parametric 3D curves [2]. NerVE first converts point clouds into vox-
elized models and then extracts piecewise linear curves containing

S. Cai et al. Graphical Models 141 (2025) 101296
Fig. 1. Pipeline of the proposed method. Given an input point cloud, first compute the winding number for each point. Feature points are then detected by examining the
differences in winding numbers on potential planes and edges, with these points marked in purple. To accurately determine the adjacency between points, the feature points
are converted into a structure composed of individual cuboids, and key feature points are identified within each cuboid. By analyzing the connectivity among these cuboids, the
relationships between key feature points are inferred, allowing the connection of key feature points to form curves. Finally, these curves are fitted to generate the final feature
lines.
feature points [3]. SepicNet introduces an adaptive point cloud sam-
pling technique based on curve fitting to more effectively capture sharp
features [35]. Even with these improvements, many methods still face
challenges. They may either overlook some feature regions, produce
discontinuous or non-smooth curves, or rely heavily on high-quality
input point clouds. Our framework, which is based on precise feature
detection, is more robust to low-quality point clouds, ensuring accurate
results and producing continuous and smooth feature lines.

3. Method

Feature lines capture the key geometric features of a 3D model,
and their accuracy depends heavily on the quality of feature detection.
Classical methods [5,6,13,15,36] typically detect feature points based
on normals or curvature. These methods rely on local differential
properties of the point cloud, identifying regions with sharp varia-
tions in normals or extreme values of principal curvature as feature
points. Due to their strong focus on local geometric information, such
methods are often sensitive to noise and variations in point cloud
density, which can degrade accuracy. In contrast, the winding number
approach emphasizes global geometric variation and is more aligned
with topological characteristics. It evaluates the extent to which a
point is enclosed by its potential surface neighborhood, capturing the
‘‘enclosure relationship’’. At sharp edges or in regions of high concavity
or convexity, the degree of enclosure changes dramatically, leading to
abrupt shifts in the winding number, which are used to identify feature
points. Therefore, compared to normal- or curvature-based methods,
the winding number method generally performs better in the presence
of noise, sparsity, or non-uniformly distributed data.

For the subsequent extraction of feature lines, accurately deter-
mining the connectivity between feature points is crucial. Common
approaches involve constructing a k-nearest neighbors (KNN) tree [4]
or a minimum spanning tree [6] to traverse the feature point set and
identify the nearest neighbors for connection. However, these meth-
ods typically requires setting thresholds for distance or quantity and
eliminating redundant nearest points in the same direction. Unlike the
aforementioned methods, our approach transforms the point cloud into
a cubical structure to infer point connectivity. This structure does not
require the cube edges to align with feature points; rather, it partitions
points into multiple groups based on their spatial positions, where each
group corresponds to a cube in the cubical structure. Key feature points
are selected from each group, and the adjacency relationships among
cubes are leveraged to assist in establishing the neighborhood rela-
tionships between the key feature points. Fig. 1 illustrates the overall
framework, and the following sections provide detailed explanations of
each step.
3
Fig. 2. Illustration of the winding number computation. (a) Projection of the control
region of a point in three-dimensional space onto a sphere centered at the query point.
(b) relationship between 𝜃, the potential plane, and the normal from a two-dimensional
perspective. The potential surfaces of the point cloud are highlighted in blue, while the
sphere’s surface centered at the query point and its cross-section are shown in red.

3.1. Feature point detection

In mathematics, the winding number of a closed curve around a
point on a plane is an integer representing the total number of times
the curve wraps around that point. For certain open curves, this number
can be a non-integer. The winding number depends on the curve’s
direction, with counterclockwise wrapping yielding a positive number.
It can be extended to polygonal meshes [9], triangular soups, and point
clouds [37].

Given a set of points  = {𝐩1,𝐩2,𝐩3,… ,𝐩𝑁} on the potential surface
of the model, where each point 𝐩𝑖 has a normal 𝐧𝑖, the winding number
w at a query point 𝐪 can be computed as the signed surface area sum
of the projections of  onto a sphere centered at 𝐪 (see Fig. 2(a)). This
effectively calculates the total signed surface area of the point cloud
wrapped around 𝐪:

w(𝐪) =
𝑁
∑

𝑖=1

𝑎𝑖 cos 𝜃𝑖
4𝜋‖(𝐩𝑖 − 𝐪)‖2

(1)

where 𝑎𝑖 is the dominating area of point 𝐩𝑖, and 𝜃𝑖 is the angle between
the potential surface at 𝐩𝑖 and the tangent plane of the sphere centered
at the query point 𝐪 (see Fig. 2(b)).

For computing 𝑎𝑖, Barill et al. [37] and Xu et al. [7] used KNN trees
and Voronoi diagrams, respectively. However, these methods either
struggle with non-uniform point distributions or are computationally
intensive due to the calculation of Voronoi cell cross-sectional areas.
We observe that 𝑎𝑖 essentially represents the weight of point 𝐩𝑖 in
the point cloud. Therefore, 𝑎𝑖 can be approximated by the area of a
circle centered at 𝐩𝑖, with a radius of half the distance from 𝐩𝑖 to the
nearest point. This modification not only makes the method applicable

S. Cai et al. Graphical Models 141 (2025) 101296
to non-uniform point clouds but also significantly reduces computation
time.

Since 𝜃𝑖 cannot be directly measured, it can be computed using the
vector 𝐪𝐩𝑖 and the unit normal vector 𝐧𝑖. 𝜃𝑖 is the angle between these
two vectors (see Fig. 2(b)). Deriving this, we obtain the generalized
formula for computing the winding number in point clouds:

w(𝐪) =
𝑁
∑

𝑖=1

𝑎𝑖
4𝜋‖𝐩𝑖 − 𝐪‖2

⋅
(𝐩𝑖 − 𝐪) ⋅ 𝐧𝑖

‖𝐩𝑖 − 𝐪‖ ⋅ ‖𝐧𝑖‖

=
𝑁
∑

𝑖=1
𝑎𝑖

(𝐩𝑖 − 𝐪) ⋅ 𝐧𝑖
4𝜋‖𝐩𝑖 − 𝐪‖3

(2)

Notably, as 𝐪 approaches 𝐩𝑖, ‖𝐩𝑖 − 𝐪‖ approaches 0, causing w(𝐪) to
become singular. To address this issue, we adopt the approach outlined
in Parametric Gauss Reconstruction (PGR) [38] and modify w(𝐪) as:

w̃(𝐪) =
{

w(𝐪), ‖𝐩𝑖 − 𝐪‖ ≥ d(𝐪).
∑𝑁

𝑖=1 𝑎𝑖
(𝐩𝑖−𝐪)⋅𝐧𝑖
4𝜋d(𝐪)3 , ‖𝐩𝑖 − 𝐪‖ < d(𝐪).

(3)

where d(𝐪) is a positive function that specifies the modification radius,
with its detailed computation provided in PGR. Thus, the winding
number can be used to infer the position of a point in the point cloud.
If point 𝐪 is inside the point cloud, the winding number approaches 1;
if outside, it approaches 0.

For a query point on the potential surface of the point cloud, the
winding number tends to approach 0.5 [37,38]. Further computational
analysis reveals that the winding number varies according to different
local structures within the point cloud. This pattern can be leveraged
for feature point detection. Fig. 3 illustrates the variation of winding
numbers across different regions in a two-dimensional setting. Since
the winding number quantifies the contribution area of the model
projected onto a circle centered at the query point, its value increases
as the model’s contribution to the circle grows. When the point lies
on a convex corner, the model’s contribution is minimal, leading the
winding number to approach 0. Conversely, when the point is located
on a concave corner, the model’s contribution is more significant,
causing the winding number to approach 1.

Fig. 4 extends this analysis from two-dimensional models to three-
dimensional point clouds, illustrating the distribution pattern of wind-
ing numbers in 3D space. Given that a two-dimensional plane can be
considered a cross-section of a three-dimensional model, the winding
number values in 3D can be broadly classified into three categories. The
first type occurs on convex edges, where the point cloud contributes
only a small portion to the sphere centered at the points in this region,
resulting in a winding number less than 0.5 and trending toward 0.
The second type is found in planar regions, where the winding number
approaches 0.5. The third type is located on concave edges, where the
point cloud contributes significantly to the sphere centered at points
in this region, leading to a winding number greater than 0.5 and
trending toward 1. Based on this pattern, by applying thresholds 𝑎 and 𝑏
(typically set to 0.4 and 0.8, respectively), points with winding numbers
below 𝑎 or above 𝑏 are filtered out and classified as detected feature
points.

3.2. Feature line extraction

To extract and fit feature lines from the detected feature points,
we employ a cuboidal structure to define the adjacency relationships
among them, as illustrated in Fig. 5. First, we identify the maximum
and minimum values of the feature point set along the three coordi-
nate axes (x, y, and z) to construct the largest encompassing cuboid.
Next, based on a predefined resolution, this cuboid is subdivided into
multiple smaller cuboids of equal size. Finally, each feature point is
assigned to its corresponding cuboid according to its spatial location,
and any cuboids that do not contain any feature points are removed.

After constructing the cuboids, we can determine their adjacency
relationships, which in turn allows us to infer the connectivity between
4
Fig. 3. Illustration of winding number value types in the two-dimensional case. The
winding number value depends on the model’s contribution to the circle centered at
the query point. As the model’s contribution increases, the winding number value also
grows accordingly.

Fig. 4. Illustration of winding number value types for a point cloud. The colors
correspond to different feature regions, with each region having a distinct color.
Specifically, blue points are located on convex edges, yellow points are on potential
planar surfaces, and red points are on concave edges. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

feature points. Fig. 6 illustrates different adjacency scenarios among
cuboids. If two cuboids share a face, they are considered face-adjacent;
if they share an edge, they are classified as edge-adjacent. Both cases
indicate that the two cuboids are adjacent. Since each cuboid contains
at least one feature point, the adjacency of two cuboids implies that the
feature points they contain are also adjacent.

If feature points are connected directly based on adjacency relation-
ships, ambiguity may arise because a single cuboid can contain multiple
feature points. To address this, key feature points are selected from each
cuboid to serve as the connected points. However, since the input point

S. Cai et al. Graphical Models 141 (2025) 101296
Fig. 5. Process of constructing cuboids: (a) detecting the initial feature points; (b) constructing a large cuboid based on the distribution of the initial feature points and obtaining
eight vertices; (c) subdividing the large cuboid into multiple smaller cuboids by partitioning the distances between the eight vertices according to the specified resolution; (d)
retaining the cuboids that contain feature points to form a set of cuboids.
Fig. 6. Different types of adjacent cuboids and the structure of the cuboids.

Fig. 7. Rules of point connections. Blue points represent the input (a) noise-free
point cloud and (b) noisy point cloud, where darker colors indicate smaller winding
numbers. Red points denote key feature points, while yellow line segments represent
the connections between points. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

cloud may be either noise-free or noisy, a single selection rule is not
suitable for all cases. To ensure robustness, different key feature point
selection strategies are employed for noise-free and noisy point clouds,
as shown in Fig. 7.

But manual assessment of whether a point cloud contains noise
can be inconvenient and subjective to some extent. Based on this, we
propose to classify point clouds using a local plane fitting residual
metric. For each point 𝐩𝑖 in the point cloud, we consider its 𝑘-nearest
neighborhood 𝑖 and fit a local plane using Principal Component
Analysis (PCA) [39]. The fitting residual is computed as:
𝑟𝑖 = |𝐧𝑖 ⋅ (𝐩𝑖 − 𝐩𝑖

)|, (4)

where 𝐩𝑖
 denotes the centroid of the neighborhood 𝑖, and 𝐧𝑖 is

the direction corresponding to the smallest eigenvalue from PCA. The
5
residual 𝑟𝑖 represents the perpendicular distance from point 𝐩𝑖 to the
fitted plane. After computing the residuals for all points, the mean
residual 𝑟̂ of the entire point cloud is obtained. If 𝑟̂ exceeds 0.002,
the point cloud is classified as noisy. Therefore, the local plane fitting
residual metric can be effectively used to determine whether a point
cloud contains noise.

In the case of a noise-free point cloud, we observe that within
cuboids containing potential corner positions, the feature point closest
to the corner location tends to have a winding number that is an
extremum among all feature points in the cuboid. Specifically, if the
corner is concave and all winding numbers in the cuboid exceed 0.5, the
extremum is the maximum value. Conversely, if the corner is convex
and all winding numbers are below 0.5, the extremum is the minimum
value. Based on this observation, the feature point with the extremum
winding number within each cuboid is directly selected as the key
feature point. This selection method is not limited to potential corner
regions but can also be applied to potential feature edge regions. Since
the points do not contain any extra points outside the potential plane,
the variation in winding numbers along an edge region depends on
their proximity to the feature edge. As a result, points closer to the
feature edge exhibit relatively small differences in winding numbers,
making the extremum-based selection method effective in identifying
key feature points for edge regions as well.

When dealing with noisy point clouds, the irregular distribution of
points introduces significant challenges for feature curve extraction.
Noisy points often appear near potential corners or feature edges, as
presented in Fig. 7(b), further complicating the selection process. To
mitigate the impact of noise and ensure that the chosen key feature
points better reflect the denoised structure, we employ an averaging
approach. This involves computing the average coordinates of all points
within a cuboid and using this averaged position as the key feature
point. Since this calculated point represents the geometric center of
all feature points in the cuboid, it is more likely to be located near
or within the feature region, reducing the influence of noise.

Once the key feature points have been selected, we utilize the
previously established cuboid adjacency relationships to systematically
connect the corresponding key feature points in each cuboid. This
process ultimately results in the construction of a piecewise linear
(PWL) curve that effectively represents the underlying structure of the
point cloud.

Since adjacent cuboids may only share an edge, the intersection
points of multiple edges can create triangular loops, as shown in Fig. 8.
To address this, we have implemented a post-processing step to remove
these loops. We first construct an adjacency list that stores information
about the endpoints of all edges involving each point. Then, using
depth-first search, we traverse edges to identify loops with a length of
3 steps. Finally, we calculate the length of each edge in the loop and
remove the longest edge to obtain a cleaner PWL set. Fig. 8 illustrates
the main workflow of this post-processing step, which improves result
accuracy. After removing loops, we apply Zhu et al.’s method [3] to
extract final parametric feature lines from the PWL set.

S. Cai et al. Graphical Models 141 (2025) 101296
Fig. 8. Procedure of post-processing. Due to the presence of three adjacent cuboids that are each neighboring one another, triangular loops can occur, leading to incorrect point
connections. To resolve this issue, all edges are traversed to identify loops, and the longest edge within each loop is removed to ensure cleaner connections.
Fig. 9. Comparison of results from different feature detection methods with various input point clouds. (a) Uniform, noise 𝜎 = 0.0%; (b) non-uniform, noise 𝜎 = 0.0%; (c) uniform,
noise 𝜎 = 0.6%; (d) uniform, noise 𝜎 = 1.2%.
Fig. 10. Result of curvature computation. (a) Visualization of input point cloud.
(b) Local details of the detected non-feature points (in orange). (c) Local details of
the erroneously computed non-numerical points (in red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

4. Experiments

4.1. Experiment setup

We implemented our framework in C++ on a computer equipped
with an Intel Core i7-12700F CPU at 2.1 GHz and 16 GB of RAM.
Deep learning experiments were performed using an NVIDIA RTX 3090
6
Ti GPU. All experimental data were obtained from the uniform, non-
uniform, and noisy point clouds generated by Huang et al. [40]. All data
were normalized to the range [0,1]. These point clouds were sampled
from the ABC dataset [41], which consists of various CAD models.

To assess the accuracy of the detected feature points and the
extracted feature lines, we randomly selected 100 models from the
ABC dataset. We then evaluated the proximity of our results to the
ground truth using Chamfer Distance (CD) [42] and Hausdorff Distance
(HD) [43].

4.2. Comparisons

Our framework consists of two main parts: feature detection and
feature extraction. The former identifies the initial feature points within
the point cloud, while the latter connects these initial feature points
into lines and performs fitting.

4.2.1. Feature point detection
The criteria for effective feature detection involve identifying fea-

ture points that clearly and continuously represent the sharp features of
a point cloud while preserving local details. We assessed our method’s
effectiveness by comparing it with CDUPC [15], EC-Net [17] and
MSL-Net [22] across three types of input data: uniform, noisy, and
non-uniform.

Fig. 9 presents a comparative analysis of feature detection results
from different input point clouds. As the quality of the point cloud
deteriorates, CDUPC tends to detect excessive redundant points. EC-
Net employs an edge-aware technique for feature point detection and
performs well on both uniform and non-uniform point clouds. However,
in the presence of noise, it often detects many irrelevant points. Mean-
while, MSL-Net, due to its use of non-adaptive parameters, successfully

S. Cai et al. Graphical Models 141 (2025) 101296
Fig. 11. Feature enhancement and extraction results of RFEPS [4] and our method, respectively. (a) Feature regions detected by RFEPS; (b) feature points enhanced by RFEPS;
(c) feature lines extracted using our method.
Fig. 12. Comparison of results from different feature extraction methods with various input point clouds. (a) Uniform, noise 𝜎 = 0.0%; (b) non-uniform, noise 𝜎 = 0.0%; (c) uniform,
noise 𝜎 = 0.6%; (d) uniform, noise 𝜎 = 1.2%.
identifies major features but struggles to capture local sharp features. In
contrast, our method leverages the winding number, effectively over-
coming point cloud imperfections while accurately detecting complete
sharp features and minimizing the presence of erroneous points.

Moreover, Chen [36] proposed utilizing the relationship between
total curvature and Dirichlet energy for feature perception. As shown
in Fig. 10, while this method can detect sharp features, some points
near the feature regions may be mistakenly identified as feature points
(e.g., orange points in Fig. 10(b)). Additionally, numerical anomalies in
the detection results may affect the filtering of feature points (e.g., red
points in Fig. 10(c)).

Another traditional method, RFEPS [4], demonstrates strong per-
formance in feature enhancement. However, for feature detection, it
identifies feature regions rather than specific feature points located
on potential feature lines, as illustrated in Fig. 11(a). The method
then shifts the points within these regions to obtain enhanced feature
points, as shown in Fig. 11(b). Nevertheless, due to the use of spherical
neighborhoods, points near sharp corners tend to be moved toward the
corner itself. As a result, although RFEPS accurately detects feature
regions, the final set of feature points remains discontinuous. Even
after applying curve fitting to these points, it will still fail to produce
continuous feature lines as effectively as our method.

Table 1 provides a quantitative accuracy comparison. Our method
not only performs better visually but also demonstrates a significant
numerical advantage over other methods.
7
4.2.2. Feature line extraction
Feature lines are closely related to detected feature points, and

many feature line extraction methods include a feature detection step.
We compared the complete feature curve extraction frameworks, SSI
[6], PIE-Net [1], NerVE [3], and our algorithm using various input
point clouds.

Fig. 12 shows some experimental results of comparisons. In the SSI
method, using a uniform radius to compute the smooth shrink index
can lead to the misclassification of two closely spaced surfaces as a
feature region. Moreover, its strong emphasis on local details makes it
less robust to noise. For PIE-Net, the use of curve proposal generation
yields continuous feature curves, but the results remain sensitive to
point cloud quality. Evidently, NerVE fails to extract certain sharp
features and is notably less robust to defective point clouds compared
to our method. More results of our method can be found in Fig. 13.
Table 2 compares the results with the ground truth, indicating that our
method’s extracted feature lines deviate less from the ground truth than
those from SSI, PIE-Net and NerVE.

Furthermore, testing NerVE on additional noisy data shows that it
fails to produce results in approximately 44% of cases due to quality
issues of the input point cloud, leading to feature extraction failure.
The underlying reason is that when processing noisy point clouds,
NerVE tends to generate numerous extremely short and discontinuous
line segments. These segments do not meet the degree requirements
for connectable segments and are consequently discarded during the

S. Cai et al.

T
A

s
p
a
s
d

Graphical Models 141 (2025) 101296
Fig. 13. More results on feature extraction using our method.
Fig. 14. Feature extraction results where NerVE fails, but our method successfully generates outcomes.
Table 1
Accuracy assessment of various feature detection methods with different types of input point clouds.
 Types Uniform, noise 𝜎 = 0.0% Non-uniform, noise 𝜎 = 0.0% Uniform, noise 𝜎 = 0.6% Uniform, noise 𝜎 = 1.2%

Methods CDUPC EC-Net MSL-Net Ours CDUPC EC-Net MSL-Net Ours CDUPC EC-Net MSL-Net Ours CDUPC EC-Net MSL-Net Ours
CD↓ 0.0126 0.0102 0.0124 0.0034 0.1323 0.0927 0.1315 0.0582 0.1460 0.1486 0.1354 0.0961 0.3710 0.3807 0.3486 0.1973
HD↓ 0.2519 0.1053 0.2647 0.0398 0.3375 0.2194 0.3269 0.1492 0.3560 0.3685 0.3431 0.1830 0.5821 0.5947 0.5370 0.3224
able 2
ccuracy assessment of various feature extraction methods with different types of input point clouds.
Types Uniform, noise 𝜎 = 0.0% Non-uniform, noise 𝜎 = 0.0% Uniform, noise 𝜎 = 0.6% Uniform, noise 𝜎 = 1.2%

Methods SSI PIE-Net NerVE Ours SSI PIE-Net NerVE Ours SSI PIE-Net NerVE Ours SSI PIE-Net NerVE Ours
CD↓ 0.1632 0.0159 0.0240 0.0038 0.2568 0.2105 0.1896 0.0865 0.3304 0.2331 0.2372 0.0989 2.3528 3.2458 1.8923 0.9620
HD↓ 0.5152 0.1290 0.2858 0.0838 0.8495 0.7026 0.6318 0.3950 0.9815 0.7241 0.7123 0.4107 3.0966 3.2594 2.6346 1.0384
i
l
i

ubsequent connection and fitting process, resulting in a failure to out-
ut feature extraction results. This highlights the instability of NerVE
nd its low tolerance to point cloud quality. In contrast, our method
uccessfully extracts features even from low-quality point clouds, as
emonstrated by examples in Fig. 14.
 r

8
Additionally, DEF [34] is also included for comparison. Since the
mplementation code of DEF is not publicly available and its results are
imited to uniform point cloud data, we compare it only on uniform
nputs, using the experimental results provided in the official DEF
epository. As shown in Fig. 15, our method significantly outperforms

S. Cai et al. Graphical Models 141 (2025) 101296
Fig. 15. Comparison of results from different feature extraction methods with uniform
input point clouds.

DEF on uniform point clouds, particularly in regions with subtle sharp
features or complex structures. The strength of our approach lies in its
precise feature detection, which enables the identification of feature
points along potential arc segments, resulting in more complete feature
lines.

4.3. Influence of parameter settings

The values of key parameters significantly impact the quality of
results. In feature detection, thresholds 𝑎 and 𝑏 are used to determine
which points are marked as feature points. Fig. 16 illustrates detection
results with various threshold combinations, where points with a wind-
ing number below 𝑎 or above 𝑏 are identified as feature points. It can be
observed that when 𝑎 is too small, feature points on outward protruding
edges become discontinuous and sparse, whereas a larger 𝑎 results in
an excess of points. Similarly, if 𝑏 is too small, inward concave edges
yield many irrelevant points, whereas a larger 𝑏 leads to sparse feature
points. Inappropriate values for 𝑎 or 𝑏 may also introduce points from
planar regions. Therefore, we set 𝑎 and 𝑏 to default values of 0.4 and
0.8, respectively, to ensure higher quality feature points.

In feature extraction, resolution determines the density of cubes,
which in turn affects the connectivity between points. Fig. 17 provides
the results of feature line extraction at different resolutions. When the
resolution is too low, the number of cuboids is limited, causing many
unrelated feature points to be connected. However, when the resolution
is too high, the excessive number of cuboids may lead to the generation
of numerous redundant fine structures. Therefore, we set the default
resolution to 32 to ensure the extraction of more complete and accurate
feature curves.

4.4. Influence of normal estimation methods

Our framework requires input point clouds to have oriented nor-
mals that are consistent and roughly accurate. While many public
datasets include normals, some datasets or scanned data require users
to estimate them. Different estimation methods may produce slightly
different results. To validate the robustness of our method, we used
both Principal Component Analysis (PCA) [39] and Quadric Surface
Fitting [44] for normal estimation. Fig. 18 shows that these methods
have minimal impact on feature detection performance. Therefore,
users do not need a specific estimation method, but should ensure that
the normals are approximately correct.
9
Fig. 16. Impact of different threshold settings. Points with winding numbers less than
𝑎 or greater than 𝑏 are classified as feature points. Inappropriate values for 𝑎 or 𝑏 can
lead to incorrect feature points or missed features. In our method, 𝑎 and 𝑏 are set to
0.4 and 0.8, respectively, to achieve optimal feature detection results.

Fig. 17. Impact of different resolution settings at (a) 16, (b) 32 and (c) 64.

4.5. Influence of point density

To further demonstrate the advantages of the proposed method, we
conduct a comparative experiment with the SSI method using sparse
point clouds, as shown in Fig. 19. The proposed approach exhibits
greater robustness to point cloud sparsity and successfully detects
feature points even in sharp-angle regions. In comparison, the feature
points detected by the SSI method are noticeably less complete.

4.6. Robustness to real-world objects

The primary objective of our method is to extract sharp feature
lines from point clouds of real-world objects. To further validate our

S. Cai et al. Graphical Models 141 (2025) 101296
Fig. 18. Comparison of feature detection results using different normal estimation methods: (a) PCA and (b) Quadric Surface Fitting. From left to right: visualization of winding
number calculations for the point cloud, local details of normal direction and the winding number (with blue indicating values near 0 and red indicating values near 1), and
feature detection results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 19. Comparison of feature detection results on sparse point clouds.
method on real-world data, we performed experiments using point
clouds generated by the Artec 3D scanner. As shown in Fig. 20, our
method effectively captures most geometric features.

To more thoroughly evaluate the noise robustness of our method,
we tested it on scanned point clouds with low noise (first row of Fig.
21) and low-quality data with severe noise, non-uniform density, and
missing regions (second row of Fig. 21). Results show that our method
effectively extracts feature lines from low noisy data and, despite
some incompleteness, still captures the overall geometry in poor-quality
point clouds.

4.7. Computational efficiency

In addition to accuracy, computational efficiency is an important
metric for evaluating the real-world performance of feature line ex-
traction algorithms. Table 3 presents the runtime of our algorithm.
The feature detection step has a time complexity of (𝑛2), where 𝑛
represents the number of points in the point cloud. As the number
of points increases, the runtime increases significantly, making this
step substantially longer than the subsequent steps. In comparison, the
feature extraction step involves converting feature points into multiple
cuboids and has a time complexity of (𝑚2), where 𝑚 is the number
of cuboids. This step’s runtime is closely related to the number of
feature points and the complexity of the geometric features, so it is less
influenced by the total point cloud size and rises more slowly.
10
Given that the most time-intensive part of the feature detection
process is the calculation of winding numbers, we optimized the al-
gorithm by parallelizing the loop computations across multiple threads
and implementing it on the GPU to improve performance. We compared
the execution time of the program on the CPU to that on the GPU
with parallel threading. The results show a significant improvement
in execution speed with GPU acceleration, greatly reducing processing
time. Overall, while the execution time increases with the number
of points in the point cloud, the computational overhead remains
manageable.

5. Conclusion

This paper introduces a framework for extracting sharp feature lines
from 3D point clouds. The method begins by calculating the winding
number of the point cloud, then selects points that exceed a threshold as
detected feature points. These points are converted into a cuboid struc-
ture to extract key feature points and infer the adjacency relationships
between them. Finally, these key feature points are connected and fitted
to produce feature lines. Experimental results show that our method has
notable advantages, with detected feature points being more coherently
arranged and predominantly located on potential edges. Furthermore,
the final extracted feature lines effectively capture significant geometric
features of the model.

S. Cai et al. Graphical Models 141 (2025) 101296
Table 3
Running time (in seconds) of our method with respect to the number of points.
 Point size Detection (CPU) Detection (GPU) Extraction Total (CPU) Total (GPU)
 20K 6.44 0.12 4.96 11.40 5.08
 40K 21.27 0.19 6.90 28.17 7.09
 60K 44.39 0.29 7.99 52.38 8.28
 80K 92.58 0.37 9.27 101.85 9.66
 100K 155.82 0.46 12.86 168.69 13.32
Fig. 20. Feature extraction results from uniform real-world scanned point clouds. (a)
Real-world objects; (b) scanned point clouds; (c) extracted feature lines.

Fig. 21. Feature extraction results on low-quality real-world scanned point clouds with
noise, non-uniform density, and missing regions. (a) Scanned point clouds; (b) local
details of scanned point clouds; (c) extracted feature lines.
11
While our method proves to be more efficient than others, it does
have certain limitations. For thin-shell models, although feature detec-
tion can identify accurate feature points, closely spaced edge points on
opposite sides may be assigned to adjacent cubes during extraction,
leading to incorrect intersecting feature lines. While increasing the
resolution can alleviate this issue, it requires iterative manual param-
eter tuning based on experience, which is inconvenient. In the future,
adaptive parameter setting based on point spacing could be developed
to address this limitation more effectively.

On the other hand, the time complexity of the feature detection
step is (𝑛2). Although GPU acceleration can significantly reduce run-
time, the computational cost still increases substantially when dealing
with extremely large point clouds. In the winding number computa-
tion, points closer to the query point have a greater influence than
those farther away. Therefore, future work may consider adopting
efficient approximation strategies, such as the fast computation method
proposed by Lin et al. [45], to reduce the number of calculations. More-
over, while the proposed method is robust to noisy point clouds, the
accuracy of the winding number can still be affected when the normals
are incorrect or noisy. To address this limitation, future improvements
could involve designing a modified winding number formulation with
perturbation terms to improve robustness to erroneous normals.

CRediT authorship contribution statement

Shuxian Cai: Writing – original draft, Visualization, Software,
Methodology. Juan Cao: Writing – review & editing, Supervision,
Project administration, Funding acquisition, Conceptualization. Bailin
Deng: Writing – review & editing, Supervision, Methodology, Funding
acquisition, Conceptualization. Zhonggui Chen: Supervision, Project
administration, Methodology, Funding acquisition, Conceptualization,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The work of Zhonggui Chen and Juan Cao was supported by the
National Key R&D Program of China (No. 2022YFB3303400), National
Natural Science Foundation of China (Nos. 62272402, 62372389),
Natural Science Foundation of Fujian Province, China (No. 2024J01513
243), Special Fund for Key Program of Science and Technology of Fu-
jian Province, China (No. 2022YZ040011), and Fundamental Research
Funds for the Central Universities, China (No. 20720220037). The work
of Bailin Deng was supported by the Xiamen Outward Mobility Fund
from Cardiff University, United Kingdom.

Data availability

Data will be made available on request.

S. Cai et al. Graphical Models 141 (2025) 101296
References

[1] X. Wang, Y. Xu, K. Xu, A. Tagliasacchi, B. Zhou, A. Mahdavi-Amiri, H. Zhang,
PIE-Net: parametric inference of point cloud edges, in: Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20,
Curran Associates Inc., Red Hook, NY, USA, 2020.

[2] Y. Ye, R. Yi, Z. Gao, C. Zhu, Z. Cai, K. Xu, NEF: Neural edge fields for 3D
parametric curve reconstruction from Multi-View images, in: 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, IEEE Computer
Society, Los Alamitos, CA, USA, 2023, pp. 8486–8495, http://dx.doi.org/10.
1109/CVPR52729.2023.00820.

[3] X. Zhu, D. Du, W. Chen, Z. Zhao, Y. Nie, X. Han, NerVE: Neural volumetric edges
for parametric curve extraction from point cloud, in: 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR, 2023, pp. 13601–13610,
http://dx.doi.org/10.1109/CVPR52729.2023.01307.

[4] R. Xu, Z. Wang, Z. Dou, C. Zong, S. Xin, M. Jiang, T. Ju, C. Tu, RFEPS:
Reconstructing Feature-Line equipped polygonal surface, ACM Trans. Graph. 41
(6) (2022) http://dx.doi.org/10.1145/3550454.3555443.

[5] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, H.R. Zhang, Edge-aware
point set resampling, ACM Trans. Graph. 32 (1) (2013) http://dx.doi.org/10.
1145/2421636.2421645.

[6] J. Nie, Extracting feature lines from point clouds based on smooth shrink and
iterative thinning, Graph. Model. 84 (2016) 38–49, http://dx.doi.org/10.1016/j.
gmod.2016.04.001.

[7] R. Xu, Z. Dou, N. Wang, S. Xin, S. Chen, M. Jiang, X. Guo, W. Wang, C.
Tu, Globally consistent normal orientation for point clouds by regularizing the
Winding-Number Field, ACM Trans. Graph. 42 (4) (2023) http://dx.doi.org/10.
1145/3592129.

[8] D. Xiao, Y. Ma, Z. Shi, S. Xin, W. Wang, B. Deng, B. Wang, Winding clearness
for differentiable point cloud optimization, 2024, arXiv:2401.13639 URL https:
//arxiv.org/abs/2401.13639.

[9] A. Jacobson, L. Kavan, O. Sorkine-Hornung, Robust inside-outside segmentation
using generalized winding numbers, ACM Trans. Graph. 32 (4) (2013) http:
//dx.doi.org/10.1145/2461912.2461916.

[10] S. Fleishman, D. Cohen-Or, C.T. Silva, Robust moving least-squares fitting with
sharp features, ACM Trans. Graph. 24 (3) (2005) 544–552, http://dx.doi.org/10.
1145/1073204.1073227.

[11] J.I. Daniels, L.K. Ha, T. Ochotta, C.T. Silva, Robust smooth feature extraction
from point clouds, in: IEEE International Conference on Shape Modeling and
Applications 2007, SMI’07, 2007, pp. 123–136, http://dx.doi.org/10.1109/SMI.
2007.32.

[12] C. Weber, S. Hahmann, H. Hagen, Sharp feature detection in point clouds,
in: 2010 Shape Modeling International Conference, 2010, pp. 175–186, http:
//dx.doi.org/10.1109/SMI.2010.32.

[13] Q. Mérigot, M. Ovsjanikov, L.J. Guibas, Voronoi-Based curvature and feature
estimation from point clouds, IEEE Trans. Vis. Comput. Graphics 17 (6) (2011)
743–756, http://dx.doi.org/10.1109/TVCG.2010.261.

[14] D. Bazazian, J.R. Casas, J. Ruiz-Hidalgo, Fast and robust edge extraction in
unorganized point clouds, in: 2015 International Conference on Digital Image
Computing: Techniques and Applications, DICTA, 2015, pp. 1–8, http://dx.doi.
org/10.1109/DICTA.2015.7371262.

[15] T. Hackel, J.D. Wegner, K. Schindler, Contour detection in unstructured 3D point
clouds, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2016, pp. 1610–1618, http://dx.doi.org/10.1109/CVPR.2016.178.

[16] S. Xia, R. Wang, A fast edge extraction method for mobile lidar point clouds,
IEEE Geosci. Remote. Sens. Lett. 14 (8) (2017) 1288–1292, http://dx.doi.org/
10.1109/LGRS.2017.2707467.

[17] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, P.-A. Heng, EC-Net: An Edge-Aware point
set consolidation network, in: V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss
(Eds.), Computer Vision – ECCV 2018, Springer International Publishing, Cham,
2018, pp. 398–414.

[18] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, P.-A. Heng, PU-Net: Point cloud up-
sampling network, in: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 2790–2799, http://dx.doi.org/10.1109/CVPR.
2018.00295.

[19] P. Raina, S. Mudur, T. Popa, Sharpness fields in point clouds using deep learning,
Comput. Graph. (2019).

[20] C.-E. Himeur, T. Lejemble, T. Pellegrini, M. Paulin, L. Barthe, N. Mellado,
PCEDNet: A lightweight neural network for fast and interactive edge detection in
3D point clouds, ACM Trans. Graph. 41 (1) (2021) http://dx.doi.org/10.1145/
3481804.

[21] J. Hurtado, M. Gattass, A. Raposo, 3D point cloud denoising using anisotropic
neighborhoods and a novel sharp feature detection algorithm, Vis. Comput. 39
(2023) 5823–5848, http://dx.doi.org/10.1007/s00371-022-02698-6.

[22] X. Jiao, C. Lv, R. Yi, J. Zhao, Z. Pan, Z. Wu, Y.-J. Liu, MSL-Net: Sharp feature
detection network for 3D point clouds, IEEE Trans. Vis. Comput. Graphics 30
(9) (2024) 6433–6446, http://dx.doi.org/10.1109/TVCG.2023.3346907.
12
[23] M. Loizou, M. Averkiou, E. Kalogerakis, Learning part boundaries from 3D point
clouds, Comput. Graph. Forum 39 (5) (2020) 183–195, http://dx.doi.org/10.
1111/cgf.14078.

[24] D. Zhang, X. Lu, H. Qin, Y. He, Pointfilter: Point cloud filtering via Encoder-
Decoder modeling, IEEE Trans. Vis. Comput. Graphics 27 (03) (2021) 2015–2027,
http://dx.doi.org/10.1109/TVCG.2020.3027069.

[25] Y.-F. Feng, L.-Y. Shen, C.-M. Yuan, X. Li, Deep shape representation with sharp
feature preservation, Comput.- Aided Des. 157 (2023) 103468, http://dx.doi.org/
10.1016/j.cad.2022.103468.

[26] D. Bazazian, M.E. Parés, EDC-Net: Edge detection capsule network for 3D point
clouds, Appl. Sci. 11 (4) (2021) 1833, http://dx.doi.org/10.3390/app11041833.

[27] T. Zhao, M. Yu, P. Alliez, F. Lafarge, Sharp feature consolidation from raw 3D
point clouds via displacement learning, Comput. Aided Geom. Design 103 (2023)
102204, http://dx.doi.org/10.1016/j.cagd.2023.102204.

[28] S. Gumhold, X. Wang, R.S. MacLeod, Feature extraction from point clouds, in:
Proceedings of the 10th International Meshing Roundtable, IMR, Sandia National
Laboratories, 2001, pp. 11–14.

[29] M. Pauly, R. Keiser, M. Gross, Multi-scale feature extraction on Point-Sampled
surfaces, Comput. Graph. Forum 22 (3) (2003) 281–289, http://dx.doi.org/10.
1111/1467-8659.00675.

[30] K. Demarsin, D. Vanderstraeten, T. Volodine, D. Roose, Detection of closed sharp
edges in point clouds using normal estimation and graph theory, Comput.- Aided
Des. 39 (4) (2007) 276–283, http://dx.doi.org/10.1016/j.cad.2006.12.005.

[31] J. Daniels II, T. Ochotta, L. Ha, et al., Spline-based feature curves from Point-
sampled Geometry, Vis. Comput. 24 (2008) 449–462, http://dx.doi.org/10.1007/
s00371-008-0223-2.

[32] Y. Lin, C. Wang, J. Cheng, B. Chen, F. Jia, Z. Chen, J. Li, Line segment extraction
for large scale unorganized point clouds, ISPRS J. Photogramm. Remote Sens.
102 (2015) 172–183, http://dx.doi.org/10.1016/j.isprsjprs.2014.12.027.

[33] Y. Cao, L. Nan, P. Wonka, Curve networks for surface reconstruction, 2016,
arXiv:1603.08753 URL https://arxiv.org/abs/1603.08753.

[34] A. Matveev, R. Rakhimov, A. Artemov, G. Bobrovskikh, V. Egiazarian, E.
Bogomolov, D. Panozzo, D. Zorin, E. Burnaev, DEF: deep estimation of sharp
geometric features in 3D shapes, ACM Trans. Graph. 41 (4) (2022) http://dx.
doi.org/10.1145/3528223.3530140.

[35] K. Cherenkova, E. Dupont, A. Kacem, I. Arzhannikov, G. Gusev, D. Aouada, Sepic-
Net: Sharp edges recovery by parametric inference of curves in 3D shapes, in:
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops, CVPRW, 2023, pp. 2727–2735, http://dx.doi.org/10.1109/CVPRW59228.
2023.00273.

[36] C.H. Chen, Estimating discrete total curvature with per triangle normal variation,
in: ACM SIGGRAPH 2023 Talks, SIGGRAPH ’23, Association for Computing
Machinery, New York, NY, USA, 2023, http://dx.doi.org/10.1145/3587421.
3595439.

[37] G. Barill, N.G. Dickson, R. Schmidt, D.I.W. Levin, A. Jacobson, Fast winding
numbers for soups and clouds, ACM Trans. Graph. 37 (4) (2018) http://dx.doi.
org/10.1145/3197517.3201337.

[38] S. Lin, D. Xiao, Z. Shi, B. Wang, Surface reconstruction from point clouds without
normals by parametrizing the Gauss Formula, ACM Trans. Graph. 42 (2) (2022)
http://dx.doi.org/10.1145/3554730.

[39] I.T. Jolliffe, J. Cadima, Principal component analysis: a review and recent
developments, Phil. Trans. R. Soc. A 374 (20150202) (2016) http://dx.doi.org/
10.1098/rsta.2015.0202.

[40] Z. Huang, Y. Wen, Z. Wang, J. Ren, K. Jia, Surface reconstruction from point
clouds: A survey and a benchmark, IEEE Trans. Pattern Anal. Mach. Intell. (2024)
1–20, http://dx.doi.org/10.1109/TPAMI.2024.3429209.

[41] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev, M. Alexa, D.
Zorin, D. Panozzo, ABC: A big CAD model dataset for geometric deep learning,
in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2019.

[42] P. Erler, P. Guerrero, S. Ohrhallinger, N.J. Mitra, M. Wimmer, Points2Surf
learning implicit surfaces from point clouds, in: Computer Vision – ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
V, Springer-Verlag, Berlin, Heidelberg, 2020, pp. 108–124, http://dx.doi.org/10.
1007/978-3-030-58558-7_7.

[43] R.T. Rockafellar, R.J.B. Wets, Variational Analysis, first ed., in: Grundlehren der
Mathematischen Wissenschaften, Springer Berlin, Heidelberg, 1997, p. 736, http:
//dx.doi.org/10.1007/978-3-642-02431-3, Hardcover: 1997; Softcover: 2010;
eBook: 2009.

[44] D.-M. Yan, W. Wang, Y. Liu, Z. Yang, Variational mesh segmentation via quadric
surface fitting, Comput.- Aided Des. 44 (11) (2012) 1072–1082, http://dx.doi.
org/10.1016/j.cad.2012.04.005.

[45] S. Lin, Z. Shi, Y. Liu, Fast and globally consistent normal orientation based
on the winding number normal consistency, ACM Trans. Graph. 43 (6) (2024)
http://dx.doi.org/10.1145/3687895.

http://refhub.elsevier.com/S1524-0703(25)00043-8/sb1
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb1
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb1
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb1
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb1
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb1
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb1
http://dx.doi.org/10.1109/CVPR52729.2023.00820
http://dx.doi.org/10.1109/CVPR52729.2023.00820
http://dx.doi.org/10.1109/CVPR52729.2023.00820
http://dx.doi.org/10.1109/CVPR52729.2023.01307
http://dx.doi.org/10.1145/3550454.3555443
http://dx.doi.org/10.1145/2421636.2421645
http://dx.doi.org/10.1145/2421636.2421645
http://dx.doi.org/10.1145/2421636.2421645
http://dx.doi.org/10.1016/j.gmod.2016.04.001
http://dx.doi.org/10.1016/j.gmod.2016.04.001
http://dx.doi.org/10.1016/j.gmod.2016.04.001
http://dx.doi.org/10.1145/3592129
http://dx.doi.org/10.1145/3592129
http://dx.doi.org/10.1145/3592129
http://arxiv.org/abs/2401.13639
https://arxiv.org/abs/2401.13639
https://arxiv.org/abs/2401.13639
https://arxiv.org/abs/2401.13639
http://dx.doi.org/10.1145/2461912.2461916
http://dx.doi.org/10.1145/2461912.2461916
http://dx.doi.org/10.1145/2461912.2461916
http://dx.doi.org/10.1145/1073204.1073227
http://dx.doi.org/10.1145/1073204.1073227
http://dx.doi.org/10.1145/1073204.1073227
http://dx.doi.org/10.1109/SMI.2007.32
http://dx.doi.org/10.1109/SMI.2007.32
http://dx.doi.org/10.1109/SMI.2007.32
http://dx.doi.org/10.1109/SMI.2010.32
http://dx.doi.org/10.1109/SMI.2010.32
http://dx.doi.org/10.1109/SMI.2010.32
http://dx.doi.org/10.1109/TVCG.2010.261
http://dx.doi.org/10.1109/DICTA.2015.7371262
http://dx.doi.org/10.1109/DICTA.2015.7371262
http://dx.doi.org/10.1109/DICTA.2015.7371262
http://dx.doi.org/10.1109/CVPR.2016.178
http://dx.doi.org/10.1109/LGRS.2017.2707467
http://dx.doi.org/10.1109/LGRS.2017.2707467
http://dx.doi.org/10.1109/LGRS.2017.2707467
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb17
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb17
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb17
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb17
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb17
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb17
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb17
http://dx.doi.org/10.1109/CVPR.2018.00295
http://dx.doi.org/10.1109/CVPR.2018.00295
http://dx.doi.org/10.1109/CVPR.2018.00295
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb19
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb19
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb19
http://dx.doi.org/10.1145/3481804
http://dx.doi.org/10.1145/3481804
http://dx.doi.org/10.1145/3481804
http://dx.doi.org/10.1007/s00371-022-02698-6
http://dx.doi.org/10.1109/TVCG.2023.3346907
http://dx.doi.org/10.1111/cgf.14078
http://dx.doi.org/10.1111/cgf.14078
http://dx.doi.org/10.1111/cgf.14078
http://dx.doi.org/10.1109/TVCG.2020.3027069
http://dx.doi.org/10.1016/j.cad.2022.103468
http://dx.doi.org/10.1016/j.cad.2022.103468
http://dx.doi.org/10.1016/j.cad.2022.103468
http://dx.doi.org/10.3390/app11041833
http://dx.doi.org/10.1016/j.cagd.2023.102204
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb28
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb28
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb28
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb28
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb28
http://dx.doi.org/10.1111/1467-8659.00675
http://dx.doi.org/10.1111/1467-8659.00675
http://dx.doi.org/10.1111/1467-8659.00675
http://dx.doi.org/10.1016/j.cad.2006.12.005
http://dx.doi.org/10.1007/s00371-008-0223-2
http://dx.doi.org/10.1007/s00371-008-0223-2
http://dx.doi.org/10.1007/s00371-008-0223-2
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.027
http://arxiv.org/abs/1603.08753
https://arxiv.org/abs/1603.08753
http://dx.doi.org/10.1145/3528223.3530140
http://dx.doi.org/10.1145/3528223.3530140
http://dx.doi.org/10.1145/3528223.3530140
http://dx.doi.org/10.1109/CVPRW59228.2023.00273
http://dx.doi.org/10.1109/CVPRW59228.2023.00273
http://dx.doi.org/10.1109/CVPRW59228.2023.00273
http://dx.doi.org/10.1145/3587421.3595439
http://dx.doi.org/10.1145/3587421.3595439
http://dx.doi.org/10.1145/3587421.3595439
http://dx.doi.org/10.1145/3197517.3201337
http://dx.doi.org/10.1145/3197517.3201337
http://dx.doi.org/10.1145/3197517.3201337
http://dx.doi.org/10.1145/3554730
http://dx.doi.org/10.1098/rsta.2015.0202
http://dx.doi.org/10.1098/rsta.2015.0202
http://dx.doi.org/10.1098/rsta.2015.0202
http://dx.doi.org/10.1109/TPAMI.2024.3429209
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb41
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb41
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb41
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb41
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb41
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb41
http://refhub.elsevier.com/S1524-0703(25)00043-8/sb41
http://dx.doi.org/10.1007/978-3-030-58558-7_7
http://dx.doi.org/10.1007/978-3-030-58558-7_7
http://dx.doi.org/10.1007/978-3-030-58558-7_7
http://dx.doi.org/10.1007/978-3-642-02431-3
http://dx.doi.org/10.1007/978-3-642-02431-3
http://dx.doi.org/10.1007/978-3-642-02431-3
http://dx.doi.org/10.1016/j.cad.2012.04.005
http://dx.doi.org/10.1016/j.cad.2012.04.005
http://dx.doi.org/10.1016/j.cad.2012.04.005
http://dx.doi.org/10.1145/3687895

	Feature line extraction based on winding number
	Introduction
	Related work
	Method
	Feature point detection
	Feature line extraction

	Experiments
	Experiment setup
	Comparisons
	Feature point detection
	Feature line extraction

	Influence of parameter settings
	Influence of normal estimation methods
	Influence of point density
	Robustness to real-world objects
	Computational efficiency

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

