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 A B S T R A C T

Sharp feature lines provide critical structural information in 3D models and are essential for geometric 
processing. However, the performance of existing algorithms for extracting feature lines from point clouds 
remains sensitive to the quality of the input data. This paper introduces an algorithm specifically designed to 
extract feature lines from 3D point clouds. The algorithm calculates the winding number for each point and 
uses variations in this number within edge regions to identify feature points. These feature points are then 
mapped onto a cuboid structure to obtain key feature points and capture neighboring relationships. Finally, 
feature lines are fitted based on the connectivity of key feature points. Extensive experiments demonstrate 
that this algorithm not only accurately detects feature points on potential sharp edges, but also outperforms 
existing methods in extracting subtle feature lines and handling complex point clouds.
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1. Introduction

Advances in 3D scanning technology have greatly facilitated the 
digitization and reconstruction of the real world, impacting fields such 
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as 3D modeling, aerospace, and industrial design. Point clouds, which 
serve as the raw output from 3D scanners, are a primary data type used 
in graphics and visual tasks. However, issues like instrument accuracy, 
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lighting variations, occlusions, and human error can result in noisy 
and uneven point cloud data. Consequently, extracting sharp features 
from imperfect point clouds remains a challenging task in geometry 
processing.

Sharp edges are key geometric features in 3D models that can 
abstractly represent complex shapes and aid in tasks such as surface 
reconstruction, shape classification, and normal vector estimation. Cur-
rent methods for extracting these edges typically involve two main 
steps: detecting feature points and extracting feature lines. The process 
begins by identifying feature points located at sharp edges or corners. 
These points are then connected using a predefined topology, and the 
connections are subsequently converted into parameterized curves via 
spline fitting to effectively capture the model’s sharp geometric details.

Recent methodologies use deep neural networks to detect edge 
points, followed by grouping, inferring line endpoints, and curve fit-
ting [1–3]. However, these approaches require high-quality, noise-free 
point cloud data and may still produce unsatisfactory results even after 
denoising. In contrast, traditional methods often show greater robust-
ness and adaptability to varying point cloud qualities. Nevertheless, 
accurate feature curve fitting depends on precise feature detection, and 
many previous methods have struggled with detecting distinct feature 
points, leading to redundant points that affect the accuracy of the final 
fitting.

We observe that in previous detection methods [4–6], an improper 
neighborhood search radius is a primary reason for inaccurate feature 
point detection. Due to the varying shape complexities of point clouds, 
employing a uniform search radius often overlooks sharp features. To 
address this, we propose filtering feature points based on winding 
numbers. Winding numbers play a crucial role in tasks such as normal 
estimation [7], point cloud denoising [8], and edge detection [9]. 
Points on sharp edges have distinct winding numbers compared to those 
on planar surfaces, enabling consistent detection of accurate feature 
points in complex models.

Building on this foundation, this paper introduces FlexLine, a novel 
framework for extracting feature lines from 3D point clouds. It consists 
of two main components: feature point detection and feature line 
extraction. Initially, the winding number of the input point cloud 
is computed. By applying a threshold, points exhibiting significant 
differences in winding number are identified as detected feature points. 
These feature points are then partitioned into cuboids to infer adjacency 
information. Next, key feature points are selected from the feature 
points within each cuboid. Finally, based on the adjacency information, 
the key feature points are interconnected to extract piecewise linear 
curves, which are then fitted with B-splines to generate feature lines.

In summary, our contributions are as follows:

• We propose a method for detecting feature points using winding 
numbers, which enhances the accuracy of feature detection in 
complex models and supports subsequent steps.

• We design a cuboid structure to accurately capture neighboring 
point information and introduce an adaptive metric for point 
cloud quality, enabling precise topological connections and fea-
ture line extraction.

• We introduce a multi-step framework for extracting feature lines 
from 3D point clouds, which remains robust to varying point 
cloud qualities and accurately extracts sharp geometric features.

The remainder of this paper is structured as follows: Section 2 
reviews relevant research on feature point detection and feature line 
extraction. Section 3 introduces our framework in detail. Section 4 
presents experimental configurations and results. Finally, Section 5 
concludes with a summary, limitations, and future prospects.
2 
2. Related work

Feature point detection. Feature points are defined as points located 
on potential sharp edges within point clouds, and they are essential 
for tasks such as point cloud processing, feature enhancement, and 
preservation-based reconstruction. Traditional approaches typically be-
gin by computing the neighborhood of each point in the point cloud and 
then identify sharp feature points based on residuals from polynomial 
fitting within these neighborhoods [10,11]. Weber et al. used Gaussian 
graph clustering within local neighborhoods to filter out points that are 
unlikely to be sharp features [12]. Mérigot et al. and Bazazian et al. 
defined covariance matrices based on Voronoi cells [13] and k-nearest 
neighbors [14] of the point cloud, respectively, to capture sharp feature 
information. Hackel et al. employed a binary classifier to predict the 
contour score of each point, selecting the most significant ones [15]. 
Xia et al. detected candidate edges by analyzing the ratio of eigenvalues 
derived from the gradient of the point cloud [16].

Network-based methods often partition the point cloud into multi-
ple patches and use edge-aware joint loss functions to facilitate net-
work training [17,18]. Raina et al. utilized sharpness fields defined 
through Moving Least-Squares to identify sharp edges [19]. Wang et al. 
ranked elements in an over-complete set of edges and corner points 
to determine feature points [1]. PCEDNet encoded shape differential 
information around each point in a Scale Space Matrix (SSM), enabling 
the neural network to learn edge characteristics [20]. Hurtado et al. 
applied feature candidate selection and neighborhood clustering to 
assist in network-based feature prediction [21]. MSL-Net developed a 
deep learning approach using intrinsic neighbor shape descriptors to 
detect sharp features from 3D point clouds [22]. In addition, graph 
convolutional networks [23], multilayer perceptrons [24,25], capsule 
network architectures [26], and multitask neural networks [27] have 
also been employed to distinguish edge points from non-edge points in 
point clouds.

Despite these advancements, the feature points identified by above 
methods often lack continuity and may include wrong points. These ap-
proaches are either constrained by global parameters, which can lead to 
the oversight of local features, or require extensive manual parameter 
tuning, which is inconvenient. Our method leverages winding numbers 
for feature point detection, which better accounts for local details and 
produces clearer and more comprehensive feature points.
Feature line extraction. Feature lines are crucial for summarizing the 
geometric shapes of 3D models and represent a key data type in re-
verse engineering. Traditional methods often utilize the raw structural 
information from point clouds to aid in feature line extraction. For 
instance, Gumhold et al. analyzed point relationships to fit wedges to 
crease lines and angles at connections to reconstruct feature lines [28]. 
Pauly et al. developed a multi-scale classification operator combined 
with an adaptive active contour model [29]. Demarsin et al. employed 
first-order segmentation to extract candidate feature points, which 
were then processed as a graph to recover sharp feature lines [30]. 
Daniels et al. applied robust Moving Least-Squares to locally fit po-
tential surface features [31]. Nie introduced a Smooth Shrink Index 
(SSI) and integrated it with principal component analysis (PCA) [6]. 
Xia et al. proposed a graph-based edge connection algorithm to link 
detected feature points [16]. Additionally, generating initial feature 
line segments and subsequently fitting complete curves based on these 
segments can also produce reliable results [32,33].

In contrast, deep learning-based methods handle diverse input data, 
such as point clouds, images, or meshes. PIE-NET employs an end-to-
end learnable approach to identify feature edges in 3D point cloud 
data and derive a set of parametric curves [1]. DEF calculates a dis-
tance scalar field from a point to the feature line and extends these 
distance features to large-scale point clouds [34]. NEF uses rendering-
based differentiable optimization and iterative methods to extract final 
parametric 3D curves [2]. NerVE first converts point clouds into vox-
elized models and then extracts piecewise linear curves containing 
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Fig. 1. Pipeline of the proposed method. Given an input point cloud, first compute the winding number for each point. Feature points are then detected by examining the 
differences in winding numbers on potential planes and edges, with these points marked in purple. To accurately determine the adjacency between points, the feature points 
are converted into a structure composed of individual cuboids, and key feature points are identified within each cuboid. By analyzing the connectivity among these cuboids, the 
relationships between key feature points are inferred, allowing the connection of key feature points to form curves. Finally, these curves are fitted to generate the final feature 
lines.
feature points [3]. SepicNet introduces an adaptive point cloud sam-
pling technique based on curve fitting to more effectively capture sharp 
features [35]. Even with these improvements, many methods still face 
challenges. They may either overlook some feature regions, produce 
discontinuous or non-smooth curves, or rely heavily on high-quality 
input point clouds. Our framework, which is based on precise feature 
detection, is more robust to low-quality point clouds, ensuring accurate 
results and producing continuous and smooth feature lines.

3. Method

Feature lines capture the key geometric features of a 3D model, 
and their accuracy depends heavily on the quality of feature detection. 
Classical methods [5,6,13,15,36] typically detect feature points based 
on normals or curvature. These methods rely on local differential 
properties of the point cloud, identifying regions with sharp varia-
tions in normals or extreme values of principal curvature as feature 
points. Due to their strong focus on local geometric information, such 
methods are often sensitive to noise and variations in point cloud 
density, which can degrade accuracy. In contrast, the winding number 
approach emphasizes global geometric variation and is more aligned 
with topological characteristics. It evaluates the extent to which a 
point is enclosed by its potential surface neighborhood, capturing the 
‘‘enclosure relationship’’. At sharp edges or in regions of high concavity 
or convexity, the degree of enclosure changes dramatically, leading to 
abrupt shifts in the winding number, which are used to identify feature 
points. Therefore, compared to normal- or curvature-based methods, 
the winding number method generally performs better in the presence 
of noise, sparsity, or non-uniformly distributed data.

For the subsequent extraction of feature lines, accurately deter-
mining the connectivity between feature points is crucial. Common 
approaches involve constructing a k-nearest neighbors (KNN) tree [4] 
or a minimum spanning tree [6] to traverse the feature point set and 
identify the nearest neighbors for connection. However, these meth-
ods typically requires setting thresholds for distance or quantity and 
eliminating redundant nearest points in the same direction. Unlike the 
aforementioned methods, our approach transforms the point cloud into 
a cubical structure to infer point connectivity. This structure does not 
require the cube edges to align with feature points; rather, it partitions 
points into multiple groups based on their spatial positions, where each 
group corresponds to a cube in the cubical structure. Key feature points 
are selected from each group, and the adjacency relationships among 
cubes are leveraged to assist in establishing the neighborhood rela-
tionships between the key feature points. Fig.  1 illustrates the overall 
framework, and the following sections provide detailed explanations of 
each step.
3 
Fig. 2. Illustration of the winding number computation. (a) Projection of the control 
region of a point in three-dimensional space onto a sphere centered at the query point. 
(b) relationship between 𝜃, the potential plane, and the normal from a two-dimensional 
perspective. The potential surfaces of the point cloud are highlighted in blue, while the 
sphere’s surface centered at the query point and its cross-section are shown in red.

3.1. Feature point detection

In mathematics, the winding number of a closed curve around a 
point on a plane is an integer representing the total number of times 
the curve wraps around that point. For certain open curves, this number 
can be a non-integer. The winding number depends on the curve’s 
direction, with counterclockwise wrapping yielding a positive number. 
It can be extended to polygonal meshes [9], triangular soups, and point 
clouds [37].

Given a set of points  = {𝐩1,𝐩2,𝐩3,… ,𝐩𝑁} on the potential surface 
of the model, where each point 𝐩𝑖 has a normal 𝐧𝑖, the winding number 
w at a query point 𝐪 can be computed as the signed surface area sum 
of the projections of  onto a sphere centered at 𝐪 (see Fig.  2(a)). This 
effectively calculates the total signed surface area of the point cloud 
wrapped around 𝐪: 

w(𝐪) =
𝑁
∑

𝑖=1

𝑎𝑖 cos 𝜃𝑖
4𝜋‖(𝐩𝑖 − 𝐪)‖2

(1)

where 𝑎𝑖 is the dominating area of point 𝐩𝑖, and 𝜃𝑖 is the angle between 
the potential surface at 𝐩𝑖 and the tangent plane of the sphere centered 
at the query point 𝐪 (see Fig.  2(b)).

For computing 𝑎𝑖, Barill et al. [37] and Xu et al. [7] used KNN trees 
and Voronoi diagrams, respectively. However, these methods either 
struggle with non-uniform point distributions or are computationally 
intensive due to the calculation of Voronoi cell cross-sectional areas. 
We observe that 𝑎𝑖 essentially represents the weight of point 𝐩𝑖 in 
the point cloud. Therefore, 𝑎𝑖 can be approximated by the area of a 
circle centered at 𝐩𝑖, with a radius of half the distance from 𝐩𝑖 to the 
nearest point. This modification not only makes the method applicable 
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to non-uniform point clouds but also significantly reduces computation 
time.

Since 𝜃𝑖 cannot be directly measured, it can be computed using the 
vector 𝐪𝐩𝑖 and the unit normal vector 𝐧𝑖. 𝜃𝑖 is the angle between these 
two vectors (see Fig.  2(b)). Deriving this, we obtain the generalized 
formula for computing the winding number in point clouds: 

w(𝐪) =
𝑁
∑

𝑖=1

𝑎𝑖
4𝜋‖𝐩𝑖 − 𝐪‖2

⋅
(𝐩𝑖 − 𝐪) ⋅ 𝐧𝑖

‖𝐩𝑖 − 𝐪‖ ⋅ ‖𝐧𝑖‖

=
𝑁
∑

𝑖=1
𝑎𝑖

(𝐩𝑖 − 𝐪) ⋅ 𝐧𝑖
4𝜋‖𝐩𝑖 − 𝐪‖3

(2)

Notably, as 𝐪 approaches 𝐩𝑖, ‖𝐩𝑖 − 𝐪‖ approaches 0, causing w(𝐪) to 
become singular. To address this issue, we adopt the approach outlined 
in Parametric Gauss Reconstruction (PGR) [38] and modify w(𝐪) as: 

w̃(𝐪) =
{

w(𝐪), ‖𝐩𝑖 − 𝐪‖ ≥ d(𝐪).
∑𝑁

𝑖=1 𝑎𝑖
(𝐩𝑖−𝐪)⋅𝐧𝑖
4𝜋d(𝐪)3 , ‖𝐩𝑖 − 𝐪‖ < d(𝐪).

(3)

where d(𝐪) is a positive function that specifies the modification radius, 
with its detailed computation provided in PGR. Thus, the winding 
number can be used to infer the position of a point in the point cloud. 
If point 𝐪 is inside the point cloud, the winding number approaches 1; 
if outside, it approaches 0.

For a query point on the potential surface of the point cloud, the 
winding number tends to approach 0.5 [37,38]. Further computational 
analysis reveals that the winding number varies according to different 
local structures within the point cloud. This pattern can be leveraged 
for feature point detection. Fig.  3 illustrates the variation of winding 
numbers across different regions in a two-dimensional setting. Since 
the winding number quantifies the contribution area of the model 
projected onto a circle centered at the query point, its value increases 
as the model’s contribution to the circle grows. When the point lies 
on a convex corner, the model’s contribution is minimal, leading the 
winding number to approach 0. Conversely, when the point is located 
on a concave corner, the model’s contribution is more significant, 
causing the winding number to approach 1.

Fig.  4 extends this analysis from two-dimensional models to three-
dimensional point clouds, illustrating the distribution pattern of wind-
ing numbers in 3D space. Given that a two-dimensional plane can be 
considered a cross-section of a three-dimensional model, the winding 
number values in 3D can be broadly classified into three categories. The 
first type occurs on convex edges, where the point cloud contributes 
only a small portion to the sphere centered at the points in this region, 
resulting in a winding number less than 0.5 and trending toward 0. 
The second type is found in planar regions, where the winding number 
approaches 0.5. The third type is located on concave edges, where the 
point cloud contributes significantly to the sphere centered at points 
in this region, leading to a winding number greater than 0.5 and 
trending toward 1. Based on this pattern, by applying thresholds 𝑎 and 𝑏
(typically set to 0.4 and 0.8, respectively), points with winding numbers 
below 𝑎 or above 𝑏 are filtered out and classified as detected feature 
points.

3.2. Feature line extraction

To extract and fit feature lines from the detected feature points, 
we employ a cuboidal structure to define the adjacency relationships 
among them, as illustrated in Fig.  5. First, we identify the maximum 
and minimum values of the feature point set along the three coordi-
nate axes (x, y, and z) to construct the largest encompassing cuboid. 
Next, based on a predefined resolution, this cuboid is subdivided into 
multiple smaller cuboids of equal size. Finally, each feature point is 
assigned to its corresponding cuboid according to its spatial location, 
and any cuboids that do not contain any feature points are removed.

After constructing the cuboids, we can determine their adjacency 
relationships, which in turn allows us to infer the connectivity between 
4 
Fig. 3. Illustration of winding number value types in the two-dimensional case. The 
winding number value depends on the model’s contribution to the circle centered at 
the query point. As the model’s contribution increases, the winding number value also 
grows accordingly.

Fig. 4. Illustration of winding number value types for a point cloud. The colors 
correspond to different feature regions, with each region having a distinct color. 
Specifically, blue points are located on convex edges, yellow points are on potential 
planar surfaces, and red points are on concave edges.  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version 
of this article.)

feature points. Fig.  6 illustrates different adjacency scenarios among 
cuboids. If two cuboids share a face, they are considered face-adjacent; 
if they share an edge, they are classified as edge-adjacent. Both cases 
indicate that the two cuboids are adjacent. Since each cuboid contains 
at least one feature point, the adjacency of two cuboids implies that the 
feature points they contain are also adjacent.

If feature points are connected directly based on adjacency relation-
ships, ambiguity may arise because a single cuboid can contain multiple 
feature points. To address this, key feature points are selected from each 
cuboid to serve as the connected points. However, since the input point 
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Fig. 5. Process of constructing cuboids: (a) detecting the initial feature points; (b) constructing a large cuboid based on the distribution of the initial feature points and obtaining 
eight vertices; (c) subdividing the large cuboid into multiple smaller cuboids by partitioning the distances between the eight vertices according to the specified resolution; (d) 
retaining the cuboids that contain feature points to form a set of cuboids.
Fig. 6. Different types of adjacent cuboids and the structure of the cuboids.

Fig. 7. Rules of point connections. Blue points represent the input (a) noise-free 
point cloud and (b) noisy point cloud, where darker colors indicate smaller winding 
numbers. Red points denote key feature points, while yellow line segments represent 
the connections between points.  (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

cloud may be either noise-free or noisy, a single selection rule is not 
suitable for all cases. To ensure robustness, different key feature point 
selection strategies are employed for noise-free and noisy point clouds, 
as shown in Fig.  7.

But manual assessment of whether a point cloud contains noise 
can be inconvenient and subjective to some extent. Based on this, we 
propose to classify point clouds using a local plane fitting residual 
metric. For each point 𝐩𝑖 in the point cloud, we consider its 𝑘-nearest 
neighborhood 𝑖 and fit a local plane using Principal Component 
Analysis (PCA) [39]. The fitting residual is computed as: 
𝑟𝑖 = |𝐧𝑖 ⋅ (𝐩𝑖 − 𝐩𝑖

)|, (4)

where 𝐩𝑖
 denotes the centroid of the neighborhood 𝑖, and 𝐧𝑖 is 

the direction corresponding to the smallest eigenvalue from PCA. The 
5 
residual 𝑟𝑖 represents the perpendicular distance from point 𝐩𝑖 to the 
fitted plane. After computing the residuals for all points, the mean 
residual 𝑟̂ of the entire point cloud is obtained. If 𝑟̂ exceeds 0.002, 
the point cloud is classified as noisy. Therefore, the local plane fitting 
residual metric can be effectively used to determine whether a point 
cloud contains noise.

In the case of a noise-free point cloud, we observe that within 
cuboids containing potential corner positions, the feature point closest 
to the corner location tends to have a winding number that is an 
extremum among all feature points in the cuboid. Specifically, if the 
corner is concave and all winding numbers in the cuboid exceed 0.5, the 
extremum is the maximum value. Conversely, if the corner is convex 
and all winding numbers are below 0.5, the extremum is the minimum 
value. Based on this observation, the feature point with the extremum 
winding number within each cuboid is directly selected as the key 
feature point. This selection method is not limited to potential corner 
regions but can also be applied to potential feature edge regions. Since 
the points do not contain any extra points outside the potential plane, 
the variation in winding numbers along an edge region depends on 
their proximity to the feature edge. As a result, points closer to the 
feature edge exhibit relatively small differences in winding numbers, 
making the extremum-based selection method effective in identifying 
key feature points for edge regions as well.

When dealing with noisy point clouds, the irregular distribution of 
points introduces significant challenges for feature curve extraction. 
Noisy points often appear near potential corners or feature edges, as 
presented in Fig.  7(b), further complicating the selection process. To 
mitigate the impact of noise and ensure that the chosen key feature 
points better reflect the denoised structure, we employ an averaging 
approach. This involves computing the average coordinates of all points 
within a cuboid and using this averaged position as the key feature 
point. Since this calculated point represents the geometric center of 
all feature points in the cuboid, it is more likely to be located near 
or within the feature region, reducing the influence of noise.

Once the key feature points have been selected, we utilize the 
previously established cuboid adjacency relationships to systematically 
connect the corresponding key feature points in each cuboid. This 
process ultimately results in the construction of a piecewise linear 
(PWL) curve that effectively represents the underlying structure of the 
point cloud.

Since adjacent cuboids may only share an edge, the intersection 
points of multiple edges can create triangular loops, as shown in Fig.  8. 
To address this, we have implemented a post-processing step to remove 
these loops. We first construct an adjacency list that stores information 
about the endpoints of all edges involving each point. Then, using 
depth-first search, we traverse edges to identify loops with a length of 
3 steps. Finally, we calculate the length of each edge in the loop and 
remove the longest edge to obtain a cleaner PWL set. Fig.  8 illustrates 
the main workflow of this post-processing step, which improves result 
accuracy. After removing loops, we apply Zhu et al.’s method [3] to 
extract final parametric feature lines from the PWL set.
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Fig. 8. Procedure of post-processing. Due to the presence of three adjacent cuboids that are each neighboring one another, triangular loops can occur, leading to incorrect point 
connections. To resolve this issue, all edges are traversed to identify loops, and the longest edge within each loop is removed to ensure cleaner connections.
Fig. 9. Comparison of results from different feature detection methods with various input point clouds. (a) Uniform, noise 𝜎 = 0.0%; (b) non-uniform, noise 𝜎 = 0.0%; (c) uniform, 
noise 𝜎 = 0.6%; (d) uniform, noise 𝜎 = 1.2%.
Fig. 10. Result of curvature computation. (a) Visualization of input point cloud. 
(b) Local details of the detected non-feature points (in orange). (c) Local details of 
the erroneously computed non-numerical points (in red).  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

4. Experiments

4.1. Experiment setup

We implemented our framework in C++ on a computer equipped 
with an Intel Core i7-12700F CPU at 2.1 GHz and 16 GB of RAM. 
Deep learning experiments were performed using an NVIDIA RTX 3090 
6 
Ti GPU. All experimental data were obtained from the uniform, non-
uniform, and noisy point clouds generated by Huang et al. [40]. All data 
were normalized to the range [0,1]. These point clouds were sampled 
from the ABC dataset [41], which consists of various CAD models.

To assess the accuracy of the detected feature points and the 
extracted feature lines, we randomly selected 100 models from the 
ABC dataset. We then evaluated the proximity of our results to the 
ground truth using Chamfer Distance (CD) [42] and Hausdorff Distance 
(HD) [43].

4.2. Comparisons

Our framework consists of two main parts: feature detection and 
feature extraction. The former identifies the initial feature points within 
the point cloud, while the latter connects these initial feature points 
into lines and performs fitting.

4.2.1. Feature point detection
The criteria for effective feature detection involve identifying fea-

ture points that clearly and continuously represent the sharp features of 
a point cloud while preserving local details. We assessed our method’s 
effectiveness by comparing it with CDUPC [15], EC-Net [17] and 
MSL-Net [22] across three types of input data: uniform, noisy, and 
non-uniform.

Fig.  9 presents a comparative analysis of feature detection results 
from different input point clouds. As the quality of the point cloud 
deteriorates, CDUPC tends to detect excessive redundant points. EC-
Net employs an edge-aware technique for feature point detection and 
performs well on both uniform and non-uniform point clouds. However, 
in the presence of noise, it often detects many irrelevant points. Mean-
while, MSL-Net, due to its use of non-adaptive parameters, successfully 
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Fig. 11. Feature enhancement and extraction results of RFEPS [4] and our method, respectively. (a) Feature regions detected by RFEPS; (b) feature points enhanced by RFEPS; 
(c) feature lines extracted using our method.
Fig. 12. Comparison of results from different feature extraction methods with various input point clouds. (a) Uniform, noise 𝜎 = 0.0%; (b) non-uniform, noise 𝜎 = 0.0%; (c) uniform, 
noise 𝜎 = 0.6%; (d) uniform, noise 𝜎 = 1.2%.
identifies major features but struggles to capture local sharp features. In 
contrast, our method leverages the winding number, effectively over-
coming point cloud imperfections while accurately detecting complete 
sharp features and minimizing the presence of erroneous points.

Moreover, Chen [36] proposed utilizing the relationship between 
total curvature and Dirichlet energy for feature perception. As shown 
in Fig.  10, while this method can detect sharp features, some points 
near the feature regions may be mistakenly identified as feature points 
(e.g., orange points in Fig.  10(b)). Additionally, numerical anomalies in 
the detection results may affect the filtering of feature points (e.g., red 
points in Fig.  10(c)).

Another traditional method, RFEPS [4], demonstrates strong per-
formance in feature enhancement. However, for feature detection, it 
identifies feature regions rather than specific feature points located 
on potential feature lines, as illustrated in Fig.  11(a). The method 
then shifts the points within these regions to obtain enhanced feature 
points, as shown in Fig.  11(b). Nevertheless, due to the use of spherical 
neighborhoods, points near sharp corners tend to be moved toward the 
corner itself. As a result, although RFEPS accurately detects feature 
regions, the final set of feature points remains discontinuous. Even 
after applying curve fitting to these points, it will still fail to produce 
continuous feature lines as effectively as our method.

Table  1 provides a quantitative accuracy comparison. Our method 
not only performs better visually but also demonstrates a significant 
numerical advantage over other methods.
7 
4.2.2. Feature line extraction
Feature lines are closely related to detected feature points, and 

many feature line extraction methods include a feature detection step. 
We compared the complete feature curve extraction frameworks, SSI 
[6], PIE-Net [1], NerVE [3], and our algorithm using various input 
point clouds.

Fig.  12 shows some experimental results of comparisons. In the SSI 
method, using a uniform radius to compute the smooth shrink index 
can lead to the misclassification of two closely spaced surfaces as a 
feature region. Moreover, its strong emphasis on local details makes it 
less robust to noise. For PIE-Net, the use of curve proposal generation 
yields continuous feature curves, but the results remain sensitive to 
point cloud quality. Evidently, NerVE fails to extract certain sharp 
features and is notably less robust to defective point clouds compared 
to our method. More results of our method can be found in Fig.  13. 
Table  2 compares the results with the ground truth, indicating that our 
method’s extracted feature lines deviate less from the ground truth than 
those from SSI, PIE-Net and NerVE.

Furthermore, testing NerVE on additional noisy data shows that it 
fails to produce results in approximately 44% of cases due to quality 
issues of the input point cloud, leading to feature extraction failure. 
The underlying reason is that when processing noisy point clouds, 
NerVE tends to generate numerous extremely short and discontinuous 
line segments. These segments do not meet the degree requirements 
for connectable segments and are consequently discarded during the 
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Fig. 13. More results on feature extraction using our method.
Fig. 14. Feature extraction results where NerVE fails, but our method successfully generates outcomes.
Table 1
Accuracy assessment of various feature detection methods with different types of input point clouds.
 Types Uniform, noise 𝜎 = 0.0% Non-uniform, noise 𝜎 = 0.0% Uniform, noise 𝜎 = 0.6% Uniform, noise 𝜎 = 1.2%

Methods CDUPC EC-Net MSL-Net Ours CDUPC EC-Net MSL-Net Ours CDUPC EC-Net MSL-Net Ours CDUPC EC-Net MSL-Net Ours  
CD↓ 0.0126 0.0102 0.0124 0.0034 0.1323 0.0927 0.1315 0.0582 0.1460 0.1486 0.1354 0.0961 0.3710 0.3807 0.3486 0.1973 
HD↓ 0.2519 0.1053 0.2647 0.0398 0.3375 0.2194 0.3269 0.1492 0.3560 0.3685 0.3431 0.1830 0.5821 0.5947 0.5370 0.3224 
able 2
ccuracy assessment of various feature extraction methods with different types of input point clouds.
Types Uniform, noise 𝜎 = 0.0% Non-uniform, noise 𝜎 = 0.0% Uniform, noise 𝜎 = 0.6% Uniform, noise 𝜎 = 1.2%

Methods SSI PIE-Net NerVE Ours SSI PIE-Net NerVE Ours SSI PIE-Net NerVE Ours SSI PIE-Net NerVE Ours  
CD↓ 0.1632 0.0159 0.0240 0.0038 0.2568 0.2105 0.1896 0.0865 0.3304 0.2331 0.2372 0.0989 2.3528 3.2458 1.8923 0.9620 
HD↓ 0.5152 0.1290 0.2858 0.0838 0.8495 0.7026 0.6318 0.3950 0.9815 0.7241 0.7123 0.4107 3.0966 3.2594 2.6346 1.0384 
i
l
i

ubsequent connection and fitting process, resulting in a failure to out-
ut feature extraction results. This highlights the instability of NerVE 
nd its low tolerance to point cloud quality. In contrast, our method 
uccessfully extracts features even from low-quality point clouds, as 
emonstrated by examples in Fig.  14.
 r

8 
Additionally, DEF [34] is also included for comparison. Since the 
mplementation code of DEF is not publicly available and its results are 
imited to uniform point cloud data, we compare it only on uniform 
nputs, using the experimental results provided in the official DEF 
epository. As shown in Fig.  15, our method significantly outperforms 
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Fig. 15. Comparison of results from different feature extraction methods with uniform 
input point clouds.

DEF on uniform point clouds, particularly in regions with subtle sharp 
features or complex structures. The strength of our approach lies in its 
precise feature detection, which enables the identification of feature 
points along potential arc segments, resulting in more complete feature 
lines.

4.3. Influence of parameter settings

The values of key parameters significantly impact the quality of 
results. In feature detection, thresholds 𝑎 and 𝑏 are used to determine 
which points are marked as feature points. Fig.  16 illustrates detection 
results with various threshold combinations, where points with a wind-
ing number below 𝑎 or above 𝑏 are identified as feature points. It can be 
observed that when 𝑎 is too small, feature points on outward protruding 
edges become discontinuous and sparse, whereas a larger 𝑎 results in 
an excess of points. Similarly, if 𝑏 is too small, inward concave edges 
yield many irrelevant points, whereas a larger 𝑏 leads to sparse feature 
points. Inappropriate values for 𝑎 or 𝑏 may also introduce points from 
planar regions. Therefore, we set 𝑎 and 𝑏 to default values of 0.4 and 
0.8, respectively, to ensure higher quality feature points.

In feature extraction, resolution determines the density of cubes, 
which in turn affects the connectivity between points. Fig.  17 provides 
the results of feature line extraction at different resolutions. When the 
resolution is too low, the number of cuboids is limited, causing many 
unrelated feature points to be connected. However, when the resolution 
is too high, the excessive number of cuboids may lead to the generation 
of numerous redundant fine structures. Therefore, we set the default 
resolution to 32 to ensure the extraction of more complete and accurate 
feature curves.

4.4. Influence of normal estimation methods

Our framework requires input point clouds to have oriented nor-
mals that are consistent and roughly accurate. While many public 
datasets include normals, some datasets or scanned data require users 
to estimate them. Different estimation methods may produce slightly 
different results. To validate the robustness of our method, we used 
both Principal Component Analysis (PCA) [39] and Quadric Surface 
Fitting [44] for normal estimation. Fig.  18 shows that these methods 
have minimal impact on feature detection performance. Therefore, 
users do not need a specific estimation method, but should ensure that 
the normals are approximately correct.
9 
Fig. 16. Impact of different threshold settings. Points with winding numbers less than 
𝑎 or greater than 𝑏 are classified as feature points. Inappropriate values for 𝑎 or 𝑏 can 
lead to incorrect feature points or missed features. In our method, 𝑎 and 𝑏 are set to 
0.4 and 0.8, respectively, to achieve optimal feature detection results.

Fig. 17. Impact of different resolution settings at (a) 16, (b) 32 and (c) 64.

4.5. Influence of point density

To further demonstrate the advantages of the proposed method, we 
conduct a comparative experiment with the SSI method using sparse 
point clouds, as shown in Fig.  19. The proposed approach exhibits 
greater robustness to point cloud sparsity and successfully detects 
feature points even in sharp-angle regions. In comparison, the feature 
points detected by the SSI method are noticeably less complete.

4.6. Robustness to real-world objects

The primary objective of our method is to extract sharp feature 
lines from point clouds of real-world objects. To further validate our 
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Fig. 18. Comparison of feature detection results using different normal estimation methods: (a) PCA and (b) Quadric Surface Fitting. From left to right: visualization of winding 
number calculations for the point cloud, local details of normal direction and the winding number (with blue indicating values near 0 and red indicating values near 1), and 
feature detection results.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 19. Comparison of feature detection results on sparse point clouds.
method on real-world data, we performed experiments using point 
clouds generated by the Artec 3D scanner. As shown in Fig.  20, our 
method effectively captures most geometric features.

To more thoroughly evaluate the noise robustness of our method, 
we tested it on scanned point clouds with low noise (first row of Fig. 
21) and low-quality data with severe noise, non-uniform density, and 
missing regions (second row of Fig.  21). Results show that our method 
effectively extracts feature lines from low noisy data and, despite 
some incompleteness, still captures the overall geometry in poor-quality 
point clouds.

4.7. Computational efficiency

In addition to accuracy, computational efficiency is an important 
metric for evaluating the real-world performance of feature line ex-
traction algorithms. Table  3 presents the runtime of our algorithm. 
The feature detection step has a time complexity of (𝑛2), where 𝑛
represents the number of points in the point cloud. As the number 
of points increases, the runtime increases significantly, making this 
step substantially longer than the subsequent steps. In comparison, the 
feature extraction step involves converting feature points into multiple 
cuboids and has a time complexity of (𝑚2), where 𝑚 is the number 
of cuboids. This step’s runtime is closely related to the number of 
feature points and the complexity of the geometric features, so it is less 
influenced by the total point cloud size and rises more slowly.
10 
Given that the most time-intensive part of the feature detection 
process is the calculation of winding numbers, we optimized the al-
gorithm by parallelizing the loop computations across multiple threads 
and implementing it on the GPU to improve performance. We compared 
the execution time of the program on the CPU to that on the GPU 
with parallel threading. The results show a significant improvement 
in execution speed with GPU acceleration, greatly reducing processing 
time. Overall, while the execution time increases with the number 
of points in the point cloud, the computational overhead remains 
manageable.

5. Conclusion

This paper introduces a framework for extracting sharp feature lines 
from 3D point clouds. The method begins by calculating the winding 
number of the point cloud, then selects points that exceed a threshold as 
detected feature points. These points are converted into a cuboid struc-
ture to extract key feature points and infer the adjacency relationships 
between them. Finally, these key feature points are connected and fitted 
to produce feature lines. Experimental results show that our method has 
notable advantages, with detected feature points being more coherently 
arranged and predominantly located on potential edges. Furthermore, 
the final extracted feature lines effectively capture significant geometric 
features of the model.
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Table 3
Running time (in seconds) of our method with respect to the number of points.
 Point size Detection (CPU) Detection (GPU) Extraction Total (CPU) Total (GPU) 
 20K 6.44 0.12 4.96 11.40 5.08  
 40K 21.27 0.19 6.90 28.17 7.09  
 60K 44.39 0.29 7.99 52.38 8.28  
 80K 92.58 0.37 9.27 101.85 9.66  
 100K 155.82 0.46 12.86 168.69 13.32  
Fig. 20. Feature extraction results from uniform real-world scanned point clouds. (a) 
Real-world objects; (b) scanned point clouds; (c) extracted feature lines.

Fig. 21. Feature extraction results on low-quality real-world scanned point clouds with 
noise, non-uniform density, and missing regions. (a) Scanned point clouds; (b) local 
details of scanned point clouds; (c) extracted feature lines.
11 
While our method proves to be more efficient than others, it does 
have certain limitations. For thin-shell models, although feature detec-
tion can identify accurate feature points, closely spaced edge points on 
opposite sides may be assigned to adjacent cubes during extraction, 
leading to incorrect intersecting feature lines. While increasing the 
resolution can alleviate this issue, it requires iterative manual param-
eter tuning based on experience, which is inconvenient. In the future, 
adaptive parameter setting based on point spacing could be developed 
to address this limitation more effectively.

On the other hand, the time complexity of the feature detection 
step is (𝑛2). Although GPU acceleration can significantly reduce run-
time, the computational cost still increases substantially when dealing 
with extremely large point clouds. In the winding number computa-
tion, points closer to the query point have a greater influence than 
those farther away. Therefore, future work may consider adopting 
efficient approximation strategies, such as the fast computation method 
proposed by Lin et al. [45], to reduce the number of calculations. More-
over, while the proposed method is robust to noisy point clouds, the 
accuracy of the winding number can still be affected when the normals 
are incorrect or noisy. To address this limitation, future improvements 
could involve designing a modified winding number formulation with 
perturbation terms to improve robustness to erroneous normals.
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