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This important manuscript presents a novel application of the SANDI (Soma and
Neurite Density Imaging) model to study microstructural alterations in the basal
ganglia of individuals with Huntington's disease (HD). The compelling methods, to
our understanding, the first application of SANDI to neurodegenerative diseases,
provide strong evidence for HD-related neurodegeneration in the striatum, account
significantly for striatal atrophy, and correlate with motor impairments. The
integration of novel diffusion acquisition and modelling methods with multimodal
behavioural data are both of high value in their own right, and create a framework
for future studies.

https://doi.org/10.7554/eLife.107661.1.sa4

Abstract

Reviewed Preprint
v1 • September 16, 2025
Not revised

https://doi.org/10.7554/eLife.107661.1
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.7554/eLife.107661.1.sa4
https://elifesciences.org/


Vasileios Ioakeimidis et al., 2025 eLife. https://doi.org/10.7554/eLife.107661.1 2 of 42

Background

Huntington’s Disease (HD) is an inherited neurodegenerative disorder characterised by
progressive cognitive and motor decline due to atrophy in basal ganglia networks. No
disease-modifying therapies exist, but novel clinical trials are ongoing. Non-invasive imaging
biomarkers sensitive to HD neuropathology are essential for evaluating therapeutic effects.

Soma and Neurite Density Imaging (SANDI), a multi-shell diffusion-weighted imaging model,
estimates intracellular signal fractions from sphere-shaped soma in grey matter. SANDI-
derived apparent soma density and size in the striatum have potential as proxies for HD-
related neurodegeneration. While HD is rare, it provides a valuable model for other
neurodegenerative diseases due to its clear genetic cause and shared features of protein
abnormalities.

Objective

To characterise HD-related microstructural abnormalities in the basal ganglia and thalami
using SANDI and examine associations between SANDI indices, volumetric measurements,
and motor performance.

Methods

T1-weighted anatomical and multi-shell diffusion-weighted images (b-values: 200–6,000
s/mm²) were acquired using a 3T Siemens Connectom scanner (300mT/m) in 56 premanifest
and manifest HD individuals (MeanAge = 46.1, SDAge = 13.8, 25 females) and 57 healthy
controls (MeanAge = 45.0, SDAge = 13.8, 31 females). HD participants completed Quantitative
Motor (Q-Motor) tasks, including speeded and paced finger tapping, which were reduced to
one principal component of motor performance. Following standard diffusion-weighted data
preprocessing, SANDI and diffusion tensor models estimated apparent soma density, soma
size, neurite density, extracellular signal fraction, fractional anisotropy, and mean diffusivity.
The caudate, putamen, pallidum, and thalamus were segmented bilaterally, and
microstructural and volumetric indices were extracted and compared. Correlations between
SANDI in- dices, Q-Motor performance, and volumetric measures were analysed.

Results

HD was associated with reduced apparent soma density (rrb = 0.32, p ≤ 0.007) and increased
apparent soma size (rrb = 0.45, p < 0.001) and extracellular signal fraction (rrb = 0.34, p ≤
0.003) in the basal ganglia, but not the thalami, with largest effects at manifest stage. No
differences were found in apparent neurite density (rrb = 0.18, p = 0.17). HD-related increases
in fractional anisotropy and mean diffusivity in the basal ganglia were replicated. Q-Motor
component scores correlated negatively with apparent soma density and positively with
soma size and extracellular signal fraction. SANDI indices and age explained up to 63% of
striatal atrophy in HD.
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Conclusion

SANDI measures detected HD-related neurodegeneration in the striatum, accounted
significantly for striatal atrophy, and correlated with motor impairments. Decreased
apparent soma density and increased soma size align with ex vivo evidence of medium spiny
neuron loss and glial reactivity. SANDI shows promise as an in vivo biomarker and surrogate
outcome measure in clinical trials of disease-modifying therapies for HD and other
neurodegenerative diseases.

Introduction

Huntington’s disease (HD) is an autosomal dominantly inherited neurodegenerative disorder
caused by a pathogenic CAG repeat expansion of the Huntingtin gene.1      HD is characterised by a
progressive loss of cognitive and motor functions as well as psychiatric disturbances. The clinical
onset of HD is commonly defined by the manifestation of motor symptoms, such as chorea,
reduced voluntary motor control, bradykinesia, and difficulty maintaining rhythmic and paced
movements.2     –4      However, changes in the brain, notably striatal atrophy in the basal
ganglia5     ,6      may precede the motor onset by up to 24 years7     –10      and correlate with motor
and cognitive decline.2     ,5     ,6     ,11     –15      While HD is rare (∼12 in 100,000), it can be seen as a
model neurodegenerative disorder, due to its clear genetic cause, well-characterized disease
progression, and shared features of protein abnormalities with more common disorders like
Alzheimer’s and Parkinson’s disease.5     

There is presently no approved disease-modifying therapy for HD, but numerous clinical trials are
underway to test the safety and efficacy of novel therapeutics.16      The recent surge in potential
disease-modifying targets has generated a demand for surrogate outcome measures that are
sensitive to HD neuropathology and allow a mechanistic assessment of therapeutic effects on
striatal neurodegeneration in a timely manner. Volumetric measurements from non-invasive MRI
are known to be sensitive to disease progression17     –20      and have been adopted into the recently
published Huntington’s Disease Integrated Staging System (HD-ISS).21      However, volumetric
measurements do not provide information about the underlying neuropathological tissue changes
that lead to striatal atrophy, such as the loss of medium spiny neurons (MSN)22     ,23      and changes
in glia cell density and morphology, including enlargement of reactive astrocytes and
microglia.22     ,24     –26     

Diffusion-weighted Imaging (DWI) is widely used to investigate brain tissue microstructure in vivo
by exploiting apparent water displacement due to Brownian motion.27     ,28      Most DWI studies in
HD have used diffusion tensor imaging (DTI), which models extracellular water diffusion as a
Gaussian tensor and measures diffusion properties such as mean diffusivity (MD) and the degree
of diffusion anisotropy (fractional anisotropy; FA).29      DTI studies in HD have consistently
reported increases in MD and FA in striatal grey matter,30     ,31      that likely arise from the
selective neurodegeneration of medium spiny neuron connections.

Advances in multi-shell and ultra-strong gradient DWI,32      have enabled increasingly
sophisticated biophysical models that require data acquisition over a range of b-values to separate
extra-from intracellular diffusion signals.33     –35      Several approaches that model intraneurite
space with cylinders or sticks have been put forward (e.g. Composite and Restricted Model of
Diffusion, CHARMED33     ; Convex optimization modelling for microstructure informed
tractography; COMMIT36     ; Neurite Orientation Dispersion and Density Index; NODDI34     ).
NODDI studies in premanifest HD have revealed reduced apparent neurite density in white mater
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with localised reductions in fibre orientation dispersion in the corpus callosum and basal ganglia
capsules.37      However, despite putamen volume loss, no NODDI-based differences in striatal grey
matter were detected in gene-positive individuals long before motor onset.10     

Soma And Neurite Density Imaging (SANDI)38      is a novel biophysical diffusion model that
extends multi-compartment approaches like NODDI to account for the more complex geometrical
architecture of grey matter. SANDI requires multi-shell acquisition protocols with b-values over
3,000 s/mm2      to capture restricted signal fractions from within grey matter soma, which are
modelled as geometrical spheres. In this way, SANDI provides estimates of apparent soma density
(fis) and soma radius (rs) in addition to apparent neurite density (fin) (modelled with sticks),
extracellular signal fraction (fec) and extracellular diffusivity (De). SANDI has been shown to
provide highly reproducible and repeatable parameter estimation across grey matter regions in
the human brain39      that align closely with its known cyto- and myeloarchitecture. For instance,
the gradients of apparent soma density maps were found to closely match those of Brodmann
areas in human cortical regions with different soma density profiles,38      and correlated in the
mouse brain with cell density distributions from the Allen atlas.38     ,40      These findings suggest
the potential of the SANDI model for quantifying neurodegenerative processes in the grey matter
of the living human brain.

Clinical applications of SANDI are currently limited to multiple sclerosis (MS), where reductions in
apparent soma and neurite density and increases in extracellular signal fraction in grey and white
matter align with MS-related demyelination, axonal loss, and neurodegeneration.41     ,42      These
microstructural abnormalities have been found to correlate with disease severity,42      cortical or
subcortical atrophy,41     ,43      and elevated levels of serum neurofilament light chain (NfL), a
neuronal cytoplasmic protein marker of axonal damage,43      that is also sensitive to HD
progression.44     ,45     

The primary objective of this study was to assess whether SANDI indices were sensitive and
specific to microstructural grey matter differences in the basal ganglia, compared with the
thalami, in a group of individuals with premanifest and manifest HD relative to healthy controls.
Secondary objectives were the exploration of the extent to which any HD-related SANDI
differences accounted for basal ganglia atrophy, assessed with volumetric measurements, and
performance differences in motor tasks, including speeded and paced finger tapping, known to be
associated with striatal atrophy in HD. 46      Finally, relationships between SANDI differences and
disease burden were explored by employing the Huntington’s Disease Integrated Staging System
(HD-ISS) 21      and the CAG-Age Product (CAP100) score.47     

Materials and methods

Participants
MRI data from 56 individuals who tested gene-positive for the mutant huntingtin allele and 57
healthy age- and sex-matched individuals (healthy controls; HC) were included in the analyses.
Thirty-eight of the gene-positive individuals participated in a randomised controlled feasibility
trial of HD-DRUM,48      a remote rhythmic training intervention, with ethical approval from the
Wales Research Ethics Committee 2 (REC Reference: 22/WA/0147).55      Here we report baseline
MRI and behavioural data collected prior to randomisation into the trial arms. Additionally, we
included MRI data from 18 gene-positive individuals and 18 age-matched HC from a previous
study characterising white matter microstructure in premanifest HD (REC Reference:
18/WA/0172).49      Further, MRI data from 25 age- and sex-matched HC from the Wales Advanced
Neuroimaging Database (WAND) Study50      (REC Reference: 18.08.14.5332RA3) and 14 from the
HD-DRUM study were utilised as comparison control. All participants provided written informed
consent according to the Declaration of Helsinki prior to taking part in the studies.
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HD gene-positive individuals were identified and screened for eligibility in five HD clinics in the
UK (Bristol, Birmingham, Cardiff, Exeter, and Liverpool). HC volunteers were recruited from
online advertisements on the Cardiff University social network, Viva Engage, or in HD clinics as
support partners or family members of individuals with HD. HC participants were also recruited
through Healthwise Wales and by word of mouth. For the WAND study, data collection is reported
elsewhere.50     

Individuals over the age of 18 years with a good command of the English language were eligible to
participate. Additional inclusion criteria for individuals with HD48      were:

Positive for the presence of the mutant huntingtin allele (CAG length ≥ 36 repeats) and/or
clinical diagnosis of HD.
Unified Huntington’s Disease Rating Scale (UHDRS) Total Functional Capacity (TFC) score
between 9 and 13.51     

Exclusion criteria were:

Contra-indication for MRI (e.g. pacemakers, stents).
An inability to provide informed consent.
For HD participants: A history of any other neurological condition.
For HC: A history of any neurological or psychiatric condition, and/or alcohol or drug
abuse, that have been associated with grey matter volume loss.

To characterise general cognitive functioning HD participants were assessed with the Montreal
Cognitive Assessment (MOCA).52      Verbal intellectual ability was assessed with the Test of
Premorbid Functioning (TOPF).53      Disease burden was estimated by the TFC and the CAG-Age
Product (CAP100) score,47      which was calculated using the following formula:

In addition, HD participants were stratified into one of the four HD-ISS21      stages using an online
calculator (https://enroll-hd.org/calc/html_basic.htm     ):

Stage 0: Individuals carry a mutated HD gene with CAG repeat ≥ 40.
Stage 1: Individuals meet Stage 0 criteria and exhibit striatal atrophy.
Stage 2: Individuals meet Stage 1 criteria and exhibit clinical signs or symptoms evidenced
by changes in the scores on the United Huntington’s Disease Rating Scales (UHDRS)54     

Total Motor Score (TMS) and cognitive changes in the Symbol Digit Modalities Test
(SDMT).55     

Stage 3: Individuals meet all previous criteria and show signs of functional change in the
UHDRS Total Functional Capacity (TFC) score.

Motor outcome measures
Participants of the HD-DRUM study completed a range of motor tasks from the Quantitative-Motor
(Q-Motor) test-battery,56     –58      which has been shown to provide reliable assessments of speeded
finger tapping performance in clinical HD trials.59     ,60      Tasks included left and right 1) speeded
index finger tapping using force transducers,46      2) speeded foot tapping, 3) paced finger
tapping46      and 4) paced foot tapping with a metronome-paced and memory-paced phase, using a
fast (0.55s inter-onset interval; IOI) or slow (1.1s IOI) metronome pace as well as 5) 3D pointing to
four target locations in a predefined sequence using a position-tracking stylus with the dominant
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hand61      and 6) 3D target pointing and speeded finger tapping dual task performed with
dominant and non-dominant hand, respectively. Outcome measures for the various tasks were as
follows:

Speeded tapping: mean IOI in seconds and mean area under the curve (AUC) in Newton-
seconds.
Paced tapping: mean absolute deviation from the metronome rhythm, measured in
seconds.
Target pointing task: target frequency in Hertz (Hz).
Target pointing-speeded tapping dual task: target frequency in Hz, mean IOI in seconds,
and mean AUC in Newton-seconds.

Image acquisition
MRI data were acquired on a 3T Siemens Connectom scanner (Siemens Healthcare, Erlangen,
Germany) with ultra-strong magnetic gradients (300mT/m) at Cardiff University Brain Research
Imaging Centre (CUBRIC).

T1-weighted (T1w) images were acquired using a magnetisation-prepared 180-degrees radio-
frequency pulses and rapid gradient-echo (MPRAGE), with the following parameters: repetition
time (TR) 2,300 ms, echo time (TE) 2 ms, field of view (FOV) 256 x 256 x 192 mm, matrix size 256 x
256 x 192, resolution 1 x 1 x 1 mm3, flip angle 9°, inversion time (TI) 857 ms, in-plane acceleration
(GeneRalised Autocalibrating Partial Parallel Acquisition; GRAPPA) factor 2, phase-encoding
direction anterior to posterior (AP), and acquisition time of 6 minutes.

Multi-shell High Angular Resolution Diffusion Imaging (HARDI)62      data were obtained at b-
values of 200 s/mm² (20 directions), 500 s/mm² (20 directions), 1,200 s/mm² (30 directions). 2,400
s/mm² (61 directions), 4,000 s/mm² (61 directions) and 6,000 s/mm² (61 directions) using a single-
shot spin-echo, echo-planar imaging sequence with TR = 3,000 ms, TE = 59 ms, FOV 220 x 200 mm
in-plane; matrix size 110 x 110 x 66; 2 mm3 resolution, gradient pulse duration - δ = 7 ms, gradient
pulses separation - Δ = 24 ms in AP phase-encoding direction with an in-plane acceleration
(GRAPPA) factor of 2. Fifteen non-diffusion-weighted (b-value = 0 s/mm²) images were acquired
[two initial and 11 interspersed at the 33rd volume and every 20th volume thereafter in AP
direction and 2 images in the posterior-to-anterior (PA) direction]. The HARDI acquisition time was
18 minutes.

Image processing

Diffusion-weighted image preprocessing

Multi-shell HARDI data were pre-processed and corrected for signal drift, susceptibility-induced
distortions, motion and eddy current-induced distortions, gradient non-uniformity and Gibbs
ringing artifacts using a custom in-house pipeline comprising tools from the FMRIB Software
Library (FSL version 6.0.3),63      the MRtrix software package,64      ExploreDTI65      (version 4.8.6)
and in-house MATLAB-based scripts.39     

The FSL brain extraction tool63      was used to mask the first non-diffusion-weighted image from
each phase-encoding direction to exclude non-brain data. The diffusion-weighted MRI volumes
were fitted to temporally interspersed b0 volumes to correct for within-image intensity drift by
using custom code in MATLAB R2017b (MathWorks Inc., Natick, Massachusetts, USA). Slicewise
outlier detection (SOLID)66      was applied with modified Z-score thresholds of 3.5 (lower) and 10
(upper), utilising a variance-based intensity metric. FSL’s top-up tool67     ,68      was used to estimate
susceptibility-induced off-resonance fields from b0 images that were acquired in opposing phase-
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encoding directions (AP and PA) and then FSL’s eddy tool69      was used to correct eddy current-
induced distortions and subject movements. Gradient non-uniformity distortions were corrected
using in-house code in MATLAB R2017b. Finally, Gibbs ringing correction was performed in
MRtrix3 using the local subvoxel-shifts method.70     

For the purpose of comparing our results with the previous literature,30      DTI was fitted with
ExploreDTI using data with b-values of 500 s/mm² and 1,200 s/mm² to produce outcome maps for
FA and MD, estimated with linearly weighted least squares regression.

SANDI analysis

Noise level estimation and denoising of diffusion MRI data were performed using a Marchenko-
Pastur principal component analysis (MP-PCA)-based method71     –73      in MRtrix3 to generate
noise maps for each subject’s diffusion-weighted images. These noise maps were subsequently
used to fit the SANDI model38      to the pre-processed multi-shell diffusion data with the SANDI
MATLAB Toolbox (https://github.com/palombom/SANDI-Matlab-Toolbox-Latest-Release     38      using all
the default settings.

The model fitting produced maps of the intra-neurite, extracellular and intra-soma signal fractions
(fin, fec, fis), apparent soma size (rs; measured in μm) and intra- and extra-neurite diffusivities (Din,
De; measured in mm2/ms). Post-hoc sensitivity analysis of the SANDI model parameters revealed
very low sensitivity to changes in Din. Consequently, it was excluded from further analysis.

T1-weighted image preprocessing

The default FreeSurfer 74      (v6) recon-all pipeline was utilised to segment subcortical basal
ganglia ROIs of the caudate, putamen, and globus pallidum as well as of the thalamus as control
ROIs. ROIs were segmented from T1w images and were identified and labelled in each
hemisphere.

Extraction of microstructural metrics from regions-of-interest

Median values of each microstructural index from DTI (FA, MD) and SANDI (fis, fin, fec, rs, De)
models were extracted for each ROI using FSL’s fslmaths. ROI masks were aligned with the
diffusion space using rigid transformation with FSL’s flirt75      before eroding the boundaries of the
subcortical masks to minimise partial volume effects and then aligning all microstructural maps
with the masks.

Volumetric measures for each ROI and intra-cranial volume (ICV) were extracted from FreeSurfer
v6. ROI volumes were normalised for ICV. The addition of brain volumes allowed exploration of
the extent to which any HD-related SANDI differences accounted for basal ganglia atrophy.

Statistical analysis

Statistical analyses were performed in JASP (v0.18.1.0)76     , R version 4.4.1 (2024-06-14)77      in R-
studio (2024.9.0.375)78      and SPSS (v27) (IBM Corp).79      Data normality was assessed using the
Shapiro-Wilk test, with p < 0.05 indicating non-normal distribution. Descriptive statistics for each
group were reported as percentages (%), means and standard deviations (SD). Medians of each
microstructural index in each ROI were compared between the groups with Mann-Whitney-U tests
because of lack of normality and unequal variance between groups. Effect sizes for group
comparisons were therefore reported with rank biserial correlation (rrb). Multiple comparisons
were corrected with Benjamini-Hochberg’s method to control a false discovery rate (FDR) of
0.0580      and applied to all statistical tests that related to the same theoretical inference.81     
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Hierarchical linear regression analyses were conducted to test for microstructural SANDI
predictors of the variance in volumetric measurements. Regression analyses were carried out for
each ROI and each group separately. HD data were modelled by firstly accounting for age and TFC
scores (available for all HD participants) simultaneously. This was followed by step-wise inclusion
of the SANDI indices using an iterative forward selection and backward elimination method based
on each variable’s F-statistic and p-value that aimed to maximise the adjusted R2-value while
keeping only the most significant predictors. HC data were modelled in the same way except for
the inclusion of TFC scores.

Principal Component Analysis (PCA) was carried out to reduce the dimensionality of HD
participants’ Q-Motor data and hence the number of multiple correlations with microstructural
SANDI indices. PCA followed established guidelines to limit the number of extracted components
in relatively small sample sizes.82     ,83      First the Kaiser criterion of including all components
with an eigenvalue greater than 1 was applied and the Cattell scree plot was inspected to identify
the minimal number of components that accounted for most variability in the data. Each extracted
component was then assessed for interpretability. PCA was conducted using orthogonal Varimax
rotation of the component matrix with Kaiser normalization. Loadings that were greater than 0.5
were considered to be statistically significant.

Spearman’s rho (ρ) correlations were then calculated between HD participants’ motor component
scores and the CAP100 with the SANDI indices, DTI, and volumetric measures in each ROI.

Finally, analyses to explore HD-ISS related differences in SANDI indices were conducted for SANDI
indices in the basal ganglia. For these exploratory analyses a binary split combining Stage 0 and
Stage 1 as "premanifest" and Stage 2 and Stage 3 as "manifest" was performed, and SANDI indices
were collapsed across hemispheres by averaging. Pairwise comparisons between premanifest and
HC, premanifest and manifest, and manifest and HC were conducted using Mann–Whitney U tests
without additional FDR correction.

Results

Demographics
Sample characteristics, including age and sex distribution for the HD and HC groups are described
in Table 1     . No statistically significant differences were observed in age and sex in the HD and
HC groups (p>0.05).

Information for HD-ISS calculation was available for 27 individuals. N = 9 were stratified into
Stage 1, Ν = 5 into Stage 2, and Ν = 12 into Stage 3. One individual could not be classified due to
their clinical pattern not conforming with the assumption of the HD-ISS model of motor symptoms
preceding functional impairments. Twenty-nine individuals could not be classified due to missing
clinical data or due to their CAG repeats falling between 36-39. Details of the demographic and
clinical information per HD-ISS stage and for participants who could not be classified are
summarised in Supplementary Table 1     .

Table 2      displays descriptive statistics for the Q-Motor measures of the HD gene-positive
participants.

Imaging analysis

https://doi.org/10.7554/eLife.107661.1
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Table 1.

Demographic and clinical information of participants

Table 2.

Descriptive statistics for motor outcome measures
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HD-related differences in volumetric measures

Table 3      summarises the volumetric group differences across the eight ROIs. Figure 1     
illustrates the effect size maps of volumetric differences between HD and HC, as well as raincloud
plots for each ROI. Mann-Whitney tests identified significantly reduced volumes in all basal
ganglia ROIs in HD gene-positive compared to healthy individuals. In contrast, only a marginally
significant reduction was present in the right thalamus (FDR-p = .048) and a non-significant
reduction in the left thalamus (FDR-p = .063).

HD-related differences in microstructural measures

Descriptive and statistical microstructural results are shown in detail in Table 4     . Figure 2     
provides effect size mappings and raincloud plots of the different microstructural measures for
each ROI comparing the two groups.

The SANDI measures revealed between-group differences in the basal ganglia but not thalami for
apparent soma density and size, and extracellular signal fraction (Fig. 2     ). HD gene-positive
individuals exhibited reduced apparent soma density (Fig. 2A     ) across all basal ganglia ROIs,
while apparent soma size was elevated bilaterally in the caudate and putamen but decreased in
the pallidum (Fig. 2B     ). Elevated extracellular signal fraction was observed in the basal ganglia
(Fig. 2C     ), while extracellular diffusivity was higher in the putamen and pallidum but showed no
significant differences in the caudate (Fig. 2D     ). No differences were observed for apparent
neurite density fin in any of the ROIs (FDR-p ≥ 0.167, absolute r < 0.2).

Regarding the DTI measures, increased FA and MD (FDR-p < 0.01) were observed in the basal
ganglia (Fig. 2E-F     ) with the exception of MD in the left pallidum (FDR-p = 0.854).

No differences were found in the thalami for any of the microstructural metrics.

Correlations between BG microstructure and motor performance in HD

Motor measures

PCA extracted one principal component that explained 64% of the Q-Motor data with high loadings
(> 0.5 or <-0.5) from all variables (Table 5     ). Spearman’s rho correlation between Q-motor
component scores and the disease burden CAP100 score revealed a positive correlation (ρ = 0.61, p
= 0.002, N = 24), i.e., higher disease burden was associated with higher scores in the Q-Motor
component reflecting slower and less accurate motor performance (Figure 3     ).

Spearman’s rho correlations between Q-motor component scores and SANDI microstructural
measures from all ROIs and scatter plots are displayed in Figure 4     . Figure 5      displays
correlations and scatter plots of the Q-Motor component with DTI and volumetric indices. Overall,
negative correlations were observed between principal Q-Motor component scores and apparent
soma density in the basal ganglia, apparent soma size in the pallidum, and volumetric
measurements in all ROIs, reflecting that lower apparent soma density and volumes were
associated with impaired motor performance, reflected as higher scores in the Q-Motor
component. Conversely, positive correlations were present between Q-Motor component scores
and apparent soma size, extracellular signal fraction, and extracellular diffusivity in the basal
ganglia, i.e. larger apparent soma size and extracellular signal were associated with impaired
motor performance (Figure 4      and 5).

https://doi.org/10.7554/eLife.107661.1
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Figure 1.

Volumetric differences in the basal ganglia and thalamus between
HD-gene positive (HD) individuals and healthy controls (HC).

Regions-of-interest (ROIs) were segmented using FreeSurfer v6. All ROIs, except the left thalamus, showed significantly
smaller volumes in the HD cohort after FDR correction for multiple comparisons. Colours indicate the strength of rank-
biserial correlations (rrb) from Mann-Whitney U tests: Red = strong effect (rrb ≥ 0.5), Yellow = medium effect (0.3 ≤ rrb < 0.5),
White = small effect (rrb < 0.3). Raincloud plots show the distribution of the volumetric measures in each ROI per group with
orange (HD gene=1) for HD-gene positive and green (HD gene=0) for HD-gene negative participants. * p < 0.05; *** p < 0.001

Table 3.

Descriptive and Mann-Whitney Statistics for Intracranial Volume-Normalised Regions of Interest
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Figure 2.

Microstructural differences in ROIs between HD-
gene positive (HD) and healthy control (HC) groups.

Median values of each microstructural measure were extracted per ROI. A) HD individuals show reduced soma density (fis) in
the basal ganglia (BG). B) Soma radius (rs) is elevated in the caudate and putamen but reduced in the pallidum. C)
Extracellular water fraction (fec) is increased in BG regions in the HD group. D) Extracellular diffusivity (De) is higher in the
putamen and pallidum. E) Fractional anisotropy (FA) is elevated in the BG, and F) mean diffusivity (MD) is increased in the
striatum. Colours indicate the strength of rank-biserial correlations (rrb) from Mann-Whitney U tests: Red = strong effect (rrb ≥
0.5), Yellow = medium effect (0.3 ≤ rrb < 0.5), White = small effect (rrb < 0.3). Raincloud plots show the distribution of the
microstructural measures in each ROI per group with orange (HD gene=1) for HD-gene positive and green (HD gene=0) for
HD-gene negative participants. * p < 0.05; ** p < 0.01; *** p < 0.001
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Table 4.

Descriptive and Mann-Whitney Statistics for Microstructural Measures in Regions of Interest
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Figure 3.

Scatterplot showing positive relationship between the Q-Motor principal component
and the disease burden measure (CAP100) with the Spearman’s rho (ρ) test.
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Table 5.

Rotated Component Loadings on the Q-motor Outcome Measures
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Figure 4.

A) Correlation matrix and B-G) selected scatter plots illustrating Spearman’s rho
correlations between SANDI measures and the Q-Motor principal component.

A) Each cell represents the Spearman’s rho correlation strength, with pink indicating negative and green positive
correlations. B-G) Each plot includes a best-fit least squares linear regression line with standard error indicated by the grey
shaded area, along with the Spearman’s rho (ρ) and the corresponding FDR-p value. Scatter dot colours represent
participants’ HD-ISS stage and those who were not classified due to having CAG<40 or incomplete clinical data.
Abbreviations: De: Extracellular diffusivity; fec: Extracellular signal fraction; fin: Neurite density signal fraction; fis: Soma
density signal fraction; PC: Principal component; rs: Soma radius; TFC: Total functional capacity.

https://doi.org/10.7554/eLife.107661.1
https://doi.org/10.7554/eLife.107661.1


Vasileios Ioakeimidis et al., 2025 eLife. https://doi.org/10.7554/eLife.107661.1 17 of 42Vasileios Ioakeimidis et al., 2025 eLife. https://doi.org/10.7554/eLife.107661.1 17 of 42

Figure 5.

A) Correlation matrix and B-D) selected scatter plots illustrating Spearman’s rho
correlations between DTI, volumetric measures and the Q-Motor principal component.

A) Each cell represents the Spearman’s rho correlation strength, with pink indicating negative and green positive
correlations. B-D) Each plot includes a best-fit least squares linear regression line with standard error indicated by the grey
shaded area, along with the Spearman’s rho (ρ) and the corresponding FDR-p value. Scatter dot colours represent
participants’ HD-ISS stage and those who were not classified due to having CAG<40 or incomplete clinical data.
Abbreviations: FA: Fractional anisotropy; MD: Mean diffusivity.
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Microstructural predictors of BG volumes

Hierarchical linear regression analyses of the healthy control data (Table 6     , Figure 6     )
revealed that 17% of volumetric variation in the left caudate was accounted for by age and
apparent soma density while 11% of variation in the right caudate was explained by age and
extracellular diffusivity (De). Age accounted for 25% of volumetric differences in the left putamen,
and together with De for 29% of differences in right putamen. Age alone explained 17% of left and
11% of right thalamic volume variation. No significant regression models were present for
bilateral globus pallidus.

In contrast, regression analyses for the HD data (Table 7     , Figures 7      & 8     ) showed that 60%
of volume variation in the left caudate and 51% of variation in the right caudate were accounted
for by age and apparent soma density and size. Similarly, 57% of variation in the right putamen
volume were explained by age and apparent soma size, while 63% of volume differences in the left
putamen were explained by age, apparent soma size as well as extracellular signal and diffusivity.
Comparable to the healthy control results, age alone accounted for 30% of volume variation in the
left and for 35% in the right thalamus while no age effects were present for bilateral globus
pallidus. However, in HD patients 42% of volume variation in the left pallidum was explained by
apparent soma size and extracellular signal and 27% of volume variation in the right pallidum by
extracellular signal fraction only. No significant contributions of TFC were present.

Correlation of disease burden with microstructural and volumetric measures

The CAP100 score as an index of disease progression was correlated with brain measurements to
explore the relationship between disease burden and microstructural and volumetric differences
(Figure 9     ). Figure 9A      summarises correlation coefficient strengths and levels of significance.
Figures 9B-J      display scatter plots of significant correlations between the CAP100 and
microstructural and volumetric measures. Increased CAP100 was negatively correlated with
apparent soma density, and volume size in bilateral caudate and putamen, as well as with pallidal
apparent soma size. Positive correlations were observed between CAP100 and extracellular
diffusivity and signal fraction, apparent soma size in caudate, putamen, and thalamus, apparent
neurite density in putamen, FA in the basal ganglia, and MD in caudate and putamen.

Exploratory pairwise comparisons between HD-
ISS premanifest and manifest HD individuals

Exploratory comparisons of apparent soma density, apparent soma size, extracellular signal
fraction and diffusivity averaged across left and right basal ganglia ROIs (Table 4     ), were carried
out between individuals at premanifest HD-ISS Stage 1 (n = 9), individuals at manifest Stages 2 and
3 (n = 17), and healthy controls (Supplementary Table 1     ).

Compared to the premanifest group, manifest HD individuals exhibited reduced apparent soma
density in the striatum, smaller apparent soma size in the pallidum, and increased extracellular
diffusivity in the putamen (rrb = 0.428–0.513, p = 0.01–0.031). Compared to controls, individuals
with premanifest HD showed increased extracellular signal fraction in the basal ganglia, larger
apparent soma size in the caudate and putamen, and reduced apparent soma density and
extracellular diffusivity in the pallidum (rrb = 0.243–0.459, p < 0.001–0.02). The manifest group
differed from controls in all measures. Descriptive statistics and statistical analysis results are in
Supplementary Table 2. Bar plots displaying effect sizes and 95% confidence intervals for all
pairwise comparisons are shown in Supplementary Figure 1     .
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Figure 6.

Standardised beta coefficients of SANDI microstructural metrics predicting volume
(normalised for intracranial volume) in regions of interest in the healthy control group.

Abbreviations: De: Extracellular diffusivity; fis: Soma density signal fraction; rs: Soma radius; TFC: Total functional capacity.
* p < 0.05; ** p < 0.01; *** p < 0.001.

Table 6.

Hierarchical Linear Regression Predicting Normalised Volumes from SANDI
Microstructural Metrics, Controlling for Age in the Healthy Control Participants
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Table 7.

Hierarchical Linear Regression Models Predicting Normalised Volumes in each Region of Interest
from SANDI Microstructural Metrics, Controlling for Age and TFC in HD Gene-Positive Participants
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Figure 7.

Standardised beta coefficients of SANDI microstructural metrics predicting volume (normalised
for intracranial volume) in left hemisphere regions of interest in Huntington’s disease patients.

Abbreviations: De: Extracellular diffusivity; fec: Extracellular signal fraction; fis: Soma density signal fraction; rs: Soma
radius. * p < 0.05; ** p < 0.01; *** p < 0.001.

Figure 8.

Standardised beta coefficients of SANDI microstructural metrics predicting volume (normalised
for intracranial volume) in right hemisphere regions of interest in Huntington’s disease patients.

Abbreviations: fec: Extracellular signal fraction; fis: Soma density signal fraction; rs: Soma radius; TFC: Total functional
capacity. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 9.

A) Correlation matrix and B-J) selected scatter plots illustrating Spearman’s rho correlations between SANDI, DTI, and
volumetric measures with CAP100. Each scatter plot includes a best-fit least squares linear regression line with standard error
indicated by the grey shaded area, along with the Spearman’s rho (ρ) and the corresponding FDR-p value. Scatter dot colours
represent participants’ HD-ISS stage and those who were not classified due to having CAG < 40 or incomplete clinical data.
Abbreviations: De: Extracellular diffusivity; FA: Fractional anisotropy; fec: Extracellular signal fraction; fin: Neurite density
signal fraction; fis: Soma density signal fraction; MD: Mean diffusivity; rs: Soma radius; vol: Normalised volume.
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Discussion

This is the first study to investigate HD-related microstructural differences in the basal ganglia
with SANDI, a novel diffusion MRI technique, that was devised to probe grey matter
microstructure. The objective of the study was to explore SANDI indices as potential non-invasive
in vivo MRI markers of HD neuropathology that may provide more specific information about
disease-related tissue abnormalities than volumetric measurements. SANDI indices of apparent
soma density and size were found to be sensitive to HD pathology in the basal ganglia and
explained, together with age, up to 63% of striatal atrophy in HD. Furthermore, SANDI indices
correlated with motor impairments and CAP100 disease burden in HD. This pattern of results
suggests the potential of SANDI indices for future imaging biomarkers of disease progression and
of the neural effects of novel disease-modifying therapeutics in HD and other neurodegenerative
diseases.

Microstructural and Volumetric Alterations in HD
Well-established patterns of significant volume loss accompanied by increases in FA and MD in the
basal ganglia were replicated in HD compared with healthy controls. FA increases in the caudate
and putamen are thought to occur due to the selective degeneration of medium spiny neuron
connections.20     ,84      No microstructural differences and only trends for volumetric reduction
were present in the thalami. This pattern of macro- and microstructural differences in the basal
ganglia is in accordance with previously reported changes in the basal ganglia associated with
premanifest and early manifest HD stages.31     ,85     

Importantly, the application of SANDI revealed novel information about HD-related
microstructural differences in the basal ganglia. In gene-positive compared with healthy
individuals, apparent soma density was reduced and accompanied by increases in extracellular
signal fraction and diffusivity across the caudate, putamen, and pallidum but not the thalami. In
addition, apparent soma size was increased in the caudate and putamen and reduced in the globus
pallidus in individuals with HD.

HD-related reductions of apparent soma density in the basal ganglia are consistent with the loss of
striatal medium spiny neurons, the histopathological hallmark of HD,22     ,23      and downstream
degeneration of pallidal neurons likely due to the loss of striatal projections. Furthermore,
changes in apparent soma size may reflect shifts in the proportion of neural and glial cell density
and/or changes in cell morphology, including astrocyte and microglia swelling in response to
neurodegeneration22     ,24     –26      and soma shrinkage prior to neuronal cell death.86     ,87     

Exploratory analyses using stratification into premanifest HD-ISS Stage 1 and manifest Stages 2
and 3 revealed that apparent soma density reductions in the striatum became more pronounced
with disease progression. Regional variability of differences in apparent soma size were observed
with early increases in the striatum and later reductions in the globus pallidus. Increases in
extracellular signal fraction with disease progression were apparent across all basal ganglia ROIs
while increases in diffusivity were particularly pronounced in the putamen and pallidum at
manifest stages. These preliminary findings suggest that SANDI indices may be sensitive to
neuropathological processes associated with different stages of HD.

Microstructural predictors of basal ganglia atrophy in HD
Regression analyses testing for microstructural predictors of HD-related atrophy in each ROI
demonstrated that SANDI indices accounted for a significant proportion of atrophy in the basal
ganglia but not the thalami.
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Up to 63% of HD-related striatal atrophy was predicted by apparent soma density and size and age.
This dropped to 27% and 42% of atrophy in right and left pallidum explained by apparent soma
size and extracellular signal fraction, while age alone accounted for volume differences in the
thalami. The latter finding in the thalami mirrored the pattern of results in the healthy control
data where age was the most significant predictor across all ROIs (except bilateral pallidum) and
the only predictor in the thalami, while diffusivity contributed to right-lateralised basal ganglia
regions and apparent soma density to left caudate only.

Together these results demonstrate that SANDI indices of apparent soma density and size may
capture HD-related differences in striatal grey matter microstructure in vivo. As outlined above,
striatal reductions in apparent soma density and increases in apparent soma size are in
accordance with the HD characteristic loss of medium spiny neurons and reactive gliosis and
explained a significant proportion of HD-related atrophy in the caudate and the putamen.

Associations Between SANDI
microstructural indices and Motor Function
The observed correlations between SANDI metrics and motor measures provide novel insights
into the functional implications of microstructural alterations in HD. Consistent with the role of
the basal ganglia in motor initiation and coordination,88      the present study demonstrated that
microstructural differences in HD, notably reduced apparent soma density in the striatum and
reduced apparent soma size in the pallidum were associated with poorer Q-Motor performance,
which in turn was associated with larger disease burden. This is evidenced by increased IOI and
ACU in speeded tapping tasks, as well as difficulties in the paced metronome tapping task.
Similarly, increased apparent soma size in the striatum, as well as elevated extracellular signal
and diffusivity across all three basal ganglia regions, and striatal FA and MD, were linked to motor
impairments. These findings suggest that microstructural differences due to basal ganglia
neurodegeneration and associated glial reactivity are directly linked to subtle motor impairments.

Clinical Implications and Future Directions
The present study acquired multi-shell (max b-value = 6,000 s/mm2) DWI data on a non-clinical
ultra-strong gradient (300mT/m) 3T MRI system. Ultra-strong gradient imaging has the advantage
of improving the signal-to-noise-ratio at high b-values due to shorter echo times (TE), which in
turn provides enhanced sensitivity to small water displacement,39      and minimises bias due to
inter-compartmental exchange.89     ,90      However, it is important to note that it has been
demonstrated feasible to acquire multi-shell DWI data for SANDI modelling on standard clinical 3T
MRI systems,91      and that such acquisitions have been shown to be sensitive to neuropathology in
MS.43      Thus, it is possible apply SANDI indices clinically.

Our findings highlight the potential of SANDI-derived metrics as future markers for tracking
disease progression and assessing therapeutic efficacy in HD and more common
neurodegenerative diseases like Alzheimer’s and Parkinson’s disease. The sensitivity of apparent
soma density and size, and extracellular water signal to microstructural changes in HD offers a
complementary perspective to volumetric measures, which are currently the most widely
employed imaging modality in clinical trials. Furthermore, the associations between SANDI
metrics and motor measures that were correlated with disease burden scores underscore their
relevance in evaluating the efficacy of emerging disease-modifying treatments.

Conclusion
In our study, we demonstrate the utility of SANDI for characterising microstructural abnormalities
in HD, providing a detailed view of basal ganglia pathology and its implications for motor
functions. By bridging the gap between histopathological findings and in vivo imaging, SANDI
offers a promising avenue for advancing HD research and clinical care.
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Data availability

This research utilised baseline data from the HD-DRUM project that has been endorsed by the
Enroll-HD Scientific Oversight Committee (SOC) (14/11/2022). At the end of the HD-DRUM project,
the coded study data will be shared and made accessible to the research community via the Enroll-
HD specific data request process.

Supplementary figures

Supplementary figure 1.

Bar plot showing the effect sizes and 95% confidence intervals for all the exploratory
pairwise comparisons between premanifest, manifest and control groups.

Significant comparisons are marked with * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).
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Supplementary table 1.

Demographic and clinical information per HD-ISS stage.

Supplementary table 2.

Descriptive statistics and non-parametric pairwise comparisons for SANDI indices
(significant for HD vs HC) between premanifest, manifest, and control participants.
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Editors
Reviewing Editor
Jason Lerch
University of Oxford, Oxford, United Kingdom

Senior Editor
Tamar Makin
University of Cambridge, Cambridge, United Kingdom

Reviewer #1 (Public review):

(1) In this study, the authors aimed at characterizing Huntington's Disease (HD) - related
microstructural abnormalities in the basal ganglia and thalami as revealed using Soma and
Neurite Density Imaging (SANDI) indices (apparent soma density, apparent soma size,
extracellular water signal fraction, extracellular diffusivity, apparent neurite density,
fractional anisotropy and mean diffusivity).

(2) The study implements a novel biophysical diffusion model that extends up-to-date
methodologies and presents a significant potential for quantifying neurodegenerative
processes of the grey matter of the human brain in vivo. The authors comment on the
usefulness of this technique in other pathologies, but they exemplify it only with multiple
sclerosis. Further development of this, building evidence, should be provided.

(3) The study found that HD-related neurodegeneration in the striatum accounted
significantly for striatal atrophy and correlated with motor impairments. HD was associated
with reduced soma density, increased apparent soma size, and extracellular signal fraction in
the basal ganglia, but not in the thalami. Additionally, these effects were larger at the
manifest stage.

(4) The results of this work demonstrate the impact of HD on the basal ganglia and thalami,
which can be further explored as a non-invasive biomarker of disease progression.
Additionally, the study shows that SANDI can be used to explore grey matter microstructure
in a variety of neurological conditions.

https://doi.org/10.7554/eLife.107661.1.sa3

Reviewer #2 (Public review):

Summary:

The authors aimed to investigate whether advanced microstructural diffusion MRI modeling
using the SANDI framework could reveal clinically relevant tissue alterations in the
subcortical structures of individuals with Huntington's disease (HD). Specifically, they sought
to determine if SANDI-derived parameters-such as soma density, soma size, and extracellular
diffusivity-could detect abnormalities in both manifest and premanifest HD stages,
complement standard MRI biomarkers (e.g., volume, MD), and correlate with disease burden
and motor impairment. Through this, they hoped to demonstrate the feasibility and added
biological specificity of SANDI for early detection and characterization of HD pathology.

Strengths:

(1) Novelty and relevance:

https://doi.org/10.7554/eLife.107661.1
https://doi.org/10.7554/eLife.107661.1.sa3


Vasileios Ioakeimidis et al., 2025 eLife. https://doi.org/10.7554/eLife.107661.1 38 of 42

This is, to the best of my knowledge, the first clinical deployment of SANDI in HD, offering
more biophysically interpretable and specific imaging biomarkers than standard DTI or
volumetric features.

(2) More specific microstructural insight: Traditional approaches have used volumetric
features (e.g., striatal volume loss) or DTI metrics (like FA and MD), which are indirect and
non-specific markers. They can indicate something is "wrong" but not what is wrong.

(3) SANDI parameters permit establishing clearer links with microstructure:

o Apparent soma density (fis): proxy for neuronal/glial cell body density.

o Apparent soma size (rs): reflects possible gliagl hypertrophy or neuronal shrinkage.

o Neurite density (fin): linked to dendritic/axonal integrity.

o Extracellular fraction and diffusivity: sensitive to edema, gliosis, and tissue loss.

In this way, a decrease in soma density can be related to neural loss (e.g., medium spiny
neurons), and an increase in soma size and extracellular fraction could be related to glial
reactivity (astrocytes, microglia). This enables differentiating between atrophy due to neuron
loss vs reactive gliosis, which volumetrics or DTI cannot do.

(4) Integration of modalities: The inclusion of motor impairment (Q-Motor), HD-ISS staging,
and multi-compartment diffusion modeling is a methodological strength.

(5) Early detection potential: SANDI metrics showed abnormalities in premanifest HD,
sometimes even when volume loss was mild or absent. This suggests the potential for earlier,
more sensitive biomarkers of disease progression.

(6) Predictive power: Regression models showed that SANDI metrics explained up to 63% of
the variance in striatal volumes in HD. And this correlated strongly with motor impairment
and disease burden (CAP100). This shows they are not just redundant with volume or DTI, but
they are complementary and potentially more mechanistically meaningful.

Weaknesses:

Certain aspects of the study would benefit from clarification:

(1) Scanner and acquisition consistency: While HD data are from the WAND study, it is not
clear whether controls were scanned on the same scanner or protocol. Given the use of
model-derived metrics (especially SANDI), differences in scanner or acquisition could
introduce confounds. Also, although it offers novel and biologically informative markers,
widespread clinical translation still faces hurdles. For instance, the study used a 3T
Connectom scanner (300mT/m gradients), which is not widely available. Reproduction of
these results in standard 3T clinical scanners would be a great addition, in scenarios with
lower resolution, less precise parameter recovery, and longer scans if SNR needs to be
maintained.

(2) HD-ISS staging and group comparisons:
a) Only 26-27 out of 56 gene-positive participants could be assigned HD-ISS stages, and none
were classified into stages 0 or 4.

b) Visual overlap between stages 1 and 2 in behavioral and imaging features suggests that
staging-based group separation may not be robust.

c) The above may lead to claims based on progression across HD-ISS stages to be
overinterpreted or underpowered

https://doi.org/10.7554/eLife.107661.1
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(3) Regression modeling choices:
a) SANDI metrics included in the models differ between HC and HD groups, reducing
comparability.

b) The potential impact of multicollinearity (e.g., between fis and rs) is not discussed.

c) Beta coefficients could reflect model instability or parameter degeneracy rather than true
biological effects.

These issues do not undermine the study's main conclusions, which effectively demonstrate
the feasibility and initial clinical relevance of applying SANDI to HD. Nonetheless, addressing
them more thoroughly would enhance the clarity and interpretability of the manuscript.

https://doi.org/10.7554/eLife.107661.1.sa2

Reviewer #3 (Public review):

Summary:

Ioakeimidis and colleagues studied microstructural abnormalities in N=56 Huntington's
disease (HD) patients compared to N=57 normative controls. The authors used a powerful
MRI Connectom scanner and applied the SANDI model to estimate the soma size, neurite size,
soma density, and extracellular fraction in key subcortical nuclei related to HD. In the
striatum, they found decreased soma density and increased soma size, which also seemed to
become more pronounced in advanced HD individuals in the final exploratory analyses. The
authors conducted important analyses to find whether the SANDI measures correlate with
clinical scores (i.e., QMotor) and whether the variance of the striatal volume is explained by
the SANDI measures. They found a relationship between SANDI measures for both.

Strengths:

The study is both innovative and of high interest for the HD community. The authors provide
a rich pool of statistical analyses and results that anticipate the questions that may emerge in
the HD research community. Statistics are carefully chosen and image processing is done
with state-of-the-art methods and tools. The sample size gives sufficient credibility to the
findings. Altogether, I think this study sets a milestone in the attempts of the HD community
to understand neuropathological processes with non-invasive methods, and extends the
current knowledge of microstructural anomalies identified in HD with diffusion MRI. More
importantly, the newly identified anomalies in soma size and soma density open new
avenues for studying these biological effects further and perhaps developing these
biomarkers for use in clinical trials.

Weaknesses:

(1) An important question is whether the SANDI measures, which require an expensive
scanner and elaborate processing, are better biomarkers than the more traditional DTI
measures. Can the authors compare the effect size of FA/MD with SANDI measures? In some
of the plots and tables, FA/MD seem to have comparable, if not higher, correlations with
QMotor or CAP scores. On the same vein, it is unclear whether DTI measures were included
in hierarchical stepwise regression. I wonder if the stepwise models may have picked up
FA/MD instead of SANDI measures if they are given a chance. Overall, I hope the authors can
discuss their findings also in this light of cost vs. benefit of adopting SANDI in future studies,
which is an important topic for clinical trials.

(2) Similar to the above point, it is very important to consider how strong the biomarking
signal is from SANDI measures compared to the good old striatal volume. Some plots seem to

https://doi.org/10.7554/eLife.107661.1
https://doi.org/10.7554/eLife.107661.1.sa2
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indicate that volumes still have the highest correlation with QMotor and the highest effect
size in group comparisons. It would be helpful for the community to know where the new
SANDI measures stand compared to the most typically used volumes in terms of effect size.

(3) The diffusion measures are inevitably correlated to some degree. Please provide a
correlation matrix in the supplementary material, including all DWI measures, to enable
readers to better understand how similar SANDI measures are to each other or vs. other DTI
measures. Perhaps adding volumes to this correlation matrix may also be a good future
reference.

(4) ISS stages:

a) The online ISS calculator requires cut-offs derived from the longitudinal Freesurfer
pipeline, while the authors do not have longitudinal data. Thus, the ISS classification might be
inaccurate to some degree if the authors used the FS cross-sectional pipeline. Please review
this issue and see if updated cut-offs should be used to classify participants.

b) Were there really no participants with ISS 0 among the 56 HD individuals? Please clarify in
the manuscript.

(5) A note on terminology that might be confusing to some readers. According to the creators
of ISS, the ISS stages are created for research only; they are not used or applied in the clinic.
On the other hand, the terms "premanifest" and "manifest" have a clinical meaning, typically
based on the diagnostic confidence level. The assignment of ISS0-1 to premanifest and ISS2-3
to manifest may create some non-trivial confusion, if not opposition, in some segments of the
HD community. The authors can keep their current terminology, but will need to at least
clarify to the reader that this assignment is speculative, does not fully match the clinically-
based categories, and should not be confused with similarly named groups in the previous
literature.

https://doi.org/10.7554/eLife.107661.1.sa1

Author response:

Response to Reviewer 1:

Ad (2) Clinical applications of SANDI have primarily focused on Multiple Sclerosis. However,
since the preparation of the manuscript, one study has been published reporting reductions
in apparent soma density and white and grey matter differences in apparent soma size in
amyotrophic lateral sclerosis (ALS) (https://doi.org/10.1016/j.ejrad.2025.111981). We will
include this paper in our revised manuscript.

Responses to Reviewer 2:

Strength:

Ad (3) SANDI cannot directly differentiate between neural and glia cells but the pattern of
differences in the SANDI parameters we observed in Huntington’s disease (HD) are consistent
with the known pathology in HD.

Weaknesses:

Ad (1) With regards to the question about scanner and acquisition consistency, we can
confirm that all diffusion data of individuals with HD and healthy controls from the WAND
study were acquired with the same multi-shell High Angular Resolution Diffusion Imaging
(HARDI) protocol on the 3T Connectom scanner at CUBRIC. Thus, all diffusion data analysed

https://doi.org/10.7554/eLife.107661.1
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and reported in this manuscript were acquired with the same protocol on the same strong
gradient MRI system for harmonization and consistency purposes.

We agree that for clinical adoption it is important to demonstrate that HD-related SANDI
differences do not require ultra-strong gradient imaging and can be detected on standard
clinical MRI systems. While we have not collected such data in people with HD, we and others
have demonstrated the feasibility of modelling SANDI metrics from multi-shell diffusion-
weighted imaging data acquired with maximum b-value 3,000 s/mm2 on clinical 3T MRI
system in typical adults and people with MS or ALS (https://doi.org/10.1002/hbm.26416, https:
//doi.org/10.1038/s41598-024-60497-6, https://doi.org/10.1016/j.ejrad.2025.111981). These
studies have demonstrated that it is feasible to characterise brain microstructural differences
with SANDI on clinical scanners and that comparable patterns of results can be observed
across different MRI systems. It should also be noted that there is presently a move towards
stronger gradient implementation in clinical systems as demonstrated by the release of the
Siemens Cima.X system which will allow higher b-value diffusion scanning on clinical
systems.

ad (2) We agree that due to the small number of HD participants with HD-ISS staging the
exploratory comparisons between ISS stages need to be interpreted with caution. We hope to
gain access to some of the missing ISS information and plan to include these in the revised
paper.

Ad (3) With regards to the queries about the regression modelling choices:

(1) As SANDI metrics differed between HC and HD groups, and hence may not be directly
comparable, separate regression models for HC and HD data were conducted without formal
comparisons between slopes. Only descriptive exploratory comparisons of the observed
pattern were included.

(2) We will provide cross-correlational analyses between all SANDI parameters in the
supplements of the revised version of the paper to check for multicollinearity.

(3)All model-based approaches, including SANDI, may be prone to model instability or
parameter degeneracy and we will acknowledge and discuss this in the revised version.

Responses to Reviewer 3:

Weaknesses:

Ad (1) and (2) The effect sizes (ES) of group differences in SANDI, DTI, and volume measures
in the caudate and putamen (Tables 3 and 4) were broadly comparable: apparent soma
radius rs (rrb = 0.45 -0.53), apparent soma size fis (rrb = 0.32 -0.45), FA (rrb = 0.38 -0.55), MD
(rrb = 0.51 -0.61) and volumes (rrb = 0.49 -0.55 ). Similar ES were observed between fis and FA,
and between rs and volumes. MD showed the largest ES, likely due to striatal atrophy-related
CSF partial volume contamination.Cost-benefit analyses of imaging marker choices in clinical
trials depend on the aim of the study. DTI provides sensitive but unspecific indices that are
influenced by biological and geometrical tissue properties and capture a multitude of
microstructural properties. Similarly, volumetric measurements do not inform about the
underpinning neurodegenerative processes.

With the advancement of disease-modifying therapies for HD it has become important to
identify non-invasive imaging markers that can inform about the mechanistic effects of novel
therapies. While DTI and volume metrics are sensitive to detect brain changes, they do not
provide specific information about the underpinning tissue properties. Such information,
however, may turn out to be important for the evaluation of mechanistic effects of novel
therapeutics in clinical trials. Advanced microstructural models such as SANDI may help
provide such information. We found that SANDI indices had statistically similar power to the

https://doi.org/10.7554/eLife.107661.1
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gold standard measures of volumes, but with the added value of information underpinning
microstructure. We and others have also shown that SANDI can be applied to multi-shell
diffusion data acquired in a clinically feasible time (~10 min) on standard 3T MRI systems
(please refer to our response above).

To summarise, DTI and volumes are sensitive to brain changes but will need to be
complemented by more advanced microstructural measurements such as SANDI to gain a
better understanding of the underlying tissue changes and effects of disease-modifying
therapies.

Ad (3) We will provide a correlation matrix of all DWI measures in supplementary material to
allow a better understanding how similar SANDI measures are to each other and compared
to DTI measures.

Ad (4) Most of the people with HD who have taken part in our study were participants in the
Enroll-HD study. We will use HD-ISS information from ENROLL as much as possible. As we do
not have longitudinal imaging data for all individuals classified as ISS <2, we will compare
our cross-sectional striatal volumes with those from age and sex matched individuals from
WAND to determine whether people fall into ISS 0 or 1 category. This approach will hopefully
allow us to increase the total HD-ISS sample size and to determine whether there were
participants with ISS 0 in our sample.

Ad (5) We will explain in the revised manuscript that ISS stages are created for research only
purposes and are not used or applied in clinic, while “premanifest” and “manifest” are
helpful concepts in the clinical context. We will clarify that we refer to individuals without
motor symptoms as assessed with Total Motor Score (TMS) as premanifest and to those with
motor symptoms as manifest. This roughly corresponds to individuals at ISS 0/1 without signs
of motor symptoms compared to individuals at ISS 2-3 with signs of motor symptoms.

https://doi.org/10.7554/eLife.107661.1.sa0

https://doi.org/10.7554/eLife.107661.1
https://doi.org/10.7554/eLife.107661.1.sa0

	In vivo mapping of striatal neurodegeneration in Huntington’s disease with Soma and Neurite Density Imaging
	Significance of findings
	Strength of evidence

	Abstract
	Background
	Objective
	Methods
	Results
	Conclusion
	Introduction
	Materials and methods
	Participants
	Motor outcome measures
	Image acquisition
	Image processing
	Diffusion-weighted image preprocessing
	SANDI analysis
	T1-weighted image preprocessing
	Extraction of microstructural metrics from regions-of-interest
	Statistical analysis


	Results
	Demographics
	Imaging analysis
	Table 1.
	Table 2.
	HD-related differences in volumetric measures
	HD-related differences in microstructural measures
	Correlations between BG microstructure and motor performance in HD
	Figure 1.
	Table 3.
	Figure 2.
	Table 4.
	Figure 3.
	Table 5.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 6.
	Table 7.
	Figure 7.
	Figure 8.
	Figure 9.


	Discussion
	Microstructural and Volumetric Alterations in HD
	Microstructural predictors of basal ganglia atrophy in HD
	Associations Between SANDI microstructural indices and Motor Function
	Clinical Implications and Future Directions
	Conclusion

	Data availability
	Supplementary figures
	Supplementary figure 1.
	Supplementary table 1.
	Supplementary table 2.

	Acknowledgements
	Additional information
	Funding
	Funding

	References
	Author information
	Editors


