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Distortion-Induced Saliency Shifts in Video

Xinbo Wu, Jianxun Lou, Zhengyan Dong, Fan Zhang, Paul Rosin and Hantao Liu

Abstract—Visual saliency modelling is of fundamental impor-
tance in modern video processing and its applications. Our pre-
vious eye-tracking study revealed that signal distortions caused
by editing, compression, or transmission alter gaze patterns and
consequently induce saliency shifts in both spatial and temporal
domains. Saliency shifts provide crucial insights into view-
ers’ behavioural responses to video distortions, facilitating the
perception-based optimisation of video algorithms. However, the
spatio-temporal saliency shifts and their measurable effects on
perception related applications remain largely unexplored. In this
paper, we first investigate the measurement of distortion-induced
saliency shifts (DSS) in videos and analyse DSS behaviours as
functions of video content, time order and critical distortion
disruption. Second, based on our findings, we construct three
vision models to quantitatively simulate distinct DSS behaviours
and integrate them into a comprehensive DSS behaviour model.
Finally, we demonstrate that the computational DSS model can
enhance emerging video technologies.

Index Terms—Visual distortion, gaze, perception, eye-tracking,
saliency shifts

I. INTRODUCTION

He use of digital videos in our daily lives has grown
significantly over the past few decades. This is largely
attributed to the rapid development of internet technologies
and mobile devices, which enable easy access to video content
through various digital platforms such as social media and
online streaming services. Globally, consumer internet traffic
is already dominated by internet video traffic, with more than
one billion hours of video being watched every day [1].
Video signals are inevitably vulnerable to distortions caused
by acquisition, compression, transmission, and display. These
distortions not only affect consumers’ visual experiences but
also lead to misinterpretation of video content for many visual
tasks [2]. It is critical to understand human perception of video
distortions and use the knowledge to develop advanced tech-
nologies for video processing and its related applications, such
as video compression, video enhancement, and video quality
assessment. However, challenges remain in reliably capturing
the way humans perceive distortions in concurrence with video
content within a complex spatio-temporal context. To push
forward research in this field, further effort is needed to better
understand how the human visual system (HVS) responds to
the combination of natural content and its distortions and then
develop models to integrate these behavioural responses in
video algorithms.
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A significant research trend in video processing is to exploit
visual saliency — an important mechanism of the HVS [3].
Visual saliency represents the HVS’s ability to select and
prioritise the most relevant information from a visual scene,
which plays a significant role in perception and decision-
making regarding visual content [4], [5]. This inherent feature
of the HVS allows individuals to identify areas of interest
and importance, facilitating efficient interaction with complex
visual environments. Many video processing algorithms have
taken advantage of computational saliency, integrating mod-
elled saliency into various applications including compres-
sion, noise reduction, and quality assessment [6]. In general,
traditional video algorithms that rely on handcrafted visual
features often incorporate a dedicated computed saliency to
enhance their accuracy and efficacy [7]. For deep learning-
based video algorithms, saliency is integrated directly into
the deep neural networks to augment the prediction task.
By embedding saliency mechanisms, both traditional and
deep learning-based algorithms inherently prioritise significant
regions in the visual data, improving their overall performance.
For example, in video compression, saliency models are
utilised to allocate more resources to visually important areas
while compressing less critical regions more aggressively [8].
By focusing on the regions that viewers are most likely to
notice, saliency-aware compression algorithms ensure that the
most critical parts of the video retain high quality, even at
lower bit-rates. In noise reduction, visual saliency is used
prioritise the preservation of salient details while effectively
suppressing background noise [9]. This saliency-guided se-
lective noise reduction process can achieve a better balance
between noise suppression and detail preservation, resulting
in perceptually optimised videos. Visual quality assessment
has been a longstanding area of research interest [2], [10]-
[12]. Within this field, video quality assessment (VQA) plays
a critical role, with visual saliency serving as a key factor
influencing perceived video quality [13]. A comprchensive
survey is provided in [10] on perceptual image quality as-
sessment (IQA), covering fundamental concepts, traditional
models, and recent advancements driven by deep learning. The
work in [11] presents an extensive overview of screen content
quality assessment (SCQA), focusing on unique characteristics
such as text, graphics, and mixed content types in screen-based
visuals. The survey in [2] reviews state-of-the-art methods
in perceptual video quality assessment (VQA), addressing
how temporal dynamics, motion, and video distortions affect
perceived quality. VQA algorithms often treat all regions of
a video equally, which can lead to inaccurate evaluations of
perceptual quality. Saliency-based VQA algorithms, however,
focus on the regions that are most likely to draw viewers’
attention, providing a more accurate measure of video quality
as perceived by human observers. In [14], visual saliency is
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modelled in the contrast sensitivity function (CSF), which
is then integrated into a wavelet-based distortion visibility
measure to build a foveated VQA model. In [15], a quality-
aware visual attention module is established to obtain saliency-
guided representations for an end-to-end blind VQA model.

The literature has shown that integrating visual saliency into

video compression, noise reduction, and quality assessment
algorithms significantly enhances their performance. However,
the approaches taken so far rely on minimal modelling as-
sumptions of the HVS — saliency is treated as a simplified
weighting function for spatial and/or temporal distortions. This
method overlooks the complex and dynamic nature of visual
saliency. Consequently, it remains largely unexplored how
saliency contributes to the overall performance of a video
algorithm. It is of fundamental importance to have a better
understanding of the underlying interactive mechanisms be-
tween saliency, natural content, and distortion. The foundation
of saliency modelling is eye movements of human viewers,
which carry critical information on perceptual-cognitive be-
haviour of humans in watching videos. A recent eye-tracking
study [6] has taken a rigorous approach to prove that there is
a significant difference in saliency between reference scenes
(i.e., original and pristine video content) and distorted scenes
(i.e., video content with visible distortions). Eye movements
reflect visual attention through both a bottom-up, saliency-
driven, and task-independent process, as well as a top-down,
volition-controlled, and task-dependent process [16], [17].
Saliency, representing bottom-up and task-independent visual
attention, plays a crucial role in understanding spontaneous
gaze patterns. Free-viewing eye-tracking is widely regarded
as the “gold standard” for measuring saliency due to its
ecological validity and avoidance of task-induced biases [18].
Saliency maps, derived from robust eye-tracking protocols
with sufficient participants, provide a consistent and gener-
alizable representation of bottom-up visual attention at the
population level [19]. Previous research has demonstrated their
reliability across different observer groups and experimental
settings [20]. It should be noted that while eye movement
patterns observed during a video quality rating task reflect
a combination of both bottom-up (saliency) and top-down
attention, the saliency component aligns with the eye move-
ment patterns observed in a free-viewing task, highlighting
the robustness and applicability of saliency in diverse visual
computing contexts [6]. In this paper, we conduct systematic
analyses of observers’ gaze behaviour in terms of saliency
shifts induced by distortions in video. We investigate how the
degree of saliency shifts is affected by three significant video
properties, i.e., video content, passage of time, and critical dis-
tortion disruption. These behavioural responses are then used
to derive vision models to characterise the perception of video
distortions and consequently to enhance video algorithms.

The contributions of this work are as follows:

« First, leveraging large-scale video eye-tracking data, we
conduct a thorough statistical analysis to reveal human
behavioural responses to distortions in video. We in-
troduce the concept of distortion-induced saliency shifts
(DSS) and define it as a function of video content, time
order and critical distortion disruption.

« Second, we develop three vision models to quantitatively
simulate DSS behaviours. The first model examines the
impact of video content on DSS; the second model
analyses the effect of passage of time on DSS; and the
third model identifies the frames that cause significant
DSS in a video.

o Finally, we propose a novel, generic DSS behaviour
fusion model that integrates the three vision models, and
demonstrate the model’s effectiveness in enhancing video
algorithms.

II. RELATED WORK

In the literature, eye-tracking studies have been undertaken
to provide a fundamental understanding of the phenomenon
of distortion-induced saliency shifts (DSS) — the difference
in saliency between pristine visual content and its distorted
format. An eye-tracking experiment was carried out in [21] to
study the impact of visual distortions on the fixation patterns.
The saliency maps of an undistorted image and its distorted
version were visualised and compared via visual inspection.
It is observed that distortions such as white noise, blurring
and compression artefacts can significantly alter the saliency
of the undistorted image. A further eye-tracking study [22]
was carried out to specifically investigate the impact of JPEG
compression artefacts on fixation patterns. It is found that
JPEG compression artefacts when introduced to a pristine
image can attract attention and consequently alter the saliency
of the image; and that the degree of saliency alteration is
related to the strength of artefacts. In [23], an eye-tracking
experiment was performed to analyse the deviation in saliency
from natural/undistorted scene saliency as a consequence of
introducing visual distortions including Gaussian blur, white
noise and JEPG compression. The study revealed that the
difference between the natural/undistorted scene saliency and
deviated saliency caused by distortions is significant, and that
the lower the quality of the distorted image the higher the devi-
ation is from the natural/undistorted scene saliency. It’s worth
noting that these studies are primarily focused on still images,
and research on DSS in videos is still relatively limited.
Some attempts have been made in the literature e.g., an eye-
tracking experiment was performed in [24] to understand how
people watch a video sequence. The set of stimuli included
10 original video sequences and 50 impaired video sequences
(i.e., five levels of impairments obtained by H.264 video
compression). The gaze patterns/allocations of stimuli were
compared to measure the impact of distortions on the visual
attention deployment. In summary, existing eye-tracking stud-
ies have demonstrated that visual distortions can cause saliency
to shift from its original places in the pristine/undistorted
content, and such phenomenon of distortion-induced saliency
shifts (DSS) provides insights into how saliency plays a
role in visual perception. However, the above-mentioned eye-
tracking studies exhibit few limitations: (1) a limited number
of subjects and/or a small degree of stimulus variability are
used in the experiments, which limits the generality of the
findings; (2) eye-tracking data is often biased/contaminated
due to the involvement of stimulus repetition (i.e., carry-
over effects [6]) — each observer is asked to view the same
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natural scene content (rendered with multiple variations by
adding distortions) repeatedly — hence cannot be used as the
reliable ground truth to study the distortion-induced saliency
shifts (DSS); and (3) in some experiments eye-tracking data is
collected under task-specific conditions, where gaze behaviour
is primarily driven by the tasks or instructions given to the
subjects, hence the resulting saliency map cannot accurately
reflect the bottom-up, stimulus-driven attention observed under
free-viewing conditions.

To have a better understanding of viewers’ gaze behaviour
when watching videos of varying degrees of perceived quality,
a large-scale eye-tracking study was conducted [6]. In this
study, a refined experimental methodology was established to
ensure the reliable collection of ground truth eye-tracking for
video quality perception research. This methodology focuses
on capturing saliency, which represents free-viewing, stimulus-
driven, bottom-up attention, for both pristine images and their
distorted formats of various types and levels of degradation.
The experimental conditions and requirements implemented in
this study effectively eliminate subject bias caused by stimulus
repetition. This approach ensures the collection of a highly
reliable eye-tracking data, resulting in the creation of the
SVQ160 database. The eye-tracking study involved 160 human
observers and 160 video stimuli, providing the best-of-its-kind
data for the differences in fixation deployment when viewing
pristine/undistorted versus distorted video content. Although
the statistical analysis performed in [6] has demonstrated
the significance of saliency shifts caused by the distortions
appearing in a video, it remains largely unexplored how
these distortions alter gaze allocation depending on video
content and passage of time. Previous studies have shown
that transformations and distortions in static images can affect
the distribution of visual attention. For example, in [25],
an eye-tracking experiment was conducted using 288 images
distorted with five different types of artifacts at three levels
of degradation. Similarly, in [19], an eye-tracking dataset was
created for over 1,900 images degraded by 19 different types
of transformations. By analysing eye movement patterns, both
studies reveal that image transformations/distortions cause
shifts in the viewers’ gaze allocation. However, these stud-
ies do not address distortion-induced saliency shifts (DSS)
in dynamic video content, which involves both spatial and
temporal aspects of saliency influenced by video distortions.
Also, a systematic characterisation of DSS as a measurable
behavioural response remains unexplored. Developing compu-
tational models to simulate DSS behaviours, and consequently
integrating DSS into video algorithms would further advance
the file.

Additionally, it would be beneficial to build computational
models for the behaviours of distortion-induced saliency shifts
(DSS), and consequently to integrate DSS into video algo-
rithms.

III. VIDEO DISTORTION-INDUCED SALIENCY SHIFTS
A. SVQI160 Database

The SVQ160 database [6] is so far the largest and most
reliable eye-tracking database available in the literature for

TABLE I
DESCRIPTION OF VIDEO STIMULI [26].

Video name | Content description

Rush hour *Still camera, shows rush hour traffic
(rh) on a street’

River Bed ‘Still camera, shows a river bed
(rb) containing some pebbles and water’

Shields ‘Camera pans at first, then becomes
(sh) still and zooms in; shows a person walking
across a display pointing at it’
Blue Sky ‘Circular camera motion showing

(bs) a blue sky and some trees’
Mobile & Calendar ‘Camera pan, toy train moving

(mc) horizontally with a calendar moving
vertically in the background’
Tractor ‘Camera pan, shows a tractor moving

(tr) across some fields’
Pedestrian area ‘Still camera, shows some

(pa) people walking about in a street intersection’
Park run ‘Camera pan, a person running
(pr) across a park’
Station ‘Still camera, shows a railway track, a train
(st) and some people walking across the track’
Sunflower ‘Still camera, shows a bee
(sf) moving over a sunflower in close-up’

studying video distortion/quality perception. To create the
SVQ160 database, the set of video stimuli was purposely taken
from one of the video quality assessment benchmarks i.e., the
LIVE database [26], where the ratings of perceived quality are
readily available. There are 10 pristine/undistorted reference
videos of high quality and their 150 distorted versions of
varying perceived quality, i.e., each reference corresponds to
15 distorted videos created by different distortion types in-
cluding MPEG-2 compression, H.264 compression, simulated
transmission of H.264 compressed bitstreams through error-
prone IP networks and through error-prone wireless networks.
Fig.1 illustrates the 10 reference videos namely ‘bs (Blue
Sky)’, ‘mc (Mobile & Calendar)’, ‘pa (Pedestrian Area)’,
‘pr (Park Run)’, ‘rb (River Bed)’, ‘th (Rush Hour)’, ‘sf
(Sunflower)’, ‘sh (Shields)’, ‘st (Station)’ and ‘tr (Tractor)’
(one frame of each reference video) and the saliency maps
rendered from the eye-tracking data [6]. A description of these
videos is provided in Table.l. The resolution of all videos is
768 x 432 pixels and the duration is 10 seconds except for the
Blue Sky sequence being 8.68 seconds. A rigorously designed
and fully controlled eye-tracking experiment was conducted
to collect eye movement data for the 160 video stimuli. Each
video received unbiased fixations from 20 human observers.
The saliency data saturation analysis in [6] demonstrated that
gaze patterns reached high consistency with 15 participants
and achieved full saturation with 18 participants. The SVQ160
database [6] utilised eye-tracking data from 20 participants,
ensuring the generation of saturated and reliable saliency
maps.

B. Distortion-Induced Saliency Shifts (DSS)

In this paper, we formulate a quantitative variable of video
distortion-induced saliency shifts (DSS). This measure can
quantify the difference in visual saliency between the refer-
ence/undistorted and distorted videos. To this end, a frame-
level saliency map (FSM) is first generated, representing the
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rh b sh bs
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Fig. 1. SVQI160 database: first row illustrates content (representative frames) of the original videos, second row shows saliency maps; and third row shows
the corresponding heatmaps (saliency maps superimposed on representative frames).

probability distribution of fixations over one frame within the
context of watching a video sequence:

N PR— 2 Jpp— 2
FSM(x)y) — Zexp [_ (-fz I) 2:-_2(1[/1 y) ] 7 (1)

i=1

where (x;, y;) denotes the pixel position of the i-th fixation, N
is the total number of fixations obtained over all subjects in the
eye-tracking experiment. The activity of the patch is modelled
as a Gaussian distribution, of which the width ¢ approximates
the size of the fovea (i.e., 2° of visual angle, and here o is
equal to 45 pixels in our study). Then, the distortion-induced
saliency shifts (DSS) — the difference in fixation distribution
between the reference/undistorted frame and distorted frame
— are calculated using Pearson Linear Correlation Coefficient
(CC). It should be noted that CC has been proven to be the
best perception-based metric to assess the saliency difference
[16], and is defined as:

cov(FSM_ref, FSM_dis
CC(FSM_ref,FSM_dis) = (Ti‘SM _f ngSM ” ) , (2

where osm_ref and osm_gis denote the standard deviation
of FSM_ref and FSM_dis respectively. Where FSM_ref
is the frame-level saliency map of the reference video, and
FSM_dis is the frame-level saliency map of the distorted
video. cov(FSM_ref,FSM_dis) represents the covariance.
When using CC to measure the similarity between saliency
maps, its absolute value is generally considered, ranging from
0 to 1. A CC value closer to 1 indicates a higher similarity
between the saliency maps, while a value closer to O reflects
lower similarity. Finally, DSS can be characterized based
on (2) for each video, using the statistics of frame-based CC
over time to reveal the spatio-temporal properties of saliency
shifts.

IV. PERCEPTUAL BEHAVIOUR MODELS OF
DISTORTION-INDUCED SALIENCY SHIFTS

Eye movements provide rich information on view-
ers’ cognitive-perceptual behaviours, therefore, incorporating
saliency in a video algorithm is of a significant trend in video
processing research [7], [17]. The DSS reflects the impact of
visual distortions on viewers’ attention, contributing to the
perception of a distorted video. Building on the statistical
hypotheses derived from eye-tracking data, we model human
behavioural responses to video distortions using DSS and
propose a new behaviour fusion model, named the DSS
behaviour fusion (DBF) model. Fig.6 illustrates the proposed

DBF model, which comprises three quantitative vision models:
video content classifier, time-series weighting function, and
DSS-critical frame classifier. The details are described below.

A. Quantitative Vision Models

1) Video content classifier: In [27], a statistical analysis
was conducted to verify that video content (VC) has a signifi-
cant impact on the distortion induced saliency shifts (DSS),
where the VC variable is defined as the degree of spatial
saliency dispersion (i.e., contracted saliency (VC_compact)
and dispersed saliency (VC_dispersed)). The hypothesis test-
ing revealed that “when watching the distorted videos, the
degree of saliency shifts of VC_dispersed is statistically signifi-
cantly higher than that of VC_compact, relative to the original
video content.” The evidence suggests these two different
categories of video content should be separately considered
for the VQA metrics that include the saliency component.
To this end, a video content classifier is constructed to dis-
tinguish between the content with concentrated saliency and
content with dispersed saliency, using the multilevel entropy
(ME) [28]. For the saliency map (S) of a frame, the frame-
level ME is calculated based on Shannon entropy applied to
P x P non-overlapping blocks of S:

P2
ME = Hy(S) = % > H(B), 3)
B=1

where H represents the entropy of a 2-D image block, P
refers to the segmentation level (i.e., P = 4 is empirically
determined in [28] and used here), and B runs over each block.

Lower ME values indicate saliency is concentrated in fewer
regions, while higher entropy suggests it is dispersed through-
out the spatial domain. For each video, the sequence-level ME
(SME) is calculated by taking the average of frame-level ME
values. For a given video (v), the video content classifier can
be expressed as:

ve VC_ _dispersed if SME(v) > tsye(vt),
! if SME(v) < msarp(vt),

“)
where Tgprg(vt) denotes the threshold for the classifier. In
this study, the threshold is determined by ranking the original
videos as per the SME, and from the highest to lowest
finding the first pair of adjacent videos that have a statistically
significant difference in their SME values. Fig.2 illustrates the
SME value (as well as the saliency map of a representative

v e VC_compact
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frame) for each original video contained in the SVQ160
database.

w
=
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Fig. 2. [Illustration of the SME value (as well as the saliency map of

a representative frame) for each original video contained in the SVQ160
database. The error bars indicate a 95% confidence interval.

2) Time-series weighting function: In [27], a statistical
analysis was conducted to verify that time order (TO) has a
significant impact on the DSS, where the duration of a video
is divided into successive blocks of time. By formulating the
TO into three semantic categories including TO_beginning,
TO_middle, and TO_end, the hypothesis testing revealed
that “there is a significant difference between TO_beginning,
TO_middle and TO_end; viewers’ gaze is less affected by
distortions in the beginning of video playback than that in
the rest of viewing time; in the middle of viewing there are
significant saliency shifts due to the occurrence of distortions;
the impact of distortions on gaze behaviour significantly de-
creases towards the end of viewing.” The evidence reflects the
viewers’ sensitivity to distortions in different viewing periods,
which may be affected by e.g., the centre-bias effect [29]
in the beginning of the scene, and learning to tolerate the
distortions from middle to the end of viewing. Based on this,
a time-series weighting function is constructed by fitting a
step function to approximate the gaze behaviour. We divide
the time duration into 10 successive blocks of time each
representing one second of video playback. Within each time
block, we calculate the average of the frame-level CC values
(i.e., the measure of DSS, see (2)) over two sets of videos
(i.e., classified as VC_compact and VC_dispersed) contained
in the SVQ160 database, respectively. The results enable us to
fit two step functions, one for videos of concentrated saliency
and one for videos of dispersed saliency, approximating the
temporal progression of DSS behaviours as shown in Fig.3. In
constructing the weighting function, we consider the impact
of DSS on video quality assessment (VQA) - the time blocks
during which viewers are more sensitive to distortions hold
greater significance in VQA. Hence, we assign larger weights
to the more DSS affected frames and smaller weights to less
DSS affected frames of a video in the calculation of a VQA
metric. For each time block (tb), the mapping from the average
of the frame-level CC values to the weight is expsressed as:

Wt(l) - Fscale (1 - CCtb(’L)) ) (5)
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Fig. 3. Temporal progression of DSS behaviours and time-series weighting

function for (a) videos of concentrated saliency and (b) videos of dispersed
saliency. The error bars indicate a 95% confidence interval.

where W, (i) represents the weight for the i-th time block;
CC(7) is the average of the frame-level CC values for the
i-th time block. Fi.e normalises the value to be within the
range between 0.1 and 0.9, eliminating the occurrence of 0
and 1 in the weighting function for practical purposes:

F(z) — min(z)
max(z) — min(z)

Freate(z) = 0.1+ % 0.8. (6)

This results in the weighting function W,. for content of con-
centrated saliency and W,4 for content of dispersed saliency.

3) DSS-critical frame classifier: The way humans perceive
and judge the overall quality of a video highly depends
on their behavioural responses to the time-varying distortion
profile [27]. The frames in a distorted video that exhibit
significant gaze shifts relative to the pristine video are per-
ceptually critical [17] and largely determine the summation
strategy of distortions in the spatio-temporal domain. We refer
to these frames as DSS-critical frames and develop a method
to extract these frames from a distorted video. The measure
CC (see (2)) has been proven the most effective measure
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TABLE II
ILLUSTRATIONS OF DISTORTION INDUCED SALIENCY SHIFTS (DSS) AND COMPARISON OF SENSITIVITY OF MEASUREMENT USING PEARSON LINEAR
CORRELATION COEFFICIENT (CC) AND FRECHET DISTANCE (FD). SOME REPRESENTATIVE FRAMES SPANNING THE ENTIRE VIDEO DURATION ARE
EXTRACTED FROM A PRISTINE VIDEO (I.E., SUNFLOWER) AND ITS DISTORTED VERSION, AND THE CORRESPONDING GROUND-TRUTH SALIENCY MAPS
ARE SUPERIMPOSED ON THESE FRAMES. ALSO, THE SALIENCY MAP OF THE PRISTINE FRAME AND THE SALIENCY MAP OF THE DISTORTED FRAME ARE
SUPERIMPOSED TO ILLUSTRATE THE DIFFERENCE IN SALIENCY PATTERN ALLOCATION.

Reference
frames

Distorted frame
(MPEG)
DMOS: 40.999

Superimposition
of
saliency maps

Frame number 20 29 130 146 229
CC value 0.878 0.692 0.630 0.554 0.460
FD value 9560.567 9765.978 3323.546 55200.28 6991.081
1
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Fig. 4. Tllustrates of the comparison of temporal profiles using the frame-level CC and FD for the same videos (reference and distorted) in Table II.

for saliency difference, however, it primarily captures the
perceived difference of global saliency patterns and does not
adequately respond to the difference of the localised patterns.
Therefore a more sensitive measure is required to effectively
identify frames that cause the pronounced saliency shifts in a
distorted video. In light of this, we adopt the Fréchet distance
(FD), which measures the difference between two probability
distributions. We consider the saliency patterns of the original
frame and that of the distorted frame as two distributions, FD
is implemented as follows:

1
FD = llur = pally + tx (o + 00 = 2(7,00)% ) . (D)

where u, and pg denote the average feature distribution of
the saliency maps; o, and o, denote covariance matrices.
The greater value of FD means that the gaze shifts are more
substantial.

As shown in Table II, some representative frames spanning
the entire video duration are extracted from a pristine video

and its distorted version in our study, and the corresponding
ground-truth saliency maps are superimposed on these frames.
Also, the saliency map of the pristine frame and the saliency
map of the distorted frame are superimposed to illustrate the
difference in saliency pattern allocation. The difference is
measured by CC and FD, respectively. It clearly demonstrates
the superiority of FD over CC in distinguishing between the
pronounced saliency shifts and less pronounced saliency shifts.
For example, the CC values (0.69 versus 0.63) for frame
29 and frame 130 are similar albeit the degrees of DSS are
observed rather different in the superimposition visualisations
of saliency maps; the disparity in FD values (9765 versus
3323) better reflects the difference. It is evident that compared
to CC measure, FD measure provides a greater level of
sensitivity to changes of saliency patterns.

Fig.4 further illustrates the comparison of temporal profiles
using the frame-level CC and FD, respectively, for the same
videos (reference and distorted) in Table II. It can be seen
from the figure that the CC-based profile is not sensitive
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Fig. 5. Illustration of the proposed DSS behaviour fusion (DBF) model. It consists of the computation of the distortion-induced saliency shifts (DSS) and
the ensemble of quantitative vision models to generate the frame-level weights for a distorted video.

to the highly DSS affected frames (i.e., a small disparity
between the pronounced saliency shifts and less pronounced
saliency shifts), while the FD-based profile can well capture
the pronounced saliency shifts (i.e., a peak occurs in the plot).
This suggests that FD can be used as a metric to identify
the DSS-critical frames, which have a disruptive impact on
assessing the overall video quality. We construct a simple
classifier to identify DSS-critical frames in a video j, using a
threshold:

Tra(7) = pra(j) +2 X ora(3), ®)
where pirq(j) and oyq(j) denote the mean and standard
deviation of the video’s frame-level FD values.

Each video frame is classified by the threshold 7¢4. Based
on this classification, a set of frame-level weights Wcf is then
derived to express the level of DSS disruption of each frame

on a VQA metric:
Wy = {()z if FD(k) > T7a(j),
1—a if FD(k) < 1fa(4),
where « is a DSS disruption weighting factor, £ denotes the

k-th frame of video j. In this paper, based on the empirical
experiments, « is set to be 0.6.

®

B. DSS Behaviour Fusion Model

Now we assemble the quantitative vision models to form
a DSS behaviour fusion (DBF) model as illustrated in Fig.5,
taking into account the spatial and temporal impacts of DSS on
the perception of a distorted video. The DBF model consists
of two parallel pipelines: time-series weighting and DSS-
critical frame weighting. For the time-series weighting, the
input video, based on its saliency, is firstly classified into
content of concentrated saliency and content of dispersed
saliency, and then a specific time-series weighing function (i.e.,
Wie or Wye) is determined accordingly. For the DSS-critical
frame weighting, the input video is first analysed based on its
saliency frame-by-frame to identify DSS-critical frames in the
video, and then a weighting function W is applied. Finally, a
sequence of frame-level weights W is generated via a fusion
operation of the results of time-series weighting and DSS-
critical frame weighting as follows:

if VC_dispersed,

. (10)
if VC_compact.

W, W.
Wf _ td X f
Wtc X ch

The weighting effectively combines the results of the three
vision models for DSS, thereby integrating the spatial and
temporal impacts of DSS on video distortion perception. The
resulting frame-level weights for a video comprehensively re-
flect viewer’s behavioural responses to distortions at different
viewing times as well as to disruptive distortions throughout
the entire viewing experience.

V. APPLICATION OF DISTORTION-INDUCED SALIENCY
SHIFTS

Distortion-induced saliency shifts (DSS) measure how al-
terations in a video’s properties can change the perceived
importance of different regions in the spatial and temporal
domains. By leveraging this concept, video algorithms can
be perceptually optimised to align with viewers’ attention.
The computational model, i.e., the DSS behaviour fusion
(DBF) model, has promising applications in various video
algorithms, enhancing both efficiency and effectiveness. For
example, in video compression, understanding how distortions
influence saliency allows algorithms to prioritize and preserve
regions that are visually attended by viewers, achieving higher
compression rates without compromising perceptual quality. In
video enhancement, adaptive noise reduction can be utilised to
optimise the algorithm, improving the effectiveness of content
enhancement. In this paper, we focus on the application of DSS
in the emerging field of video quality assessment (VQA).

A. Validation of Effectiveness of DSS

Video quality assessment (VQA) often takes advantage
of the well-studied image quality measures to quantify the
perceived quality of individual frames in a video, and produce
a sequence-level quality measure using sophisticated temporal
pooling [30]. However, the main challenges remain as to how
humans respond perceptually to the visual distortions when
watching a video, and how to quantify these behavioural
responses in a VQA algorithm. To validate the effectiveness
of the proposed DSS behaviour fusion (DBF) model, we
establish a DSS-based VQA framework, as shown in Fig.6.
The computational framework incorporates our proposed DSS
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TABLE III
PERFORMANCE GAIN OF STATE-OF-THE-ART VQA MODELS BY
INTEGRATING THE PROPOSED DSS BEHAVIOUR FUSION (DBF) MODEL. IN
STATISTICAL SIGNIFICANCE, “1” MEANS THAT THE PERFORMANCE GAIN
IS STATISTICALLY SIGNIFICANT; “0” MEANS THAT THE PERFORMANCE
GAIN IS NOT SIGNIFICANT. THE SALIENCY MAPS USED IN THE DBF
MODEL ARE THE GROUND TRUTH CONTAINED IN THE SVQ160 DATABASE.

Original Performance Gain .

VQA Performance (+DBF Model)) Sig.
PLCC SROCC| APLCC ASROCC

PSNR [31] 0.4718 | 0.4590 | 4.39%7 6.97 %" 1
SSIM [32] 0.5115 | 0.5164 | 2.42%7 1.66% 1 1
MS-SSIM [33] | 0.6950 | 0.7331 | 1.10%*" 1.27%1 1
VIF [34] 0.6402 | 0.6491 | 2.45%7 1.38% 1 1
VIFP [34] 0.6402 | 0.6491 | 2.45%1 | 1.38%1 1
GMSD [35] 0.7461 | 0.7362 | 2.26%1 | 2.33%71 1
GMSM [35] 0.6142 | 0.6676 | 2.81%1 | 1.47%*1 1
SpEED [36] 0.5826 | 0.6203 | 1.98%1 | 1.12%71 1
VMAF [37] 0.7347 | 0.7555 | 0.80%1 | 0.57%1 1

behaviour fusion (DBF) model as a self-contained unit into an
existing VQA model. This integration allows us to quantify the
contribution of DSS through the performance gain achieved by
the VQA model. It should be noted that as per the nature of
DSS, the VQA models selected in this study must meet the
following criteria: (1) a full-reference VQA model which uses
the reference/pristine video and the distorted video to measure
the perceived quality of the distorted video; and (2) a frame-
level VQA model which explicitly calculates quality scores
of individual frames in the distorted video sequence. Also, to
have a comprehensive evaluation, we include both traditional
VQA models that are based on pixel-based or hand-crafted
visual features; and learning-based VQA models that adopt
machine learning techniques or deep neural networks to learn
visual representations. Finally, we selected nine widely used
VQA methods including PSNR [31], SSIM [32], MS-SSIM
[33], VIF [34], VIFP [34], GMSD [35], GMSM [35], SpEED
[36] and VMAF [37]. The quality prediction performance
of a VQA model is quantified by the Pearson’s correlation
coefficient (PLCC) and Spearman’s rank correlation coefficient
(SROCC).

For each VQA model, we produce its DSS-based version
(i.e., by integrating the DBF model) using the framework
as shown in Fig.6, and we compare the quality prediction
performance of the original VQA model versus the DSS-based
VQA model on the SVQ160 database. Since the SVQ160

TABLE IV
PERFORMANCE GAIN OF STATE-OF-THE-ART VQA MODELS BY
INTEGRATING THE PROPOSED DSS BEHAVIOUR FUSION (DBF) MODEL. IN
STATISTICAL SIGNIFICANCE, “1” MEANS THAT THE PERFORMANCE GAIN
IS STATISTICALLY SIGNIFICANT; “0” MEANS THAT THE PERFORMANCE
GAIN IS NOT SIGNIFICANT. THE SALIENCY MAPS USED IN THE DBF
MODEL ARE AUTOMATICALLY GENERATED BY A COMPUTATIONAL MODEL
(L.E., VINET [38]).

Original Performance Gain .

vea Performance (+DBF Model)) Sig.
PLCC | SROCC| APLCC | ASROCC

PSNR [31] 0.4718 | 0.4590 | 2.96%1 | 0.75%1 1
SSIM [32] 05115 | 05164 | 1.10% 71T | 2.53%1 1
MS-SSIM [33] | 0.6950 | 0.7331 | 1.04%7T | 1.18%71 1
VIF [34] 0.6402 | 0.6491 | 1.69%1 | 1.53%1 1
VIFP [34] 0.6402 | 0.6491 | 1.69%1 | 1.53%1 1
GMSD [35] 0.7461 | 0.7362 | 0.26%1T | 0.31%1 1
GMSM [35] 0.6142 | 0.6676 | 1.49%1 | 1.35%1 1
SpEED [36] 0.5826 | 0.6203 | 1.07%71T | 1.36%1 1
VMAF [37] 0.7347 | 0.7555 | 0.67%1 | 1.10%1 1

database is the only database available in the literature that
contains both the ground truth saliency and subjective quality
scores, the evaluation using this database can faithfully reveal
the added value of the proposed DBF model. Table III shows
the performance gains of VQA models by adding the DSS
component. It can be seen that there is a gain in quality pre-
diction performance when using the proposed DBF model. To
verify whether the performance gain is statistically significant,
hypothesis testing in conducted. As prescribed in [39], the
statistical test is based on the residuals between the subjective
quality scores (i.e., MOS) and the predictions of a VQA (i.e.,
either the original VQA model or DSS-based VQA model).
We first evaluate the assumption of normality of the residuals
(|IMOS — VQA|| and |[MOS — DSS_VQA|), when paired
residuals are both normal, a paired samples t-test is performed;
otherwise a non-parametric test i.e., Wilcoxon signed rank test
is performed. The significance test results are shown in Ta-
ble III, which verifies that in all cases the gain in performance
is statistically significant. This demonstrates the added value of
using the proposed DBF model for video quality assessment,
and the importance of incorporating viewers’ gaze behaviour
in perceptual tasks.

Realistically, ground truth saliency is often not available,
and a practical solution is to calculate saliency by a com-
putational model. To investigate whether the model-generated
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TABLE V
ABLATION STUDY: A VARIANT OF THE DSS-BASED VQA FRAMEWORK CONSTRUCTED SPECIFICALLY TO VERIFY THE CONTRIBUTION OF KEY
COMPONENTS OF THE PROPOSED DSS BEHAVIOUR FUSION (DBF) MODEL. (BOLD FONT MEANS THAT THE DSS-BASED VQA’S PERFORMANCE GAIN IS
THE LARGEST IN THE ABLATION STUDY.)

Wy Wey | PSNR [31] SSIM [32] MS-SSIM [33]  VIF [34]

VIFP [34] GMSD [35] GMSM [35] SpEED [36] VMAF [37]

- - 0.4718
v - 2.15%%
- v 0.52%1"
v v 4.39%1

05115
1.229%¢
0.12%1
242%7

0.6950

0.89%1
0.10%1
1.10%71

0.6402
0.81%1
0.14%1
2.45%7

0.5826
0.76%7
0.07%7
1.98%1"

0.7347
0.48%1"
0.12%1"
0.80%1

0.6402
0.81%1"
0.14%1"
2.45%1

0.7461
1.06%1
0.08%
2.26%7

0.6142
1.31%7"
0.09%1"
2.81%7

2.80%
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1.40%

0.70%

Performances Gain

I

WC f

0.00%

Wt Wt + Wc f

Fig. 7. Ablation study: Performance gain (in terms of PLCC) averaged over
all VQA models using three variants of the DSS-based VQA framework, i.e.,
Wi, Wep and Wi + W ;. The error bars indicate a 95% confidence interval.
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Fig. 8. Ablation study: Performance gain (in terms of PLCC) averaged over
all VQA models for different saliency models (including the ground truth)
used to produce saliency maps for the DBF model. The error bars indicate
a 95% confidence interval. * and T represent static and dynamic saliency
prediction models, respectively.

saliency when used as a substitute for ground truth saliency
can still bring in VQA performance gain, we repeat the above
experiment protocol using a state-of-the-art video saliency
prediction model (i.e., ViNet [38]) instead of the ground
truth saliency of the SVQI160 database. The results shown
in Table IV demonstrate that the effectiveness of a computa-
tional saliency model for the proposed DSS-based framework;
and that the performance gain is statistically significant. The
machine-generated saliency makes the DSS-based VQA more
applicable for real-world scenarios.

B. Ablation Study

Ablation studies are conducted to verify the contribution of
key components of the proposed DSS behaviour fusion (DBF)
model, including (1) the time-series weighting (i.e., W), and
(2) the DSS-critical frame weighting (i.e., W,y). Table V
shows the performance of VQA models without using the DSS
and with three variants of using the DSS weightings (i.e., W4,
Wey or Wy + Wey). It is evident that the application of W;

and W, individually contributes to performance enhancement
for the nine VQA models; and that the appellation of W, and
W,y combined together provides the largest performance gain
for these VQA models, as shown in Fig.7. This suggests the
efficacy of the proposed DSS behaviour fusion (DBF) model.

In addition, we evaluate the relative impact of different
saliency prediction models on the computational DSS-based
VQA framework, which integrates our proposed DBF model
in to a VQA. To this end, we select six state-of-the-art saliency
models including EML-NET [41], TranSalNet [42], SAM-
ResNet [40], ViNet [38], UNSIAL [44], and TASED-Net [43];
and implement them to generate saliency maps of videos
contained in the SVQ160 database. The first three models are
static models designed for predicting visual saliency of images,
and the last three are dynamic models specifically designed for
predicting saliency of videos. These models have been proven
the best-performing models as per the widespread saliency
benchmarks [18]. Tables VI illustrates the performance of nine
DSS-based VQA models based on different saliency prediction
models. In general, these state-of-the-art saliency models can
be effectively embedded in the proposed DSS-based VQA
framework to enhance the VQA models’ performance. Fig.8
shows the performance gain averaged over all VQA models
for different saliency models including the ground truth. It can
be seen that TranSalNet and ViNet provide the largest gain
compared to other saliency models. But there is still room for
improvement compared to the gain produced by the ground
truth saliency.

VI. DISCUSSION

In this study, model development and validation were
performed using the SVQ160 dataset [6], which currently
serves as the only dataset combining both eye movements and
subjective video quality assessments. Evaluating the proposed
approach on an independent dataset is essential for assessing
its generalizability and robustness. To further enhance the
model’s applicability, future work should involve conducting
additional experiments to collect eye movements and sub-
jective video quality assessments from more diverse video
datasets, incorporating a wider range of video resolutions,
content types, and distortion scenarios. Such efforts will help
ensure that the proposed DSS models generalise effectively
across different datasets and real-world application contexts.

While our current study primarily focuses on measuring
distortion-induced saliency shifts (DSS) and applying DSS to
video algorithm optimisation, we acknowledge the potential
impact of high-resolution video on DSS. As resolution can
influence viewers’ perception in general, higher resolutions
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TABLE VI
ABLATION STUDY: PERFORMANCE GAIN OF VQA MODELS BY INTEGRATING THE PROPOSED DSS BEHAVIOUR FUSION (DBF) MODEL. THE SALIENCY
MAPS USED IN THE DBF MODEL CAN BE AUTOMATICALLY GENERATED BY DIFFERENT SALIENCY PREDICTION MODELS INCLUDING SAM-RESNET [40],
EML-NET [41], TRANSALNET [42], TASED-NET [43], UNSIAL [44], AND VINET [38]. * AND T REPRESENT STATIC AND DYNAMIC SALIENCY
PREDICTION MODELS, RESPECTIVELY.

Models PSNR | SSIM | Ms-SSIM VIF VIFP | GMSD | GMSM | SpEED | VMAF
[31] [32] [33] [34] [34] [35] [35] [36] [37]

Original PLCC 04718 | 05115 0.6950 06402 | 0.6402 | 07461 | 06142 | 05826 | 0.7347
SROCC | 04590 | 0.5164 0.7331 06491 | 06491 | 07362 | 06676 | 06203 | 0.7555

*SAM-ResNet | APLCC | 3.53%1 | 2.22%1 | 0.03%1 | 1.19%1 | 119%7 | 1.39%1 | 1.04%71 | -0.40%, | 0.38%7"
(DBF) ASROCC | 0.01%% | 2.49%1 | 0.86%1 | 095%1 | 0.95%t | 2.03%t | 2.07%+ | 0.46%1 | 0.82%7
*EML-NET | APLCC | 1.16%1 | 1.31%1 | 0.74%1 | 122%1 | 1.22%1 | 0.83%7 | 2.24%71 | 1.64%7T | 0.72%7"
(DBF) ASROCC | 1.83%%1 | 0.73%1 | 0.85%1 | 1.45%1 | 145%t | 0.88%1 | 0.83%71 | 0.87%1 | 0.38%7
“TranSalNet | APLCC | 415%71 | 1.39%7T | 0.79%%1 | 0.40%71 | 0.40%71 | 0.93%T | 1.81%1 | 1.55%1 | 0.37%7
(DBF) ASROCC | 649%% | 2.18%1 | 147%%1 | 092%1 | 0.92%7T | 1.02%71 | 0.98%1 | -0.39%] | 0.32%*
TTASED-Net | APLCC | 3.63%7T | 0.12%1 | 0.54%7 | -0.11%) | -0.11%, | 1.09%71 | 2.74%+ | 214%71 | -0.54%,
(DBF) ASROCC | 451%% | 0.81%1 | 024%%1 | 0.04%1 | 0.04%7T | 0.07%71 | 0.40%+ | 0.52%7 | 0.43%*
TUNISAL APLCC | 2.69%7T | 127%1 | -021%] | -0.09%) | -0.09%) | 0.69%1 | 247%1 | 2.69%1 | 0.47%*
(DBF) ASROCC | 0.88%7 | 2.82%1 | 0.08%71 | 0.84%71 | 0.84%T | 0.49%1 | -041%| | 0.72%1 | 0.05%*
TViNet APLCC | 296%71 | 1.10%1 | 1.04%1 | 1.69%71 | 1.69%71 | 0.26%1 | 149%1 | 1.07%7 | 0.67%7"
(DBF) ASROCC | 0.75%% | 2.53%1 | 118%%1 | 1.53%1 | 1.53%7T | 0.31%1 | 1.35%1 | 1.36%1 | 1.10%7*

may reveal finer visual details, making certain distortions
more perceptually noticeable and potentially leading to more
pronounced spatial DSS. Extending the investigation to high-
resolution content to systematically study the impact of res-
olution on DSS represents an important next step. Future
work will involve creating new eye-tracking datasets and
refining our computational models to account for the increased
complexity of high-resolution visual stimuli. We anticipate
that our developed DSS models can be adapted to handle
high-resolution content by incorporating appropriate scaling
mechanisms and advanced feature extraction techniques, en-
abling broader applicability of DSS models across diverse
video formats.

In visual quality assessment, no-reference algorithms play
a critical role by complementing full-reference methods. The
no-reference algorithms, such as BRISQUE [45], NIQE [46],
BPRI [47], BMPRI [48], and RichIQA [49], estimate per-
ceived quality without requiring a reference, making them
essential for real-world applications where reference con-
tent is unavailable. These no-reference algorithms primarily
target static images but have inspired video quality assess-
ment (VQA) models that operate without reference content.
While our current work focuses on full-reference VQA using
distortion-induced saliency shifts (DSS), future research could
explore adapting DSS-based models for no-reference VQA
tasks. This would involve developing ways to model DSS
behaviours using only distorted videos, and a more universal
version of the DBF framework, capable of enhancing the
performance of no-reference VQA algorithms by leveraging
implicit distortion-saliency relationships.

In Section V.B, we evaluated six state-of-the-art saliency
prediction models within our proposed DBF framework to
assess their effectiveness. As illustrated in Figure 8, the static
saliency prediction model TranSalNet and the dynamic model
Vi-Net showed the highest performance gains, with average
improvements of 1.31% and 1.33% across nine VQA algo-

rithms, respectively. Based on their results on SALICON [18]
and DHF1K [50] benchmarks, TranSalNet and Vi-Net rank
as top-performing models among the three static and three
dynamic saliency prediction models evaluated. However, the
performance gains achieved with these computational saliency
models remain considerably lower than those obtained using
ground truth saliency. This implies that the effectiveness of the
DBF framework depends heavily on the accuracy of saliency
predictions — models that produce saliency maps closer to the
ground truth yield better DBF framework performance.

While our current study focuses solely on visual scene and
distortions in video, extending the proposed concept of DSS
and its models to consider audio information is an important
direction for future research. As a critical component of
multimedia content, audio cues can influence viewers’ visual
attention and overall quality experience. Future studies would
involve conducting eye-tracking experiments with synchro-
nised audio-visual stimuli and developing multimodal models
capable of capturing cross-modal saliency shifts.

VII. CONCLUSION

In this paper, we introduce a novel concept - distortion-
induced saliency shifts (DSS) in video. Based on a large-
scale, reliable eye-tracking database, we conduct an exhaustive
statistical analysis to conceptualise DSS and its measurement
in the context of video distortions. The perceptual behaviours
of DSS are modeled to reflect the impact of video content,
passage of time and critical distortion disruption on the percep-
tion of video distortions. These vision models are integrated
to construct a new DSS behaviour fusion (DBF) model for
quantifying viewers’ spatio-temporal behaviours. By applying
the proposed DBF model in the emerging field of video quality
assessment (VQA), we demonstrate the added value of DSS
in enhancing video algorithms. Future work will focus on the
application of DSS in other important video algorithms.
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