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ABSTRACT

We present an exploratory investigation into using Simulation-based Inference techniques, specifically Flow-Matching Posterior
Estimation, to construct a posterior density estimator trained using real gravitational-wave detector noise. Our prototype estimator
is trained on a 9-dimensional space, and for training efficiency outputs posterior probability distributions for the binary black
holes chirp mass and mass ratio. We use this prototype estimator to investigate possible effects on p arameter e stimation for
Intermediate-Mass Binary Black Holes, and show statistically significant reduction in measurement bias. Although the results
show potential for improved measurements, they also highlight the need for further work.
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1 INTRODUCTION

The LIGO Buikema et al. (2020), Virgo Acernese et al. (2019) and
KAGRA Akutsu et al. (2020) Gravitational Wave (GW) observato-
ries have since 2014 reported around one hundred GWs from binary
black hole mergers, with individual black hole masses ranging from
a few stellar masses to over a hundred Abbott et al. (2023). The
heaviest detected so far lie at the edge of the regime associated
with Intermediate-Mass Black Hole (IMBH), above about one hun-
dred solar masses. As outlined in Greene et al. (2020), these black
holes could play a fundamental role in stellar and galactic evolution,
and represent a significant source of gravitational waves and tidal
disruption events. However, in the detection band of current ground-
based gravitational-wave detectors, IMBH signals are typically only
detectable in very short time intervals of a few milliseconds. Thus,
short duration noise artefacts (known as glitches) present in the noise
of those detectors have the potential to strongly affect the measure-
ments of IMBHs. During LIGO’s third observing run, glitches with
a Signal-to-Noise Ratio (SNR) of at least 6.5 occurred about once
per minute Abbott et al. (2023), with the actual rate of relevant
glitches being higher due to the potential impact of smaller glitches
on parameter estimation.

The parameter estimation methods commonly used by the LIGO-
Virgo-KAGRA (LVK) collaboration, such as those available in the
Bilby library Ashton et al. (2019), have proven very reliable for
inferring black-hole parameters. However, they generally assume that
the noise around events is purely Gaussian and stationary. When
glitches or other deviations occur, these assumptions can significantly
impact the results Powell (2018); Davis et al. (2022); Hourihane
et al. (2022); Macas et al. (2022); Ashton (2023). Simulation-Based
Inference (SBI) on the other hand, leverages machine learning to infer
parameters without assuming a specific noise distribution, provided
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sufficient training data are available Cranmer et al. (2020). Previous
studies have applied SBI and Neural Posterior Estimation (NPE)
towards GW parameter estimation Green et al. (2020); Delaunoy
et al. (2020); Dax et al. (2021, 2022, 2023); Bhardwaj et al. (2023);
Alvey et al. (2024) using Gaussian stationary noise. In particular,
Dax et al. (2023) used Flow Matching Posterior Estimation (FMPE)
on gravitational-wave signals in Gaussian noise. The work presented
here applied the same technique, on a more limited gravitational-
wave signal space, but looking at the impact of real, non-Gaussian
and non-stationary detector noise. Notably, Wildberger et al. (2023)
has been able to address Power Spectral Density (PSD) uncertainties,
while Legin et al. (2023b); Legin et al. (2023a) employ Score-Based
Likelihood Characterization to create a likelihood function based on
real detector noise.

In this work, we use SBI to directly map simulated IMBH signals
in real detector noise to the posterior distributions of inferred black
hole parameters, for training efficiency we currently only infer the
binary’s chirp mass and mass ratio. This is the first effort to train fully
amortized networks for parameter estimation on real detector noise,
eliminating the need for both importance sampling and likelihood
assumptions. This approach allows us to realistically study the effects
of real detector noise while leveraging the speed of SBI.

This paper is organised as follows: Section 2 describes our SBI
methods and simulations, Section 3.1 presents results on signals
generated in Gaussian noise and Section 3.2 does the same on real
detector noise. Finally, Section 4 summarizes our findings and dis-
cusses them in the context of future developments.

2 METHODS

The field of GW parameter inference currently relies on Bayesian
sampling methods to retrieve astrophysical information from GW



signals. These methods are all based on Bayes’ theorem:
p(x16) - p(6)
p(x)
where p(6|x) is the posterior probability of the parameters 6 given
the observed data x, p(x|6) is the likelihood of the data x given the
parameters 0, p(0) is the prior of the parameters 6 before observation,
and p(x) is the marginal likelihood or evidence i.e. the probability
of observing the data under all considered parameter values. It is
calculated as:
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SBI is a class of Bayesian machine learning methods that utilise
simulated data in order to infer probability density distributions. In
this paper we use Likelihood-free AMortized Posterior Estimation
(LAMPE)’s Rozet et al. (2021) implementation of FMPE Lipman
et al. (2022); Dax et al. (2023) as our density estimator. To train
the neural network, we require only mechanistic models (in our case
these are the GW waveform models), constraints on the prior and
segments of real on-site detector noise. We sample from the prior
and in conjunction with our models and noise segments, we simulate
synthetic data x ~ p(x|@) to give as input to a normalising flows
neural network Rezende & Mohamed (2015); Papamakarios et al.
(2021). Normalising flows define a probability distribution g(6]x)
over n number of parameters in the parameter space § € R" in
terms of an invertible mapping ¢ : R" — R’ from a simple base
distribution g((6) Rezende & Mohamed (2015); Papamakarios et al.
(2021):

p(blx) = ; 6]
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where (¢)+ denotes the forward flow operator, and x is conditioned
as x € R™, where m is the dimension of the observed data space, i.e.,
how many data points or features are in each observation x. Normal-
izing flows are discrete flows, such that yx is a collection of simpler
mappings with triangular Jacobians and 8 shuffling. This results in a
neural density estimator, ¢(6|x), that is simple to evaluate, quick to
sample from and approximates the posterior p(6|x). Flow matching
is a method that uses a vector field v, to directly define the velocity of
sample trajectories as they move towards the target distribution Lip-
man et al. (2022). These trajectories are determined by solving or-
dinary differential equations (ODEs), which allows flow matching
to achieve optimal transport without the need for discrete diffusion
paths. This means that flow matching can directly reach the target dis-
tribution and compute densities more efficiently than other generative
methods, such as Neural Posterior Score Estimation (NPSE) Sharrock
etal. (2022); Geffner et al. (2023); Sohl-Dickstein et al. (2015); Song
& Ermon (2019); Ho et al. (2020). FMPE is a technique that applies
flow matching to Bayesian inference Lipman et al. (2022); Dax et al.
(2023), it works by directly aligning the estimated posterior distribu-
tion with the true posterior distribution. This alignment is achieved
through a loss function that minimizes the difference between the
two distributions. Due to this and the continuous nature of the flow,
FMPE can lead to a more direct and possibly more accurate estima-
tion of the posterior as opposed to other methods such as Sequential
Neural Posterior Estimation (SNPE)Rezende & Mohamed (2015);
Papamakarios et al. (2021); Bhardwaj et al. (2023). In those meth-
ods the posterior distribution is iteratively refined through sequential
updates with a heavy reliance on approximations and intermediate
layers, or NPSE where they focus on estimating the score function
(gradient of the log-posterior) rather than the posterior distribution
itself, leading to intractable posterior densities.

In the FMPE regime, we utilise continuous normalising flows,
which are parameterised by a continuous “time” parameterz € [0, 1],
such that g;—o(0]x) = ¢(6) and g;=1(8]x) = ¢(6]x) Chen et al.
(2018). Each ¢ defines the flow by a vector field v, x on the sample
space. This corresponds to the velocity of the sample trajectories,

d
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Integrating this ODE then gives the trajectories 8; = ; x(6). The
final density is retrieved by solving the transport equation d;q; +
div(qsve,x) = 0 and is:

1
q(61x) = (Y1,x)+q0(6) = qo(6) exp (—/0 div Vt,x(et)dt) -0

The continuous flow thus allows v x(6) to be specified simply
by a neural network taking R"**! — R”. The main goal of flow
matching training is to make the learned vector field v; x closely
follow a target vector field u; x. This target vector field generates a
path p; x that leads us towards the posterior distribution we want
to estimate. By doing this, we avoid the need to solve ordinary dif-
ferential equations (ODEs) during training. Although choosing the
pair (uz x, pr,x) might seem complex initially, Lipman et al. (2022)
showed that the training process becomes much simpler if we con-
dition the path on 6, a sample drawn from the prior distribution,
instead of x. This is known as sample-conditional basis. For a given
sample-conditional probability path p;(6|61) with a corresponding
vector field u;(6]6;), the sample-conditional flow matching loss is
defined as

Lscem = Er~u[0,1],x~p (x),0~p(01x),0,~p; (6,161)"
IVe,x (8r) — ur (8161117 | . ()

According to Lipman et al. (2022), minimising this loss is equiv-
alent to regressing v; x(6) on the marginal vector field u; x that
generates py(6|x). Due to the sample-conditional vector field being
independent of x the x—dependence of v x(6) is picked up by the
expectation value. Flow matching is applied to SBI by using Bayes’
theorem to make the replacement Epx)p(a1x) — Ep(o)p(x|6)- re-
moving the intractable expectation values, making the new FMPE
loss:

LeMPE = Et~p(1),6,~p(6),x~p(x|61),0,~p, (6,161)"
Ve,x(87) — ur (8161117 | - @)

We generalise the uniform distribution in Equation (6) by sampling
from t ~ p(¢),t € [0,1] in this expression as well. This provides
more freedom to improve learning in our networks.

The family of Gaussian sample-conditional paths are first pre-
sented in Lipman et al. (2022) and are given as

pe(0161) = N (011 (01), 0 (61) 1) (8)

where one could freely specify, contingent on boundary conditions,
the time-dependant means y;(61) and standard deviations o7 (61).
The sample-conditional probability path must be chosen to concen-
trate around 61 at t = 1 (within a small region of size 0y,iy) in ad-
dition to being the base distribution at ¢ = 0. In this work, we utilise
the optimal transport paths (shown in Lipman et al. (2022) and used
in Dax et al. (2023)) defined by s (61) and 0 (601) = 1 — (1 = oppin)t
making the sample-conditional vector field have the form

01 — (1 = omin)0
1= (1= omin)t

Training data is generated by sampling from 6 from the prior

ur(6161) = )



Parameter Range Prior
Chirp mass 80-120 My  Uniform
[ht] Mass ratio 0.3-1.0 Uniform
Luminosity distance  1-4 Gpc Uniform
Time 20 ms wide  Uniform

Table 1. Prior parameters. All other parameters are using the standard uniform
priors Abbott et al. (2023).

and in conjunction with waveform models and detector source noise,
simulating data x corresponding to 6. The FMPE loss in Equation (7)
is minimised via empirical risk minimisation over samples (6,x) ~
p(O)p(x16).

Generative diffusion or flow matching models typically handle
complex, high-dimensional data (such as images) in the 6 space.
They often use U-Net architectures to map 6 to a vector field v(6)
of the same dimension, with 7 and an optional conditioning vector
x included. In the SBI case however, and particularly in this study
field, the data is often complicated whereas the parameters 6 are
low dimensional. This indicates that it would be more useful in our
case to build the network architecture as a mapping that goes from
x to v(x) and then apply conditioning on € and ¢. We can therefore
use any feature extraction architecture for the data and in our case
we use Singular Value Decompositions (SVD)s to extract the most
informative features of the data segments. Note that SVDs built on
the GW models may not always useful because they can remove
relevant features from the noise.

3 RESULTS

The results presented here were created using networks trained with
simulated data from non-spinning IMBH models using the IMRPhe-
nomXPHM waveform approximant Pratten et al. (2021), generated
from the 9-dimensional parameter space, injected in different kinds
of noise in a single GW detector (the LIGO Hanford detector). Fur-
thermore, during training only the chirp-mass M and mass-ratio ¢
were labelled, thus limiting network’s output to those two parame-
ters. This effectively marginalises over all the other parameters (sky
location, distance, phase, polarization, merger time, and inclination
angle), making training easier. Time and sky-location parameters lo-
cal to the (single) detector were used instead of the standard geocenter
time, right-ascension and declination parameters. This enables faster
training while still allowing us to investigate the effect of real noise
on the inference.

For this exploratory investigation the priors used are listed in Ta-
ble 1. The high masses allow for a segment length of 0.5 s and a high
frequency cutoff of 256 Hz, while the low frequency cutoff is set to
the usual 20 Hz, relevant for the Advanced LIGO zero-detuned high
power Abbott et al. (2020a) noise curve used to generate Gaussian
noise. We do highlight that for GW190521 which has similar mass
parameters as our injection for this exploratory investigation, previ-
ous Bayesian analyses have gone below this threshold Abbott et al.
(2020b), while others have also used 20 Hz, e.g. Abbott et al. (2024).

This work uses LAMPE’s implementation of FMPE which we
combine with GWpy Macleod et al. (2021) and Bilby library Ashton
et al. (2019); Romero-Shaw et al. (2020a). In particular, we are
using a Multi-Layer Perceptron with 32 layers of 256 features and
Exponential Linear Unit activation function. Despite the risks of
vanishing gradients, those hyper parameters did provide the best
results over a sweep from 23-6 layers and 26-10 features. Training
was done using about 10 million segments in the frequency domain,
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each including a simulated waveform randomly drawn from the prior,
taking about 1 day on a A100 GPU.

3.1 Gaussian noise

When trained on injections with Gaussian noise, we expect for the
SBI network to converge towards a representation of the conditional
posterior mapping able to directly sample from the posterior with the
correspondingly estimated Gaussian likelihood. To check the con-
vergence of the training we perform a set of simulated injections in
Gaussian noise in the LIGO Hanford detector using IMRPhenomX-
PHM and recover them with both the trained SBI network, as well as
the Dynesty Speagle (2020) sampler implemented in the bilby soft-
ware library. We used the same Advanced LIGO zero-detuned high
power Abbott et al. (2020a) noise curve and the IMRPhenomXPHM
waveform model. We ran 4 parallel analyses using 4000 live points
each. Two examples are shown in the top panels of Figure 1, where
the sampled distributions are near-identical with Jensen-Shannon
Divergence (JSD) values of 0.001 nat and 0.006 nat, respectively,
thus confirming that our training samples accurately represented the
9-dimensional parameter space. We provide the JSD values as they
are commonly used in gravitational-wave astronomy Abbott et al.
(2019). A typical threshold to indicate statistical agreement is 0.035
nat.

Furthermore, a 2-dimensional percentile-percentile test (Figure 2,
panel (a)) on 100 injections recovered with the trained network shows
that our credible intervals behave as expected, which matches the per-
formance from stochastic sampling, see for instance Romero-Shaw
et al. (2020b). We calculated the two-dimensional mass coverage
with a Monte Carlo integration Hermans et al. (2022) for this plot.

3.2 LIGO detector noise

The training data was generated by injecting simulated signals at ran-
domly selected starting points within a roughly 14 h stretch of LIGO
Hanford data around February 20? " 2020 (GPS time 1266213786.7).
For training, we used the same network architecture from Section 3.1.
In most cases this reproduced the results from the Gaussian likeli-
hood as sampled with Dynesty using bilby which estimated the PSD
using the default median average method settings Romero-Shaw et al.
(2020a), other settings being identical to those in the previous sec-
tion. For example, the results in the bottom right panel of Figure 1
reached a JSD of 0.004 nat and 0.013 nat for the mass ratio ¢ and
chirp-mass M, respectively.

However, for a fraction of injections, by not assuming Gaussianity
nor stationarity, the network outperformed the Gaussian likelihood,
as shown in Figure 1, bottom left panel, with a JSD of 0.008 nat for
the mass ratio ¢, and 0.07 nat for the chirp-mass M.

The statistical reliability of the credible interval of this network
was assessed with a percentile-percentile plot (see Figure 2 panel (b)),
which gave the expected diagonal behaviour. Note that the network
is by construction specific to the data used in training, and as such
is only amortized over observations in noise with similar properties.
In practice it may be necessary to retrain the network if the detector
characterizations analyses find differences.

4 DISCUSSION

The improvement achieved by modelling the real noise distribution
in our results is comparable to the Score-Based Likelihood Char-
acterization findings of Legin et al. (2023a). However, unlike their
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Figure 1. PDFs for the chirp-mass M and the mass-ratio g from sampling a Gaussian Likelihood and a SBI network trained with (top panels) Gaussian noise
on an injection into Gaussian noise, and trained with (bottom panels) real detector noise on an injection into real detector noise. The blue lines show the injected

values.

approach, our trained SBI network directly generates samples from
the target conditional posterior distribution and does not require an
extra sampling step. On this limited example, after a ~ 24 h training
on a A100 GPU, the bottleneck for inference time shifts to our GPU’s
1/O capacities, reducing it to a few milliseconds, whereas standard
sampling requires several hours.

Our results thus represent a first look at how simulation-based in-
ference may be able to perform optimal parameter estimation using
real detector noise. Current limitations include the need to character-

ize and quantify noise features beyond Gaussianity and stationarity.
We emphasise however that this works lays a strong foundation and
can in future investigations be used to focus on precessing-spin analy-
ses that also include calibration error modeling. Testing on simulated
analytical non-Gaussian noise distributions, and testing with different
PSD estimation methods such as BayesWave Cornish et al. (2021),
will be able to lead us to robust SBI architectures for GW inference.

Beyond the extension to precessing systems, future studies will
also involve increasing the domain of applicability, specifically low-
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Figure 2. Percentile-percentile plots on the multi-dimensional PDF sampled
from the converged neural network trained on a) Gaussian noise (p-value
0.64) and b) real detector noise (p-value 0.66), using 100 injections.

ering the mass range on which the network is trained, as currently
the analysis would not be reliable on lower-mass signals, and in-
cluding multiple detectors and eccentric signals. However, given our
SVD compression pre-processing step, and the performance of other
compression techniques on GW signals, for instance Reduced-Order-
Modelling methods (see Tiglio & Villanueva (2022) for a review),
the scaling is expected to be manageable. Additionally, work on
marginalising over multiple waveform approximants such that the re-
sulting marginalised posterior distribution encompasses errors from
waveform systematics and will help towards enlarging the domain of
applicability of the networks.
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