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A B S T R A C T

In contemporary operational environments, decision-making is increasingly shaped by the interaction between 
intuitive, fast-acting System 1 processes and slow, analytical System 2 reasoning. Human intelligence (HI) 
navigates fluidly between these cognitive modes, enabling adaptive responses to both structured and ambiguous 
situations. In parallel, artificial intelligence (AI) has rapidly evolved to support tasks typically associated with 
System 2 reasoning, such as optimization, forecasting, and rule-based analysis, with speed and precision that in 
certain structured contexts can exceed human capabilities. To investigate how AI and HI collaborate in practice, 
we conducted 28 in-depth interviews across 9 leading firms recognized as benchmarks in AI adoption within 
operations and supply chain management (OSCM). These interviews targeted key HI agents, operations man
agers, data scientists, and algorithm engineers, and were situated within carefully selected, AI-rich scenarios. 
Using a sensemaking framework and cognitive mapping methodology, we explored how HI interpret and interact 
with AI across pre-development, deployment, and post-development phases. Our findings reveal that collabo
ration is a dynamic and co-constitutive process of institutional co-production, structured by epistemic asym
metry, symbolic accountability, and infrastructural interdependence. While AI contributes speed, scale, and 
pattern recognition in routine, structured environments, human actors provide ethical oversight, contextual 
judgment, and strategic interpretation, particularly vital in uncertain or ethically charged contexts. Moving 
beyond static models such as “human-in-the-loop” or “AI-assistance,” this study offers a novel framework that 
conceptualizes AI and HI collaboration as a sociotechnical system. Theoretically, it bridges fragmented litera
tures in AI, cognitive science, and institutional theory. Practically, it offers actionable insights for designing 
collaborative infrastructures that are both ethically aligned and organizationally resilient. As AI ecosystems grow 
more complex and decentralized, our findings highlight the need for reflexive governance mechanisms to support 
adaptive, interpretable, and accountable human–machine decision-making.

1. Introduction

Artificial intelligence (AI), defined as the capacity of a machine to 
execute cognitive functions that are typically associated with human, 
underlying perceiving, reasoning, learning, and problem-solving capa
bilities, has now reached or even surpassed human performance in 
various domains, including games, standardized tests, and complex 
cognitive tasks requiring advanced thinking and strategic reasoning. For 
instance, AI systems are better than human-driven manual solutions in 
operations and supply chain management (OSCM) tasks, such as de
mand forecasting, inventory optimization, and route planning, areas 
that have long been considered highly complex and dependent on 
human expertise [27]. In particular, AI systems have demonstrated 

superior capabilities in real-time supply chain risk management by 
processing and analyzing massive volumes of logistical data to antici
pate potential disruptions and inefficiencies before they escalate [1]. 
Moreover, AI enhances procurement processes and supplier selection by 
uncovering cost-saving opportunities and performance patterns that 
may escape human attention [130]. Transportation has also been 
revolutionized by AI: advanced AI-driven algorithms now optimize fleet 
scheduling, delivery operations, and load balancing with greater preci
sion and efficiency than even the most seasoned logistics professionals 
[51]. These rapid advances have prompted some scholars to argue that 
even the most human-like traits, such as decision-making in uncertain 
supply chain environments, will eventually be replicable by machines. 
In short, AI is rapidly developing algorithms that “think humanly,” 
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“think rationally,” “act humanly,” and “act rationally”.
Given the astonishing progress of AI, Daniel Kahneman had ques

tioned (and explored possible answers to) whether there are any 
inherent limitations to what AI can ultimately achieve, especially when 
provided with sufficient data. In his view, the distinction between tasks 
suited for humans and those better performed by machines is becoming 
increasingly irrelevant, and he advocates for the replacement of human 
decision-makers with algorithmic systems wherever it is feasible [80]. 
This perspective is echoed by Davenport and Kirby, who argue that 
computational systems already surpass the majority of humans in 
extracting meaningful insights from data, and that this disparity in 
analytical performance is expected to widen as AI technologies advance 
[38]. Along similar lines, Felin and Holweg [53] contend that AI is on 
track to outperform human reasoning and decision-making across a 
broad range of domains. Booyse and Scheepers [22] go further, sug
gesting that strategic functions such as supply chain network planning 
and even entire operational processes may soon be governed primarily 
by autonomous AI systems. Supporting this broader reconfiguration of 
intelligence, Hinton has asserted large language models are sentient and 
intelligent, and that “digital intelligence” will inevitably surpass human 
“biological intelligence”, if it has not already done so [33,85].

Compared to machines, human intelligence (HI) are boundedly 
rational [118], processing information selectively and often relying on 
heuristics that introduce cognitive biases such as confirmation bias. 
These limitations hinder consistent, data-driven decision-making, 
particularly under complexity. In contrast, AI systems are engineered to 
efficiently handle vast volumes of structured data, applying statistical 
models or rule-based logic with speed, consistency, and minimal fatigue 
[119]. This divergence is encapsulated in Kahneman’s dual-process 
theory,which distinguishes between two cognitive modes: System 1, 
fast, intuitive, and experience-driven, and System 2, slow, analytical, 
and deliberative [50]. While System 2 thinking is ideal for structured 
problems, System 1 often guides real-time decision-making in volatile, 
ambiguous environments where data may be incomplete or delayed. In 
OSCM, decisions frequently arise in contexts of disruption, such as po
litical instability, raw material shortages, or unforeseen demand spikes 
[63]. In these cases, Type 1 decision-making, relying on intuition and 
experience, can be more effective than purely analytical approaches. For 
instance, an experienced supply chain professional may use “gut feel” to 
assess when to reorder inventory, even when quantitative data is scarce 
[109]. AI and cognitive technologies excel in well-defined tasks but 
struggle with open-ended problems requiring creative problem-solving, 
contextual understanding, and ethical judgment [65]. Unlike structured 
tasks with clear rules, real-world decisions involve uncertainty and 
incomplete information, where Type 1 processing, relying on experience 
and intuition, can outperform purely analytical reasoning [117]. 
Therefore, understanding how these two cognitive systems interact, and 
under what conditions they align or conflict, is essential to advancing 
effective decision-making in OSCM.

A new paradigm of collaboration is emerging, one that seeks to 
harness the distinct yet complementary strengths of AI and HI. AI offers 
unparalleled capabilities in processing large-scale data, automating 
routine tasks, and generating predictive insights with speed and preci
sion. HI contributes strategic thinking, contextual judgment, ethical 
reasoning, and the ability to operate effectively under uncertainty. This 
evolving partnership aims not to replace one with the other, but to 
integrate both in a way that enhances decision-making quality, agility, 
and resilience, particularly in dynamic and complex environments 
where neither AI nor HI alone is sufficient [129]. Despite growing in
terest in AI across industries such as manufacturing, logistics, and 
technology etc. academic research has largely focused on AI as a 
standalone tool [12] and on HI within the fields of psychology and 
behavioral sciences [61]. There remains a significant gap in under
standing how AI and HI interact and co-function in real-world, data-
intensive operational contexts. This study addresses this gap by focusing 
on the OSCM domain, which is uniquely positioned at the intersection of 

technological sophistication and human decision-making complexity. 
OSCM is characterized by high data availability and widespread AI 
adoption, however it also involves frequent disruptions, ranging from 
geopolitical shifts to natural disasters, that require adaptive, 
experience-based human reasoning [18]. In such contexts, professionals 
like data analysts and operations managers serve as key HI agents, 
interpreting algorithmic outputs, applying domain expertise, and mak
ing context-sensitive decisions. This study poses the central research 
questions: In the context of OSCM disruptions that require rapid, intuitive 
(System 1) responses alongside analytical, data-driven (System 2) process
ing, how do AI and HI agents interact, and what mechanisms enable their 
effective co-functioning in real-world operational environments?

This study investigates the collaboration paradigm across key OSCM 
sectors, such as scheduling, logistics optimization, automated ware
housing, demand forecasting, and robotics in manufacturing, as well as 
the role of external algorithm service providers, which some organiza
tions rely on for AI solutions. These domains were chosen for their sig
nificant reliance on data, where AI technologies play a critical role in 
optimizing efficiency, improving decision-making, and addressing 
complex challenges; HI remains indispensable for managing uncer
tainty, making strategic decisions, and ensuring ethical considerations 
are upheld in dynamic and unpredictable environments [21,116]. The 
integration of both AI and HI is crucial to overcoming operational hur
dles, ensuring human oversight in decision-making, and maintaining 
ethical standards. To understand the dynamics of this collaboration, the 
study employs a sensemaking approach, as defined by Weick and Weick 
[131], where decision-makers interpret and derive meaning from com
plex and ambiguous situations to guide their actions. In the context of 
AI-HI collaboration, sensemaking helps explain how professionals 
navigate the intersection of AI technologies and human judgment. This 
evolving interaction necessitates an exploration of the motivations, 
challenges, and decision-making processes that shape such collabora
tions. Through in-depth interviews with algorithm engineers, data sci
entists, and other professionals, the findings are translated into cognitive 
mapping, an analytical method that visualizes the relationships between 
key concepts and decision-making factors [47].

This research makes a significant theoretical contribution by 
bridging the fragmented understanding of AI and HI in the existing 
literature. Traditionally, AI and HI have been studied in isolation, with 
AI often viewed as a computational tool and HI as a decision-making 
mechanism. By examining the practical collaboration between these 
two forms of intelligence, this study reconstructs their relationship, 
demonstrating how they can work together synergistically to improve 
operational efficiency, adaptability, and ethical responsibility in real- 
world contexts. The theoretical contribution challenges the traditional 
distinction between AI and HI, offering a unified framework that em
phasizes their complementary roles in addressing modern operational 
challenges. From a practical perspective, this research also offers valu
able insights for businesses looking to optimize their operations by 
integrating AI and HI. More specifically, it outlines the processes 
through which these two intelligences collaborate, exploring the moti
vations and decision-making frameworks that guide their integration. By 
offering a structured understanding of how AI and HI can jointly 
contribute to operational strategies, this research provides actionable 
insights that can help organizations navigate the complexities of modern 
business environments, improve efficiency, and ensure ethical decision- 
making.

2. Literature review

2.1. Decision-making

Decision-making tasks involve choosing between actions, typically 
requiring committing to a particular course of action at a specific point 
in time, with consequences becoming apparent only later. A simple 
example might be deciding whether or not to pursue a PhD. A “good” 

X. Hao et al.                                                                                                                                                                                                                                     Sustainable Futures 10 (2025) 101152 

2 



decision might seem to be one leading to success, such as completing the 
PhD and securing a desirable academic position or succeeding in an 
alternative career. However, it is not straightforward. Since real-world 
scenarios are uncertain, good, and bad decisions must be judged on 
their theoretical merits, not solely on outcomes [123]. Recognizing 
uncertainty as inherent in decision-making contexts underscores the 
complexity involved. Uncertainty typically arises from limited or 
incalculable information about predicted outcomes [73]. Two main 
classifications of uncertainty have been identified: one based on sources 
(environmental or industry-specific) and another based on nature 
(exogenous network-related or endogenous firm-related) [74]. Given 
these differing perspectives on uncertainty, rationality through 
reasoning becomes central to understanding decision-making processes. 
Rationality posits individuals possess unlimited computational abilities, 
time, and knowledge, enabling decisions that maximize expected utility 
[29]. Economic models based on unbounded rationality, founded on 
homo economicus, emphasize maximizing expected utility and rely on 
statistical Bayesian models [104]. However, the assumption of un
bounded rationality is unrealistic for human reasoning [34], yet 
frequently appears in management decision-making literature due to its 
economic implications. For instance, Bazerman and Moore [14] propose 
rational decision-making guidelines resembling unbounded rationality, 
emphasizing identifying relevant criteria and optimal information 
searches only until costs outweigh added value [11]. In contrast, the 
recognition of human cognitive limitations has led to the concept of 
bounded rationality, introduced by Herbert Simon [120]. Bounded ra
tionality suggests decisions are based on satisficing criteria rather than 
optimizing, acknowledging limited computational power, time con
straints, and imperfect information [34]. This realistic approach high
lights heuristics or rules of thumb, leading to satisfactory but not 
necessarily optimal outcomes [75]. Kahneman and Tversky [81] 
demonstrated through prospect theory that real-world decisions deviate 
from unbounded rationality due to cognitive biases and heuristics. To 
manage these cognitive limitations and improve decision-making, in
dividuals often employ rule-based thinking, developing rules through 
formal education, experiences, and social interactions [59]. These rules 
guide judgments, drive solutions, and determine action consequences 
[122]. This structured approach facilitates logical, sequential rule 
application, enabling evaluations of contexts, situations, and informa
tion using attribution and consequential reasoning to assess risk/reward 
payoffs [132]. Social psychologists find rule-based logic commonly 
employed in these scenarios [89]. A rule-based decision framework in
volves perception-comparison or interpretation-action processes. 
Perception gathers sensory information, significantly impacting subse
quent interpretations and actions [39]. Factors such as prior knowledge 
and environmental context influence perception [68], with biases 
potentially causing systematic decision-making errors [83]. Interpreta
tion involves comparing perceived information to stored memory [102], 
leading to action based on this comparison. Action efficiency depends on 
preceding stage accuracy and appropriateness of decision-making rules 
applied. This structured approach employs logic and causal inference 
rather than simple association to analyze situations and determine 
appropriate responses [28]. Thus, individuals can systematically frame 
decision problems, discern valuable information, and apply logical, 
sequential rules to make tailored, appropriate decisions [77].

2.2. Artificial intelligence involved

AI, according to the applications, can be classified or related into 
several sub-fields based on its applications: Artificial neural network and 
Rough set theory (‘thinking humanly’); machine learning (ML), expert 
system, and metaheuristics (‘acting humanly’); fuzzy logic (‘thinking 
rationally’); and agent-based simulation [99]. As AI continues to evolve 
into increasingly sophisticated applications, a closely related yet more 
specific concept has emerged, automated decision-making (ADM). ADM, 
though increasingly important, remains somewhat ambiguous despite 

being more specific than “artificial intelligence.” According to Araujo 
et al. [6], ADM is an oxymoron because decision-making inherently 
requires flexibility and contextual judgment, which automation ex
cludes. The European Commission broadly defines ADM as software 
systems that autonomously or with human involvement make decisions 
related to social or physical systems based on data, impacting in
dividuals or collectives [95]. Traditionally, decisions relied heavily on 
human competencies such as knowledge and experience [2]. However, 
ADM has advanced from descriptive analytics towards predictive and 
prescriptive capabilities, automating analysis and decisions even 
without human intervention [8]. These systems range from 
decision-support systems providing recommendations to fully autono
mous systems independently adjusting operational strategies [62]. 
Despite these advancements, increased reliance on ADM introduces 
significant concerns about AI bias. AI bias occurs when the outputs of 
machine-learning models discriminate against specific groups or in
dividuals, typically those historically marginalized based on gender, 
class, orientation, or race [96]. Although bias, as a deviation from a 
standard, does not inherently cause discrimination [54], understanding 
bias mechanisms is critical [5]. Bias contributing to discrimination in
cludes historical [10], sampling [115], representation [84], measure
ment [52], evaluation [58], and algorithmic biases [76]. Addressing 
these biases requires ensuring AI explainability and transparency, 
interrelated challenges vital to maintaining fairness and trust. Explain
ability involves providing comprehensible explanations for AI 
decision-making processes, classified as ante-hoc model explainability 
[111] and post-hoc model explainability [121]. While various explain
able models have been developed, explaining more complex systems like 
deep neural networks remains difficult, relying heavily on post-hoc ex
planations [23]. Evaluating explainability continues to pose challenges, 
as ambiguity remains regarding psychological perspectives [46], 
prompting researchers to employ qualitative human-participation met
rics like interviews and questionnaires assessing satisfaction and trust. 
The intrinsic opacity of modern ML algorithms further complicates 
achieving transparency and explainability. Although examining algo
rithm construction and predictive variables is possible, comprehensively 
understanding algorithmic reasoning is inherently challenging [84]. 
Contemporary artificial neural networks recognize data patterns 
through iterative processes rather than logical reasoning [9]. While 
partial scientific explanations exist, algorithmic decisions remain 
fundamentally opaque due to unclear reasoning chains [42]. Finally, 
fairness and trustworthiness in AI, driven significantly by the explain
ability and transparency challenges mentioned above, are essential for 
ethical ADM. Ensuring fairness demands scrutiny of training data and 
algorithms to avoid perpetuating existing biases and inequalities [97]. 
Trustworthiness necessitates AI systems being reliable, transparent, and 
ethically aligned [126]. Opacity undermines trust, as developers them
selves often cannot fully explain AI decision-making processes [31]. This 
"black box" phenomenon hinders diagnosing and correcting biases or 
errors, potentially producing arbitrary or unjustified decisions [35].

2.3. Human intelligence involved

Fast-and-slow dual-processing decision-making proposes two 
distinct types of information processing: Type 1 and Type 2, operating 
simultaneously but potentially leading to different conclusions from the 
same information [50]. For instance, in supply chain management, Type 
1 processes might quickly trigger an impulse to reorder inventory 
immediately upon noticing sudden demand spikes or supplier disrup
tions. Conversely, Type 2 processes thoughtfully analyze historical sales 
data, lead times, inventory costs, supplier reliability, and long-term 
forecasts before decisions. Initially described distinctly, Type 1 was 
quick, automatic, and intuitive, and Type 2 slower, deliberate, and 
controlled [57]. However, these descriptions proved insufficient, as not 
all slow processes are serial and controlled, nor are all quick processes 
automatic and inflexible [113]. Thus, processes are now classified as two 
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types rather than two distinct systems. Type 1 processes are autono
mous, automatically triggered by specific stimuli without high-level 
control input [79]. Type 2 processes can decouple hypothetical 
reasoning from real-world representations, operating abstractly and 
deliberately, requiring significant cognitive effort and analytical preci
sion [44]. The effectiveness of Type 1 lies in swiftly producing decisions 
in urgent scenarios, but this rapidity often sacrifices analytical precision 
typical of Type 2. The reliance on rapid intuitive processing, as seen in 
Type 1, can lead directly to heuristic biases. Closely related to intuitive 
decision-making, heuristics bias involves reliance on initial information, 
anchoring subsequent judgments towards it [88]. Anchoring bias in 
group decision-making compounds, disproportionately influencing 
consensus through dominant initial opinions, irrespective of validity 
[43]. In operational contexts, anchoring can amplify the ‘bullwhip ef
fect’, where minor demand variations escalate across supply chains. 
Group dynamics further magnify biases through mechanisms like 
groupthink, driven by overoptimism and ingroup favoritism [101]. 
Structured group strategies, such as using ‘devil’s advocates’ [82], 
‘Delphi and focus groups’ [17], and ‘nominal group techniques’ [125], 
reduce groupthink by fostering critical reflection and debate. Such 
collaborative deliberation utilizes collective cognitive capacities, known 
as ‘collaborative cognition’, effectively identifying and mitigating biases 
through reflective thinking [37]. Nonetheless, collaboration alone 
cannot fully prevent anchoring bias, especially in ambiguous situations 
without definitive answers [98]. Given these inherent limitations in 
analytical and collaborative approaches, intuitive decision-making be
comes particularly beneficial in unprecedented or highly ambiguous 
scenarios [70]. Cognitive technologies, proficient in probabilistic ana
lyses, struggle with novel problems demanding creative thinking [107]. 
Unlike controlled board games, real-world decision-making is inherently 
messy, rendering analytical methods insufficient [40]. Thus, 
decision-makers often leverage intuition based on tacit experience and 
personal judgment, even if their reasoning remains difficult to articu
late, described as “just feels right” [3] or “gut feel” [109].

2.4. Collaborative paradigm

Based on different levels of human involvement, collaboration with 
AI-based systems can be classified into three types [26]: Human-only 
approach (refers to Human involved): No AI is involved; all decisions 
are made solely by humans. Human-out-of-the-loop (refers to AI 
involved): AI autonomously makes and implements decisions without 
human intervention or the possibility of override. Collaboration: This 
approach allows the supervisor to oversee the entire activity of the AI 
system, including its broader economic, societal, legal, and ethical im
pacts [134]. It ensures that the human can override any decisions made 
by the AI system. The continuum of rational behavior illustrates that 
top-down and bottom-up applications contribute differently to AI ca
pabilities. Top-down applications use logical rules and structured 
knowledge representation to improve tasks like perception and inter
pretation, enabling machines to mimic human-like thinking processes 
[24]. These are effective in contexts requiring structured and logical 
processing. In contrast, bottom-up applications rely on AI, particularly 
ML, to manage complex actions requiring higher intelligence. Instead of 
following predefined rules, these systems learn from data, improving 
through experience [128]. As modern systems increasingly integrate 
both approaches, decision-making benefits from combining the effi
ciency of machines with human oversight, a concept referred to as 
“having a human in the loop” [124]. Human-in-the-loop (HITL) settings 
involve automated processes requiring human interaction, integrating 
human knowledge and experience into systems like ML models [100]. 
This interactive ML approach is defined by Holzinger et al. [72] as al
gorithms that can interact with agents, including humans, and optimize 
their learning behavior. It encourages ML development through direct 
human interaction with the learning system [60]. HITL moves beyond 
data preprocessing by involving humans in the actual learning phase 

[114]. Unlike traditional HITL, Human-over-the-loop (HOTL) shifts 
humans to a supervisory role, allowing AI to handle routine tasks while 
reserving human input for complex decisions [56]. In this model, 
humans monitor and intervene only when AI encounters ambiguous or 
unforeseen scenarios [78]. In high-stakes domains like autonomous 
driving, HOTL enhances safety and reliability through timely human 
intervention [90]. In more rigorous oversight settings, 
Human-in-command (HIC) systems emphasize human authority in the 
operation of AI, ensuring decisions remain under human control [41]. 
This guarantees ethical and legal compliance by placing humans at the 
core of decision-making [49]. HIC is vital in areas involving ethical risks, 
reinforcing accountability and moral responsibility [110]. Human 
oversight also brings flexibility and contextual awareness, capturing 
emotional and cultural differences that AI may overlook [66]. This 
aligns with Chin et al. [32], who emphasize the importance of reflexive 
and context-sensitive oversight to ensure responsible and inclusive 
technological governance. Conclusively, integrating HI and AI leverages 
the strengths of both: AI contributes speed, scale, and pattern recogni
tion, while humans provide ethical judgment, creativity, and contextual 
sensitivity. Their collaboration enhances decision quality, improves 
adaptability in complex environments, and ensures that automated 
systems remain aligned with human values.

3. Methods

Sensemaking, an active and iterative process by which decision- 
makers interpret ambiguous cues, assign meaning, and adjust their ac
tions accordingly [131], provides the theoretical foundation for this 
study. Guided by this framework, we adopt a qualitative, exploratory 
approach, using multiple case studies to investigate collaborative in
teractions between AI and HI in OSCM contexts. Case studies are 
particularly effective for capturing the complexity of real-world phe
nomena, enabling deep exploration of “how” questions within their 
natural settings [133]. Specifically, we selected scenarios within each 
case characterized by close and ongoing interaction between human 
decision-makers and AI systems. This targeted selection allows detailed 
examination of critical sensemaking elements, such as trust, interpret
ability, iterative feedback, and adaptive decision processes, revealing 
how humans integrate experiential knowledge, intuition, and contextual 
reasoning with AI-generated insights. Ultimately, this method supports 
robust theory-building, illuminating the dynamics through which AI and 
HI collaboratively construct meaning and strengthen decision-making 
resilience [16].

3.1. Case and scenario selection

As shown in Fig. 1, the case selection begins with the Innovators, 
organizations that are actively integrating AI technologies into their 
operational processes. The Innovators are divided into two categories: 
Transportation Innovators and Retail Innovators. Transportation In
novators (Cases A, B, C) were selected due to the complexity and data- 
intensive nature of the transportation sector, where AI is applied to 
optimize logistics networks, route planning, and predictive mainte
nance. The sector’s reliance on real-time data for decision-making pro
vides a relevant context for examining AI’s role in improving operational 
efficiency and decision quality. Retail Innovators (Cases D, E), on the 
other hand, were chosen for their focus on customer experience and 
demand forecasting. In retail, AI is used to analyze large volumes of 
transactional data, personalize marketing, and optimize inventory 
levels, which makes it an ideal sector for studying how AI aids decision- 
making in dynamic, customer-driven environments. Alongside the In
novators, the study includes Solution Providers, firms that play a key role 
in enabling the adoption and integration of AI in operations and supply 
chains. These include custom AI service providers (Cases F, G, H) that 
develop tailored AI solutions to address specific operational challenges, 
and AI fine-tuning consultants (Case I) that help businesses optimize the 
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performance of AI systems after deployment. These Solution Providers 
were included to offer insights into the development, customization, and 
continuous refinement of AI technologies, which are essential for un
derstanding how AI systems are implemented and adjusted to fit real- 
world operational needs. Finally, the outer layer of the framework 
consists of Ecosystem Stakeholders, such as regulators and industry as
sociations. These actors influence the environment in which AI operates, 
helping to shape the ethical, legal, and operational standards that 
govern AI applications. Regulators establish the frameworks within 
which AI systems must operate, ensuring compliance and building trust, 
while industry associations facilitate collaboration, knowledge-sharing, 
and the setting of best practices.

Each scenario represents a specific decision-making function where 
AI systems are embedded into core business processes and require 
human involvement to interpret, adjust, or act upon algorithmic outputs 
(Table 1). In Case A (Airline supply chain), the scenario of scheduling 
and planning captures a common AI application where optimization 
models generate flight and crew schedules, and human planners adapt 
these in response to real-time constraints like weather or airport delays. 
Case B (End-to-end logistics) focuses on logistics and route optimization, 

a representative scenario where AI identifies efficient delivery routes, 
while human operators assess feasibility and make final adjustments 
based on customer needs and operational constraints. In Case C (Agri- 
food supply chain), two scenarios, automated warehousing and risk 
management of logistics, illustrate how AI handles inventory and 
disruption detection, while humans ensure continuity and manage ex
ceptions, especially in perishable goods handling. Case D (E-commerce) 
centers on demand forecasting, where AI models detect purchasing 
patterns and predict sales, but human engineers refine outputs by inte
grating promotional schedules and external signals. Case E (Digital 
pharmaceutical supply chain) involves recommendation and decision 
support, where AI assists in planning and compliance tasks, and human 
decision-makers ensure that regulatory and safety standards are upheld. 
Case F (Robotics and manufacturing) demonstrates how human experts 
supervise and refine AI-driven automation on production lines, repre
senting the industrial integration of AI. Case G (Algorithm solution 
services) and Case H (Intelligent decision-making services) offer a 
broader view into how AI is customized and iteratively improved 
through human input, covering cross-sectoral deployment of AI for 
operational enhancement. Finally, Case I (Supply chain transformation 

Fig. 1. Case studies onion model (Source: The Authors).

Table 1 
Overview of the cases and scenarios (Source: The Authors).

ID-Country-Year 
Founded

Industry Scenarios Code for 
Discussion

Interviewees Year of 
Experience

A-US-1924 Airline supply chain Scheduling and planning R1 Operations Research Scientist 1-5
R2 Operations Research Scientist 1-5
R3 Decision Science and Analytics 

Leader
1-5

B-Denmark-1976 End-to-end logistics Logistics and route optimization R4 Operations Research Scientist 1-5
R5 Operations Research Scientist 1-5
R6 Solution Design Engineer 1-5

C-UK-2000 Agri-food supply chain Automated Warehousing R7 Director of Planning and 
Analytics

6-10

R8 Senior Data Scientist 1-5
Risk management of logistics R9 Data Scientist Team Lead 6-10

D-China-1998 E-commerce Demand forecasting R10 Algorithm Engineer 1-5
R11 Algorithm Engineer 1-5
R12 Algorithm Engineer 1-5
R13 Algorithm Engineer 1-5
R14 Senior Algorithm Engineer 1-5

E-Netherlands-2006 Digital pharmaceutical supply 
chain

Inventory optimization R15 Integration Leader 1-5
Recommendation and decision support R16 Head of Architecture 1-5

F-UK-1997 Robotics and automation 
manufacturing

Robotics and manufacturing R17 Director 10-15

G-US-2000 Algorithm solution services AI-enhanced operational optimization 
services

R18 Operations Research Scientist 1-5
R19 Operations Research Scientist 1-5

H-China-2016 Intelligent decision-making 
services

R20 Vice President 6-10
R21 Senior Algorithm Engineer 6-10
R22 Vice President 6-10
R23 Data Scientist 6-10
R24 Senior Algorithm Engineer 1-5
R25 Senior Algorithm Engineer 6-10

I-UK-1845 Supply chain transformation 
services

Ethical AI integration services R26 AI service Manger 6-10
R27 Senior AI consultant 1-5
R28 AI Lead 6-10
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services) focuses on ethical AI integration, where human consultants 
ensure that AI applications align with legal, ethical, and organizational 
standards. Together, these scenarios span a range of industries, from 
transportation and retail to manufacturing and consulting, and capture 
varying degrees of AI maturity and human involvement. Their selection 
provides a strong foundation for analyzing how humans and AI co- 
produce decisions, offering both breadth and depth for understanding 
collaboration mechanisms in operational practice.

3.2. Data collection

Data collection for this study occurred between September 2022 and 
August 2023, with the final cognitive mapping and synthesis completed 
in mid-2024. To comprehensively understand the dynamics of collabo
ration, this research strategically selected benchmark cases that 
demonstrated advanced expertise and maturity in applying such 
collaboration within OSCM contexts. These cases were chosen for their 
potential to provide information-rich, practice-oriented insights. 
Accordingly, we included interviewees across a broad spectrum of 
organizational roles, ensuring that both technical implementation and 
strategic decision-making perspectives were captured. The 28 experts 
interviewed were carefully selected from seven industries, airline, lo
gistics, agri-food, e-commerce, pharmaceutical supply chains, 
manufacturing, and AI solution services, representing a mix of technical, 
managerial, and strategic perspectives. The diversity of roles ensures a 
comprehensive view of AI-HI collaboration. For instance, Operations 
Research Scientists and Algorithm Engineers are pivotal to under
standing the technical implementation and optimization of AI systems. 
These professionals are deeply involved in designing and refining AI 
algorithms, ensuring that AI decisions are data-driven and optimized for 
efficiency. They are integral to the decision-making process as they 
shape the AI systems that human decision-makers interact with, making 
their insights invaluable for understanding the intersection of human 
and AI-driven logic. Alongside them, Data Scientists are crucial because 
they translate large datasets into actionable insights, offering a bridge 
between raw data and decision-making applications. They ensure that 
AI models remain relevant to real-world scenarios by processing and 
interpreting complex data sets that inform decisions, thus acting as key 
agents in the AI-HI interaction. Meanwhile, Integration Leaders and 
Solution Design Engineers provide strategic oversight in implementing 
AI technologies into existing systems, ensuring that the AI models are 
not just theoretical but practically applicable within operational work
flows. Their expertise ensures that AI is integrated in a way that aligns 
with the broader organizational goals and processes, making them 
essential for understanding the structural aspects of AI deployment. 
Further complementing these technical roles, Senior Managers, Vice 
Presidents, and Directors play an essential role in framing AI’s contri
bution within larger organizational strategies. While their direct 
involvement with AI implementation might be less technical, their 
strategic oversight and decision-making responsibilities provide key 
insights into how AI is positioned in the broader business context. They 
evaluate how AI can enhance or disrupt existing decision-making pro
cesses and provide leadership to align AI initiatives with organizational 
goals. These senior leaders, alongside Consultants, who offer external 
expertise, offer a broader view of the business implications of AI-HI 
collaboration, focusing on aligning AI solutions with market trends, 
regulatory considerations, and industry standards. The combination of 
these roles in the sample reflects a balanced representation of both the 
technical and strategic sides of AI implementation in decision-making.

3.3. Data analysis

Cognitive mapping is a structured, qualitative method that visually 
captures how individuals understand and reason through complex 
decision-making contexts. Following Kosko [86], a cognitive map con
sists of nodes (representing decisions, concepts, or influencing factors) 

connected by arrows indicating causal or dependency relationships. 
These maps allow the articulation of how participants perceive and 
prioritize different elements within a system [55]. The typical structure 
of a cognitive map follows a hierarchical logic [48], with actions and 
options at the bottom, strategic decisions and enabling processes in the 
middle, and ultimate goals or organizational objectives at the top. To 
systematically explore the integration of AI and HI in decision-making, 
this research conducted a series of semi-structured interviews with in
dustry professionals. Each interview was structured around three key 
stages of the AI-HI implementation lifecycle [13,64]: Pre-development: 
(1) Early development, (2) Piloting, Deployment: (3) Implementation, 
Post-development: (4) Acceptance of deliverables, and (5) Future appli
cation. These stages were designed to reflect the temporal and strategic 
flow of AI-HI integration from initial consideration to future expansion 
(see Table 2, Appendix A for the full set of interview questions).

During each interview, participants engaged in real-time cognitive 
mapping using Miro, a collaborative digital whiteboard. Each partici
pant began by constructing a map reflecting their organization’s 
decision-making logic. Crucially, maps from earlier sessions were iter
atively presented to subsequent participants, who were encouraged to 
comment on, revise, or expand upon existing structures. This accumu
lative method enabled a form of distributed sense-making, allowing 
perspectives to converge, diverge, or evolve over time. At the end of 
each session, maps were saved with metadata and layered into a version- 
controlled master map. After all interviews were completed, participants 
reviewed and validated the final composite map to ensure accuracy and 
ownership of the data. A three-stage synthesis process was then con
ducted. First, key nodes were identified and coded into six categories: 
decision points, resources and capabilities, risks, enablers, organiza
tional structures, and external drivers. Second, relational edges were 
standardized by direction, polarity (positive/negative influence), and 
strength (weak/moderate/strong). Third, the data were processed using 
NVivo 14 to generate adjacency matrices and visual network graphs. 
These revealed shared structural patterns, critical decision junctures, 
and points of organizational friction across firms. Finally, a composite 
HI–AI cognitive map was created by integrating the validated human 
maps with system-level documentation from AI architectures. This 
synthesis captured how human and artificial agents coordinate, over
ride, or defer to each other within decision-making workflows. The 
resulting visualization (see Fig. 2) illustrates the dynamic interplay of 
trust calibration, collaborative logic, and intervention thresholds that 
govern AI-HI interaction throughout the decision lifecycle.

4. Results

4.1. AI involved

The AI decision-making process in both transportation and retail 
innovators hinges on the systematic collection, integration, and analysis 
of extensive and varied datasets, which are essential for ensuring that 
the models used for predictions and decisions are reliable, robust, and 
scalable (Fig. 3 shows the overall cognitive map for innovators, with 
detailed case maps in Appendix B). The pre-development stage is 
foundational in this process, where data from diverse sources is gath
ered, cleaned, and structured to ensure consistency. In the trans
portation industry, data from a range of sources, such as flight schedules, 
traffic management systems, IoT sensors, and weather forecasts, is 
meticulously collected and standardized. This structured data is crucial 
for ensuring the AI systems can operate smoothly, as unstructured data 
or inconsistencies could lead to significant operational inefficiencies. 
Similarly, in retail, vast amounts of data are collected, including his
torical sales data, customer interactions, market trends, and even 
external factors like weather and economic indicators. This compre
hensive data collection forms the backbone for predictive modeling, 
where the AI models are empowered to analyze large, diverse datasets to 
derive actionable insights. The process of integrating these datasets, 
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Table 2 
Interview structure overview (Source: The Author).

Stages Section Focus Purpose

Pre- 
development

Background Interviewee and Company Understand participants ‘human intelligence’ role and the organizational AI 
scenario setting

AI-HI Collaboration Drivers Explore factors (e.g., market trends, technology, organizational culture) driving 
AI-HI collaboration.

Early development Evaluation of AI and HI Applications Investigate how AI and HI collaboration is evaluated and integrated into early- 
stage decision-making.

Scenario Selection and Model Decision Understand how AI and HI decision-making functions are selected and alternative 
approaches considered.

Key Success Factors Identify factors that make AI-HI collaboration successful in early development.
Piloting Pilot Experiments and Simulations Assess experiments/simulations to test AI-HI collaboration, unintended outcomes, 

and blind spots.
Evaluation of Initial Results Understand how test results inform AI-HI integration adjustments.

Deployment Implementation Managing AI-HI Decision-making Explore how AI and HI are integrated into real-world decision-making, including 
stakeholder involvement.

Handling Organizational and Environmental 
Factors

Assess how external factors influence AI-HI implementation.

Failure Management Understand how implementation setbacks are managed and lessons applied.
Post- 

development
Acceptance of 
deliverables

Performance and Accountability Evaluate AI-HI decision-making effectiveness with performance metrics and 
accountability mechanisms.

Improving Future Projects Explore strategies to improve AI-HI decision-making in future projects.
Future application Expansion to Tactical and Strategic Decision- 

making Levels
Investigate plans to expand AI-HI collaboration into strategic decision-making 
levels.

Fig. 2. Data analysis process (Source: The Authors).

Fig. 3. AI decision making process (Source: The Authors).
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while ensuring that they are clean and consistent, is crucial for predic
tive accuracy.

Following the data collection, the Exploratory Data Analysis (EDA) 
stage serves as a critical step in both transportation and retail sectors. 
EDA involves using analytical techniques to uncover patterns, re
lationships, and trends in the raw data. In transportation, EDA is 
employed to identify significant relationships, such as how weather 
conditions may influence flight delays or how traffic congestion impacts 
delivery times. This phase often uses advanced data visualization tech
niques, such as scatter plots, heatmaps, and time-series analysis, to 
detect underlying trends and correlations. Similarly, in retail, EDA helps 
to identify demand patterns, seasonal variations, and the influence of 
external factors, such as promotions or weather, on consumer behavior. 
Retailers might use clustering techniques to segment customers based on 
purchasing patterns or geographic location, which helps to tailor mar
keting efforts and optimize stock levels accordingly. In both industries, 
EDA helps pinpoint significant features for model training, ensuring that 
the data fed into AI models is both meaningful and predictive. By 
identifying and handling outliers, EDA improves the dataset’s integrity 
and ensures that AI systems can deliver accurate predictions.

Once data has been processed and analyzed, the next step is data 
preparation, which is a meticulous and critical phase in developing ML 
models. Raw data must be refined to ensure it is compatible with ML 
algorithms, and this involves steps like normalization and standardiza
tion. Normalization scales data to a consistent range, usually between 
0 and 1, which is crucial for models that are sensitive to data scale, such 
as neural networks or support vector machines. Standardization, on the 
other hand, adjusts data to have a mean of zero and a standard deviation 
of one, which is especially useful for models that assume Gaussian dis
tribution. In both the transportation and retail industries, categorical 
variables, such as flight types or customer preferences, are converted 
into numerical formats using techniques like one-hot encoding or label 
encoding. This transformation is essential, as most ML models can only 
process numerical data. Furthermore, the dataset is split into training, 
validation, and test sets. This splitting ensures that the model can be 
trained on one subset, tuned on another to avoid overfitting, and eval
uated on a separate test set to measure its performance. The rigor of this 
preparation process plays a crucial role in determining how well AI 
models can generalize to new, unseen data, a key factor in their reli
ability and predictive power.

The deployment stage represents the integration of AI models into 
real-world operational systems, marking the transition from theory to 
practice. Here, AI models process continuous data streams to make real- 
time adjustments and predictions. In transportation, for example, AI 
models dynamically adjust flight schedules based on incoming weather 
updates, crew availability, and flight status reports, optimizing flight 
routes to avoid delays or reallocate resources efficiently. Similarly, in 
retail, AI models process real-time sales data and customer interactions 
to adjust inventory levels, predict demand fluctuations, and offer 
personalized product recommendations. To ensure these models can 
handle the immense computational load required for real-time pro
cessing, both sectors rely heavily on cloud computing and edge pro
cessing technologies. These infrastructures enable the AI systems to 
scale and handle large volumes of data without compromising on 
response time. Cloud platforms also offer the advantage of centralized 
data storage and processing power, ensuring that operational decisions 
can be based on the most up-to-date information. Additionally, real-time 
monitoring systems are employed to track the performance of AI models 
and ensure they are working optimally, especially during peak opera
tional periods, such as holiday seasons in retail or during weather dis
ruptions in transportation.

The post-development stage is essential for continuous improvement 
and adaptation of AI systems based on new data and operational in
sights. This stage focuses on refining AI models by integrating past 
performance data, user feedback, and real-time inputs. In trans
portation, historical data on flight delays, maintenance issues, and crew 

performance is analyzed to optimize flight scheduling and route plan
ning further. The AI system adapts to new insights, for example, by 
adjusting algorithms to accommodate recurring flight delays due to 
specific weather conditions or mechanical failures. In retail, the post- 
development stage focuses on fine-tuning demand forecasts, inventory 
management strategies, and recommendation systems by incorporating 
new data on sales, customer feedback, and changing market conditions. 
This phase also involves real-time recalibration of models to ensure that 
they remain responsive to evolving business needs and consumer be
haviors. AI models in both sectors benefit from continuous learning 
processes, where algorithms are updated as new patterns and outliers 
are identified, improving their predictive accuracy and operational 
relevance. Error handling mechanisms and performance logs are inte
gral to this stage, ensuring that any operational anomalies are captured 
and addressed. Moreover, this phase allows organizations to identify 
and fix issues in the models, providing an opportunity to make system- 
wide improvements and further align AI-driven decisions with evolving 
business strategies and market demands.

4.2. HI involved

In flight scheduling and crew management (Case A), the role of 
human involvement remains indispensable despite significant AI ad
vancements. As highlighted by interviewee R1, “Aviation scheduling is 
inherently complex and requires more than algorithmic precision; it 
demands an understanding of human experiences and the ability to 
adapt in real-time.” This insight stresses the importance of human 
expertise in making informed decisions about which algorithms to 
employ, especially when the nature of scheduling involves details such 
as crew preferences, fatigue levels, and interpersonal dynamics. AI 
systems, as R2 and R3 note, often struggle with these human elements. 
R2 emphasizes that “AI systems often cannot fully grasp the personal 
aspects that affect crew management, such as individual preferences and 
team dynamics.” The dynamic nature of the aviation industry, influ
enced by ever-changing regulations and customer needs, demands 
flexibility that AI alone cannot provide. Human planners are crucial in 
adapting scheduling systems to meet new operational challenges. 
Furthermore, as R1 points out, human involvement is essential in error 
detection and resolution, particularly in cases where AI identifies pat
terns or anomalies but cannot understand their context. Finally, 
continuous human oversight ensures that the data fed into the system is 
accurate and up to date, which is vital for maintaining the performance 
of AI-driven scheduling systems.

In logistics and route optimization (Case B), both HI and AI are 
necessary to address the complexities of real-time decision-making. R4 
asserts, “Logistics management is not just about crunching numbers; it 
requires understanding and responding to human needs,” which high
lights the limits of AI in managing human-centric challenges, such as 
weather disruptions or road closures. AI can analyze fixed factors like 
route conditions, vehicle capacity, and traffic patterns, but human 
oversight is necessary to incorporate safety, delivery quality, and envi
ronmental impact considerations into route planning. As R5 notes, 
“Coordinators must weigh driver safety, delivery quality, and environ
mental impact alongside optimizing time and cost,” underscoring that AI 
alone cannot handle the multifaceted nature of logistics management. 
Human involvement is particularly critical when disruptions occur, as 
emphasized by R6: “A responsive system that can quickly adapt to 
changing conditions and reroute resources is essential.” This highlights 
the need for human intervention to manage unexpected events such as 
accidents or mechanical failures. Moreover, human experts are vital for 
optimizing last-mile delivery and ensuring that environmental and ef
ficiency goals, such as reducing carbon emissions, are met. They make 
real-time adjustments based on the operational realities that AI alone 
may overlook. Ultimately, human oversight ensures that the AI-driven 
logistics systems remain adaptable and responsive, maintaining the 
overall efficiency and safety of the operations.
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Automated warehousing (Case C) also demonstrates the critical role 
of human expertise in enhancing AI-driven processes. R7 emphasizes, 
“While AI can handle repetitive tasks with speed and precision, it lacks 
the ability to establish performance metrics and evaluate the broader 
implications of its decisions.” This reflects the limitations of AI in setting 
the standards by which its performance is measured and adjusting those 
standards over time based on evolving business goals. R8 further high
lights that, “Developing accurate predictive models involves not just 
historical data but also an understanding of market trends and consumer 
behavior, areas where human insight is indispensable.” While AI excels 
at processing large datasets, it struggles with contextual differences that 
human experts can incorporate into predictive models, ensuring these 
models remain robust in dynamic environments. Continuous monitoring 
by humans is also crucial, as R9 points out, “AI systems can make errors 
or overlook context-specific details, which human operators can identify 
and correct.” This constant human oversight ensures that AI-driven 
warehousing systems are constantly improving and functioning effi
ciently. Furthermore, R9 highlights the importance of human involve
ment in pre-deployment tests to identify potential issues and refine the 
system, preventing costly errors when fully scaled.

In risk management within logistics (Case C), human involvement is 
essential for contextualizing AI-generated insights and ensuring that risk 
models are robust and adaptable to unforeseen circumstances. R8 
stresses that “Developing accurate risk models requires historical data 
and also an understanding of real-world logistics operations and po
tential unforeseen variables,” which demonstrates that AI alone cannot 
address the complexities of logistics risk management. Human expertise 
is necessary to factor in these real-world contexts, ensuring that AI 
models can adapt to the dynamic nature of logistics operations. R9 adds, 
“AI systems can produce opaque outputs that are difficult to understand 
and trust without human interpretation.” This highlights the need for 
human professionals to interpret AI outputs in a way that is under
standable and actionable. Additionally, R9 points out that humans play 
a crucial role in ongoing surveillance of AI systems, ensuring any 
anomalies or errors are promptly addressed. This constant human 
engagement helps maintain the integrity of AI-driven decision-making 
in logistics. Finally, R7 concludes, “AI can analyze vast amounts of data 
and identify risks, but it lacks the contextual understanding and ethical 
considerations that experienced human professionals possess,” rein
forcing the critical importance of human professionals in ensuring AI 
decisions are ethical and contextually sound.

In demand forecasting and inventory optimization (Case D, E), 
human oversight is critical in managing the complexities and dynamic 
nature of retail and pharmacy operations. R10 explains, “Retail demand 
forecasting must adapt to numerous external factors such as economic 
changes, seasonal trends, and unforeseen events like pandemics,” which 
AI alone struggles to predict. R11 further emphasizes that during un
predictable events such as a pandemic, human expertise is necessary to 
adjust pricing and inventory strategies in real time. R12 highlights that 
operational tasks like managing courier services also demand human 
judgment, especially in the face of unforeseen disruptions such as traffic 
delays or vehicle breakdowns. As R13 and R14 note, human intervention 
is essential in refining AI models, especially when issues arise with de
mand prediction accuracy. R15–R16 stress that while AI can optimize 
stock levels, human expertise ensures compliance with industry regu
lations, patient safety in pharmacies, and swift responses to changes in 
demand that AI may miss. Furthermore, human involvement in training 
employees on new systems, such as ERP and Warehouse Management 
Systems (WMS), ensures smooth transitions and better adoption, as R16 
explains, “employee training on new ERP and WMS systems is essential.” 

In Case F, human expertise plays a pivotal role in supervising AI- 
driven robotics, ensuring these systems operate within safe and 
efficient boundaries while adapting to dynamic manufacturing con
ditions. As R17 emphasized, “Human expertise, judgment, and 
domain knowledge are invaluable for guiding and supervising AI- 

driven robotics,” underscoring the necessity of human-in-the-loop 
design. While AI systems are adept at repetitive optimization tasks, 
they fall short in handling real-time problem-solving, adjusting 
production lines, or responding to unexpected disruptions, areas 
where human adaptability is irreplaceable. R17 further highlighted, 
“Human involvement is critical for tasks that require adaptability 
and real-time problem-solving, areas where AI might struggle.” 
Beyond day-to-day operations, human operators contribute essential 
feedback to refine AI algorithms, identify subtle errors, and initiate 
continuous process innovation. Their involvement ensures minimal 
downtime and safeguards productivity. Moreover, humans serve as 
ethical gatekeepers, making decisions that AI, limited by algorithmic 
logic, cannot fully grasp, particularly in maintaining worker safety 
and aligning production with broader societal norms. Importantly, 
strategic foresight and long-term planning remain uniquely human 
strengths. While AI optimizes within defined parameters, human 
leaders in Case F interpret industry trends, anticipate disruptions, 
and shape innovation trajectories, keeping manufacturing agile and 
future ready.

In Cases G and H, human involvement in AI-enhanced operational 
optimization services ensures that technological systems remain strate
gically aligned with organizational objectives. R18 stressed that 
“Human oversight is necessary to ensure AI decisions are aligned with 
organizational objectives and strategic goals,” highlighting that AI- 
generated outputs must be interpreted through the lens of business 
relevance. As R19 added, “AI systems can optimize operations, but they 
need human supervision to ensure the outputs are practical and bene
ficial for the company’s specific context.” Human experts act as trans
lators, integrating AI insights into broader business strategies (R20) and 
customizing solutions to reflect client-specific needs (R21). Further
more, support and training provided by human consultants (R22) are 
integral to the effective implementation of AI tools, especially as clients 
navigate updates and system evolutions. Human experts also maintain 
operational excellence through continuous monitoring (R24) and fine- 
tuning (R25), ensuring that systems remain adaptive amid shifting 
business environments. AI systems require this ongoing human judg
ment to evolve and maintain productivity, particularly when unforeseen 
changes demand rapid reinterpretation and adjustment of automated 
outputs.

Finally, ethical AI integration (Case I) emphasizes the need for 
human oversight to address the challenges posed by AI’s increasing role 
in organizational operations. R26 highlights that “Human oversight is 
critical in identifying and mitigating biases that AI systems might 
inadvertently develop,” stressing the importance of human involvement 
in ensuring that AI remains fair and transparent. R27 further un
derscores the need for human professionals to make AI decisions 
transparent and understandable, allowing for accountability. R28 points 
out that humans play an essential role in safeguarding privacy and 
ensuring compliance with data protection regulations, emphasizing that 
AI systems must operate within legal and ethical frameworks.

4.3. AI and HI collaborative paradigm

As shown in Fig. 4, the integration of AI and HI in the pre- 
development phase is not merely technical but deeply strategic and 
ethical in nature. AI’s computational capacity to aggregate and analyze 
vast datasets enables the detection of latent trends, anomalies, and 
optimization opportunities across domains such as aviation, healthcare, 
and logistics. However, this analytical power is inert without the 
contextual judgment provided by HI. Human actors critically evaluate 
the implications of AI-generated insights, ensuring that subsequent 
model development aligns with domain-specific constraints, legal 
frameworks, and stakeholder expectations. For instance, while AI may 
suggest a flight schedule optimized for efficiency, human planners must 
incorporate safety regulations, labor laws, and passenger needs to 
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render these insights implementable. Moreover, HI plays a central role 
in data standardization and quality control. While AI can harmonize 
formats across disparate systems, humans detect subtleties, such as 
culturally embedded biases, inconsistent units, or omitted variables, that 
can critically distort downstream model behavior. Crucially, this stage is 
also where ethical foresight is embedded into AI design. Human 
decision-makers define the moral boundaries of algorithmic action, 
anticipate potential harms, and establish protocols for fairness, trans
parency, and accountability.

In the deployment phase, the division of labor between AI and HI 
becomes functionally adaptive, reflecting the temporal and environ
mental contingencies of real-world operations. AI systems assume a 
front-line role in automating routine tasks, executing real-time optimi
zations, and generating data-driven recommendations. These capabil
ities are particularly salient in high-velocity contexts such as logistics 
and retail, where systems must adapt to fluctuating demand, inventory 
levels, or transportation disruptions. However, despite AI’s ability to 
process and act upon high-frequency data, it is HI that ensures decisions 
remain operationally robust and ethically defensible. Human operators 
exercise discretion in interpreting AI outputs, adjusting algorithmic 
parameters, and resolving edge cases that deviate from training distri
butions. For example, in crisis events such as a natural disaster or 
geopolitical shock, AI may propose resource reallocations or route 
changes, but humans assess their feasibility given organizational values, 
legal liabilities, and socio-political risks. Furthermore, HI plays a critical 
role in validating AI decisions through continuous monitoring and 
domain-grounded reasoning. This includes identifying false positives, 
responding to ethical breaches, and reconciling conflicting objectives 
across organizational silos. Rather than diminishing the importance of 
human labor, AI deployment redistributes it, elevating HI to roles of 
oversight, adaptation, and coordination. The result is not a replacement 
of human decision-making, but its augmentation within a symbiotic 
system architecture where strategic flexibility, legal compliance, and 
ethical responsiveness are maintained through human judgment and 
interpretive capacity.

Post-development represents a shift from implementation to reflex
ivity, where the primary concern is not what the AI system can do, but 
how it evolves, adapts, and remains accountable over time. This phase is 
characterized by recursive learning, performance feedback, and 

strategic recalibration. AI systems continue to ingest new data, refine 
their predictive models, and generate real-time insights. However, 
without human intervention, these self-learning processes risk 
entrenching biases, diverging from organizational goals, or creating 
opaque decision logics. Human experts are indispensable in conducting 
regular audits, analyzing performance anomalies, and interpreting 
model drift. Beyond technical correction, HI ensures that AI systems 
remain anchored in the normative commitments established in earlier 
stages. This includes updating ethical frameworks in response to new 
legislation, societal expectations, or emergent risks, such as algorithmic 
discrimination or data misuse. Human stakeholders are also essential in 
crisis response, particularly when AI-generated recommendations 
intersect with public trust, legal accountability, or reputational risk. For 
instance, in a cybersecurity incident flagged by AI anomaly detection, it 
is the human analyst who must assess causality, coordinate contain
ment, and communicate with regulators. Moreover, post-development 
enables organizations to extract meta-insights from system behavior, 
using AI as a diagnostic tool for broader strategic learning.

5. Discussion

AI and HI collaboration is more productively understood as a dy
namic relational process structured across three interdependent di
mensions: epistemic asymmetry [94], symbolic accountability [103], 
and infrastructural interdependence [127]. These dimensions are 
interdependent and co-evolve to shape organizational approaches to 
decision-making under algorithmic uncertainty. Collaboration involves 
integrating computational precision with human judgment while 
actively managing tensions arising from distinct reasoning logics [87], 
varying standards of justification [92], and mismatched temporal dy
namics [129] between human and algorithmic processes. The motiva
tion for AI and HI collaboration thus stems from the organizational 
imperative to manage these tensions in a way that safeguards institu
tional legitimacy, enhances interpretability, and maintains responsive
ness amidst increasing technological complexity.

At the epistemological level, collaboration is shaped by persistent 
incongruence between the statistical abstraction underpinning AI sys
tems and the contextualized interpretive reasoning characteristic of HI. 
AI models, particularly those grounded in probabilistic inference or deep 

Fig. 4. AI and HI collaborative decision making process (Source: The Authors).
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learning, extract patterns across data streams [20]. However, partici
pants reported that these outputs often lacked semantic specificity or 
causal rationale unless contextualized through human reasoning [71]. 
Across cases, human actors did more than validate AI recommendations, 
they reformulated them in light of domain-specific expectations, situa
tional contingencies, and organizational norms [112]. This distributed 
mode of cognition, where algorithmic outputs required interpretive 
framing before becoming actionable, was evident in decision environ
ments characterized by regulatory complexity or operational ambiguity 
[67]. While the evidence suggests that epistemic coordination can 
mitigate breakdowns in interpretability, this process remains 
labor-intensive and potentially inconsistent across contexts, particularly 
in the absence of structured feedback loops or institutional memory.

The symbolic dimension highlights how collaboration also serves a 
legitimating function. In domains where decisions affect external 
stakeholders, legal compliance, or reputational standing, the presence of 
human oversight provided an important reassurance that algorithmic 
decisions remained subject to normative scrutiny [91]. Several partici
pants described deliberately foregrounding the “human in the loop” 
during stakeholder engagement to demonstrate accountability and 
ethical consideration [4]. Such performative oversight reflects broader 
institutional expectations that decision systems adhere not only to 
technical accuracy but also to values of fairness, transparency, and in
clusivity [106]. However, our data also indicate variation in how this 
symbolic function was institutionalized. In some cases, human oversight 
was informal, ad hoc, or operationally decoupled from the AI’s technical 
architecture [103]. This variability suggests that symbolic account
ability, while effective in maintaining trust, may offer only temporary 
assurance unless reinforced by formalized governance procedures and 
stakeholder-inclusive design practices [30]. Moreover, the long-term 
sustainability of this mechanism remains uncertain in rapidly evolving 
algorithmic environments [45].

At the infrastructural level, collaboration is mediated through 
divergent temporal logics and procedural rhythms. AI systems operate 
continuously, processing live data and adapting through real-time 
feedback [93]. In contrast, human engagement is episodic, constrained 
by attentional limits, institutional protocols, and role-based hierarchies 
[105]. This temporal mismatch often created friction in practice, espe
cially during escalation events or failure recovery. Participants empha
sized the importance of infrastructural scaffolding, including predefined 
override pathways, exception-handling mechanisms, and escalation 
thresholds, to ensure that human discretion could be exercised effec
tively [7]. However, such mechanisms were frequently developed 
reactively rather than systematically. In some cases, iterative adaptation 
to system failures led to improvements, but these were seldom codified 
into reusable governance frameworks [15]. As such, while collaboration 
enabled short-term flexibility and responsiveness, the absence of dura
ble design principles raises concerns about long-term robustness and 
scalability.

The outcomes of AI and HI collaboration manifest less in optimized 
performance metrics than in the capacity of organizations to maintain 
procedural coherence and adaptive resilience under uncertainty. 
Collaboration supports organizational coherence across diverse 
reasoning logics and helps prevent both operational fragmentation and 
excessive dependence on algorithmic decision-making [69]. It supports 
the creation of decision environments that can accommodate epistemic 
pluralism, uphold ethical responsibility, and recalibrate authority in 
response to environmental volatility. This enables a form of conditional 

stability, one grounded in reflexivity, distributed accountability, and 
institutional adaptability [19]. Conceptualizing AI and HI collaboration 
in this way offers a broader theoretical lens for understanding how 
contemporary decision systems are governed. It invites a shift from 
viewing collaboration as a means of optimizing outputs to seeing it as a 
process of institutional co-production [36]. What emerges is a negoti
ated alignment of logics, expectations, and practices through which 
decision authority is constituted and sustained. Organizations engaging 
with AI must therefore design for governance, not just functionality, 
ensuring that collaborative infrastructures remain attuned to epistemic 
limits, normative demands, and contextual shifts [108]. This view 
foregrounds the relational, recursive, and reflexive nature of AI and HI 
collaboration and offers a foundation for theorizing the institutional 
conditions under which algorithmic decision systems remain intelli
gible, legitimate, and responsive to the complexities they seek to navi
gate [25].

6. Conclusion

This study has employed a multi-case, sensemaking-driven qualita
tive methodology to investigate how AI and HI interact in real-world 
operational and supply chain decision-making environments. Drawing 
on 28 in-depth interviews across nine multinational firms, we developed 
cognitive maps that captured how decision-makers integrate AI systems 
into critical business functions such as logistics, warehousing, sched
uling, demand forecasting, and risk management. The cognitive map
ping process enabled us to trace the evolution of AI and HI collaboration 
across three key implementation stages, pre-development, deployment, 
and post-development, revealing how human actors and AI systems 
jointly construct decision logic under varying conditions of uncertainty, 
ambiguity, and operational volatility. This empirically grounded 
approach allowed us to theorize collaboration not as a linear coordi
nation of machine efficiency and human oversight, but as a dynamic 
sociotechnical process structured by epistemic asymmetry, symbolic 
accountability, and infrastructural interdependence.

Our findings reveal that the primary organizational motivation for 
deploying AI systems is not solely cost reduction or productivity 
enhancement, but the aspiration to create scalable, data-intensive de
cision processes capable of continuous optimization. Across cases, AI 
was leveraged to identify latent patterns in high-velocity data environ
ments, generate predictive insights, and automate operational routines 
that exceed human cognitive limits in terms of volume, speed, and 
granularity. In contexts such as dynamic routing, demand forecasting, or 
anomaly detection, AI systems performed particularly well in reducing 
latency and increasing responsiveness. However, their effectiveness was 
consistently contingent on high-quality data preprocessing, algorithm 
calibration, and computational infrastructure, all of which required 
sustained human input. While AI offered clear advantages in amplifying 
analytic capabilities, its limitations, most notably in interpretability, 
causal reasoning, and normative alignment, were also repeatedly sur
faced by our participants.

Conversely, human actors retained indispensable roles throughout 
the AI lifecycle, particularly in tasks that demanded contextualization, 
discretion, or ethical judgment. The motivation for human involvement 
was frequently rooted in the recognition that AI systems, though 
computationally powerful, cannot account for domain-specific excep
tions, institutional memory, or shifting regulatory constraints. HI was 
critical in resolving ambiguities, interpreting edge cases, and mitigating 
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risks associated with over-reliance on opaque algorithms. Moreover, 
human expertise was vital for identifying errors in algorithmic outputs, 
integrating stakeholder concerns, and aligning AI actions with strategic 
priorities and organizational values. However, HI’s contribution was 
also bounded by cognitive load, limited visibility into algorithmic op
erations, and the increasing complexity of the digital systems they were 
expected to supervise. As such, while HI introduced resilience and 
legitimacy into decision-making processes, it also introduced friction, 
especially when human and machine temporalities and reasoning logics 
were misaligned.

The evidence across all scenarios highlights that AI and HI collabo
ration is deeply embedded in the infrastructures, organizational setups, 
and normative systems that shape decision-making. Such collaboration 
works best when supported by flexible governance frameworks that can 
coordinate different ways of thinking and timing between humans and 
machines. For example, in crisis situations, AI systems can rapidly 
generate optimization strategies, but it is the human agents who inter
pret these suggestions, assess their legal, ethical, and reputational im
plications, and make the final judgment. Furthermore, post-deployment 
phases revealed that the long-term sustainability of such collaboration 
depends on continuous learning, cross-functional alignment, and regular 
performance evaluation, functions that cannot be fully automated. This 
dynamic and co-constitutive form of collaboration, which we term 
institutional co-production, goes beyond traditional models like 
“human-in-the-loop” and “AI-assistance.” Rather than viewing humans 
as mere overseers or AI as passive tools, institutional co-production re
flects a more adaptive, relational approach to decision-making under 
algorithmic uncertainty. Nonetheless, this model also faces key limita
tions. AI systems often struggle with contextual understanding, espe
cially in culturally or socially tasks. Their effectiveness is tightly linked 
to the quality, diversity, and reliability of data. In settings where data is 
outdated, biased, or incomplete, AI outputs may be misleading or unfit 
for practical use. Additionally, data privacy and security concerns can 
restrict information flow, hindering collaboration. Even when AI tools 
are technically advanced, organizations may lack the readiness to 
implement them meaningfully. Effective collaboration requires more 
than just technological capability, it demands strategic alignment, 
workforce training, and governance structures that can respond to 
evolving needs and risks. Without these, there is a danger of siloed de
cisions or overreliance on flawed outputs. To strengthen AI and HI 
collaboration, organizations should prioritize robust data governance, 
ensure privacy and security, and develop adaptive systems that support 
ethical, context-sensitive, and accountable decision-making.

This study makes a theoretical contribution by introducing the 
concept of institutional co-production to describe how humans and AI 
systems work together in real-world decision-making. Unlike traditional 
models such as “human-in-the-loop” or “AI-assistance”, which often 
assume fixed roles, where humans supervise and AI supports, we show 
that collaboration between humans and AI is more dynamic and shaped 
by the organizational and institutional context. In practice, humans and 
machines do not simply pass tasks back and forth. Instead, they 
constantly adjust to each other based on how decisions are made, who is 
accountable, what kind of data is available, and what risks are involved. 
This process is influenced by factors such as organizational rules, pro
fessional norms, legal frameworks, and infrastructure constraints. To 
explain this complex interaction, we bring together ideas from three 
theoretical perspectives. From distributed cognition, we highlight how 
thinking and decision-making are shared between humans and AI. From 

institutional theory, we focus on how norms and rules shape how 
humans interpret AI outputs and decide whether or not to act on them. 
From sociotechnical systems, we view AI as part of a broader system that 
includes people, processes, and technologies. Our study combines these 
views to show that collaboration is not just about designing smart ma
chines, it is also about building systems where AI can be trusted, used 
properly, and held accountable. This perspective helps us better un
derstand why AI tools sometimes fail in practice, even when technically 
advanced. It also shows that successful AI and human collaboration 
relies more than the technology itself, but on the organization’s ability 
to support learning, build trust, ensure ethical oversight, and adjust to 
changing situations. In this way, our study expands existing theories by 
showing that the relationship between humans and AI is not fixed, but 
constantly negotiated within institutions. This helps future researchers 
and practitioners design systems that are not only efficient, but also 
socially and ethically robust.

While this study offers a rich account of AI and HI collaboration 
within OSCM contexts, several limitations warrant consideration. The 
findings are based on 28 interviews across nine benchmark firms 
recognized for their AI adoption; while diverse, this sample may not 
fully reflect sectoral variation or differences in technological maturity 
across regions. The analysis primarily captures the perspectives of key 
HI actors, operations managers, data scientists, and AI system designers, 
but future research could benefit from incorporating insights from end- 
users, policy-makers, and other ecosystem stakeholders. Moreover, the 
study’s cross-sectional design limits our ability to observe how collab
oration evolves over time, particularly in response to failure events, 
system upgrades, or regulatory interventions. Addressing these limita
tions, future research should deepen this relational framing by exploring 
intra-AI collaboration, how multiple AI systems with divergent learning 
logics are orchestrated and mediated by human actors within shared 
decision ecologies. As AI ecosystems become increasingly modular, 
decentralized, and heterogeneous, the complexity of human–machine 
collaboration may exceed current governance capabilities. Under
standing how HI intervenes at critical interfaces to structure account
ability, negotiate ambiguity, and manage escalation processes will be 
essential. Longitudinal studies are especially needed to trace the evo
lution of collaborative infrastructures over time, capturing how orga
nizations learn from disruptions, adapt to regulatory shifts, and 
institutionalize reflexive governance. By laying this foundation, the 
present study contributes toward building more sustainable, intelligible, 
and ethically responsive models of AI–HI integration in complex orga
nizational systems.
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Appendix A

About the interviewee and the company 

1. Can you briefly introduce yourself, your position and experience, and your responsibilities?
2. What applications does your company provide to business or customers? In which industries? And in which sectors of the supply chain?

Early development: 

1. What are the external and internal factors that affect the application of AI and HI in supply chain decision-making?
2. What are the benefits, potential and real, of using the collaboration of AI and HI in supply chain decision-making?
3. What are the challenges, potential and real, of using the collaboration of AI and HI in supply chain decision-making?
4. What function do AI and HI serve in your supply chain decision-making contexts? How was the task performed in the past, before using AI in 

decision-making?
5. How did you evaluate the scenarios and select AI and HI in supply chain decision-making? Did you consider implementing alternatives other than 

AI or the combination of AI and other technologies?
6. How did you decide that the specific algorithm or model and expert knowledge would be suitable for the selected applications? Which charac

teristics did you consider (e.g., data volume, features, cost, precision, experience, risk, explainable etc.)?
7. What are the critical success and failure factors when integrating AI and HI in collaboration?

Piloting: 

1. What kinds of experiments/simulations did you conduct before the implementation of AI-HI decision-making in supply chain?
2. What was the purpose of conducting experiments/simulations?
3. What were the unintended/supering outcomes of your experiments/simulations?
4. What were the blind spots associated with using AI and HI decision-making in supply chain that you discovered through the pilot projects?

Implementation: 

1. How did you manage the implementation of AI and HI decision-making in specific contexts?
2. How did you deal with national/governmental/organizational characteristics for the implementation of AI and HI in supply chain decision- 

making?
3. How did you coordinate AI and HI implementations with the upstream and downstream of algorithms developing? To what extent were they 

involved?
4. Have you experienced a failure during the implementation? If so, how did you manage it?

Acceptance of deliverables: 

1. What are the measurements of AI and HI decision-making performance?
2. What are the potential AI and HI decision-making accountability mechanisms?
3. How to improve the results of AI and HI decision-making in the following projects?

Future application: 

1. Do you plan to expand the application of AI in tactical and strategical decision-making levels?
2. What other future developments can you foresee the AI technology in supply chain decision-making? Which industries will grow faster? What are 

the associated potentials and barriers?
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Appendix B

Scheduling and planning-Case A

Logistics and route optimization-Case B
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Automated Warehousing-Case C

Risk management of logistics-Case C
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Demand forecasting-Case D

Inventory optimization-Case E
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Recommendation and decision support-Case E

Robotics and manufacturing-Case F

AI-enhanced operational optimization services -Case G and H
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Ethical AI integration services-Case I

Data availability

The data that has been used is confidential.
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Human-in-the-loop machine learning: Reconceptualizing the role of the user in 
interactive approaches, Internet Things 25 (2024) 101048.

[61] C. Gonzalez, Building human-like artificial agents: A general cognitive algorithm 
for emulating human decision-making in dynamic environments, Perspect. 
Psychol. Sci. 19 (5) (2024) 860–873.

[62] S. Gupta, S. Modgil, S. Bhattacharyya, I. Bose, Artificial intelligence for decision 
support systems in the field of operations research: review and future scope of 
research, Ann. Oper. Res. 308 (1) (2022) 215–274.

[63] X. Hao, E. Demir, Artificial intelligence in supply chain decision-making: an 
environmental, social, and governance triggering and technological inhibiting 
protocol, J. Model. Manag. 19 (2) (2024) 605–629.

[64] X. Hao, E. Demir, Artificial intelligence in supply chain management: enablers 
and constraints in pre-development, deployment, and post-development stages, b, 
Production Planning & Control, 2024, pp. 1–23.

[65] X. Hao, E. Demir, D. Eyers, Exploring collaborative decision-making: A quasi- 
experimental study of human and Generative AI interaction, Technol. Soc. 78 
(2024) 102662.

[66] X. Hao, E. Demir, D. Eyers, Critical success and failure factors in the AI lifecycle: a 
knowledge graph-based ontological study, J. Model. Manag. (2025).

[67] X. Hao, D. Dong, Y. Zhang, E. Demir, When customers know it’s AI: Experimental 
comparison of human and LLM-Based Communication in service recovery, 
J. Mark. Commun. (2025) 1–28.

[68] X. Hao, L. Florez-Perez, The Effect of Classroom Environment on Satisfaction and 
Performance: Towards IoT-Sustainable Space, in: Proc. 29th Annual Conference 
of the International Group for Lean Construction (IGLC), 2021, pp. 443–453.

[69] S. Herath Pathirannehelage, Y.R. Shrestha, G. von Krogh, Design principles for 
artificial intelligence-augmented decision making: An action design research 
study, Eur. J. Inf. Syst. 34 (2) (2025) 207–229.

[70] G.P. Hodgkinson, E. Sadler-Smith, L.A. Burke, G. Claxton, P.R. Sparrow, Intuition 
in organizations: Implications for strategic management, Long range plan. 42 (3) 
(2009) 277–297.

[71] R.R. Hoffman, S.T. Mueller, G. Klein, J. Litman, Measures for explainable AI: 
Explanation goodness, user satisfaction, mental models, curiosity, trust, and 
human-AI performance, Front. Comput. Sci. 5 (2023) 1096257.

[72] A. Holzinger, M. Plass, K. Holzinger, G.C. Crisan, C.-M. Pintea, V. Palade, glass- 
box interact. mach. learn. approach solving NP-hard probl. hum.-in-the-loop 
(2017) arXiv preprint arXiv:1708.01104.

[73] S.A. Huettel, A.W. Song, G. McCarthy, Decisions under uncertainty: probabilistic 
context influences activation of prefrontal and parietal cortices, J. Neurosci. 25 
(13) (2005) 3304–3311.

[74] F. Huq, K.S. Pawar, H. Rogers, Supply chain configuration conundrum: how does 
the pharmaceutical industry mitigate disturbance factors? Prod. Plan. Control 27 
(14) (2016) 1206–1220.

[75] J.M. Hutchinson, G. Gigerenzer, Simple heuristics and rules of thumb: Where 
psychologists and behavioural biologists might meet, Behav. process. 69 (2) 
(2005) 97–124.

[76] M.C. Jackson, Artificial intelligence & algorithmic bias: the issues with 
technology reflecting history & humans, J. Bus, Tech, L 16 (2021) 299.

[77] S.E. Jackson, J.E. Dutton, Discerning threats and opportunities, Adm. sci. q. 
(1988) 370–387.

[78] J. Johnson, Automating the OODA loop in the age of intelligent machines: 
reaffirming the role of humans in command-and-control decision-making in the 
digital age, Def. Stud. 23 (1) (2023) 43–67.

[79] D. Kahneman, Thinking, fast and slow, macmillan, 2011.
[80] D. Kahneman, Comment on" Artificial Intelligence and Behavioral Economics"". 

The economics of artificial intelligence: An agenda, University of Chicago Press, 
2018, pp. 608–610.

[81] D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk. 
Handbook of the fundamentals of financial decision making: Part I, World 
Scientific, 2013, pp. 99–127.

[82] L. Kaufmann, C.R. Carter, C. Buhrmann, Debiasing the supplier selection decision: 
a taxonomy and conceptualization, Int. J. Phys. Distrib. Logist. Manag. 40 (10) 
(2010) 792–821.

[83] P. Kok, G.J. Brouwer, M.A. van Gerven, F.P. de Lange, Prior expectations bias 
sensory representations in visual cortex, J. Neurosci. 33 (41) (2013) 
16275–16284.

[84] N. Kordzadeh, M. Ghasemaghaei, Algorithmic bias: review, synthesis, and future 
research directions, Eur. J. Inf. Syst. 31 (3) (2022) 388–409.

[85] J. Korteling, G.C. van de Boer-Visschedijk, R.A. Blankendaal, R.C. Boonekamp, A. 
R. Eikelboom, Human-versus artificial intelligence, Front. artif. intell. 4 (2021) 
622364.

[86] B. Kosko, Fuzzy cognitive maps, Int. j. man-mach. stud. 24 (1) (1986) 65–75.
[87] F. Krause, H. Paulheim, E. Kiesling, K. Kurniawan, M.C. Leva, H.D. Estrada-Lugo, 

G. Stübl, N.K. Üre, J. Dominguez-Ledo, M. Khan, Managing human-AI 
collaborations within industry 5.0 scenarios via knowledge graphs: key 
challenges and lessons learned, Front. Artif. Intell. 7 (2024) 1247712.

[88] H. Krijestorac, R. Garg, P. Konana, Decisions under the illusion of objectivity: 
Digital embeddedness and B2B purchasing, Prod. Oper. Manag. 30 (7) (2021) 
2232–2251.

[89] A.W. Kruglanski, G. Gigerenzer, Intuitive and deliberate judgments are based on 
common principles, motiv. mind (2018) 104–128. Routledge.

[90] K. Kuru, Conceptualisation of human-on-the-loop haptic teleoperation with fully 
autonomous self-driving vehicles in the urban environment, IEEE Open J. Intell. 
Transp. Syst. 2 (2021) 448–469.

[91] G.A. León, E.K. Chiou, A. Wilkins, Accountability increases resource sharing: 
Effects of accountability on human and AI system performance, Int. J. Hum.– 
Comput. Interact. 37 (5) (2021) 434–444.

[92] H. Li, Y. Wang, Q.V. Liao, H. Qu, Why is ai not a panacea for data workers? an 
interview study on human-ai collaboration in data storytelling", IEEE Trans. Vis. 
Comput. Graph. (2025).

[93] J. Li, M. Zhang, N. Li, D. Weyns, Z. Jin, K. Tei, Generative ai for self-adaptive 
systems: State of the art and research roadmap, ACM Trans. Auton. Adapt. Syst. 
19 (3) (2024) 1–60.

[94] Y. Li, S. Zhang, J. Sun, W. Zhang, Y. Du, Y. Wen, X. Wang, W. Pan, Tackling 
cooperative incompatibility for zero-shot human-ai coordination, J. Artif. Intell. 
Res. 80 (2024) 1139–1185.

[95] S. Lomborg, A. Kaun, S. Scott Hansen, Automated decision-making: toward a 
people-centred approach, Sociol. Compass 17 (8) (2023) e13097.

[96] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias 
and fairness in machine learning, ACM comput. surv. (CSUR) 54 (6) (2021) 1–35.

[97] G.B. Mensah, Artificial intelligence and ethics: a comprehensive review of bias 
mitigation, transparency, and accountability in AI Systems, Prepr. Novemb. 10 
(1) (2023).

[98] L. Meub, T. Proeger, Are groups ‘less behavioral’? The case of anchoring", Theory 
Decis. 85 (2018) 117–150.

[99] H. Min, Artificial intelligence in supply chain management: theory and 
applications, Int. J. Logist.: Res. Appl. 13 (1) (2010) 13–39.

[100] E. Mosqueira-Rey, E. Hernández-Pereira, D. Alonso-Ríos, J. Bobes-Bascarán, 
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