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Abstract 

The objective of this systematic review was to systematically collect and analyze 

multiple published systematic reviews to address the following research question 

“Are artificial intelligence (AI) algorithms effective for the detection of dental caries?”. 

A systematic search of five electronic databases, including the Cochrane Library, 

Embase, PubMed, Scopus, and Web of Science, was conducted until October 15, 

2024, with a language restriction to English. All fourteen systematic reviews which 

assessed the performance of AI algorithms for the detection of dental caries were 

included. From 137 primary original research studies within the systematic reviews, 

only 20 reported the data necessary for inclusion in the meta-analysis. Pooled sen-

sitivity was 0.85 (95% Confidence Interval (CI): 0.83 to 0.93), specificity was 0.90 

(95% CI: 0.85 to 0.95), and log diagnostic odds ratio was 4.37 (95% CI: 3.16 to 6.27). 

Area under the summary ROC curve was 0.86. Positive post-test probability was 

79% and negative post-test probability was 6%. In conclusion, this meta-analysis 

has revealed that caries diagnosis using AI is accurate and its use in clinical practice 

is justified. Future studies should focus on specific subpopulations, depth of caries, 

and real-world performance validation to further improve the accuracy of AI in caries 

diagnosis.
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Introduction

On a global level, it is estimated that dental caries affects the permanent dentition of 
approximately 2.3 billion adults and the primary dentition of approximately 530 million 
children [1]. The annual treatment costs of dental caries for individuals aged 12–65 
years worldwide is estimated at US$357 billion (331 billion), or 4.9% of global health-
care expenditure [2].

Early and precise detection of dental caries can lead to effective prevention and 
treatment with less invasive methods, potentially resulting in improved outcomes and 
reduced healthcare costs [3]. The conventional strategy for diagnosis of carious lesions 
is visual examination, supplemented with intraoral radiographs, preferably bitewings [4]. 
Obviously, the level of clinical expertise of dentists may affect the reliability and accuracy 
of visual examination methods. The meta-analysis of Walsh T, et al., revealed a pooled 
sensitivity of visual caries diagnosis of 0.83 and specificity of 0.81 [5]. The meta- 
analysis of Schwendicke F, et al., assessed diagnostic accuracy of intraoral radiography, 
i.e., bitewing or periapical radiographs. They reported the pooled sensitivity for radio-
graphic detection of any type of occlusal carious lesion in clinical studies was 0.35, and 
pooled specificity was 0.78. For radiographic detection of any type of proximal caries in 
clinical studies, the pooled sensitivity was 0.24, and pooled specificity was 0.97 [6].

Development of reliable, automated, user-friendly, and low-cost tools for diagnosis of 
dental caries can play an important role in the management of the disease, and improve 
oral healthcare access and quality globally. Artificial intelligence (AI) algorithms, particu-
larly convolutional neural networks (CNN), are revolutionizing dental care [7]. AI algo-
rithms can detect dental caries from various imaging modalities, such as intraoral  
photographic images, periapical radiographs, bitewing radiographs, panoramic radio-
graphs, cone beam computed tomography (CBCT) and near-infrared-light transillumi-
nation. As an example, the “Videa Dental Assist” is an AI-based caries detection system 
approved by the U.S. Food and Drug Administration (FDA) that can analyze bitewing, 
periapical, and panoramic radiographs acquired from patients aged 3 years or older [8].

AI algorithms can automate the diagnostic process, reducing reliance on human 
expertise, and be used on smart phone apps [9] or cloud platforms, enhancing 
access to dental care particularly in underserved regions. Despite the promising 
results, challenges remain in diagnostic accuracy and generalizability of AI platforms 
across diverse populations and imaging modalities.

Several systematic reviews have attempted to answer concerns that surround the 
accuracy of AI algorithms as a diagnostic tool for caries detection. The systematic 
reviews rarely undertook meta-analyses and pooled sensitivity and specificity values 
were therefore unavailable for evidence-based clinical decision making. The reviews 
looked at a range of factors when using AI for detection of dental caries, which has 
led to an overlap of the primary studies in several reviews. Therefore, the aim of the 
present study is to systematically collect and assess multiple published systematic 
reviews to answer the question “Are AI algorithms effective for the detection of dental 
caries?” by including a meta-analysis and reporting pooled sensitivity, specificity and 
diagnostic odds ratio.
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Materials and methods

Protocol registration

The protocol of the review was registered in PROSPERO (#CRD42024568618). The Preferred Reporting Items for Over-
views of Reviews (PRIOR), the Preferred Reporting Items for Systematic reviews and Meta-Analyses of Diagnostic Test 
Accuracy Studies (PRISMA-DTA) and PRISMA-AI criteria were followed to provide accurate and transparent reporting of 
the review methodology and results [10–12].

Eligibility criteria

The selection of studies on the accuracy of diagnostics are based on the PIRD criteria, which include the population, index 
test, reference test, and diagnosis of interest [13]. The utilization of the PIRD format is suggested as a framework for defin-
ing the inclusion criteria used in systematic reviews focusing on the accuracy of diagnostic tests [13]. The PIRD elements 
of the research were defined as: Population: Systematic reviews and meta-analyses evaluating the diagnostic accuracy of 
AI algorithms for dental caries detection, Index Test: Application of AI algorithms in dental caries detection, Reference Test: 
Visual-tactile or clinical based assessment of dental caries, Diagnosis of Interest: The diagnostic accuracy measures of 
the AI model for dental caries including sensitivity, specificity, log diagnostic odds ratio, and area under receiver operating 
characteristic (ROC) curve (AUC).

All systematic reviews involving human subjects and relevant dental images, reporting performance metrics or results 
of AI algorithms in dental caries detection were included. Research that covered non-AI methods for detecting dental car-
ies were excluded. Additionally, guidelines, comments, editorials, duplicate publications, studies that were not systematic 
reviews, and abstracts without full-text availability were also excluded from the analysis.

Search strategy

Five electronic databases, including Cochrane Library, Embase, PubMed, Scopus, and Web of Science, limited to the 
English language, were searched systematically until October 15, 2024. To capture grey literature, WorldCat and the first 
100 hits of Google Scholar were also explored. The search strategy comprised terms presented in Table 1.

Data extraction and synthesis

Duplicate records were removed using Mendeley Reference Manager and two independent reviewers (SA and JK) per-
formed the preliminary screening of titles and abstracts in accordance with the eligibility criteria. Full-text relevant records 
were retrieved and screened. During the screening stage, text mining was also conducted using the SWIFT-Review soft-
ware (Sciome LLC, NC, USA). This program automatically groups abstracts related to comparable subjects using machine 
learning methods [14]. We employed AI algorithms to search, categorize, and prioritize large number of primary studies 
during the screening stage using SWIFT-Review software [15]. However, the final decisions on inclusion were based on 
human judgment. Discrepancies among the independent reviewers were resolved using the Delphi methodology during 
each phase [16].

The characteristics of included systematic reviews was extracted by two independent authors (SA and AK) using a 
standard Joanna Briggs Institute extraction form [17], which included the following details:

•	 Study characteristics: the first author’s name, year of publication, number of databases searched, number and types of 
included studies, date of search, quality assessment tool, and results of the meta-analysis.

•	 AI techniques employed: artificial neural network, machine learning algorithms, deep learning method, or convolutional 
neural network.

•	 The types of caries: proximal, root, occlusal, or other parts of tooth.
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Table 1.  Search strategy and number of records retrieved from each database on Oct 15, 2024.

Database Search line Number of 
retrieval records

PubMed (“Artificial Intelligence”[MeSH Terms] OR “Support Vector Machine”[MeSH Terms] OR “Deep Learning”[MeSH 
Terms] OR “neural networks, computer”[MeSH Terms] OR (“Machine Learning”[MeSH Terms] OR “Unsupervised 
Machine Learning”[MeSH Terms] OR “Supervised Machine Learning”[MeSH Terms]) OR “diagnosis, computer 
assisted”[MeSH Terms] OR “Electronic Data Processing”[MeSH Terms] OR “Convolutional Neural Network”[Text 
Word] OR “CNN”[Text Word]) AND (“Dental Caries”[MeSH Terms] OR “Root Caries”[MeSH Terms])

253

EmBase (‘artificial intelligence’/exp OR ‘support vector machine’/exp OR ‘deep learning’/exp OR ‘artificial neural network’/
exp OR ‘ann (artificial neural network)’ OR ‘ann analysis’ OR ‘ann approach’ OR ‘ann method’ OR ‘ann methodol-
ogy’ OR ‘ann methods’ OR ‘ann model’ OR ‘ann modeling’ OR ‘ann modelling’ OR ‘ann models’ OR ‘ann output’ OR 
‘ann technique’ OR ‘ann techniques’ OR ‘ann training’ OR ‘anns (artificial neural networks)’ OR ‘algorithmic neural 
network’ OR ‘artificial nn’ OR ‘artificial nns’ OR ‘artificial neural network’ OR ‘artificial neural networks’ OR ‘com-
putational neural network’ OR ‘computer neural network’ OR ‘computer neural networks’ OR ‘computerized neural 
network’ OR ‘connectionist model’ OR ‘connectionist network’ OR ‘connectionist neural network’ OR ‘connectionist 
system’ OR ‘mathematical neural network’ OR ‘neural network (artificial)’ OR ‘neural network (computer)’ OR ‘neu-
ral network algorithm’ OR ‘neural network model’ OR ‘neural networks (computer)’ OR ‘neural networks, computer’ 
OR ‘machine learning’/exp OR ‘convolutional neural network’/exp OR ‘cnn (convolutional neural network)’ OR ‘cnns 
(convolutional neural networks)’ OR ‘convnet’ OR ‘convoluted neural network’ OR ‘convolution neural network’ OR 
‘convolutional anns’ OR ‘convolutional nn’ OR ‘convolutional artificial neural network’ OR ‘convolutional deep neural 
network’ OR ‘convolutional neural network’ OR ‘convolutionary neural network’ OR ‘deep convolutional neural net-
work’) AND (‘dental caries’/exp OR ‘dental caries’ OR ‘white spot lesion’/exp OR ‘white spot lesion’)

352

Scopus #1 TITLE-ABS-KEY (“Artificial intelligence” OR ai OR “support vector machine” OR “Deep learning” OR “Machine 
based algorithm*” OR “Neural network*” OR nn OR ann OR cnn OR “Machine learning”)
#2 TITLE-ABS-KEY (dental AND (caries OR cavit* OR decay* OR “White Spot*” OR lesion*))
#3 TITLE-ABS-KEY (caries AND (detection OR diagnosis))
#4 TITLE-ABS-KEY (t**th AND (lesion* OR caries))
#5 TITLE-ABS-KEY (carious AND (lesion* OR dentin*))
#6 TITLE-ABS-KEY (bitewing OR periapical OR pa OR panoramic OR opg OR “Panoramic Radiograph*” OR 
orthopantomography OR “Cone Beam Computed Tomography” OR cbct OR “Cone Beam CT” OR “Dental CT” OR 
“Intraoral Photographic Image*” OR “Photographic Image*” OR “Near Infrared Light Transillumination” OR nilt OR 
“Dental PRE/2 Tomography”)
#7: #2 OR #3 OR #4 OR #5
#8: #1 AND #6 AND #7

426

Web of 
Science

#1 TS=(“Artificial intelligence” OR AI OR “Support Vector Machine” OR “Deep learning” OR “Machine based algo-
rithm*” OR “Neural network*” OR NN OR ANN OR CNN OR “Machine learning”)
#2 TS=(Dental AND (Caries OR Cavit* OR Decay* OR “White Spot*” OR Lesion*))
#3 TS=(Caries AND (Detection OR Diagnosis))
#4 TS=(T**th AND (Lesion* OR Caries))
#5 TS=(Carious AND (Lesion* OR Dentin*))
#6 TS=(bitewing OR periapical OR pa OR panoramic OR opg OR “Panoramic Radiograph*” OR orthopantomog-
raphy OR “Cone Beam Computed Tomography” OR cbct OR “Cone Beam CT” OR “Dental CT” OR “Intraoral 
Photographic Image*” OR “Photographic Image*” OR “Near Infrared Light Transillumination” OR nilt OR “Dental 
PRE/2 Tomography”)
#7: #2 OR #3 OR #4 OR #5
#8: #1 AND #6 AND #7

277

Cochrane 
Reviews

(“artificial intelligence”) AND (“dental caries”)” (Word variations have been searched) 1

WorldCat ti:(“Artificial intelligence” OR “support vector machine” OR “Deep learning” OR “Neural network*” OR “Machine 
learning”) AND (“Dental Caries” OR “Dental Cavit*” OR “Dental Decay*” OR “Dental White Spot*” OR “Carious 
Lesion*” OR “Caries Detection”)

119

Google 
Scholar

(“Artificial intelligence” OR “support vector machine” OR “Deep learning” OR “Neural network*” OR “Machine learn-
ing”) AND (“Dental Caries” OR “Dental Cavit*” OR “Dental Decay*” OR “Dental White Spot*” OR “Carious Lesion*” 
OR “Caries Detection”) limited to review articles

First 100 hits

https://doi.org/10.1371/journal.pone.0329986.t001

https://doi.org/10.1371/journal.pone.0329986.t001
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•	 Dental imaging modalities used: bitewing, periapical, panoramic radiographs, cone beam computed tomography, and 
intraoral photographic images.

•	 Measures to be pooled: sensitivity, specificity, log diagnostic odds ratio, area under curve.

The retrieved data were analyzed and qualitatively summarized to assess the diagnostic accuracy of artificial intelli-
gence for detecting dental caries across a range of imaging modalities. Overlapping studies within the included reviews 
were handled by creation of a citation matrix and calculation of corrected covered area (CCA) using the ccaR package of 
R software (R Foundation for Statistical Computing, Vienna, Austria) [18].

Meta-analysis

Original studies provided data on True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) counts 
included in the meta-analysis. We also used a backward calculation of TP, TN, FP, and FN using: 1) Prevalence (TP + FN/ 
Total sample size), sensitivity, specificity, and total sample size, 2) Prevalence, positive likelihood ratio, negative likelihood 
ratio, and total sample size, or 3) Sensitivity, specificity, total number of positive and total number of negative test results [19].

A random effect model was used to combine sensitivity, specificity, log diagnostic odds ratio, AUC estimates of diagnos-
tic tests among the original studies included in the systematic reviews. The Wald test was used to calculate the confi-
dence intervals (CIs). The Galbraith plot was employed to assess heterogeneity and detect potential outliers. To quantify 
the potential effect of these outliers on the estimation of the pooled variables, leave-one-out meta-analyses were carried 
out. The regression-based Egger test and nonparametric rank correlation Begg test were employed for assessment of 
small-study effects. Nonparametric trim-and-fill analysis was employed to evaluate the number of studies potentially 
missing from the meta-analysis. To assess post-test probabilities, the Fagan nomogram was used [20]. The meta-analysis 
and visualizations were carried out using Stata 18 (StataCorp, College Station, TX, USA) and the mada, MetaDTA, and 
nsROC packages of R software. We employed an online diagnostic test calculator hosted by the University of Illinois at 
Chicago to draw Fagan nomogram. Interaction between imaging method and AI algorithm for sensitivity, specificity, and 
log diagnostic odds ratio assessed by random forests model (a machine learning algorithm) using a metaforest package.

Quality and risk of bias assessment

The quality and risk of bias of the included systematic reviews were assessed by two independent researchers (SA and 
MY) using the AMSTAR 2 (A MeaSurement Tool to Assess systematic Reviews) tool [21]. The risk of bias in the original 
studies included in the systematic reviews eligible for meta-analysis was evaluated using the QUADAS-2 tool [22]. Dis-
agreements regarding the quality evaluation were resolved by a Delphi technique [16].

Results

Characteristics of the included reviews

The initial search yielded a total of 1120 studies (Table 1). Following the removal of duplicates and the title-abstract 
screening process, 25 records met the criteria for full-text review. Ultimately, after excluding 11 records (Table 2), the 
remaining 14 records which met the eligible criteria were included (Fig 1). Twelve of the included records were systematic 
reviews and two were systematic reviews with meta-analyses (Table 3). The reviews covered a range of publication years, 
with 2 conducted prior to 2022, 6 conducted in 2022, 1 conducted in 2023, and 5 conducted in 2024. The original studies 
included in the reviews spanned from 1984 to 2023, providing a broad range of evidence.

The included reviews encompassed a range of AI techniques, prominently CNN, employed for dental caries detec-
tion. These reviews assessed the performance of AI algorithms in detecting dental caries using diverse dental imag-
ing modalities, including intraoral photographic images, periapical radiographs, bitewing radiographs, CBCT images, 
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near-infrared-light transillumination, panoramic radiographs, and others. Quality assessment among the included system-
atic reviews exhibited predominantly moderate quality (Table 4).

The citation matrix of primary studies included in the systematic reviews is presented in S1 Table. The CCA_Proportion 
was 0.07 and CCA_Percentage was 6.90, showing moderate overlap. The pairwise CCA presented in S1 Fig shows which 
combinations of paired reviews had the highest overlap.

Meta-analysis of eligible original studies

Among the fourteen systematic reviews included, 137 relevant original studies were identified (S1 Table). Only 20 original 
articles reported numbers of TP, TN, FP, and FN and were included in the meta-analysis (Table 5). Quality assessment of 
diagnostic accuracy studies among the included original studies revealed the lowest risk regarding index test applicability 
concerns and the highest risk regarding index test risk of bias (Fig 2).

Of the 29423 diagnostic tests analyzed from the results retrieved from the 20 articles (Fig 3), the pooled sensitivity was 0.85 
(95% CI: 0.83 to 0.93), specificity was 0.90 (95% CI: 0.85 to 0.95), and log diagnostic odds ratio was 4.37 (95% CI: 3.16 to 
6.27) (diagnostic odd ratio: 70.9 (95% CI: 44.9 to 111.9)) as shown in Fig 4. Results of heterogeneity assessments related to 
sensitivity, specificity, and log diagnostic odds ratio among the included studies are provided in Fig 5. The studies of Zadrozny L, 
2022 [64], Park EY, 2022 (Faster R-CNN) [51], and De Araujo Faria V, 2021 [56], were outliers for sensitivity, specificity, and log 
diagnostic odds ratio, respectively. Results of the leave-one-out meta-analysis are shown in Fig 6. When omitting each study, 

Table 2.  Excluded systematic reviews and the reason for exclusion.

Study Year of 
publication

Title Reason for exclusion

Chifor et al. [23] 2022 Automated diagnosis using artificial intelligence a step forward for preventive dentistry: 
A systematic review.

Conditions not con-
cerning dental caries 
diagnosis

Hegde et al. [24] 2022 Deep learning algorithms show some potential as an adjunctive tool in caries 
diagnosis.

Editorial

Alqutaibi et al. [25] 2023 Artificial intelligence (AI) as an aid in restorative dentistry is promising, but still a work 
in progress.

Editorial

Fatima et al. [26] 2023 A systematic review on artificial intelligence applications in restorative dentistry. Duplicate publication of 
Revilla-León M, et al. 
[27]

Futyma-Gabka et 
al. [28]

2021 The use of artificial intelligence in radiological diagnosis and detection of dental caries: 
a systematic review

Critically low quality 
(based on AMSTAR 2)

Musri et al. [29] 2021 Deep learning convolutional neural network algorithms for the early detection and
diagnosis of dental caries on periapical radiographs: A systematic review

Critically low quality 
(based on AMSTAR 2)

Singh et al. [30] 2022 Progress in deep learning-based dental and maxillofacial image analysis: A systematic 
review

Critically low quality 
(based on AMSTAR 2)

Forouzeshfar et 
al. [31]

2023 Dental caries diagnosis using neural networks and deep learning: a systematic review Critically low quality 
(based on AMSTAR 2)

Bhat et al. [32] 2023 A comprehensive survey of deep learning algorithms and applications in dental radio-
graph analysis

Critically low quality 
(based on AMSTAR 2)

Al-Namankany et 
al. [33]

2023 Influence of artificial intelligence-driven diagnostic tools on treatment decision making 
in early childhood caries: A systematic review of accuracy and clinical outcomes

Conditions not con-
cerning dental caries 
diagnosis

Alam et al. [34] 2024 Applications of artificial intelligence in the utilisation of imaging modalities in dentistry: A 
systematic review and meta-analysis of in-vitro studies

Conditions not con-
cerning dental caries 
diagnosis

Pecorari et al. [35] 2024 The use of artificial intelligence in the diagnosis of carious lesions: Systematic review 
and meta-analysis

Not peer-reviewed and a 
preprint article

https://doi.org/10.1371/journal.pone.0329986.t002

https://doi.org/10.1371/journal.pone.0329986.t002
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results changed minimally, e.g., 0.01 in sensitivity and specificity and the first decimal place in log diagnostic odds ratio. The 
results of the regression-based Egger test and nonparametric rank correlation Begg test for assessment of small-study effects 
are provided in Table 6. The nonparametric trim-and-fill analysis of publication bias are in Table 6 and Fig 7. Nonparametric 
trim-and-fill analysis estimated 6 unpublished studies estimated for sensitivity and log diagnostic odds ratio. The meta-analysis 
for non-parametric ROC curves are presented in Fig 8. The area under the pooled ROC curve is 0.867. Positive and negative 
likelihood ratios were 10.443 (95% CI: 7.505 to 14.531) and 0.168 (95% CI: 0.138 to 0.205), respectively. Total number of tests 
were 29424, TP were 6836, and FN were 1209. Hence the prevalence of dental caries was 27.3%. The positive post-test prob-
ability was 79% and negative post-test probability was 6% (Fig 9). The interaction between imaging method and AI algorithm 
for sensitivity, specificity, and log diagnostic odds ratio showed in Fig 10. Finally, Fig 11 provides a summary of meta-analysis 
performance, along with visual evaluations of threshold effect, hierarchical summary ROC curve and heterogeneity of data.

Discussion

The core question in this umbrella review and meta-analysis was “Are AI algorithms effective for the detection of dental 
caries?” Given the global burden of caries and the exponential growth of AI in diagnostics, the study is timely and neces-
sary in order to inform clinicians, scientists and other stakeholders on the effectiveness of this emerging technology.

In this umbrella review, 14 systematic reviews were included (Table 3) and 12 systematic reviews excluded (Table 
2). Among the included systematic reviews only 2 conducted a meta-analysis (Table 4, item 11), most likely due to 

Fig 1.  Systematic review flowchart according to PRISMA 2020.

https://doi.org/10.1371/journal.pone.0329986.g001

https://doi.org/10.1371/journal.pone.0329986.g001
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the failure of the original studies they included to report adequate details. We analyzed 29423 diagnostic tests, which 
resulted in a pooled sensitivity of 0.85 (95% CI: 0.83 to 0.93) and specificity of 0.90 (95% CI: 0.85 to 0.95) (Fig 4). 
Readers must note, the type of dental imaging strongly influences diagnostic performance. AI evaluating panoramic 
radiographs (with tooth overlap) operates under very different conditions than AI analyzing bitewing images (with clear 
approximal visibility). Pooling such results may reduce the clinical interpretability of the findings. To address this issue 
we conducted a subgroup meta-analysis for different imaging modalities with the results presented in Fig 4.

It is well-known that, the most reliable conclusions would come from reviews comparing studies conducted under the 
same diagnostic protocols and caries definitions. As showed in Table 5, caries detection method, reference standard and 
AI algorithm were the same among the studies included in the meta-analysis.

Nevertheless, Ammar N et al., [46] (2024) in a recent systematic review and meta-analysis assessed diagnostic per-
formance of AI algorithms for caries detection on bitewing radiographs. Among 5 included studies, the pooled sensitivity 
and specificity were 0.87 (95% CI: 0.76 to 0.94) and 0.89 (95% CI: 0.75 to 0.96). Macey R, et al., (2021) [69] in a recent 
systematic review and meta-analysis, which included 67 studies reporting a total of 19590 tooth sites/surfaces, assessed 
the diagnostic accuracy of several visual classification systems for the detection and diagnosis of non‐cavitated coronal 
dental caries. For all visual classification systems, the pooled sensitivity and specificity were 0.86 (95% CI 0.80 to 0.90) 
and 0.77 (95% CI 0.72 to 0.82) respectively. In another systematic review and meta-analysis, Iranzo-Cortés JE, et al., 
(2019) [70]examined the accuracy of caries diagnostic tools based on laser fluorescence in pre-cavitated carious lesions. 
For 655 nm light wavelength lasers, which included 25 studies, the pooled sensitivity and specificity were 0.77 (95% CI: 
0.70 to 0.83) and 0.75 (95% CI: 0.69 to 0.80), respectively. For 405 nm light wavelength lasers, which included 13 stud-
ies, the pooled sensitivity and specificity were 0.81 (95% CI: 0.68 to 0.89) and 0.75 (95% CI: 0.62 to 0.85), respectively. 
The meta-analysis of Walsh T, et al., (2022) [5] which included 64 studies, reported pooled sensitivity and specificity for 
fluorescence-based devices 0.76 and 0.83, for analog and digital radiographs 0.50 and 0.89, for electrical conductance 
or impedance 0.83 and 0.72, and for transillumination and optical coherence tomography 0.76 and 0.82, respectively. 
Macey R, et al. (2020) [71] in a systematic review and meta-analysis of diagnostic test accuracy of fluorescence-based 
devices for diagnosis of enamel caries reported estimated sensitivity of 0.70 and specificity of 0.78 among 79 included 
studies.

Table 4.  Quality assessment of each included systematic review according to AMSTAR 2.

Systematic Review 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Overall Quality

Reyes LT et al. [37] Yes Yes Yes Yes Yes Yes Yes Yes Yes No No MA No MA Yes Yes No MA Yes High

Mohammad-Rahimi H et al. [40] Yes Yes Yes Yes Yes Yes Yes Yes Yes No No MA No MA Yes Yes No MA Yes High

Khanagar SB et al. [41] Yes PY Yes Yes Yes Yes Yes Yes Yes No No MA No MA Yes Yes No MA Yes High

Ndiaye AD et al. [45] Yes Yes Yes Yes Yes Yes Yes Yes Yes No No MA No MA Yes Yes No MA Yes High

Moharrami M et al. [38] Yes Yes Yes Yes Yes No Yes Yes Yes No No MA No MA Yes Yes No MA Yes Moderate

Prados-Privado M et al. [39] Yes PY Yes Yes Yes Yes Yes Yes Yes No No MA No MA Yes Yes No MA Yes Moderate

Revilla-León M et al. [27] Yes PY Yes Yes Yes Yes Yes Yes Yes No No MA No MA Yes No No MA Yes Moderate

Khanagar SB et al. [42] Yes No Yes PY Yes Yes Yes Yes Yes No No MA No MA Yes Yes No MA Yes Moderate

Khanagar SB et al. [43] Yes PY Yes Yes Yes Yes Yes Yes Yes No No MA No MA Yes Yes No MA Yes Moderate

Zanini LGK et al. [44] Yes Yes No PA Yes Yes Yes Yes Yes No No MA No MA Yes Yes No MA Yes Moderate

Ammar N et al. [46] Yes PY Yes Yes Yes Yes Yes Yes PY No Yes No Yes Yes Yes Yes Moderate

Rokhshad R et al. [47] Yes PY Yes Yes Yes Yes Yes Yes Yes No Yes No Yes Yes Yes Yes Moderate

Talpur S et al. [36] Yes PY Yes PY No No Yes Yes PY No No MA No MA Yes Yes No MA Yes Low

Albano D et al. [48] Yes No Yes Yes Yes Yes Yes Yes Yes No No MA No MA Yes No No MA Yes Low

Abbreviations: PY, Partial Yes; MA, Meta-Analysis; Low, Low quality. Numbers at first row showed the items in AMSTAR 2. [21]

https://doi.org/10.1371/journal.pone.0329986.t004

https://doi.org/10.1371/journal.pone.0329986.t004
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Table 5.  Data extracted from the included original studies for meta-analysis.

Study Dental imaging modality Caries detection Reference standard AI algorithms (in detail)

Liu L [49] 2015 Intraoral photographic images Overall Dental experts CNNs (Mask R-CNN)

Kühnisch J [50] 2022 Intraoral photographic images Overall A dental expert CNNs (MobileNetV2)

Detection of cavitations CNNs (MobileNetV2)

Park EY [51] 2022 Intraoral photographic images Overall A dental expert CNNs (ResNet-18)

CNNs (ResNet-18 with 
U-net)

CNNs (Faster R-CNN)

CNNs (Faster R-CNN 
with U-net)

Vinayahalingam S[52] 2021 Panoramic radiographs Overall Dental experts CNNs (MobileNet V2)

Ezhov M [53] 2021 CBCT N/A Dental and radiology experts CNNs (U-net)

Devlin H [54] 2021 Bitewing radiographs Enamel Dental experts CNNs (AssistDent AI 
software)

Zheng L [55] 2021 Periapical radiographs Dentin Dental experts CNNs (VGG19)

CNNs (Inception V3)

CNNs (ResNet-18)

De Araujo Faria V[56], 2021 Panoramic radiographs Overall Dental experts ANNs

Oztekin F [57] 2023 Panoramic radiographs Overall A dental expert CNNs (EfficientNet-B0)

CNNs (DenseNet-121)

CNNs (ResNet-50)

Imak A [58] 2022 Periapical radiographs Overall A dental expert CNNs (MI-DCNNE)

Chen X [59], 2022 Bitewing radiographs Overall 2 endodontic experts and 1 
radiologist

CNNs (Faster R-CNN)

Li S [60] 2022 Periapical radiographs Overall Dental experts CNNs (VGG16)

CNNs (modified ResNet- 
18 backbone)

Fariza A [61] 2022 Panoramic radiographs Overall Dental experts CNNs (ResNet-18)

CNNs (ResNeXt50 
32 × 4d)

Jayasinghe H [62] 2022 Periapical radiographs Overall Dental experts CNNs (ResNet-101)

Ari T [63] 2022 Periapical radiographs Overall An oral and maxillofacial 
radiologist

CNNs (U-net)

Zadro˙zny L [64] 2022 Panoramic radiographs Overall Dental experts CNNs (Diagnocat)

Suttapak W [65] 2022 Bitewing radiographs Overall An oral and maxillofacial 
radiologist

CNNs (ResNet-101)

Liu F [66] 2022 Periapical radiographs Overall Dental experts CNNs (VGG16)

CNNs (Inception V3)

CNNs (ResNet-50)

CNNs (DenseNet-121)

Estai M [67] 2022 Bitewing radiographs Overall Dental experts CNNs 
(Inception-ResNet-V2)

Bayraktar Y [68] 2022 Bitewing radiographs Overall Dental experts CNNs (YOLOv3)

https://doi.org/10.1371/journal.pone.0329986.t005

https://doi.org/10.1371/journal.pone.0329986.t005
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Among 29423 diagnostic tests analyzed in the present study, the prevalence estimate of dental caries was 27.3% 
(Fig 3). Results of the meta-analysis revealed a positive likelihood ratio of 10.443 (95% CI: 7.505 to 14.531), meaning 
that a positive test result is 8.47 time more likely to occur in someone who has caries, compared to someone who does 
not have caries, and a negative likelihood ratio of 0.168 (95% CI: 0.138 to 0.205), meaning that a negative test result is 
0.17 time more likely to occur in someone who has caries compared to someone who does not have caries. The positive 
post-test probability was 79%, meaning that if a patient test is positive, there is a 79% chance they actually have caries, 
and negative post-test probability of 6%, meaning that if a patient test is negative, there is a 6% chance they actually 
have caries (Fig 9).

Sensitivity and specificity are a well-known pair of indicators for assessment of diagnostic test accuracy. There have 
been many efforts to combine the results of a diagnostic study into one single measure, for example the diagnostic odd 
ratio [72]. The results of a diagnostic odd ratio assessment ranges from 0 to infinity (with 1 as null value), where higher 
values indicate better diagnostic test performance [73]. In the present study the pooled log diagnostic odd ratio was 4.37 
(diagnostic odd ratio: 70.9). This value provides a measure of how much likely a positive test result occurs in a person 
with dental caries compared to person without dental caries. Ammar N et al., (2024) [46] reported a pooled diagnostic 
odds ratio of 55.8 for AI-based caries detection on bitewing radiographs. In the study of Macey R, et al., (2021) [69] that 
included all visual caries classification systems, the pooled diagnostic odds ratio was 20.38. In another meta-analysis, 

Fig 2.  Quality assessment of diagnostic accuracy studies among the included original studies for meta-analysis according to QUADAS-2. 

https://doi.org/10.1371/journal.pone.0329986.g002

https://doi.org/10.1371/journal.pone.0329986.g002
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Macey R, et al., (2020) [71] reported that the pooled diagnostic odds ratio for fluorescence-based enamel caries diagnos-
tic devices was 14.1.

As a general rule, the AUC serves as an overall summary of diagnostic test performance. In the present study, the area 
under the pooled ROC curve for AI algorithms for the detection of dental caries was 0.86. This means that there is high 
probability that a randomly chosen individual with caries will have higher test score than a randomly chosen individual 
without disease. Iranzo-Cortés JE, et al., (2019) [70] reported that the area under the pooled ROC curve was 0.81 for 655 
nm light wavelength lasers and was 0.80 for 405 nm light wavelength lasers.

The Egger’s and Bag’s test results were significant (p < 0.05) for sensitivity, specificity, and log diagnostic odds ratio confirming 
that publication bias existed within the 20 original studies included in the meta-analysis. The nonparametric trim-and-fill  
analysis estimated 6 unpublished studies and presence of publication bias for sensitivity, and log diagnostic odds ratio. This publi-
cation bias may be related to difficulties related to the publication of innovative interdisciplinary high-tech research outcomes.

High levels of heterogeneity (I2 > 95) were found regarding sensitivity, specificity, and log diagnostic odds ratio among 
the included studies. These levels of heterogeneity can be explained by diversity in imaging modalities (e.g., bitewing vs. 
panoramic radiographs), differences in AI algorithm architectures, and training dataset characteristics.

The main limitation of this umbrella review and meta-analysis include the fact that only 20 original studies were 
included in the meta-analysis quantitative data synthesis. The number of primary original research studies was 137, with 
only 20 (14.5%) original research articles reporting the necessary details of AI–based caries diagnostic test results includ-
ing numbers TP, TN, FP, and FN involved in the meta-analysis. To facilitate future meta-analysis, authors are encouraged 
to report details of AI–based caries diagnostic tests including numbers of TP, TN, FP, and FN, all of which are essential for 
a meta-analysis.

Fig 3.  Summary of the 29423 diagnostic tests included in the meta-analysis.

https://doi.org/10.1371/journal.pone.0329986.g003

https://doi.org/10.1371/journal.pone.0329986.g003
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The prevalence of dental caries among the 20 original research articles included in the meta-analysis was 27.3%, 
which is noticeably lower than the prevalence of dental caries in the real community suggesting a degree of selection bias 
among images datasets used for training and validation of AI algorithms. Future studies must involve the training and 
validation of AI algorithms using image datasets from a broader range demographic locations and healthcare settings to 
better reflect the real-world prevalence of dental caries.

We tried to conduct sub-group analysis according to the depth of the carious lesions and their location, for instance, 
enamel caries, dentine caries or root caries. Yet, among the majority of the original studies included, the AI algorithms 
were trained to detect dental caries and could not distinguish different depths and locations. Future research should focus 
on training AI algorithms to diagnose caries at different sites and at different depth of progression.

However, in future analyses, the most valuable evidence will likely come from studies that simulate real-world diagnos-
tic conditions, including time pressure, clinician–patient interaction, and the integration of AI as part of the clinical workflow 
rather than in isolated image review [74].

In summary, this meta-analysis supports the use of AI in clinical practice for the detection of dental caries. 
However, AI algorithms are being developed and implemented rapidly and their accuracy for detection of dental 

Fig 4.  Forest plots showing pooled sensitivity, specificity, and log diagnostic odds ratio among the included studies. Test of sub-group differ-
ences for sensitivity, specificity, and log diagnostic odds ratio were significant (P < 0.001).

https://doi.org/10.1371/journal.pone.0329986.g004

https://doi.org/10.1371/journal.pone.0329986.g004
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Fig 5.  Galbraith plots showing the results of heterogeneity assessments related to sensitivity, specificity, and log diagnostic odds ratio 
among the included studies.

https://doi.org/10.1371/journal.pone.0329986.g005

Fig 6.  Forest plots showing the results of the leave-one-out meta-analysis for sensitivity, specificity, and log diagnostic odds ratio among the 
included studies.

https://doi.org/10.1371/journal.pone.0329986.g006

https://doi.org/10.1371/journal.pone.0329986.g005
https://doi.org/10.1371/journal.pone.0329986.g006
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caries is likely to increase in future. The majority of the included studies in the meta-analysis used CNN for image 
processing and detection of dental caries. This type of deep learning algorithm is a powerful type of feed-forward 
artificial neural network [75] that learns features automatically via filter optimization. The accuracy of the CNN 
model for detection of dental caries can be improved by dealing with large datasets and high-resolution inputs 
from diverse demographics (tooth type, age, sex, and ethnicity) and imaging equipment. Dental professionals 
could participate in public volunteer computing programs and potentially upload their radiographic images and 
donate their unused CPU and GPU cycles to develop powerful CNN models for detection of dental caries with high 
levels of accuracy [76].

Table 6.  Results of small-study effects related to publication bias and results of nonparametric trim-and-fill analysis, showing the impact of 
publication bias on the pooled estimates.

Egger’s 
Regression

Egger’s 
test

Kend-
alls Tau

Begg’s 
test

Number of 
imputed studies

Observed pooled effect size Observed + Imputed 
pooled effect size

Sensitivity −3/201 P = 0.00137 −0/338 P = 0.0058 6 0.850 (95% CI: 0.811 to 0.889) 0.818 (95% CI: 
0.778 to 0.858)

Specificity −3/062 P = 0.0022 −0/485 P < 0.001 0 0.898 (95% CI: 0.867 to 0.929) 0.898 (95% CI: 
0.867 to 0.929)

Log diagnostic odds ratio 6/408 P < 0.001 0/481 P < 0.001 6 4.368 (95% CI: 3.798 to 4.938) 3.913 (95% CI: 
3.219 to 4.606)

https://doi.org/10.1371/journal.pone.0329986.t006

Fig 7.  Funnel plot showing the results of the nonparametric trim-and-fill analysis of publication bias related to sensitivity, specificity, and log 
diagnostic odds ratio among the included studies.

https://doi.org/10.1371/journal.pone.0329986.g007

https://doi.org/10.1371/journal.pone.0329986.t006
https://doi.org/10.1371/journal.pone.0329986.g007
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Fig 8.  Meta-analysis for non-parametric receiver operating characteristic (ROC) curve. Studies numbered according to the order seen in forest 
plots in Fig 6.

https://doi.org/10.1371/journal.pone.0329986.g008

https://doi.org/10.1371/journal.pone.0329986.g008
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Finally, a recent survey published in Nature involving 1,600 researchers from around the world concluded that 
scientists are worried and expressed fears over the lack of transparency and the ‘Black Box Effect’ among AI sys-
tems, over training data including biased information, AI spreading misinformation, and AI-generated deepfakes [77]. 
An editorial in the journal Science stated that “Excitement about AI has been tempered by concerns about potential 
downsides” [78]. The dental research community, journal editors, clinicians, and policymakers should be aware and 
be attentive of the significant and emerging concerns regarding AI safety [79] and ethical worries regarding the use 
of AI systems in biomedical research and clinical practice [80,81]. Although AI can assist in dental caries diagnosis, 
it should not be a substitute for human judgment and dental practitioners must take responsibility for the use of AI in 
caries diagnosis.

Conclusions

In this umbrella meta-analysis, the analysis of 29423 diagnostic tests resulted in a pooled sensitivity of 0.85, specificity of 
0.90, log diagnostic odd ratio of 4.37, AUC of 0.86, positive post-test probability of 79%, and negative post-test probability 

Fig 9.  Fagan nomogram to determine the post-test probabilities of presence of dental caries based on the likelihood ratios. The post-test 
probability of a patient having dental caries was 79% with the positive test result and post-test probability of a patient having dental caries was 6% with 
the negative test result.

https://doi.org/10.1371/journal.pone.0329986.g009

Fig 10.  Pinned scatter plot of the bivariate partial prediction of interaction between imaging method and AI algorithm for sensitivity, specific-
ity, and log diagnostic odds ratio (DOR). This plot was created by means of random forests model (a machine learning algorithm) (Number of trees in 
forest: 500, Minimum terminal node size: 5).

https://doi.org/10.1371/journal.pone.0329986.g010

https://doi.org/10.1371/journal.pone.0329986.g009
https://doi.org/10.1371/journal.pone.0329986.g010
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of 6%, which support the implementation of this diagnostic tool in clinical practice. Future studies should focus on spe-
cific subpopulations, depth of caries, and real-world performance validation. Although AI can assist in dental caries diag-
nosis, it should not be a substitute for human judgment.

Supporting information

S1 Table.  The citation matrix of primary studies included in the systematic reviews for the use of AI in the detec-
tion of dental caries. The “1” implies a checkmark, that is the study is included “0” implies that the study is not included 
in the review in question.
(DOCX)

S1 Fig.  Visualization of the pairwise CCA (%) with a heatmap. 
(TIF)

S1 File.  PRISMA+DTA+Checklist. 
(DOCX)

Fig 11.  Summary receiver operating characteristic plot showing meta-analysis performance (HSROC: Hierarchical summary receiver operat-
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