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 A B S T R A C T

Autonomous navigation for unmanned ground vehicles in smart factory environments involves satisfying 
multiple, often conflicting objectives such as safety, efficiency, and motion smoothness. Traditional rein-
forcement learning approaches typically rely on fixed, manually weighted reward functions to encode these 
objectives. However, such static formulations struggle to generalize across varying user preferences and 
dynamic operational contexts common in real-world factory scenarios. Consequently, they require retraining 
for every new preference configuration, leading to inefficiency and limited practical deployment. To address 
this challenge, we propose a novel preference-based reinforcement learning framework that enables a single 
policy to dynamically adapt its behavior according to a user-defined preference vector that encodes trade-offs 
among multiple objectives. This allows the agent to modify its navigation strategy on-the-fly without additional 
retraining. To further improve training efficiency and learning stability, we incorporate automatic curriculum 
learning, which gradually increases the complexity of training tasks based on the agent’s performance, 
accelerating convergence and robustness. We validate our method in a simulated smart factory environment 
that reflects realistic navigation constraints. Experimental results demonstrate that our proposed approach 
ensures faster convergence during training and achieves up to a 93% navigation success rate in challenging 
factory-like environments compared to recent advances.
1. Introduction

Autonomous navigation is a fundamental capability for Unmanned 
Ground Vehicles (UGVs) across a wide range of applications, including 
disaster response [1], construction [2], and autonomous driving [3]. 
In recent years, UGVs have been increasingly deployed in unstructured 
environments such as smart factories [4], airport terminals [5], and 
commercial facilities [6]. In these settings, UGVs are expected to op-
erate safely and efficiently in collaboration with humans and other 
mobile systems. Due to the dynamic and interactive nature of such 
shared spaces, effective navigation involves more than just obstacle 
avoidance or shortest-path planning. It must simultaneously address 
multiple, often conflicting, objectives—such as safety, travel efficiency, 
and motion smoothness. The relative importance of these objectives can 
vary significantly depending on the task [7,8]. For example, a guide 
UGV operating in a crowded airport terminal must prioritize safety 
and smoothness to avoid startling nearby passengers, while a logistics 
UGV in a warehouse environment emphasizes speed and efficiency to 
maximize throughput. This diversity of task requirements underscores 
the necessity for flexible navigation strategies that can dynamically 
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adjust to varying objective priorities. However, designing such adaptive 
navigation systems remains a significant challenge in the field, particu-
larly in complex and dynamic environments like smart factories, where 
the trade-offs between objectives are often highly context-dependent. 
As illustrated in Fig.  1, navigation trajectories generated under different 
preferences for safety, efficiency, and smoothness vary significantly. 
This observation highlights the urgent need for a navigation framework 
capable of dynamically balancing multiple objectives in accordance 
with human-defined preferences, thereby enabling UGVs to meet the 
nuanced demands of diverse operational contexts.

Previous research on autonomous navigation for UGVs has often 
failed to adequately account for the dynamic changes in multiple 
conflicting objectives—such as safety, efficiency, and smoothness—
across varying tasks. Traditional studies have largely focused on single-
objective optimization, primarily aimed at ensuring safety in static 
environments [9,10]. In recent years, however, growing demand for 
navigation in dynamic and human-shared environments has shifted the 
research focus toward multi-objective navigation problems. These in-
volve a broader set of objectives, including safety, efficiency, trajectory 
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Fig. 1. Sensor-level UGV navigation with various preference-based objectives.

smoothness, continuity, and even energy consumption [11,12]. Un-
like single-objective optimization, multi-objective navigation requires 
balancing trade-offs among multiple goals, often resulting in a set of 
Pareto-optimal solutions. Preference-based multi-objective navigation 
introduces a preference vector to encode the relative importance of dif-
ferent objectives, enabling the navigation strategy to adapt dynamically 
as task requirements evolve. Most existing multi-objective optimization 
methods rely heavily on expert knowledge to define a fixed prefer-
ence vector with static weights assigned to each objective [13,14]. 
This approach has the advantage of transforming the multi-objective 
problem into a single-objective formulation, making it compatible with 
conventional reinforcement learning frameworks. However, the use of 
fixed preference vectors presents notable limitations. First, designing 
an appropriate preference vector depends on expert insight, which is 
often difficult to obtain in complex scenarios. As a result, extensive 
exploration is typically required to refine the preferences, leading to 
high pre-training costs. Second, static preferences yield only a single 
solution tailored to a specific task, and the model must be retrained 
whenever the relative importance of the objectives changes. There-
fore, current multi-objective methods for UGV autonomous navigation 
exhibit limited adaptability in dynamic and evolving environments, 
highlighting the need for more flexible and adaptive solutions.

To address the challenges outlined above, this paper focuses on 
dynamic and unstructured factory-like environments. We investigate 
how UGVs can effectively balance multiple objectives — such as safety, 
efficiency, and smoothness — based on human preferences that vary 
across tasks and scenarios. The overall goal is to enable reliable nav-
igation and obstacle avoidance under changing preference conditions. 
Specifically, the UGV must avoid obstacles in complex environments 
and reach its goal in a manner consistent with the user’s expectations. 
To this end, we propose a novel Multi-Objective Reinforcement Learn-
ing (MORL) framework that directly incorporates human preferences 
into the learning process. The approach embeds preference information 
into the state representation and scalarizes the multi-objective reward 
functions using different preference vectors. These scalarized rewards 
are then used to iteratively update the policy and value networks during 
training. This allows the agent to learn policies that yield near-Pareto-
optimal performance across a range of preferences. A key advantage of 
the proposed method lies in its strong generalization capability. Unlike 
traditional approaches that require training a separate model for each 
preference setting, our method learns a unified policy network that 
covers the entire preference space through a single training process. 
As a result, the UGV can flexibly adapt to diverse and changing human 
preferences without retraining. The main contributions of this paper 
are outlined as follows.

• We propose a MORL-based approach that enables a UGV to dy-
namically adjust its autonomous navigation policy according to 
human preferences over safety, efficiency, and smoothness. No-
tably, the proposed method generates a set of solutions that span 
the entire preference space within a single training process.
2 
• To improve the training efficiency of the MORL approach, we 
introduce a novel Automatic Curriculum Learning (ACL) algo-
rithm. This algorithm assesses the difficulty of multiple target 
points using the UGVs’s current policy and autonomously selects 
tasks most suitable for the current learning stage. The goal is to 
expedite the learning of complex strategies by transitioning from 
simpler to more challenging tasks.

• The proposed approach has been validated across a range of 
factory-like scenarios, demonstrating impressive performance
compared to baseline methods across a comprehensive range of 
evaluation metrics, including success rate, collision rate, timeout 
rate, path length, run-time and average curvature.

The subsequent sections of this paper are organized as follows. 
Section 2 provides an overview of related work, and Section 3 presents 
the formalized representation of the MORL problem. Section 4 in-
troduces the detailed design of our navigation approach, covering 
aspects of the state space, reward function, and automatic curriculum 
learning algorithms Section 5 conducts algorithm testing in two repre-
sentative simulation environments to demonstrate the effectiveness of 
the proposed approach, along with an analysis and discussion of the 
experiment results. Finally, Section 6 concludes this work.

2. Related work

2.1. UGV navigation in factory-like environments

UGV navigation methods are typically classified into two main 
categories: map-based and map-free navigation. Map-based approaches 
often rely on Simultaneous Localization and Mapping (SLAM) [15], 
where UGVs construct maps using sensor data and utilize classical 
planning algorithms to generate feasible paths. While effective in static 
or structured settings, these methods face significant challenges in 
dynamic environments, such as those involving pedestrian traffic. In 
particular, SLAM-based methods struggle to maintain accurate maps in 
rapidly changing scenes due to occlusions, sensor noise, and moving 
obstacles, and the computational burden of frequent map updates 
further limits real-time applicability.

To overcome these issues, map-free navigation methods have be-
come increasingly prevalent. These approaches typically fall into two 
categories: rule-based models and learning-based techniques. Rule-
based algorithms, such as Velocity Obstacle (VO) [16], Reciprocal 
Velocity Obstacle (RVO) [17], and Optimal Reciprocal Collision Avoid-
ance (ORCA) [18], have been widely used in autonomous UGV nav-
igation and extended to multi-agent systems. However, VO assumes 
perfect knowledge of obstacle velocities, which is rarely feasible in 
practice. RVO introduces reciprocal interaction models but often leads 
to oscillatory or unnatural behaviors in dense crowds due to viola-
tions of mutual cooperation assumptions. ORCA improves multi-agent 
scalability but incurs high computational cost and lacks learning ca-
pabilities, limiting its adaptability to unfamiliar scenarios. Extensions 
to these models, such as [19], have incorporated UGV heterogeneity 
to reduce freezing issues, yet they still rely on hand-tuned parameters 
and require explicit knowledge of the relative geometry and motion 
of obstacles—conditions that are difficult to guarantee in real-world 
deployments.

In contrast to rule-based methods, DRL has emerged as a pow-
erful framework for UGV navigation in complex and uncertain envi-
ronments [20]. DRL methods learn policies directly from raw sensor 
data through trial-and-error interaction with the environment [21]. 
For example, Zhu et al. [22] propose a DRL framework using ori-
ented bounding capsules to model agents. However, the learned policy 
focuses only on safety and smooth trajectories, and is not suitable 
for scenarios where task efficiency is also critical. Wang et al. [23] 
introduce a curriculum-based two-stage learning strategy to address 
UGV navigation in environments with movable obstacles. While their 



S. Tian et al. Engineering Science and Technology, an International Journal 70 (2025) 102147 
method improves training efficiency, it still lacks a comprehensive 
balance among safety, efficiency, and trajectory smoothness during 
navigation.

In factory-like environments, UGV navigation often requires a del-
icate balance among multiple objectives, including safety, efficiency, 
and trajectory smoothness. In recent years, several studies have ex-
plicitly incorporated these multi-objective considerations into algorith-
mic designs to enhance overall navigation performance. For example, 
Nishimura et al. [24] propose a balanced learning framework that aims 
to trade off safety and operational efficiency. However, their rule-based 
switching mechanism lacks adaptability to continuous environmental 
changes and reduces robustness in dynamic contexts. Similarly, Jain 
et al. [25] introduce a human–robot collaboration strategy in which the 
robot autonomously complies with predefined behavioral norms related 
to human comfort and safety. While this approach enhances human–
robot interaction, it lacks adaptability to variations in user preferences 
or situational contexts. Ravankar et al. [26] present a trajectory gen-
eration algorithm that promotes both safety and trajectory smoothness 
by maintaining safe distances from pedestrians. Although effective in 
semi-structured environments such as vineyards, this method shows 
limited generalization in highly dynamic, obstacle-dense indoor set-
tings. Zhu et al. [27] propose a hierarchical DRL framework that 
enables coordinated optimization of safety and efficiency. Nevertheless, 
the hierarchical architecture introduces switching delays and increases 
training complexity.

In summary, although existing methods address objectives like 
safety, efficiency, and smoothness, they often rely on static weights 
and rule-based switching, limiting adaptability to dynamic tasks and 
user preferences. In real-world settings, the importance of these objec-
tives varies across contexts, but current approaches lack the flexibility 
to adjust accordingly, leading to suboptimal performance. Therefore, 
developing navigation strategies that can flexibly and autonomously 
adapt to varying task requirements through preference-aware learn-
ing remains an open and pressing challenge—serving as the primary 
motivation of this paper.

2.2. Multi-objective reinforcement learning

MORL seeks to optimize multiple competing objectives simultane-
ously by extending the scalar reward to a vector form, enabling bal-
anced control across objectives. Recently, MORL has gained significant 
attention in domains like robotic control [28,29]. Existing approaches 
fall mainly into two categories: reward aggregation methods and Pareto 
optimization methods.

Reward aggregation methods combine multiple objective rewards 
into a single scalar — often via weighted sums — allowing use of 
standard reinforcement learning algorithms [13,30,31]. For example, 
He et al. [32] propose a multi-objective Deep Q-Network (DQN) variant 
incorporating composite rewards and multi-agent games, while Chraibi 
et al. [33] extend Q-values to vectors for joint optimization of task time 
and energy in cloud scheduling. These methods are simple and com-
putationally efficient, suitable for low-dimensional, stable-preference 
tasks. However, they rely heavily on fixed weights, limiting adaptability 
to dynamic user preferences or task requirements, which often vary in 
real scenarios—resulting in reduced policy flexibility and robustness.

In contrast, Pareto optimization methods treat each objective in-
dependently and aim to find a Pareto-optimal set, where no objective 
can improve without worsening another [34,35]. Typically structured 
with an outer loop for policy selection and an inner loop for policy 
training, such methods better capture objective trade-offs [36]. For 
instance, Xu et al. [13] use evolutionary learning guided by predictive 
modeling to approach the Pareto front in continuous robot control, 
while Zhang et al. [37] develop a continuous Reinforcement Learning 
(RL) framework for online multi-objective adaptation. Despite their 
theoretical advantages, Pareto methods face scalability challenges due 
3 
to evaluating multiple policies and high computational costs, limiting 
practical use in high-dimensional objective spaces [28,38,39].

To overcome these limitations, we propose a novel Pareto-based 
MORL method that integrates human preference vectors into state 
representations. By continuously sampling diverse preference combina-
tions and training a unified policy network, the approach learns an ap-
proximate Pareto frontier covering a broad preference space in a single 
process. This method combines Pareto optimization’s objective inde-
pendence with DRL’s adaptability, achieving enhanced generalization 
and practical performance in dynamic multi-objective settings.

2.3. Automatic curriculum learning

ACL enables an agent to autonomously organize and master a 
sequence of tasks from simple to complex during training [40]. By 
first accumulating experience on basic tasks, the agent gradually trans-
fers and generalizes knowledge to more challenging ones, improving 
learning efficiency and policy quality [41].

Within the domain of UGV navigation, most ACL methods adapt 
either subtask decomposition or two-stage training [42–44]. The sub-
task decomposition approach incrementally raises task difficulty within 
a single environment, allowing progressive learning across subtasks 
of increasing complexity. For example, Matiisen et al. [45] train an 
agent in the Minecraft environment by sequentially transitioning from 
avoiding lava to navigating narrow passages, effectively demonstrating 
progressive policy learning. Alternatively, the two-stage method em-
ploys multiple environments with escalating difficulty to progressively 
enhance navigation skills. Song et al. [46] use a three-stage curriculum 
in a racing simulator, achieving overtaking performance comparable to 
experienced human drivers.

These methods generate tasks of moderate difficulty for policy train-
ing, avoiding the formation of distorted policies due to the imbalance 
between positive and negative samples in reinforcement learning. How-
ever, the sorting of curriculum difficulty levels in these ACL methods 
typically requires human expert intervention. Discrepancies between 
the difficulty levels assigned by human experts and generated auto-
matically can significantly impact algorithm convergence. To overcome 
this, we propose an evaluation network that enables the agent to au-
tonomously estimate task difficulty and select medium-difficulty tasks 
during training. This approach reduces reliance on manual intervention 
and enhances the adaptability and generalization of learned policies.

3. Problem formulation

This section will present our MORL framework proposed to ad-
dress the challenge of learning multi-objective strategies for UGVs 
navigating through dynamic, unknown, and human-preference-varying 
pedestrian environments. Initially, we formulate the UGV’s sequential 
decision-making problem as a Multi-Objective Markov Decision Pro-
cess (MOMDP). Following this, we conduct a theoretical analysis of 
the MORL framework based on human preferences. Furthermore, we 
present the Bellman equation for the multi-objective Q-function, which 
serves to effectively tackle the multi-objective navigation problem.

3.1. Multi-objective Markov decision process

The MOMDP consists of a 7-tuple ( ,,𝑷 ,, 𝛾,𝜴, 𝑓𝛺), which in-
cludes the state space , action space , state transition probability 
matrix 𝑷 , vector reward function , discount factor 𝛾 ∈ [0, 1], human 
preference space 𝜴, and preference-guided scalarization function 𝑓𝛺. 
In contrast to MDP, MOMDP incorporates the human preference space 
and preference-guided scalarization function as additional dimensions 
for considering and trading off multiple objectives. More importantly, 
in the MOMDP framework, reward values are expressed in vector form, 
representing distinct returns associated with multiple objectives. The 
vector reward value is expressed as 𝒓(𝑠, 𝑎) = [𝑟 , 𝑟 ,… , 𝑟 |𝑆 = 𝑠, 𝐴 =
1 2 𝑚 𝑡 𝑡
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𝑎]T, where 𝑚 represents the number of objectives. To denote the reward 
value in the current state, the vector reward function is denoted as 
𝑹𝜋 (𝑠) = E𝜋 [𝒓𝑡+1|𝑆𝑡 = 𝑠]. The preference space represents the diverse 
human preferences towards a particular solution, while concurrently 
addressing multiple objectives that need to be achieved in robotic 
navigation. The preference-guided scalarization function maps the 𝑚-
dimensional human preferences and the vector reward function to a 
scalar value.

Unlike traditional weighted approaches, our proposed scalariza-
tion function assigns dynamic weights to various objectives across 
the human preference space. This method encourages the UGV to ex-
plore strategies under different weight combinations in multi-objective 
tasks. As a result, the UGV can adapt to shifts in objective weights or 
preferences in dynamic environments, allowing it to develop naviga-
tion strategies that are tailored to diverse configurations of weights. 
This flexibility enables the UGV to effectively address challenges in 
real-world scenarios that evolve over time. In our study, the preference-
guided scalarization function is defined as: 
𝑓𝝎(𝒓(𝑠, 𝑎)) = 𝝎T𝒓(𝑠, 𝑎) (1)

where 𝝎 ∈ 𝜴, 𝝎 = [𝜔1, 𝜔2,… , 𝜔𝑚]T represents a specific human 
preference and satisfies ∑𝑚

𝑖=1 𝜔𝑖 = 1. 𝒓(𝑠, 𝑎) denotes the multi-objective 
vector reward associated with a specific state and action.

3.2. Multi-objective reinforcement learning

The MORL model can be constructed based on multi-objective 
Markov chains. Similar to single-objective RL, where rewards are in-
crementally accumulated to define the return, multi-objective returns 
can be expressed as follows: 

𝑮𝑡 ∶=
+∞
∑

𝑘=0
𝛾𝑘𝒓𝑡+𝑘+1 (2)

where 𝑮𝑡 denotes vector return with 𝑚-dimensional human preferences. 
Let the policy 𝜋 ∶  × 𝛺 →  be a stationary policy conditioned on 
a preference vector 𝜔 ∈ 𝛺. The corresponding scalarized state-value 
function is defined as: 

𝑉 𝜋 (𝑠, 𝜔) ∶= E𝜋

[ ∞
∑

𝑡=0
𝛾 𝑡𝑓𝜔

(

𝒓(𝑠𝑡, 𝑎𝑡)
)

|

|

|

𝑆0 = 𝑠

]

, (3)

where 𝑓𝜔(𝒓) = 𝜔⊤𝒓 is the scalarization of the vector reward 𝒓(𝑠𝑡, 𝑎𝑡) ∈
R𝑚. The corresponding scalarized action-value function is given by: 

𝑄𝜋 (𝑠, 𝑎, 𝜔) ∶= E𝜋

[ ∞
∑

𝑡=0
𝛾 𝑡𝑓𝜔

(

𝒓(𝑠𝑡, 𝑎𝑡)
)

|

|

|

𝑆0 = 𝑠, 𝐴0 = 𝑎

]

. (4)

The optimal Q-function satisfies the Bellman optimality equation: 
𝑄∗(𝑠, 𝑎, 𝜔) = 𝑓𝜔(𝒓(𝑠, 𝑎)) + 𝛾

∑

𝑠′
𝑃 (𝑠′ ∣ 𝑠, 𝑎) max

𝑎′
𝑄∗(𝑠′, 𝑎′, 𝜔), (5)

and the corresponding greedy policy is defined as: 
𝜋∗(𝑠, 𝜔) = argmax

𝑎∈
𝑄∗(𝑠, 𝑎, 𝜔). (6)

In order to meet the multi-objective optimization of UGV au-
tonomous navigation, it is necessary to define and verify the Pareto 
optimality and frontier coverage of MORL. Let the vector-valued return 
under policy 𝜋 be: 

𝑹𝜋 (𝑠) ∶= E𝜋

[ ∞
∑

𝑡=0
𝛾 𝑡𝒓(𝑠𝑡, 𝑎𝑡)

|

|

|

𝑠0 = 𝑠

]

. (7)

A policy 𝜋 is said to be Pareto-optimal if there does not exist another 
policy 𝜋′ such that: 
𝑹𝜋′ (𝑠) ⪰ 𝑹𝜋 (𝑠) and 𝑹𝜋′ (𝑠) ≠ 𝑹𝜋 (𝑠), (8)

where ⪰ denotes component-wise dominance (i.e., no objective is 
worse, and at least one is better). The set of all such non-dominated 
policies at state 𝑠 forms the Pareto front, denoted by (𝑠).
4 
Under the assumption that the image of the reward function is 
convex, it is known that for any point on the convex hull of the Pareto 
front, there exists a weight vector 𝜔 ∈ 𝛺 such that the corresponding 
scalarized policy is optimal: 
𝜋∗(𝜔) = argmax

𝜋
𝜔⊤𝑹𝜋 (𝑠). (9)

By uniformly sampling 𝜔 from 𝛺 and learning a unified policy 𝜋(𝑠, 𝜔), 
MORL framework aims to approximate the entire convex coverage of 
the Pareto front: 
𝜋(𝑠, 𝜔) ≈ 𝜋∗(𝑠, 𝜔), ∀ 𝜔 ∈ 𝛺. (10)

In order to enable the MORL method to obtain a set of Pareto 
frontiers, it is necessary to prove its convergence. For each fixed 𝜔 ∈ 𝛺, 
the scalarized Q-function is updated using temporal difference methods. 
Define the Bellman operator as: 
𝜔𝑄(𝑠, 𝑎) ∶= 𝑓𝜔(𝒓(𝑠, 𝑎)) + 𝛾

∑

𝑠′
𝑃 (𝑠′ ∣ 𝑠, 𝑎) max

𝑎′
𝑄(𝑠′, 𝑎′, 𝜔). (11)

This operator is a 𝛾-contraction with respect to the supremum norm: 
‖𝜔𝑄1 − 𝜔𝑄2‖∞ ≤ 𝛾‖𝑄1 −𝑄2‖∞, (12)

which guarantees convergence of 𝑄𝑘 → 𝑄∗ as 𝑘 → ∞. Assum-
ing sufficient coverage and representational capacity of the function 
approximator (e.g., deep networks), the approximation 𝑄(𝑠, 𝑎, 𝜔) ≈
𝑄∗(𝑠, 𝑎, 𝜔) holds uniformly across 𝜔 ∈ 𝛺.

By conditioning both actor and critic networks on 𝜔, and sampling 
𝜔 during training, the learned policy 𝜋(𝑠, 𝜔) becomes a preference-
adaptive universal policy that approximates the optimal decision be-
havior for any user-defined trade-off vector. Therefore, under the fol-
lowing assumptions:

• The reward space is bounded and convex;
• The scalarization function 𝑓𝜔(⋅) is linear and normalized;
• The preference vector 𝜔 is sampled from a dense support over 𝛺;
• The deep networks have sufficient capacity;

we conclude that the proposed MORL framework is theoretically sound 
and converges to a set of policies that approximate the convex portion 
of the Pareto-optimal solution set.

4. Preference-based navigation approach

In this section, we will present a novel map-free preference-based 
navigation approach, named Safe-Efficient-Smooth Navigation (SESN), 
designed to address the multi-objective challenges arising from diverse 
task requirements. To the best of our knowledge, enabling agents to 
accomplish multi-objective autonomous navigation based on distinct 
human preferences poses significant challenges. Therefore, we establish 
a DRL model based on multi-objective evaluation methods to achieve 
end-to-end UGV navigation, spanning from sensor-level environment 
perception to action level speed control. Additionally, we build an auto-
matic curriculum learning algorithm to enhance the learning efficiency 
of the agent. Unlike conventional manual design methods, the sequence 
of tasks for multi-objective learning is automatically generated.

4.1. Overall design of the SESN architecture

The proposed SESN employs a multi-objective DRL framework to 
formulate navigation strategies for UGVs adaptable to diverse hu-
man preferences. Specifically, our SESN considers safety, efficiency, 
and smoothness as three key criteria for UGV navigation, aiming to 
identify optimal strategies customized to potential human preferences. 
Moreover, our SESN also incorporates ACL mechanisms to assess the 
complexity of distinct target locations and, consequently, select targets 
of suitable challenge levels to expedite the training process. Fig.  2 
illustrates the overall architecture of the proposed SESN approach.

The overall architecture includes the following components.
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Fig. 2. Illustration of our preference-based SESN architecture.
1. Sensor-Level Environmental Perception (as depicted in the 
left side of Fig.  2): the agent employs a 2-D laser radar to 
capture environmental information. Then, the sensor-level data 
is processed by a feature extraction network, which can generate 
environmental representations of static and dynamic features.

2. Preference-Based MORL: the agent utilizes both static and 
dynamic extracted features of the environment, along with pre-
specified target locations and human preferences, as inputs 
for the reinforcement learning process. Unlike traditional DRL, 
our approach introduces stochastic preferences within the state 
space, using these preferences as reward weights for various 
objectives. This innovative design facilitates the learning of 
navigation strategies that accommodate a wide range of prefer-
ences. By allowing the policy network to thoroughly explore the 
entire preference space during training, the approach facilitates 
the generation of a diverse set of navigation strategies that 
are tailored to different preferences. This flexibility enhances 
the UGV’s ability to adapt to varying objectives in dynamic 
environments.

3. The ACL Framework: this component encompasses the genera-
tion, evaluation, and selection of the target locations. The policy 
learned from navigating to the current target location is fed 
into the ACL network, which then selects the most suitable next 
target location for subsequent stage training.

In addition, we have designed a multi-objective network based on the 
Twin Delayed Deep Deterministic Policy Gradient (TD3) [47] to learn 
policies tailored to various human preferences. Our proposed SESN 
approach is a generic method, indicating that the TD3 algorithm can 
be substituted with other frameworks such as Soft Actor–Critic (SAC) 
or Asynchronous Advantage Actor–Critic (A3C), thereby demonstrating 
the versatility of the proposed method.
5 
4.2. Sensor-level state space representation

To address the navigational requirements related to safety, effi-
ciency, and smoothness, the accurate representation of the UGV’s state 
at each time step is crucial. A clear and efficient state representation 
can accelerate model convergence during the RL training process. In 
our proposed SESN approach, at each time step 𝑡, the UGV’s state 
is defined as a combination of sensor-level environmental perception, 
target information, and human preferences.

Sensor-level environmental perception refers to the capacity of a 
UGV to acquire environmental information through its onboard sen-
sors and subsequently analyze the acquired information. As the UGV 
advances toward its destination, it is crucial for it to acquire local 
spatial information within its sensing range, which includes both dy-
namic and static obstacles. Furthermore, the capability to comprehend 
the relative motion of dynamic obstacles in close proximity plays a 
pivotal role in facilitating trajectory selection. Hence, we consider both 
obstacle positions and relative motion information for environmental 
perception. Specifically, the UGV’s environmental perception is defined 
as 𝑒𝑡 = (𝑜𝑡, 𝑧𝑡). Positional observations 𝑜𝑡 are measured through a 
two-dimensional laser radar with a field of view. Relative motion 
observations 𝑧𝑡 represent the differences between the current laser 
radar observation and previous one, denoted as 𝑧𝑡 = 𝑜𝑡 − 𝑜𝑡−1.

With the maximum sensing range, the UGV can perceive whether a 
dynamic obstacle is moving away from it or approaching it based on 
the positional changes between continuous time steps. Therefore, by 
concurrently considering both positional and relative motion informa-
tion, the UGV can identify the dynamic variations in the surrounding 
obstacles, thereby contributing to the extraction of features from the 
dynamic environment.

The target information 𝑔𝑡 depends on the destination of various UGV 
navigation tasks. Target information 𝑔  consists of two components: one 
𝑡
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is the relative distance 𝑑𝑡 between the target position and the current 
location, and the other is the relative angle 𝜃𝑡 between the target 
direction and the current velocity. Based on the UGV current location 
(𝑥𝑡, 𝑦𝑡) in Cartesian coordinates, we use 𝑑𝑡 and 𝜃𝑡 to denote the relative 
distance and angle between the UGV and the target position, and 𝑣𝑡
and 𝜙𝑡 to represent the linear and angular velocities, respectively. In 
order to ensure motion stability, we also consider that the linear and 
angular velocities should adhere to the UGV’s dynamic constraints by 
𝑣𝑡 ∈ [0, 𝑣𝑡𝑚𝑎𝑥] and 𝜙𝑡 ∈ (−𝜙𝑡𝑚𝑎𝑥, 𝜙𝑡𝑚𝑎𝑥).

The determination of human preferences relies on a comprehensive 
consideration of three key factors: safety, efficiency, and smoothness. 
Preferences remain consistent within the same task but may vary across 
different tasks due to specific requirements. For example, in tasks that 
prioritize safety, the navigation strategy may adopt a more conservative 
path to avoid potential collisions. Conversely, in scenarios emphasizing 
efficiency, the UGV may select a more direct route to minimize task 
completion time. The preference values assigned to different tasks 
influence the UGV’s navigation strategy through a preference-guided 
scalar function during the training process. Consequently, once the 
MORL model is trained and deployed on the UGV, it can utilize these 
preference values within the state space to inform its various navigation 
strategies. In this manner, preferences effectively guide the navigation 
strategies, enabling the UGV to better adapt to complex environments 
and diverse human needs.

To ensure the rationality of preferences, we establish preference 
ranges for the three factors based on the reward function configura-
tion. Specifically, the preference range for safety is set at [0.45, 0.55], 
aiming to prioritize the avoidance of collisions and potential hazards 
during task execution. The preference range for efficiency is defined 
as [0.35, 0.45], encouraging the UGV to complete tasks efficiently in 
the shortest possible time, thereby enhancing overall performance. The 
preference range for smoothness is set between [0, 0.2] to ensure the 
stability of the UGV’s movements, avoiding abrupt turns and stops.

4.3. Preference-based reward function

In multi-objective UGV navigation tasks, we need to consider a 
wider range of performance criteria compared to standard navigation 
tasks. It usually includes safety, efficiency, and trajectory smoothness. 
The rationale for selecting these metrics stems from their ability to 
comprehensively evaluate the key performance aspects of UGV naviga-
tion [48,49]. Safety is crucial as it ensures that the UGV can effectively 
avoid collisions and potential hazards in both static and dynamic 
environments, thereby safeguarding the UGV and surrounding objects. 
Efficiency assesses the UGV’s ability to complete tasks in the shortest 
possible time using optimal pathways, which helps save both energy 
and time. Lastly, trajectory smoothness ensures fluid movement by 
minimizing abrupt turns and the effects of inertia, thereby enhanc-
ing control precision and operational stability. To address different 
navigation scenarios based on human preferences, we have designed 
independent reward functions for each objective as: 
𝑟(𝑡) = [𝑟𝑠(𝑡), 𝑟𝑒(𝑡), 𝑟𝑚(𝑡)]T (13)

Here, 𝑟𝑠(𝑡) represents safety, imposing penalties in situations where the 
UGV approaches obstacles or exceeds speed limits. This mechanism 
ensures safe navigation by applying strong penalties to discourage 
collisions and hazardous conditions. The term 𝑟𝑒(𝑡) optimizes efficiency 
by minimizing travel time or path length, encouraging the UGV to 
select optimal routes through appropriate speed adjustments. Lastly, 
𝑟𝑚(𝑡) focuses on trajectory smoothness, penalizing sharp turns or sudden 
accelerations to promote fluid, natural movement.

The reward function for safety is formulated as 𝑟𝑠 = 𝑟𝑐 + 𝑟𝑣𝑙. The 
first component 𝑟𝑐 represents the penalty associated with the proximity 
and potential collision between the UGV and environmental obstacles. 
The second component 𝑟  pertains to the penalty incurred when the 
𝑣𝑙
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UGV exceeds the limited maximum velocity within a given operational 
environment. The calculation for 𝑟𝑐 and 𝑟𝑣𝑙 are expressed as follows: 

𝑟𝑐 =

⎧

⎪

⎨

⎪

⎩

−10, if 𝑙𝑚𝑖𝑛 ≤ 𝑑𝑐
−10( 𝑑𝑠−𝑙𝑚𝑖𝑛𝑑𝑠−𝑑𝑐

)2, if 𝑑𝑐 < 𝑙𝑚𝑖𝑛 ≤ 𝑑𝑠
0, if 𝑑𝑠 < 𝑙𝑚𝑖𝑛

(14)

𝑟𝑣𝑙 =
{

0, if 𝑣 ≤ 𝑣𝑚𝑎𝑥
−10, if 𝑣𝑚𝑎𝑥 < 𝑣

(15)

where 𝑙𝑚𝑖𝑛 represents the minimum 2-D LiDAR value, indicating the 
closest distance between the UGV and an obstacle. 𝑑𝑐 signifies the 
minimum safe distance between the UGV and obstacles, while 𝑑𝑠 is 
the minimum distance that ensures human comfort. 𝑣𝑚𝑎𝑥 represents the 
maximum permissible speed within the current environmental context. 
Specifically, penalties are applied when 𝑙𝑚𝑖𝑛 ≤ 𝑑𝑐 indicating potential 
UGV-obstacle collisions. Proportional penalties are also imposed when 
the UGV intrudes upon the social distance maintained by humans, 
emphasizing the importance of a harmonious human–robot interaction. 
To ensure the safety of both the UGV and humans, any instance of 
the UGV exceeding the maximum permissible speed defined by the 
environment will result in penalties.

We define 𝑟𝑒 as an efficiency-driven reward function, expressed as 
𝑟𝑒 = 𝑟𝑝+𝑟𝑔 +𝑟𝑣𝑒. This composite function includes three components. 𝑟𝑝
represents the living cost assigned to the UGV at each time step, and in 
this work, we have designed 𝑟𝑝 = −1 at each time step. Comparatively, 
𝑟𝑔 is used to indicate whether the UGV is navigating closer to the target 
location, 
𝑟𝑔(𝑡) = 𝛾(𝑑𝑟𝑔(𝑡 − 1) − 𝑑𝑟𝑔(𝑡)) (16)

where 𝛾 serves as a positive parameter linked to the duration of each 
time step, and 𝑑𝑟𝑔(𝑡) denotes the Euclidean distance between the UGV 
and its target location at time 𝑡. In order to address the efficiency, we 
use 𝑟𝑣𝑒 to denote a penalty to regulate the UGV’s speed with respect to 
a minimum threshold 𝑣min, 

𝑟𝑣𝑒 =
{

0, if 𝑣𝑚𝑖𝑛 < 𝑣
−5, if 𝑣 ≤ 𝑣𝑚𝑖𝑛

(17)

Moreover, we define the reward function 𝑟𝑚 to evaluate the smooth-
ness of UGV navigation. It consists of two components: 𝑟𝑚𝑣 and 𝑟𝑚𝜙, 
corresponding to rewards for linear velocity variation and angular 
velocity variation, respectively. To enhance navigation smoothness in 
specific scenarios, penalties are imposed when the variations in lin-
ear velocity and angular velocity exceed predetermined thresholds, as 
follows: 

𝑟𝑚𝑣 =
{

0, if |𝑣(𝑡) − 𝑣(𝑡 − 1)| ≤ 𝑣𝑐
−2, if 𝑣𝑐 < |𝑣(𝑡) − 𝑣(𝑡 − 1)|

(18)

𝑟𝑚𝜙 =
{

0, if |𝜙(𝑡) − 𝜙(𝑡 − 1)| ≤ 𝜙𝑐
−2, if 𝜙𝑐 < |𝜙(𝑡) − 𝜙(𝑡 − 1)|

(19)

Here, 𝑣(𝑡) and 𝜙(𝑡) represent the current linear velocity and angular 
velocity of the UGV, respectively. Parameters 𝑣𝑐 and 𝜙𝑐 denote the 
maximum allowable changes in linear velocity and angular velocity 
that the UGV can endure while maintaining a smooth trajectory.

In summary, the preference-guided scalarization function for multi-
objective UGV navigation tasks is expressed as: 
𝑓𝝎(𝒓(𝑠, 𝑎)) = 𝝎T

𝑠𝑒𝑚 ⋅ [𝑟𝑠, 𝑟𝑒, 𝑟𝑚]T (20)

where 𝝎𝑠𝑒𝑚 represents the preference weights assigned to the three 
objectives: safety, efficiency, and smoothness. The vector [𝑟𝑠, 𝑟𝑒, 𝑟𝑚]
contains the corresponding reward values obtained during training.

4.4. Automatic curriculum learning algorithm

Inspired by the observation that humans tend to learn more rapidly 
when presented with moderately challenging tasks, our aim is to em-
power UGVs to autonomously select new tasks of moderate difficulty 
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Algorithm 1 Automatic curriculum learning (ACL) for generating, evaluating and selecting appropriate target locations.
1: Initialize actor network 𝜋𝜙, target actor network 𝜋′

𝜙, critic network 𝑄𝜃 , target critic network 𝑄′
𝜃 , human preference space 𝛺 and replay buffer 𝐵.

2: Set final target location 𝑝𝑡, initial target location 𝑝𝑠, current target location 𝑔𝑡.
3: while training episodes ≤ preset episodes do :
4:  Acquire sensor observations 𝑜𝑡, 𝑧𝑡 and set human preference 𝜔𝑡;
5:  if 𝑔𝑡 == None then:
6:  𝑔𝑡 = 𝑝𝑠;
7:  end if;
8:  if the number of success in 10 consecutive training episodes ≥ 8 then:
9:  if ‖𝑔𝑡 − 𝑝𝑡‖2 ≤ 10 then:
10:  𝑔𝑡 = 𝑝𝑡;
11:  else
12:  Generate the set of potential target location points 𝑝1, 𝑝2,… , 𝑝𝐾 ;
13:  for 𝑖 = 1 to 𝐾 do:
14:  Choose the 𝑖-th potential target point as the current target point;
15:  for 𝑗 = 1 to number of tests 𝑀 do:
16:  Load current target actor network 𝜋′

𝜙𝑡;
17:  Obtain performance data for a single round of testing;
18:  end for;
19:  Integrate performance data for the same target point to form a performance metric vector 𝜂𝑝𝑖;
20:  Normalize performance metrics of all potential points as 𝜂∗𝑝𝑖;
21:  end for;
22:  Calculate Euclidean distance 𝑑𝑝1,𝑝𝑗 between evaluation vectors of all potential target points and the current one;
23:  According to difficulty level, select the target point with moderate difficulty as the next training target point 𝑔𝑡;
24:  end if;
25:  end if;
26:  Select action with noise 𝑎 ∼ 𝜋𝜙(𝑠, 𝜔) + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎) and store transition tuple (𝑠, 𝑎, 𝑟, 𝜔, 𝑠′) in 𝐵;
27:  Sample mini-batch of N transition (𝑠, 𝑎, 𝑟, 𝜔, 𝑠′) from 𝐵;
28:  𝑎̃ ← 𝜋𝜙′ (𝑠′, 𝜔) + 𝜖, 𝜖 ∼ 𝑐𝑙𝑖𝑝(𝑁(0, 𝜎̃),−𝑐, 𝑐);
29:  𝑦 ← 𝑟 + 𝛾 min𝑖=1,2 𝑄𝜃′𝑖

(𝑠′, 𝑎̃, 𝜔);
30:  Update critic network 𝜃𝑖 ← argmin 𝜃𝑖𝑁−1 ∑(𝑦 −𝑄𝜃𝑖 (𝑠, 𝑎, 𝜔))

2;
31:  Update actor network 𝜙 by the deterministic policy gradient ∇𝜙𝐽 (𝜙) = 𝑁−1 ∑∇𝑎𝑄𝜃1 (𝑠, 𝑎, 𝜔)|𝑎=𝜋𝜙(𝑠,𝜔)∇𝜙𝜋𝜙(𝑠, 𝜔);
32:  Update target networks 𝜃′𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃′𝑖 , 𝜙′

𝑘 ← 𝜏𝜙𝑘 + (1 − 𝜏)𝜙′
𝑘;

33: end while.
during the training process. To achieve the automatic selection of target 
locations in learning the navigation policies, we have devised the ACL 
algorithm consisting of three modules: target location generation, tar-
get location evaluation and target location selection. The pseudocode 
for the ACL algorithm is depicted in Algorithm 1.

4.4.1. Target location generation
To facilitate the gradual learning of navigation strategies by an 

agent, we have pre-constructed a specialized training map in advance. 
This map features a gradual increase in obstacles and pedestrian density 
from the bottom left corner to the top right corner. Such preprocessing 
not only confines the range of target point generation effectively but 
also provides robust support to the agent’s steady progress towards the 
goal.

Before proceeding to generate candidate target points for the next 
stage, we also need to establish the triggering mechanism for the 
subsequent phase of curriculum learning. In ACL, our aim is to achieve 
a delicate equilibrium between learning efficiency and knowledge ac-
quisition. Thus, we have chosen a straightforward yet effective strategy: 
initiating the transition to the subsequent phase of curriculum learning 
once successful navigation has been achieved in 8 out of 10 consecutive 
attempts. In our work, the ultimate navigation objective for the ACL 
mechanism is defined as 𝑝𝑡(𝑥𝑡, 𝑦𝑡), which reflects the intricate configura-
tion of our specialized map. Following the completion of the curriculum 
phase with the current target point 𝑔𝑡(𝑥𝑐 , 𝑦𝑐 ), we can generate a set of 
candidate target points 𝑷 = {𝑝1, 𝑝2,… , 𝑝𝐾}, where 𝐾 denotes the total 
number of candidate points derived per iteration. Here, the selection 
criterion for the 𝑖th candidate target point adheres to the following 
guidelines: 
{

𝑥𝑖 = 𝑥𝑐 + 𝑑 × cos (arctan 𝑦𝑡−𝑦𝑐
𝑥𝑡−𝑥𝑐

+ 𝜃)
𝑦 = 𝑦 + 𝑑 × sin (arctan 𝑦𝑡−𝑦𝑐 + 𝜃)

(21)

𝑖 𝑐 𝑥𝑡−𝑥𝑐

7 
Here, both 𝑑 and 𝜃 are generated through random sampling, where 
𝑑 ∈ [5, 10] and 𝜃 ∈ [− 𝜋

4 ,
𝜋
4 ]. Furthermore, we validate these generated 

points to ensure their compliance with the boundaries of the map. By 
employing this method of generating target points, we are able to exert 
independently control over the difficulty spans between curriculum 
stages by adjusting 𝑑 and 𝜃.

4.4.2. Target location evaluation
To evaluate the difficulty level of new tasks under the current 

learning strategy 𝜋𝜏1, we employ a comprehensive evaluation strat-
egy considering four performance metrics: success rate, average path 
length, average time, and average curvature. Subsequently, we test the 
learned strategy on all generated target points (𝑝1, 𝑝2,… , 𝑝𝑘), where 𝑝1
denotes the target point for the current completed learning strategy, 
while 𝑝2 to 𝑝𝑘 represent candidate target points. Through experimental 
testing, we obtain performance measurement vectors for both the com-
pleted learning target points and the candidate target points, denoted 
as 𝜂𝑝1, 𝜂𝑝2,… , 𝜂𝑝𝑘. The 𝜂𝑝𝑖 = [𝜂𝑖1, 𝜂𝑖2, 𝜂𝑖3, 𝜂𝑖4]𝑇  corresponds to the four 
performance indicators. It is important to note that 𝜂𝑝𝑖 represents the 
evaluation vector corresponding to the (𝑖− 1)th candidate target point. 
However, due to the disparate ranges of these performance metrics, 
direct comparisons may inadvertently overlook the significance of met-
rics with smaller value ranges. Hence, we normalize all performance 
metrics and scale them to the interval [0,1] to obtain the normalized 
evaluation vector: 
𝜂∗𝑝𝑖 = [𝑁𝑜𝑟𝑚(𝜂𝑖1), 𝑁𝑜𝑟𝑚(𝜂𝑖2), 𝑁𝑜𝑟𝑚(𝜂𝑖3), 𝑁𝑜𝑟𝑚(𝜂𝑖4)]𝑇 (22)

where 

𝑁𝑜𝑟𝑚(𝜂𝑖𝑗 ) =
𝜂𝑖𝑗 − min𝑖=𝑘𝑖=1 𝜂𝑖𝑗

max𝑖=𝑘𝑖=1 𝜂𝑖𝑗 − min𝑖=𝑘𝑖=1 𝜂𝑖𝑗
(23)

For the evaluation of new target points, it is evident that we can assess 
the difficulty of these new target points by computing the distance 
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between the evaluation vectors of the new target points and the 
completed learning target point. Specifically, we define 𝑑𝑝1,𝑝𝑗 as follows:

𝑑𝑝1,𝑝𝑗 = ‖𝜂∗𝑝1 − 𝜂∗𝑝𝑗‖2 (24)

Here, 𝑑𝑝1 ,𝑝𝑗  represents the Euclidean distance between the evaluation 
vector 𝜂∗𝑝1 of the completed learning target point 𝑝1 and the evaluation 
vector 𝜂∗𝑝𝑗 of the new target point 𝑝𝑗 . This metric serves as an indicator 
of the difficulty level of the new target points, where a larger value of 
𝑑𝑝1,𝑝𝑗 indicates a higher level of difficulty.

4.4.3. Target location selection
To enhance the learning efficiency of multi-objective UGV naviga-

tion, it is essential to choose a new task point of moderate difficulty for 
the previously learned strategy 𝜋. As depicted in Fig.  2, the Target Point 
Selection module involves clustering points of varying difficulty levels 
and identifying a task point that falls within the moderate difficulty 
range. Initially, we employ the K-means algorithm [50] to classify new 
target points based on their evaluation distances, categorizing them 
into three tiers: easy, moderate, and difficult. This classification primar-
ily considers two factors. First, simple task points often lack sufficient 
challenge, which may not effectively promote further learning. Con-
versely, excessively difficult task points may impose an undue burden 
on existing strategies, potentially resulting in failure or suboptimal 
performance. Therefore, focusing on task points of moderate difficulty 
ensures that the selected tasks provide an appropriate level of chal-
lenge, thereby enhancing the UGV’s navigation skills. Once clustering 
is complete, we sort these clusters in ascending order based on their 
evaluation distance values. From the cluster representing moderate 
difficulty, we select the target point closest to the cluster center as the 
next training task for the learning strategy 𝜋.

5. Experiments and results

In this section, we present the training and testing results of our 
proposed SESN approach on navigation tasks. We first demonstrate 
the training performance of the SESN. Subsequently, we validate the 
learned policies in two unknown maps with varying obstacle densities. 
Finally, we evaluate the performance of the SESN under different 
human preferences and showcase the effectiveness of the preference-
based multi-objective approach. The video demonstration is available 
at https://www.bilibili.com/video/BV1nx4y1a71E.

5.1. Results of training process

We have developed a simulated environment in Gazebo to facilitate 
the training of UGVs in navigating among heterogeneous obstacles. 
Taking account of real-world scenarios, the UGV training environment 
includes a large number of pedestrians and static obstacles. Fig.  3 
illustrates the entire training map, spanning dimensions of 40 × 60m. 
The training map features five types of static obstacles such as shelving 
units, stacked goods, and stationary pedestrians, as well as fifteen 
moving pedestrians. Each pedestrian has unique motion speeds and 
trajectories to enrich the environment’s realism. Moreover, in order to 
fulfill the requirement of automatic curriculum learning in the SESN 
approach, densities of obstacles and pedestrians progressively increase 
from the lower-left corner to the upper-right corner of the training map.

The lower-left corner of Fig.  3 depicts the initial position of the UGV 
for each training episode. Equipped with a 2-D laser scanner boasting 
a 360◦ field of view, the UGV can perceive its surroundings. At each 
time step, the laser scanner outputs a 180-dimensional vector to capture 
distances surrounding the UGV with a precision of 2◦, a maximum 
detection span extending to 3.5 m, and a sampling frequency of 0.1 s.

In the training scenarios, we have implemented two baselines for 
comparison: improved DDPG algorithm [51], and classical algorithm 
based on TD3 [52]. We select these algorithms because we adopt a 
combination reward approach to achieve multi-objective reinforcement 
8 
Fig. 3. An illustration of the designed training map with various obstacles in a factory-
like environment.

Table 1
The training hyper-parameters of algorithms.
 Hyper-parameter Value  
 Training Episodes 3000  
 Steps per Episode 1500  
 Memory Pool Size 1500000 
 Batch Size 512  
 Discount Factor 0.99  
 Noise Scale Factor 0.2  
 Learning Rate for A-network 0.0003  
 Learning Rate for C-network 0.0003  
 C-target Network Update Frequency 10  
 A-target Network Update Frequency 5  

learning. By transforming multiple objectives into a single-objective 
reward, we can effectively leverage the single-objective reinforcement 
learning framework to address multi-objective problems. Therefore, 
comparing the SESN method with algorithms based on single-objective 
reinforcement learning (SORL) is both reasonable and appropriate. 
Additionally, in order to further evaluate the effectiveness of the ACL, 
we have also conducted ablation experiments by excluding the ACL 
framework in the SESN architecture. To ensure equitable evaluations 
of algorithmic efficacy, all algorithms are subjected to the same state 
spaces and reward functions, with network updates executed using 
identical hyper-parameters detailed in Table  1. It should be noted 
that the DDPG-based algorithm excludes noise and delayed updates. 
Compared to other algorithms, our SESN also considers human pref-
erences by integrating the reward values of different objectives using 
the preference-guided scalarization function. To ensure fairness in com-
parisons with other algorithms, we set the preference value range such 
that the expected value of the scalarized reward aligns with the reward 
values of the comparison methods. Additionally, during training, the 
preference values are uniformly sampled from a predefined range, 
ensuring stability throughout the process.

Fig.  4 illustrates the learning curves of the four algorithms through-
out the training process. Each algorithm performs three random initial-
izations with different random seeds. Each training of algorithms runs 
3000 episodes, amounting to approximately 32 h in total. Notably, the 
shaded region in Fig.  4 represents the 95% confidence interval, while 
the bold lines indicate the average values. To mitigate the impact of 
task randomness on rewards, the episode rewards are plotted using the 
average values over 200 consecutive episodes.

As shown in Fig.  4, we can find that the rewards of all four 
algorithms converge steadily to better values, and, thus, we can say 
that each algorithm converges to a near-optimal policy. At the end 
of training, the 0.95 confidence intervals of the rewards are relatively 
small, which indicates that the policies learned in the training episodes 

https://www.bilibili.com/video/BV1nx4y1a71E
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Fig. 4. Average rewards during the learning process of four algorithms.

Fig. 5. Testing Scenarios with different obstacle densities.

have similar patterns. By comparing the convergence patterns of the 
four algorithms, several conclusions can be drawn. Firstly, our proposed 
SESN achieves superior cumulative rewards in contrast to alternative 
approaches. This indicates that through a multi-objective reinforcement 
learning framework, UGVs can adeptly learn policies that harmonize 
with human preferences. Secondly, our SESN demonstrates accelerated 
step-wise convergence after 600 episodes in comparison with the ap-
proaches without ACL. This observation also reflects the effectiveness 
of the ACL structure embedded within our SESN.

5.2. Results of testing in two scenarios

To evaluate the navigation performance of the proposed SESN, 
we carry out experiments in two distinct pedestrian environments 
characterized by varying obstacle densities. Fig.  5 illustrates two test 
scenarios, each measuring 25×40m. The simpler scenario consists of 10 
static obstacles of various sizes and 5 pedestrians with different speeds. 
In the more challenging scenario, the number of obstacles is doubled 
compared to the simpler one.

To quantitatively evaluate the performance of the algorithms, we 
considers the following six metrics:

• Success Rate (SR): the percentage of successful UGV arrivals at 
the goal without collision.

• Collision Rate (CR): the percentage of UGV collisions with pedes-
trians or static obstacles.

• Timeout Rate (TR): the percentage of UGV failures to reach the 
goal within the specified number of steps without collision.

• Average Time (AT): the average time taken by the UGV to reach 
the goal.
9 
Fig. 6. Comparison of the success rates using different navigation strategies.

• Average Path Length (AP): the average path length taken by the 
UGV to reach the goal.

• Average Curvature (AC): the average curvature of the path taken 
by the UGV to reach the goal.

Table  2 presents the performance metrics of each strategy for 100 
tests conducted in both simple and difficult maps. It is worth noting 
that the values in parentheses represent the standard deviation across 
100 test iterations.

In terms of navigation success rate, the DDPG algorithm exhibits 
high failure rates due to its insufficient exploration, resulting in close-
range evasion behavior when encountering pedestrians. We can find 
that TD3 demonstrates improved adaptation to pedestrian environ-
ments by integrating noise and delayed update strategies into the 
agent’s behavior policy. In contrast, our SESN outperforms both the 
above by guiding the agent’s behavior at each decision step based on 
human preferences, consequently achieving superior navigation per-
formance. Moreover, we can see that our SESN achieves success rates 
averaging 109.0% higher than DDPG and 63.1% higher than TD3.

In the simple map, our SESN achieves higher navigation success 
rates by enhancing safety and reducing smoothness through adjust-
ments in human preferences. Thus, such adjustments inevitably result 
in an increase in the average path curvature. In the difficult map, 
our SESN prioritizes safety over efficiency, demonstrating outstanding 
performance in success rate and average curvature while making sac-
rifices in efficiency. Although our SESN’s successful paths are longer 
compared to the baselines, it demonstrates the capability to navigate 
more complex crowd environments, where the baseline algorithms 
often fail. Fig.  6 shows the comparison of navigation success rates under 
different strategies.

Fig.  7 displays the trajectories of successful navigation under dif-
ferent algorithms in the challenging environment. We can see that 
DDPG consistently moves towards the goal along the shortest path, 
demonstrating a stronger sense of purposefulness. When encountering 
pedestrians, TD3 chooses to maintain a safe distance and exhibits 
noticeable turning behavior. On the other hand, our SESN and SESN-
without ACL tend to decelerate and maneuver early when encountering 
pedestrians. As a result, while DDPG achieves shorter navigation dis-
tances, it also has a higher likelihood of colliding with pedestrians, 
whereas our SESN achieves better safety attributes by slightly extending 
the navigation distance.

Furthermore, we also conduct ablation studies on the ACL compo-
nent embedded in our SESN. The results show that SESN-without ACL 
still demonstrates excellent average curvature and the success rate of up 
to 93% in the simple map. However, in the complex map, SESN-without 
ACL achieves only a 52% success rate. This indicates that SESN-without 
ACL can effectively handle navigation tasks in simple environments, but 
cannot deal with dense pedestrians in the same level. It also highlights 
the effectiveness of ACL in enhancing SESN’s exploration capabilities 
across the entire human preference space, which enables the algorithm 
to converge to a set of solutions under different preferences.
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Table 2
Quantitative navigation results with different learned policies.
 Scenario Method AC↓ AP↓ AT↓ SR↑ CR↓ TR↓  
 
Simple map

DDPG [51] 0.61(0.21) 41.86(1.24) 47.90(1.81) 69% 31% 0%  
 TD3 [52] 0.60(0.16) 43.47(1.52) 47.59(1.55) 82% 18% 0%  
 SESN-without ACL 0.56(0.07) 43.18(0.53) 63.39(1.54) 93% 7% 0%  
 SESN(Ours) 0.67(0.11) 43.18(1.36) 50.36(2.09) 96% 4% 0%  
 
Difficult map

DDPG [51] 0.90(0.35) 42.68(0.90) 55.20(1.57) 33% 49% 18% 
 TD3 [52] 0.66(0.30) 44.25(1.50) 55.66(2.43) 44% 56% 0%  
 SESN-without ACL 1.50(0.41) 43.98(0.73) 67.30(2.92) 52% 48% 0%  
 SESN(Ours) 0.58(0.05) 43.34(0.52) 55.04(1.78) 93% 7% 0%  
Fig. 7. Navigation trajectories using different learned policies in the difficult map.
Table 3
Quantitative results with different preferences.
 Method Preference AC (↓) AP (↓) AT (↓) SR (↑) CR (↓) TR (↓) 
 
SESN

[0.45, 0.45, 0.1] 0.57 (0.05) 43.34 (0.80) 54.11 (1.13) 85% 15% 0%  
 [0.50, 0.40, 0.1] 0.60 (0.13) 43.32 (0.80) 54.39 (1.66) 87% 13% 0%  
 [0.55, 0.35, 0.1] 0.58 (0.05) 43.34 (0.52) 55.04 (1.78) 93% 7% 0%  
5.3. Influences of different human preferences

In order to thoroughly investigate the efficacy of the proposed 
approach across a comprehensive range of human preferences, we also 
conduct rigorous tests on the SESN approach under varying human 
preference configurations in the challenging environment. Experimen-
tal evaluations are carried out on the trained policies under diverse 
human preference settings, and the outcomes are outlined in Table  3.

The three parameters of the human preference vector correspond-
ingly dictate the weighting of rewards for safety, efficiency, and
smoothness. Remarkably, as the human preference transitions from effi-
ciency to safety, there is a marked enhancement in the average success 
rate of the UGV, increasing from 85% to 93% over 100 testing rounds. 
Concurrently, a marginal increase in the average task completion time 
is observed. This modest increase stems from the fact that the policies 
derived from training already approximate optimality with regard to 
the efficiency objective. Nonetheless, the substantial improvement in 
the success rate underscores the adaptability of the UGV’s learned 
policies to the human preference space, effectively meeting diverse nav-
igation requirements across various scenarios characterized by distinct 
human preference configurations.

6. Conclusions and discussion

This work presents a novel preference-based multi-objective rein-
forcement learning approach for UGV navigation, considering diverse 
human preferences such as safety, efficiency, and smoothness. Our 
proposed preference-based method efficiently obtains a set of solutions 
across the entire preference space in a single training process. Ad-
ditionally, an automatic curriculum learning algorithm is introduced 
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to expedite the training process. Comparative experiments demon-
strate the outstanding performance of our proposed approach that can 
achieve competitive results in success rate and offer solutions superior 
to other baseline algorithms across the preference space.

Certainly, our research has certain limitations. Our approach pri-
marily relies on 2D LiDAR for environmental perception. However, 
real-world factory environments often contain obstacles that can be 
traversed or have heights below the LiDAR’s detection plane, such 
as traversable shelves and low-stacked goods. These characteristics 
can hinder 2D LiDAR from accurately detecting critical environmen-
tal information, which may affect the performance and reliability of 
autonomous navigation. Consequently, the limitations of light-weight 
LiDAR-based perception could become a significant factor in the failure 
of the UGV’s strategy in complex factory settings.

To address this issue, our future research will focus on equipping 
UGVs with cameras and 2D LiDAR by employing multi-sensor fusion 
technology to enhance overall environmental perception. By integrat-
ing 2D LiDAR with visual data, we aim to capture more comprehensive 
environmental details of traversable and hard-to-detect obstacles. This 
approach will enable the UGV to better navigate diverse obstacles in 
factory environments and improve its performance and adaptability in 
complex scenarios.
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