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ABSTRACT: We describe updated scientific goals for the wide-field, millimeter-wave survey
that will be produced by the Simons Observatory (SO). Significant upgrades to the 6-meter
SO Large Aperture Telescope (LAT) are expected to be complete by 2028, and will include a
doubled mapping speed with 30,000 new detectors and an automated data reduction pipeline.
In addition, a new photovoltaic array will supply most of the observatory’s power. The LAT
survey will cover about 60% of the sky at a regular observing cadence, with five times the
angular resolution and ten times the map depth of the Planck satellite. The science goals are
to: (1) determine the physical conditions in the early universe and constrain the existence
of new light particles; (2) measure the integrated distribution of mass, electron pressure,
and electron momentum in the late-time universe, and, in combination with optical surveys,
determine the neutrino mass and the effects of dark energy via tomographic measurements of
the growth of structure at redshifts z < 3; (3) measure the distribution of electron density
and pressure around galaxy groups and clusters, and calibrate the effects of energy input
from galaxy formation on the surrounding environment; (4) produce a sample of more than
30,000 galaxy clusters, and more than 100,000 extragalactic millimeter sources, including
regularly sampled AGN light-curves, to study these sources and their emission physics; (5)
measure the polarized emission from magnetically aligned dust grains in our Galaxy, to study
the properties of dust and the role of magnetic fields in star formation; (6) constrain asteroid
regoliths, search for Trans-Neptunian Objects, and either detect or eliminate large portions
of the phase space in the search for Planet 9; and (7) provide a powerful new window into
the transient universe on time scales of minutes to years, concurrent with observations from
the Vera C. Rubin Observatory of overlapping sky.
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1 Introduction and overall goals

The millimeter-wave sky encodes information about the origins of the universe, the nature
of gravity and other fundamental fields, the evolution of galaxies, the extent of our Solar
System, and more. Unlocking this wealth of information requires large, well-characterized,
multi-frequency maps with a large spatial dynamic range, high signal-to-noise, and good
temporal coverage. The Simons Observatory (SO) is designed to make two surveys of the
millimeter sky [1]. A deep, lower-resolution survey will search for primordial gravitational
waves [2, 3], either detecting them or producing an unprecedented limit on a measure of their
amplitude, the tensor-to-scalar ratio. A wide, higher-resolution survey of 25,000 deg? reaching
a co-added noise level! of 2.6 pK-arcmin will have ten times the co-added map depth of the
Planck satellite data with five times higher angular resolution [4], and will cover roughly
sixteen times the area observed by the South Pole Telescope (SPT) 3G deep survey [5, 6.
Maps from the wide survey, made public on a regular schedule, can be used to address
a broad set of questions in astronomy highlighted in the Decadal Survey on Astronomy
and Astrophysics “Astro2020” White Papers, including the evolution of galaxies [7, 8], the
role of magnetic fields in star formation in our Galaxy [9, 10], the properties of neutrinos

!Throughout this work, K denotes CMB thermodynamic temperature units.



Frequency FWHM | Baseline Depth | Goal Depth | Frequency | Detector | Optics
[GHz] [arcmin]| | [puK - arcmin] | [uK - arcmin] Bands Count | Tubes
27 (22-30) 7.4 61 44 354
LF 1
39 (30-47) 5.1 30 23 354
93 (77-104) 2.2 5.3 3.8 20,640
MF 8
145 (128-169) 1.4 6.6 4.1 20,640
225 (198-256) 1.0 15 10 10,320
UHF 4
280 (256-313) 0.9 35 25 10,320

Expected instrumental and map-depth properties for the fully completed, nine-year SO LAT survey
(2025-2034). Two sensitivity targets are presented (baseline and goal), as in [1]. The values in parentheses
in the first column represent the approximate passband width of each frequency channel.

Table 1. SO Large Aperture Telescope Survey Specifications.

and other light, relativistic particles [11-14], the characterization of primordial density
perturbations [15-17], and beyond [18-21].

The SO program is being enhanced in a number of ways beyond the capabilities described
in [1]. This paper focuses on the 6-meter Large Aperture Telescope (LAT) and the science
enabled via its wide-area, high-resolution survey. The improved capabilities include doubling
the number of detectors in the focal plane of the SO LAT receiver, developing a robust data
pipeline that enables rapid mapmaking and transient alerts delivered to the community,
and installing a photovoltaic array at the site on Cerro Toco, in the Atacama Desert of
Chile, to provide power to the observatory. This expansion, and an extended duration of
the SO survey through 2034, will significantly enhance the experimental capabilities and
scientific return of the SO LAT. Other planned additions to the SO program, which target
primordial gravitational-wave science with Small Aperture Telescopes [SATs, 22], will be
described elsewhere.

The remainder of this paper is organized as follows. In section 2, we briefly describe the
expanded capabilities of the wide-field LAT survey. In section 3, we forecast the primary
scientific analyses that will be enabled by this program. Much of the forecasting methodology
used here is similar or identical to that employed in the SO science goals and forecasts
paper [1] or the complementary SO Galactic science goals and forecasts paper [23], and we
direct the interested reader to those papers for further details. In section 4, we conclude
and discuss the outlook for SO operations and science.

2 Expanded capabilities

The mapping speed for the wide survey with the SO LAT [24, 25] will be almost doubled
by fully populating the LAT receiver [LATR; 26] with six additional optics tubes (OTs),
thus adding roughly 30,000 detectors.? The six new OTs will comprise four mid-frequency

2The initial seven OTs in the LATR comprise one low-frequency, four mid-frequency, and two ultra-high-
frequency OTs [1].



(MF) OTs containing dichroic detectors with bands centered at 93 and 145 GHz [27], and
two ultra-high-frequency (UHF) OTs containing dichroic detectors with bands centered at
225 and 280 GHz. After installation of these new detectors, the receiver will contain eight MF,
four UHF, and one low-frequency (LF) OTs, containing a total of roughly 60,000 detectors
and fully populating the receiver’s available focal plane. The anticipated sensitivities of
these detectors, including effects due to atmospheric noise, are described in [1]. The angular
resolution of the LAT at these frequencies (e.g., FWHM ~ 1.4 arcmin at 145 GHz) is also
described there. Table 1 summarizes the frequency channels, resolution, sensitivity, and
detector counts for the fully populated LATR. We note that these values reflect current best
estimates derived from ongoing technical development of the SO LAT hardware, as well as
the currently planned sky coverage of the SO LAT survey, which is wider than that assumed
in [1]. Estimates of the bandwidth of each frequency channel are also provided, with each edge
determined by the point at which the response drops to 50% of the peak. These are computed
from the simulated optical coupling and on-chip filters. Further discussion of the sensitivities
can be found in appendix A, including the per-OT noise-equivalent temperatures (NETs).

The lack of reliable power at the 5,200-meter site on Cerro Toco in Chile has been a risk
to the performance of all projects operating there over the past few decades. The expanded
SO program includes the installation of a photovoltaic array at the site, which will reduce
the reliance on diesel-generated power by 70% and provide a more stable power system. This
will translate into improved sensitivity by increasing on-sky observation time (we estimate a
5-10% increase in uptime), while also decreasing our environmental impact.

The enhancement in hardware will be accompanied by substantial upgrades in the data
processing pipeline to analyze and publicly deliver the data [see 28, for recent work toward
these goals]. An open-source data pipeline will convert raw time-ordered data to maps of the
sky and light curves of millimeter sources, to be released to the community.

These new components are planned to be complete by 2028 (see timeline in figure 1),
while the initial SO survey is ongoing using the half-populated LATR [29]. Observations with
the fully populated receiver will then commence, with a survey planned through 2034. The
cumulative survey duration, including both the initial phase and the full-sensitivity phase,
is expected to be nine years. Note that the mapping speed of the LATR. during the initial
SO survey is roughly half that of the instrument during the latter part of the survey, after
the upgrade. The forecasts presented in section 3 are based on the cumulative sensitivity
of the entire survey with “goal” noise levels, accounting for the sensitivity improvement at
the nominal-to-fully-populated LATR transition (see appendix A for further details). The
forecasts presented here include only statistical errors; systematic error contributions will
be refined in future, dedicated studies. In addition, Planck data are incorporated in all
cosmological forecasts unless explicitly stated otherwise — Planck is useful for measuring
large-scale modes to which SO is less sensitive due to atmospheric noise, particularly in total
intensity. As a reference point, the depth of the co-added wide-area SO 93 and 145 GHz
maps is expected to reach 2.8 uK-arcmin at the conclusion of the survey in 2034, assuming
the “goal” noise levels in table 1.2 Our forecasting approach follows that explained in detail

3Including all frequency maps, the depth is expected to reach 2.6 uK-arcmin; the LF and UHF channels
are predominantly of use in foreground mitigation, rather than raw CMB sensitivity.
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Figure 1. Timeline of the Simons Observatory. The sensitivity, indicated by the overall vertical
extent of each ellipse, approximates the survey-science reach of the different programs. The timing of
SO and its broad sky coverage are ideally matched to the Rubin Observatory, DESI (2021-26), Euclid
(launched in July 2023), and Roman (due to launch no later than 2027). The 20,000 square degrees of
overlapping sky coverage with Rubin is key to achieving the SO science goals. A cutaway of the SO
Large Aperture Telescope is shown, along with the Large Aperture Telescope Receiver. The six new
optics tubes described in section 2 are represented in orange on the front of the receiver.

in [1]: we generate simulated sky maps of the microwave sky at all SO and Planck frequencies,
including all relevant sky components in temperature and polarization (with noise), and
then process these through a harmonic-space internal linear combination pipeline to obtain
post-component-separation noise power spectra, which are then used in all scientific forecasts.
The exceptions to this full-survey-integrated forecasting approach are the time-domain science
cases.* These include the analysis of AGN light curves in section 3.5, and millimeter-wave
transient detection in section 3.10, which both rely on the instantaneous sensitivity and
transient detection pipeline of the SO survey with the fully populated LATR, rather than
the cumulative depth of the full nine-year integrated data set.

3 Science goals and forecasts

High-sensitivity, multi-frequency maps of the intensity and polarization of the millimeter-wave
sky, observed at a regular cadence, will enable a broad set of new insights into our universe
on scales ranging from the surface of last scattering to our Solar System. The deployment
timeline and key science forecasts are summarized in figure 1 and table 2, respectively.
Figure 2 gives an overview of the key CMB cosmology observables from the SO LAT survey.
Much of the science requires the large sky coverage available from Chile (figure 3).

3.1 Constraining the properties of primordial perturbations

By measuring primordial fluctuations in the CMB over twice the range of angular scales probed
by the Planck satellite, the full SO survey (in combination with Planck) will significantly

4The cosmic birefringence forecast in section 3.3 also does not include Planck data.



Current” SO Using Rubin, Reference
2025-2034 | DESI, or Euclid

Primordial perturbations
N 0.004 0.002 — [30]
e > P(k=0.2Mpc™ ") 3% 0.4% — [17]

tocal 5 1 v/ [16]
Relativistic species
Neg 0.2 0.045 — [12]
Neutrino mass®
> my (eV, () = 0.01) 0.1 0.03 v [31]
> my (eV, () = 0.002) 0.015 v
Accelerated expansion
os(z=1-2) 7% 1% v [21]
Galaxy evolution
Tfeedback 50-100% 2% v [7]
Dnt 50-100% 4% v [7]
Reionization
Az 14 0.3 — [11]
T 0.007 0.0035 — [11]
Cluster catalog 4000 33,000 v
AGN catalog 2000 96,000 —
Galactic science
Molecular cloud B-fields 10s > 860 — (23]
o (Baust) 0.02 0.005 — [23]
Solar System Science
Distance limit for 5 Mg Planet 9 | 500 AU 900 AU v [32]
Asteroid detections ~ 10,000
Transient detection

distance

Long GRBs, on-axis 1300 Mpc —
Low-luminosity GRBs 70-210 Mpc —
TDEs, on-axis 670 Mpc —

Table 2. Summary of Enhanced Science Goals from SO LAT Survey.®

# Projected 1o errors computed with standard methodology as in [1], scaled to account for the improved
noise from the enhanced infrastructure described in section 2 (see appendix A). Galactic science forecasts
are computed as in [23]. [1] describes our methods to account for noise properties and foreground
uncertainties. We adopt “goal” noise levels for the SO LAT in these forecasts. A 20% end-to-end
observation efficiency is used, matching that typically achieved in Chile [as also assumed in 1]. We assume
the Planck data are included throughout. External data listed in the fourth column are those necessary
to achieve the forecasted precision on each individual science target; for the cluster catalog the external
data are needed only for obtaining redshifts. Note that the time-domain science forecasts are new to
this work, as this topic was not considered in the nominal SO science goals forecasting [1].

P Primarily from Planck [33]. We anticipate constraints from existing ground-based data to improve on the
“current” limits in the near future. These constraints are expected to lie between the “current” and SO levels.
¢ The forecast precision on » . m, is highly sensitive to the projected error bar on 7, and thus we provide
two forecasts here (see section 3.4).



improve characterization of the scale dependence, Gaussianity, and adiabatic nature of the
primordial density fluctuations that are the signature of the dynamics of the first moments of
the universe [16, 17, 34]. SO will halve the current error bar on the scalar perturbation spectral
index ng, testing the near-scale-invariant prediction of inflation over a wider range of scales
than accessible to Planck [17]. SO will further test early-universe models by constraining
the Gaussianity of the perturbations to o(fi¢®) = 1 via kinematic Sunyaev-Zel'dovich
(kSZ) tomography [35, 36], improving current constraints by a factor of five [16], and also by
constraining primordial isocurvature perturbations.” Note that achieving o( fi5) = 1 via kSZ
tomography requires overlapping galaxy survey data, as will be available on the SO footprint
from Rubin, Euclid, and other surveys. Constraints on primordial tensor perturbations, which
require data from the SATs, will be described in a separate publication, which will also describe
delensing forecasts enabled by the enhanced LAT infrastructure (see [37] and [38] for delensing
forecasts for the nominal SO survey). Together, these measurements will provide the most
detailed constraints to date on the primordial power spectrum and early-universe physics.

3.2 A refined image of the earliest snapshot of the universe

The SO survey of the millimeter-wave sky will provide numerous new insights into fundamental
physics. Wide classes of beyond-standard-model (BSM) particle physics scenarios [e.g., some
scenarios constructed to solve known theoretical issues like the hierarchy problem; 39], predict
the existence of new light (< 1eV) species that were in thermal equilibrium at some early
time with the primordial plasma [12, 40-42]. Such scenarios leave distinct imprints in the
small-scale damping tail of the CMB temperature and polarization anisotropy power spectra,
thus yielding tight CMB-derived constraints on many BSM scenarios, including axions, sterile
neutrinos, gravitinos, high-frequency gravitational waves, and other forms of relativistic
energy density in the early universe. SO will either find evidence for new particles via
these signatures or constrain BSM theories by improving current limits on the number of
relativistic species [33] by a factor of four, with o(Neg) = 0.045 (see figure 2 and table 2).
For example, the full SO survey will rule out at > 95% CL any light spin-3/2 particle that
was in thermal equilibrium at any time back to reheating, assuming a standard thermal
history of the universe after the particle’s decoupling. In particular, SO will significantly
improve the precision with which the characteristic phase shift imprinted by free-streaming
particles can be detected in the CMB, a unique signature sensitive to BSM physics [43]. A
robust detection of Neg differing from its standard-model value (3.044) would be landmark
evidence for new physics, yielding the first direct cosmic signal from the epoch between
post-inflationary reheating and neutrino decoupling one second later. Importantly, Nqg is a
generic, model-independent probe of new light particles in the early universe, thus yielding
robust constraints on new physics across a vast search space [12, 42].

The reported tension between local and cosmological measurements of the rate of
expansion of the universe [as characterized by the Hubble constant, Hp; 44-47] may be

SDirect estimates of fi‘® from the primary CMB bispectrum will also provide robust bounds, albeit with

error bars roughly 2-3 times larger than those expected from kSZ tomography. The primary bispectra will
also tightly constrain other shapes of non-Gaussianity (equilateral and orthogonal), with roughly a factor of
two improvement over the current bounds from Planck.
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Figure 2. Key CMB cosmology observables that can be derived from the SO LAT sky maps: CMB
temperature (TT) and polarization (EE and BB) power spectra. The different colored points with
error bars show existing (Planck and BICEP2/Keck) and forecast (LiteBIRD and SO) power spectrum
measurements from various CMB experiments. The forecast SO noise power spectra here include
detector and atmospheric noise, as well as the effects of residual foregrounds after component separation,
following the methodology described in [1]. Planck data are also assumed to be combined with SO, as
indicated in the legend. Small-scale power spectrum measurements from existing ground-based CMB
experiments (e.g., ACT, SPT, POLARBEAR) are omitted here for clarity.

resolved by new particle physics models that can increase the Hubble constant while preserving
the fit to current CMB power spectrum data [see, e.g., 48, for a review]. Models that alter
the pre-recombination dynamics are of particular theoretical interest [49], and generically
imprint signatures in the CMB temperature and polarization on small scales. Models that
accelerate the recombination process itself are also of interest in this context [e.g., 50, 51].9
The full SO survey data will discriminate among such models [e.g., 55-59], or potentially
make a detection. The SO data will also enable sensitive searches for interacting dark
matter particles, ultra-light axions, cosmic strings, and primordial magnetic fields, as well
as precision tests of Big Bang Nucleosynthesis [13-15].

SWe note that detailed knowledge of the recombination process is crucial for the interpretation of CMB
data [52]. In this context, the refined recombination codes CosmoRec [53] and HyRec [54] are designed to
reach sufficient accuracy for modeling standard recombination in the analysis of SO data.



3.3 Improving constraints on cosmic birefringence

The SO data can be used to search for parity-breaking BSM physics, which can produce
cosmic birefringence in the linear polarization of CMB photons [60, 61]. A canonical model
generating such an effect is that of a new pseudo-scalar field coupled to the electromagnetic
field-strength tensor via a Chern-Simons term [62, 63]. A potential detection of such a field
would have profound implications [e.g., 64, 65]. This cosmic birefringence manifests as a
rotation of the plane of linear polarization, giving rise to a nonzero EB power spectrum
in the CMB. Strong limits have been placed on the EB polarization angle with ACT
data [0.07 4 0.09°; 66]. Exploiting Galactic foregrounds to break the degeneracy between
a miscalibrated instrumental polarization angle and actual cosmological rotation, recent
analyses have reported hints of isotropic cosmic birefringence in Planck data [67], with the
latest results estimating a birefringence angle g = 0.342°f8:884112 [68].

The SO LAT survey will observe a significant fraction of the Galactic plane, which
will allow us to test this methodology and derive an independent, significantly tighter
constraint [69, 70]. Using two detector splits for each of the six LAT frequency channels over
the full survey region, and in the multipole range £ = 100 — 2000, the full SO survey will
yield o(5) = 0.04°, more than a factor of two improvement over current error bars, if the
methodology and assumptions of [68] are applied to these data. Note that this forecast uses
only SO LAT data, i.e., no Planck data are included, in contrast to the other cosmological
forecasts in this paper.” Polarized thermal dust in the Milky Way shows a positive parity-
violating T'B correlation [71, 72|, limiting current birefringence constraints due to the need
to account for this poorly understood, parity-violating foreground; our forecast here assumes
this “intrinsic” foreground contribution to the observed E'B correlation to be negligible, but
this assumption may not hold [73]. Efforts are ongoing to understand the mechanisms by
which dust could produce this parity-violating signal [e.g., 70, 73-78]. SO and complementary
surveys [e.g., with the Fred Young Submillimeter Telescope; 79] will enable characterization
of the dust signal at high resolution and sensitivity, allowing improved modeling and more
robust constraints on birefringence. Should a robust E B signal be detected with SO, it will
be important to account for lensing-induced smoothing of the FB power spectrum in order
to derive unbiased constraints on BSM physics [80, 81].

3.4 A new large-scale view of dark matter, baryons, and galaxy clusters

CMB photons interact with matter in the universe as it evolves over cosmic time. Detailed
analyses of the deflection of photons due to gravitational lensing from large-scale structures
and the scattering of photons from ionized gas in galaxies, groups, and clusters offer exquisite
tests of structure formation models and allow constraints on the physical parameters governing
these processes, particularly via cross-correlation measurements, as enabled by the SO LAT
survey sky coverage shown in figure 3. Here we describe a series of science goals that are
enabled by measurements of these effects.

Neutrino oscillation experiments show the three neutrino species have a total mass of
at least 0.06eV, or at least 0.1eV if the hierarchy of particle masses is inverted [82]. In
combination with DESI baryon acoustic oscillation data [83], the maps enabled by the

"Note that 1/f noise is included in the SO LAT noise model here, as in all other forecasts.
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Figure 3. The SO LAT survey (highlighted region with white boundaries) will cover 61% of the sky.
This sky coverage overlaps that of the Rubin Observatory and much of DES, DESI, and Fuclid, as
shown. The background image shows the Planck 857 GHz total intensity map on a logarithmic scale.

enhanced infrastructure described in section 2 will provide a measurement with o (> m,) =
0.03¢eV [1]. Combined with future improved constraints on the reionization optical depth,
7 [e.g., from LiteBIRD, 84], the SO + DESI measurement is expected to improve to o (> m, ) =
0.015eV.? Evidence for non-zero neutrino mass from cosmological data, and the resulting
constraints on the hierarchy, will be of significant consequence to particle physics, as detailed
in the 2014 and 2023 P5 reports [2, 3].

The nature of dark energy is one of the most profound questions in modern physics and
is a key science target for many ongoing and upcoming wide-area optical surveys, including
the Dark Energy Survey [86], the Hyper Suprime-Cam Survey [87], the Rubin Legacy Survey
of Space and Time [88], Euclid [89, 90], Roman [91], and others. Precision gravitational
lensing measurements of the CMB by the fully populated SO LATR will complement optical
observations from Rubin and Fuclid by extending the redshift range over which we can
measure the effects of dark energy to z > 1 [92]. This will probe earlier epochs of cosmic
history than accessible to optical telescopes, which are limited by the faintness of distant
galaxies, and will enable novel tests of modified gravity theories [21]. Concretely, we forecast a
1% constraint on the amplitude of the matter power spectrum at z = 1—2 via the combination
of SO CMB lensing maps with galaxy catalogs from Rubin and Fuclid, through combined
analyses of CMB lensing auto- and cross-power spectra with these surveys. These constraints
will precisely probe dark energy at the epoch when its dynamical influence first becomes
evident. In addition, tomographic measurements of the growth of structure over a wide

8We also anticipate competitive 7 constraints from SO itself via the patchy kinematic Sunyaev-Zel’dovich
effect, as explained later in this section; although these will not reach the precision expected from Lite BIRD,
they will also improve the SO-derived neutrino mass constraint over that obtained with Planck constraints on
7. Anticipated improvements on 7 from CLASS [85] will also help in this regard.
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Figure 4. Stacked images of ionized gas density around galaxies measured via the kSZ effect using
ACT and BOSS data [left; 96], simulated full-SO-survey and DESI data (middle), and simulated
full-SO-survey and Rubin data (right). Note that the left image has an overall additive offset and
gradient due to residual CMB fluctuations in the stack. The enhanced SO infrastructure will improve
the precision of such measurements by nearly two orders of magnitude over current data.

redshift range [out to z ~ 3 and perhaps beyond; 93, 94] will also be enabled by similar
cross-correlations with these and other surveys, including Roman and SPHEREx [95].

Characterizing the energy efficiency of feedback in galaxies, sourced by supernovae and
active galactic nuclei, is a major focus of galaxy evolution studies. Feedback is also the
dominant physical uncertainty in optical gravitational lensing analyses that seek to constrain
dark energy. Combined with measurements of large-scale structure from DESI, Rubin, and
Euclid, the SO maps of integrated electron pressure (Compton-y) and momentum from the
thermal and kinematic Sunyaev-Zel’dovich (SZ) effects [97-99] will uniquely measure the
baryon content in galaxies, groups, and clusters — a quantity not measurable with optical
telescopes — and will constrain the feedback efficiency to the few percent level. Figure 4 shows
simulated stacked images of the ionized gas density in the circumgalactic medium around
DESI and Rubin galaxies,” as measured using the kSZ effect with the full SO survey data.
These measurements will improve over the precision of recent data from ACT and BOSS [96,
also shown in figure 4] by nearly two orders of magnitude [100] (see also, e.g., [101] for recent
kSZ measurements using ACT and DESI and [102-107] for state-of-the-art Compton-y maps
from ACT, SPT, and Planck data).

The SO maps will complement 21-centimeter experiments that probe the epoch of
reionization [e.g., 108-110] by distinguishing among different models for how the universe
was heated by the first ionizing sources. The “patchy” kSZ signal imprinted in the CMB
during this epoch, due to scattering off the newly freed electrons, will enable the duration
of the epoch of reionization to be measured with an uncertainty of o(Az) = 0.3 [about 60
million years; 11]. This signal, interpreted using astrophysical reionization modeling, will
also allow a determination of the optical depth 7, independent of large-scale CMB E-mode
measurements [111]. We forecast that SO can reach o(7) = 0.0035 using this new method,
which relies on a joint analysis of the kSZ 2- and 4-point functions [111, 112].19 This forecast

9For DESI, we assume 2.9 million luminous red galaxies in this stack, measured on an overlapping sky area
of 10,000 deg?; for Rubin, we assume 1.5 billion galaxies measured on 16,000 deg?.

OFor the purposes of this forecast, foregrounds are treated as Gaussian; future work will refine this
methodology [113, 114].

,10,



is within a factor of two of the cosmic-variance-limited error bar from the large-scale F-mode
polarization targeted by satellite missions such as LiteBIRD [115].

Using the unique redshift independence of the thermal SZ (tSZ) effect, SO will extend tSZ
cluster detection into the epoch in which the first massive, virialized structures formed at z 2 2.
Thermal SZ surveys from ACT, SPT, and Planck have led the field in constructing clean,
complete, nearly mass-selected cluster samples, with the latest catalogs comprising several
thousand galaxy clusters in total [116-118]. We forecast that the full SO survey will detect
33,000 clusters, with redshifts from overlapping DESI, Rubin, Fuclid, and SPHERFEx data,
as well as dedicated optical and near-IR observations. This forecast uses the multifrequency
matched-filter methodology described in [119] [following 120, 121] assuming the gas pressure
profile from [122]' with a cut on SNR > 5 used to define the cluster sample. SO will thus
provide the community with a homogeneous, well-defined catalog for follow-up studies out
to high redshifts, with ~ 200 clusters in the unique z > 2 discovery space [123], enabling a
broad range of multiwavelength science, including X-ray analyses with eROSITA [124]. Mass
estimates will be enabled by galaxy weak lensing data from Rubin and Fuclid for clusters at
z < 1 and by SO’s own CMB lensing data at higher redshifts. SO measurements of high-z
clusters and proto-clusters will also provide crucial total flux constraints for high-resolution
follow-up observations with interferometric facilities (e.g., [125, 126]).

In addition, the six frequency channels of the SO LATR will enable measurement of the
relativistic tSZ (rtSZ) effect, particularly for massive clusters, building upon the recent 3.50
detection from ACT [127] [see also earlier ~ 20 hints using Planck data in 128, 129]. Example
rtSZ spectra computed with SZpack [130, 131] are shown in figure 5, along with the kSZ
spectrum, the SO LATR bands [26], and the atmospheric transmission at the SO site. The
spectra in the plot are computed for an example cluster with Compton-y parameter y = 1074,
optical depth 7 = 0.01, and line-of-sight peculiar velocity vr,og/c = 0.005. Relativistic tSZ
measurements will yield simultaneous inference of the electron pressure and temperature (and
hence density) in massive halos, thereby allowing new approaches to cluster mass estimation
and novel constraints on intracluster medium physics, particularly in combination with X-ray
data [see, e.g., 132, for a review].

3.5 A wealth of extragalactic sources: time-variable blazars and dusty galaxies

Recent measurements of extragalactic source counts from ACT and SPT [136-138] are broadly
consistent with AGN and dusty star-forming galaxy (DSFG) models, including the [139]
AGN and [140] DSFG models, at SO frequencies between 93 and 280 GHz. These models,
combined with the noise levels in table 3, indicate that 93 GHz will be the most sensitive
frequency for detecting AGN, with an expected count of approximately 96,000 at the goal
sensitivity (see appendix A for more details on the sensitivity estimation). The 50 source
sensitivity with a matched-filter source finder is 2.0 mJy over a sky fraction of 0.52. This
sky fraction corresponds to the SO LAT survey region, excluding the Galactic plane based
on the 80% sky fraction Planck Galactic emission mask.

" The exact pressure profile parameters used are: Py = 8.403, ¢ = 1.156, a = 1.062, v = 0.3292, and
B = 5.4807, with a hydrostatic mass bias 1 —b = 0.8 used to set the normalization of the pressure-mass relation.
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Figure 5. Spectral dependence of the intensity of the kinematic SZ (dot-dashed curve) and relativis-
tically corrected thermal SZ effects, where the line color denotes the electron temperature as labeled.
The relativistic corrections are computed using SZpack [130, 131], with the difference between the
thermal SZ spectrum for a 15keV plasma versus that for the non-relativistic case shown as a dashed
curve. The background shaded purple regions show the six bands of the SO LATR [27, 133, 134],
and the light gray curve, computed using the am code [135], shows the atmospheric transmission for
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Frequency | Single Observation Sensitivity | Co-added Sensitivity
[GHz] [mJy] (mJy]
Baseline Goal Baseline Goal
27 37 27 2.8 2.3
39 25 19 1.8 1.5
93 9.5 6.9 0.52 0.40
145 13 8.3 0.67 0.50
225 26 17 1.4 0.98
280 49 34 2.5 1.8

Table 3. Sensitivity of the fully populated LATR to point sources, specified as 1o root-mean-square
(RMS) noise. The single observation sensitivities are relevant for transient detections and the co-added
sensitivities correspond to those obtained by the end of the survey. For each we report baseline and

goal sensitivities.
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The most sensitive bands to detect DSFGs will be 225 and 280 GHz. If we consider the
baseline noise from table 3, since high-frequency channels are prone to high atmospheric
loading, the 50 detection cut is around 7.0 and 12.5 mJy for 225 and 280 GHz, respectively.
Considering a sky fraction of 0.52 and the [140] dusty models, we expect to detect around
32,000 and 36,000 DSFGs in each respective band. Both frequencies will yield a similar
number of detections at the baseline noise, and both flux measurements help to constrain
the spectral energy distribution of these galaxies. Combining these data with far-infrared
measurements enables constraints on the physical properties of DSFGs, including redshift,
temperature, emissivity, and luminosity [141-143]. SO will detect DSFGs up to redshifts
z = 4, and strongly lensed ones beyond z = 6, some with magnifications of several tens. The
latter make promising follow-up targets for the Atacama Large Millimeter Array (ALMA), to
resolve compact, young galaxies in their early evolutionary phases [144].

In figure 6 we show the estimated number of AGN and DSFGs that we expect to detect
given baseline or goal sensitivities. We note that the predicted number of DSFG detections
varies by a factor of ~ 4 between baseline and goal sensitivities. These forecasts are based on
the best available models for the number of sources at different flux limits, but the low-flux
regime is currently poorly constrained. SO data will refine these models and improve our
understanding of AGN and DSFG populations as a whole.

For the source sensitivities in table 3, backgrounds constitute a significant contribution to
the total noise in all bands. At long wavelengths the relevant background is the CMB, but at
shorter wavelengths the CIB is dominant. The possibility thus arises that deeper observations,
reaching sensitivities below the CIB confusion limit, could be undertaken in sub-regions of the
LAT survey, which would allow techniques such as probability of deflection approaches [P(D);
e.g., 145] to set constraints on the CIB population beyond the confusion limit.

Most of the bright AGN found at millimeter frequencies are blazars. Blazars are AGN
with relativistic jets aligned with the line of sight, often appearing variable. SO will increase
the Planck catalog of AGN [146] by a factor of ~ 50, and will provide regularly sampled light
curves. For instance, the goal daily sensitivity at 93 GHz of 6.9 mJy (table 3) translates to
30 daily measurements of 21 mJy sources. According to the AGN model of [139], this implies
that SO can provide light curves for 7,500 AGN at its regular observing cadence, expected to
be every day or two when a source is in the field. (Each source will be unobservable for about
a month out of each year, when it is too close to the Sun.) Combining multiple observations
will increase the available number of light curves. For instance, averaging six observations
would enable light curves of ~ 20,000 AGN at the mean 3o level.

This monitoring program will be a great improvement over the state of the art [147-150],
and will enable study of the innermost portions of the jets, which are opaque at longer
wavelengths. Aside from measuring flaring events and stochastic variability, these data can
be used to search for supermassive black hole binaries (SMBHBs) which are expected to
have sinusoidal light curves. [151] estimate that about 1% of the radio blazar population are
SMBHBs. Hence, we expect to find O(100) SMBHBs with the monitoring program.

AGN light curves will be also valuable for cross-correlations with other tracers, including
neutrino observatory measurements [e.g., 152]. The blazar SED has two bumps. The
low-energy bump [153], spanning the radio to UV, peaks in the millimeter and is due to
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Figure 6. Total number of sources above different flux limits S, as a function of S in mJy, assuming
a sky fraction of 0.52. Left: models for AGN synchrotron emission at four frequencies [139]. Right:
model dust emission for DSFGs [140] at the same four frequencies. Vertical lines indicate the 5o
sensitivity for the SO baseline (solid) and goal (dashed) sensitivities.

synchrotron emission from ultra-relativistic electrons. The emission mechanism behind
the high-energy bump, which spans the UV to gamma-ray portion of the electromagnetic
spectrum, is still under debate. Its origin is either leptonic, inverse-Compton scattering of
lower energy photons [154, 155], or hadronic, proton-synchrotron radiation or photo-pion
production [156, 157]. Cross-correlating blazar light curves over a range of wavelengths can
elucidate the physical processes that shape and change blazar SEDs. Many studies have
compared radio, optical, and gamma-ray blazar light curves [e.g., 158, 159]. However, few
of these studies have included millimeter-wavelength light curves [e.g., 160], even though

millimeter-wavelength emission is a strong indicator of synchrotron radiation.

3.6 Insights into the polarized galactic interstellar medium

Arcminute-resolution millimeter-wave maps of the SO footprint, which includes much of the
Galactic plane, will be valuable for answering many questions about the physical mechanisms
responsible for polarized Galactic emission, via measurements of the dust and synchrotron
spectral energy distributions across the sky, and detections or upper limits on polarized
CO line emission and anomalous microwave emission [AME; 23]. SO will detect AME
polarization if the AME is polarized at the 2 0.1% level, which is sufficient to distinguish
between competing theories of ultrasmall grain alignment [23], such as resonance paramagnetic
alignment [161, 162], or suppression of alignment due to quantum mechanical effects [163].
Additionally, SO will determine what fraction of the AME could be contributed by magnetic
dipole emission from ferromagnetic grains, which are distinguished by their unique polarization
signature [164]. See [165] for a recent review. Together with large-area starlight polarization
surveys such as PASIPHAE [166], these data will yield new insights into the physics of Galactic
emission and the multi-scale structure of the magnetized interstellar medium [10, 18].
Recent ACT observations of the Galactic center [figure 7; 167] offer a glimpse of the
physical processes probed at SO frequencies, which will complement multiwavelength obser-
vations [e.g., 168, 169]. As detailed in [23], SO will resolve the magnetic field structure of
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Figure 7. The ACT view of the Galactic Center and zoom-ins to particular regions [adapted from
167]. The three-color background image comprises ACT 90 GHz (red), 150 GHz (green), and 220
GHz (blue) observations coadded with Planck data at similar frequencies. Overlaid magnetic field
orientation is from ACT 90 GHz polarization. The SO frequency coverage spans synchrotron-dominated
(more red) to dust-dominated (more blue) emission, enabling a uniquely comprehensive view of the
magnetic field morphology. Insets illustrate particular regions of interest. “The Brick” Molecular cloud:
Herschel total intensity overlaid with ACT 220 GHz magnetic field orientation data. “The Tornado”
supernova remnant: ACT 90 GHz intensity and magnetic field orientation data. “The Mouse,” a pulsar
wind nebula: MeerKAT 1.28 GHz total intensity [169] and ACT 90 GHz magnetic field orientation.
Reproduced from [169]. © 2021. The American Astronomical Society. All rights reserved.

more than 860 molecular clouds with 1 pc resolution and at least 50 independent, high-SNR
polarization measurements per cloud, compared to Planck’s sample of tens of clouds. Addi-
tionally, SO will be able to detect polarized dust emission in 400 Galactic cold clumps, prime
candidates in the formation and evolution of stellar cores. This is a factor of 200 greater
than Planck, and will enable detailed statistical studies on their magnetic field structure and
role in stellar formation [170]. In the more diffuse ISM, the SO dust polarization maps can
be used in conjunction with ISM emission tracers to quantitatively study the small-scale
structure of polarized emission [e.g., 171-173] and to probe the magnetic field structure
in diffuse media [174].

Component separation techniques and detector passband variation can be exploited to
build maps of velocity-integrated CO line emission from continuum data [175]. [23] forecast
that SO will detect or constrain polarization of the CO(2-1) line at sub-percent levels in dense
molecular clouds, including Ophiuchus and Orion. CO line polarization via the Goldreich-
Kylafis effect probes the magnetic field strength and orientation in molecular clouds [176, 177].

3.7 The composition of interstellar dust

Classical models of the composition of interstellar dust posit two classes of dust: predominantly
silicate and predominantly carbonaceous. These models predict a strong divergence of the dust
total intensity and polarization spectra — i.e., a wavelength-dependent polarization fraction —
in the frequency range probed by SO. However, analyses of data from Planck and the Balloon-
borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) find that the
difference in spectral indices between dust total intensity and polarization at ~submillimeter
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wavelengths is only on the order of a few percent at most [71, 178, 179]. This lack of evidence
for the predicted divergence is driving new theoretical work on dust composition [180-183].
SO will test these models, including constraining Squst, the spectral index of the modified
blackbody SED characteristic of polarized dust emission. Using sky models from the Python
Sky Model [184], we forecast that SO measurements combined with Planck and Wilkinson
Microwave Anisotropy Probe (WMAP) data will measure Squst t0 0(Bqust) = 0.005, sufficient
to test the two-component dust model [18]. Constraints on [Squst within smaller regions
enable tests of recent evidence for variability of the dust spectral index [185] and of the dust
SED more generally [186, 187]. The evidence for (qust variability can also be investigated in
cross-correlation with filamentary ISM structures in neutral hydrogen [188].

Testing this paradigm will constrain the degree of dust homogenization via interstellar
medium (ISM) processing, the rate of dust production in stars, and the composition of
the grains that coagulate into solid bodies in protoplanetary disks [18, 182, 189]. SO data
can also be compared with optical starlight polarization measurements, including from
PASIPHAE [166]. The ratio of far infrared to optical polarization constrains the shape,
porosity, and composition of interstellar grains [180, 190, 191].

3.8 Solar system bodies and exo-Oort clouds

Reflected sunlight from objects falls off rapidly with distance from the Sun, so the strongest
limits on massive outer Solar System objects come from their intrinsic thermal emission.
The strongest bounds on unknown giant planets are set by the Wide-field Infrared Survey
Ezplorer (WISE), excluding planets more massive than Saturn closer than 28,000 AU [192].
The spectra of smaller, faster-cooling planets peak at longer wavelengths, well suited for
millimeter observations (see [193] for details on the model assumed here). A 5 Mg Planet 9
can be detected with SO, at distances ranging from 500 AU in the more shallowly observed
regions over half the sky, to 900 AU over large parts of the sky. For a 5 Mg Planet 9, a
search with ACT data ruled out 17% of the orbital parameter space [193], and planetary
ephemerides data have been used to exclude such an object within 500 AU [32].

The Solar System is thought to be surrounded by a large, roughly spherical shell of
rock and dust known as the Oort cloud [194]. Our own Oort cloud has never been directly
observed, but SO may be able to detect similar structures around other stars, i.e., exo-Oort
clouds. [23] forecast the pre-upgraded-LATR SO sensitivity to exo-Oort clouds at 280 GHz
using simulated dust emission and Oort cloud emission profiles [195] placed around Gaia
stars within 70 pc [see also 196, 197]. SO will detect (at ~ 30) exo-Oort clouds if their
occurrence rate is similar to the detection rate of giant planets [198, 199, foot = 0.3]. As
elaborated in [23], SO will also probe debris disks from exoplanet formation around nearby
stars, constraining the statistical properties of the debris disk population and prioritizing
candidates for higher-resolution follow-up with ALMA [e.g., 200, 201].

3.9 Asteroid regoliths

The composition and dynamics of asteroids provide an important window into the composition
of the early solar system [e.g., 202]. Observations of asteroids at millimeter wavelengths
have shown a consistent deficit in flux as compared to expectations from the infrared [e.g.,
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203, 204]. Since the unconsolidated surface, or regolith, of the asteroid is partially transparent
in the millimeter, this millimeter flux deficit is connected to the composition of the regolith,
which is otherwise difficult to ascertain. Historically this drop in flux has been interpreted as
a change in effective emissivity due to regolith grain size or packing [205]. However, more
recent, comprehensive analysis has suggested the origin may lie instead in steep temperature
gradients of several K/centimeter lying just below the surface [206].

Until recently, astronomers have been limited to targeted millimeter observations of
asteroids. With the new generation of CMB experiments, however, it has become possible
to make catalogs of asteroid flux in the millimeter. SPT made the first detection of three
asteroids using a ground-based CMB telescope [207], while ACT published the first extensive
catalog of 170 asteroids [208]. Both experiments found a systematic flux deficit in the
millimeter, with [208] finding a spectral shape to the deficit wherein the deficit was more
severe at 150 and 220 GHz than at 90 GHz.

While the precise distribution of asteroid fluxes in the millimeter/sub-millimeter is
currently unknown, to first order it will likely follow the size distribution, which is well
described by a power law with o = —2.5. Accounting for the r? scaling of the flux with
asteroid radius, this leads to a dN oc F~1-?5 scaling for dN the number density of asteroids
and F' the flux. Assuming this, we conservatively estimate that SO will detect approximately
100 times more than the [208] sample, on the order of ten thousand asteroids. We further
expect the detection of the largest trans-Neptunian objects (TNOs). We scale the total
S/N of a number of asteroids by

lelgrthxs_jrf ? X?liameterXS /N

where Xearth iS the ratio of the Earth-centered TNO distance to Earth-centered asteroid
distance, xgu, is the same for the Sun-centered distance, Xgiameter iS the ratio of their physical
diameters, and xg,y is the projected SO/ACT S/N ratio. The exponents account for the
scaling of the flux with the various parameters in the Rayleigh-Jeans limit of the Standard
Thermal Model [209]. Distances for the TNOs are evaluated January 1, 2025, and will not
meaningfully change over the SO lifetime. What is not accounted for here is the emissivity of
the TNO; performing this scaling for several asteroids helps marginalize over this uncertainty.
We should detect a number of the largest TNOs, specifically (50000) Quaoar, (136472)
Makemake, (136108) Haumea and (134340) Pluto at > 50 each. Other, larger TNOs have
projected S/N ~ 1 — 30, indicating that stacking analyses may also be fruitful.

3.10 The unexplored millimeter transient sky

The study of transient astronomical signals at millimeter wavelengths is opening a new
frontier in astrophysics. Typically, the millimeter emission is synchrotron radiation produced
by particles accelerated as a shock plows into an ambient medium. For decades, observations
at centimeter wavelengths have been used to study the explosion and environment properties
of explosive phenomena such as supernovae (SNe; e.g., [210]), gamma-ray bursts (GRBs;
e.g., [211]), tidal disruption events (TDEs; e.g., [212]), and novae [e.g., 213]. By contrast,
the millimeter regime remains largely unexplored.

Recent years have seen new opportunities for millimeter time-domain astronomy. One
reason is that the discovery of young (< days-old) transients by optical surveys has become
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routine, enabling fast turnaround follow-up observations using sensitive millimeter interferom-
eters [214-217]. In addition, transients have been discovered blindly at millimeter wavelengths
for the first time, in CMB survey data [193, 218-221], and these data have also been used to
put millimeter-wavelength flux limits on known extragalactic transients [222].

With SO, transient events will be routinely and efficiently discovered directly in the
millimeter, allowing for follow-up observations by the transient community. The SO rapid
transient analysis pipeline will generate daily maps for transient detection and discovery,
as well as light curves for each identified transient source to be released to the community
within 30 hours. We will release light curves with a typical cadence of about one day, and
a time resolution of order minutes. In addition, more slowly evolving faint transients can
be detected in stacked maps.

One class of extragalactic transients of interest are interacting supernovae, i.e., core-
collapse supernovae exploding in dense circumstellar material. Growing evidence suggests that
some massive stars shed a significant fraction of their mass in the final stages of their lives [223],
perhaps due to vigorous convection in the late stages of nuclear burning [224, 225] or binary
interaction [e.g., common-envelope evolution; 226]. Enhanced mass loss on timescales of days
to years would leave dense material close to the star (6-600 AU). When the star explodes, this
circumstellar material can be detected by its luminous millimeter-wave emission [215, 227, 228].

Another important class of extragalactic transients is long-duration GRBs (LGRBs),
produced in the powerful jets launched by collapsing massive stars [229]. A longstanding
question in the GRB field is whether long-duration GRBs are a rare and distinct endpoint
of stellar evolution, or the extremum of a broad continuum of relativistic stellar explosions
(e.g., [230]). SO could address this question by: (i) measuring the beaming fraction through
the detection of off-axis events; (ii) finding events that bridge the gap between GRBs
and ordinary supernovae, such as low-luminosity GRBs [LLGRBs; 231-234], which are a
potential site of high-energy neutrinos [235] and cosmic rays [236]; and (iii) looking for “dirty
fireballs” [237], i.e., jets with lower initial Lorentz factors than classical GRBs. Inferring the
initial Lorentz factor of a jet requires disentangling the forward and reverse shock components
of the afterglow, which is most readily done using millimeter observations [238-240].

GRB reverse shocks are predicted to be the most frequent class of extragalactic transients
detected by SO ([241]; table 4). GRB reverse shocks are an emission component from shock
propagation through the ejecta as the GRB jet collides with the interstellar medium. The
reverse shock thus probes the physical properties of the GRB outflow [242]. SO has the
potential to conduct the most sensitive, unbiased survey of millimeter-wave reverse-shock
emission over half the sky.

Relativistic jets launched in tidal disruption events, when a star is pulled apart by a
supermassive black hole, can be luminous millimeter transients early in the event [216, 243].
The fraction of TDEs harboring relativistic outflows appears to be small [212]. SO blind
millimeter-wave surveys will help to independently measure the event rate. In addition, mil-
limeter observations are sensitive to outflows with lower energies than centimeter-wavelength
observations [212].

SO transient observations could also probe the physics of shock acceleration. In the
framework typically applied to model supernova centimeter-wave observations, the electrons
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Class Volumetric Rate L, Distance | Detection Rate
(yr~'Mpc™®) | (ergs™'Hz™') | (Mpc) (yrh)
Extragalactic fast (1-10d duration) — — — <10
Long-duration GRB, on-axis 4x 10710 10%? 1300 2
Long-duration GRB, off-axis 6 x 1077 3 x 10%° 360 0.6
TDE, on-axis 3x 1071 103! 670 0.02
Low-luminosity GRB 2x 1077 10%9-10%° 70-210 0.1-4
AT2018cow-like FBOT 1077 10%° 210 2
Interacting SN 1078 10%7-10%° <210 <0.2
Stellar flares — — — 180

Table 4. Estimated detection rates by SO for different classes of extragalactic transients at 145
GHz, and for stellar flares at 90 GHz. We define off-axis long-duration GRBs to have 0,,s = 0.4.
For transients lasting a few days (extragalactic fast and long-duration GRB on-axis) we use a goal
sensitivity of 13 mJy rms in a single observation and require a 60 detection. Other events have a
longer duration, so we use a baseline sensitivity of 4.9 mJy from one-week stacks and again require a
60 detection. Stacking maps would increase the sensitivity for longer-lived events. SO observations
will constrain the significant theoretical uncertainty on the intrinsic rates of these transients. The
detection rate of fast extragalactic transients is taken from systematic searches in SPT data (Guns et
al. in prep). The detection rate of stellar flares is extrapolated from recent ACT and SPT detections
rate [220, 221, 251] to the SO goal sensitivity and sky coverage, requiring 50 detections.

are presumed to be accelerated into a power-law energy distribution (e.g., [244]). Interestingly,
millimeter observations of fast blue optical transients (FBOTs) such as AT2018cow [245] and
AT2020xnd [246] show evidence for a separate emission component at millimeter wavelengths
(100200 GHz) that does not fit the standard model used to describe the late-time low-
frequency (< 40 GHz) data [214, 247, 248]. One possibility for the origin of the millimeter
component is a Maxwellian distribution of electrons, i.e., electrons that are not accelerated
into a power-law distribution [249, 250].

SO will constrain the intrinsic rates of extragalactic millimeter transients, which are now
quite theoretically uncertain for many classes of transients [241]. We forecast the distance
that SO can probe for several key classes of extragalactic transients in table 2, with further
forecasts in table 4. For most classes, this calculation simply depends on the luminosity of the
source and the sensitivity of our observations. We estimate a baseline single-observation rms
sensitivity of ~13mJy at 145 GHz, and use this in our forecasts, assuming a 6o threshold
for extragalactic transient detection. We further forecast detection rates for each class of
transients from current volumetric rate estimates and the SO detection distance, assuming
that SO will discover transients over 52% of the sky (the SO LAT survey footprint with the
Planck 80% sky fraction Galactic plane mask applied).

Projected detection rates are presented in table 4. For fast events (durations between 1
and 10 days), which would include some LGRB reverse shocks and on-axis LGRB afterglows,
we use the upper limit on the rate computed by SPT (Guns et al. in prep). For the on-axis
LGRB rate we use [252]. For the LGRB and TDE luminosities at 145 GHz we use theoretical
predictions [241, 253] and caution that these are uncertain given the small number of observed
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events. We take the LLGRB rate from [254], and for the luminosity we use the observed values
of GRB980425/SN 1998bw [255] and GRB 171205A /SN 2017iuk [256]. For AT2018cow-like
FBOTSs we use observed 100 GHz luminosities [248, 257] and the volumetric rate from [258].
For ordinary SNe we use an observationally constrained rate [259, 260], and luminosities
of the handful of events detected at millimeter wavelengths to date [217]. We find that
ordinary SNe would likely only be detected out to a few Mpc, and thus we do not list these
in table 4, as we expect the detection rate for extragalactic normal SNe to be low. For
interacting SNe we use a volumetric rate from the Zwicky Transient Facility [260] and a
range of luminosities from the modeling in [227].

SO will also blindly discover and characterize many stellar flares. Recently, the ACT [220,
221, 261] and SPT [219, 251] collaborations published blind discoveries of bright transients.
We use these to extrapolate the expected stellar flare detection rate for SO with the fully
populated LATR, assuming the goal single-observation sensitivity at 93 GHz from table 3.
Assuming that the number density of events is proportional to the source flux density S—3/2
and extrapolating from [251], we estimate that SO will detect at least ~ 120 flaring events
per year at 5o at Galactic latitudes |b] > 5°. The scale height and flaring rate of stars
varies with stellar type [262, 263], but the intrinsic rate of these events is higher closer to
the Galactic plane. However, the expected stellar flare detection rate close to the Galactic
plane is difficult to extrapolate from ACT and SPT results, as both of those surveys had
much shallower scan depth near the plane. Estimating the detection rate at |b] < 5° by
extrapolating from [220], we estimate that SO will detect at least 50% more events at these low
Galactic latitudes. We thus forecast a Ho stellar flare detection rate for the fully populated
SO LATR of at least ~ 180 per year.

With daily updates on source light curves with high time resolution over a wide field,
SO will produce a large catalog of flaring stars for investigations of stellar physics. ACT
also recently reported an observation of a classical nova [221], one of only a few observations
of nova outbursts at millimeter wavelengths [264-267].

SO will complement a number of concurrent multiwavelength time-domain surveys. Dur-
ing SO operations, high-energy missions including the Space Variables Object Monitor [268§]
and Einstein Probe [269] will survey the sky in soft X-rays. For transients discovered by
SO, these experiments could provide limits on the presence of a high-energy counterpart. In
addition, ULTRASAT [270] and UVEX [271] will conduct the first wide-field high-cadence
surveys in the UV; ULTRASAT will spend a substantial fraction of its observing time in
the southern hemisphere. Rubin will provide a wide-field, low-cadence, sensitive multi-band
survey. Rubin observations of supernova mass-loss can be combined with SO observations of
the terminal explosion. Several wide-field surveys will cover the entire sky to a depth compa-
rable to 2MASS [272], including WINTER [273]. Several sensitive wide-field radio transient
surveys are planned for the next decade, including the Deep Synoptic Array 2000 [274], the
ASKAP Variables and Slow Transients Survey [275], and the Square Kilometer Array [276].

SO adds an important dimension to these complementary experiments with its sensitivity
to polarization, which is a useful diagnostic for distinguishing between different classes of
sources. The first extragalactic transient found in a blind millimeter survey was linearly polar-
ized with a polarization angle that changed over the duration of the burst [218]. Such behavior
is consistent with emission from a jet, and thus the source may have been a GRB afterglow.

— 20 —



Finally, we note that the wide, blind nature of the SO time-domain survey leaves open
the possibility of discovering a wholly new class of transient events.

4 Summary

In this paper, we have described planned infrastructure enhancements relevant to the wide-
area survey that will be undertaken with the SO LAT. The fully-populated SO LATR will
include four additional MF and two additional UHF optics tubes, as described in section 2.
These additions will nearly double the mapping speed over the existing configuration, with
the full instrument expected to begin observations in 2028. The final co-added map depth
at the conclusion of the survey in 2034 will reach 2.6 uK-arcmin, over roughly 61% of
the sky. In addition to the new detectors, the planned infrastructure also includes a new
photovoltaic power system, supplying 70% of the power needs of the observatory, as well as
an improved data pipeline that will facilitate map delivery to the community and detection
of millimeter-wave astrophysical transients. The properties of the fully-populated LATR
are summarized in table 1.

The science goals and forecasts for the wide-area survey conducted with the fully-
populated LATR are described in section 3 and summarized in table 2. The forecasts
presented in this work include only statistical errors; our understanding of systematic errors
will be refined in future work, particularly as the instrument is now taking data. These include
improved constraints on the scale dependence and Gaussianity of the primordial perturbations
(reaching o (i) = 1); improved constraints on new light relativistic species (reaching
0(Neg) = 0.045); tight constraints on the sum of the neutrino masses (o(>° m,) = 0.03¢eV, or
0.015€V in combination with LiteBIRD); percent-level constraints on the amplitude of density
fluctuations at redshifts 1 < z < 2 via CMB lensing cross-correlations with LSS surveys; and
a tSZ-selected galaxy cluster sample comprising 33,000 objects, including ~ 200 at z > 2. In
general, the high-SNR component-separated blackbody temperature and Compton-y maps, as
well as the reconstructed gravitational lensing maps, from the complete SO LAT survey will
enable a broad range of cosmological and astrophysical science, which we have only briefly
covered in this paper. As evidenced by progress in cosmology in recent decades, a data set
this rich will enable additional science that has yet to be envisioned or forecast here.

SO will also catalog ~ 100,000 AGN and provide high-SNR light curves for O(10,000)
blazars; map the magnetic field structure of hundreds of Galactic molecular clouds; constrain
the composition of interstellar dust; detect or strongly constrain the presence of a Planet
9 (with the ability to rule out a 5 Mg Planet 9 out to 500-900 AU); detect or place limits
on the population of exo-Oort clouds; and measure the thermal emission from thousands
of asteroids, enabling new statistical investigation of asteroid regoliths. Finally, SO will
carry out the largest blind survey of transient phenomena in the millimeter to date, which
will detect and characterize GRBs, TDEs, FBOTs, and supernovae, as well as on order of
a hundred stellar flares per year. The sensitive, large-area maps of millimeter-wavelength
emission in both total intensity and linear polarization will enable a wealth of Galactic and
extragalactic science, and will open new discovery space in the time domain.
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A Sensitivity and forecasting assumptions

Table 1 provides map-domain sensitivities for the full-depth maps expected at the conclusion
of the SO LAT survey in 2034. To obtain these numbers, we take a similar approach to
that in [1], using an atmospheric noise model informed by ACT observations combined
with detector NET sensitivities estimated using bolocalc [281]. For the nominal-survey SO
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Band LF1 | LF2 | MF1 | MF2 | UHF1 | UHF2
Frequency [GHz] 27 | 39 93 145 225 280
Baseline NET [uKy/5] | 48 | 24 | 10.8 | 134 | 21.2 | 50.9
Goal NET [uKy/5) | 35 | 18 | 7.8 | 84 | 141 | 354

Table 5. SO Large Aperture Telescope NET per Optics Tube.

Forecasts in this work and in [1] are based on “baseline” and “goal” noise models. This table provides
the associated NET per OT; note that each OT includes three ~150-mm detector arrays. The baseline
model represents the requirements for SO, while goal represents the expected performance. These models
include parameters to encapsulate the key drivers for instrumental sensitivity, including: the emission
from and opacity of the atmosphere; the properties of the telescope (emission, spill, etc.); properties of the
receiver and cryogenic optics (emission, losses, and reflections from the windows, lenses, and cryogenic cold
stop); properties of the filters that define the passbands; and detector properties (yield, noise, etc.). The
sensitivities presented here were computed at the start of the design process, when many instrumental
details were yet to be finalized. For this reason, the parameter choices are uninformative and are not
reported here. Pre-deployment testing of the MF OTs indicates performance exceeding the baseline
requirement and consistent with goal performance [27].

forecasts described in [1], it was assumed that 20% of the data collected over a 5-year duration
would be usable for cosmological analysis (after accounting for uptime, CMB field availability,
and data quality cuts, all of which were estimated based on historical data from ACT). For this
work, we use the same detector NET sensitivities and 20% observation efficiency, but make the
following changes. Rather than assuming a 5-year survey with the OT configuration from [1]
(comprising 1 LF, 4 MF, and 2 UHF OTs), we assume 3 years of nominal SO observations
with that tube configuration, followed by 6 years of observations with the fully populated
LATR (comprising 1 LF, 8 MF, and 4 UHF OTs, as described in section 2). [1] assumed
that the sky fraction observed would comprise fs, = 0.47, with a post-masking footprint of
fsky = 0.4 available for cosmological analysis (avoiding regions of Galactic contamination and
poor cross-linking near the footprint edges). In this work, following updates to the SO scan
strategy that accommodate a wider range of science goals, we assume that throughout the
9-year survey duration the SO LAT will map a sky fraction fq, = 0.61. These assumptions
lead to the full-depth map sensitivities given in table 1. For completeness, we provide the
“goal” and “baseline” per-OT NET sensitivities in table 5. Further details for the cosmological
science forecasts and the point-source and transient forecasts are given below.

Cosmology: All of our cosmological science forecasts use the “goal” sensitivity levels and
assume that the sky fraction available for analysis after masking the Galaxy is fo, = 0.4.
However, over this sky fraction, we have assumed slightly different map-domain sensitivities of
{39,20,3.5,3.8,9.1,22} puK - arcmin at {27,39,93, 145,225,280} GHz, respectively, compared
to the values of {44, 23,3.8,4.1,10,25} puK - arcmin given in table 1, due to different survey-
strategy assumptions that were made earlier in the cosmological analyses. These small
differences in the map-domain noise levels are not expected to significantly change our
cosmological forecasts at the precision level quoted in this work.

Transient and point source science: We use two types of sensitivities for our transient
and point source forecasts. First, we estimate our sensitivities to point sources from a single
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observation, that is, for a point on the sky that drifts once through the entire focal plane,
which is scanning in azimuth at a fixed elevation. We base these sensitivities on simulated
maps made with our nominal observing strategy, in which the majority of observations
occur at 40° elevation (70.6% of observations), with a minority at 50° (15.7%) and at 60°
(13.7%). We use a fixed set of detector NETs for these simulations, and we then rescale
the maps to correspond to the NETs used for the full-depth cosmological forecasts listed in
table 1. We take the median map depth, in units of uK - arcmin, for each of the observing
elevations, and calculate their weighted mean based on the observing fraction at each
elevation. Second, we estimate our sensitivities to point sources in the final, full-survey maps
by spreading the array sensitivity accumulated over the survey duration over the survey area,
using fa = 0.61 and an observing efficiency of 20%, as described above. For both single-
observation and full-depth maps, we obtain point source sensitivities by converting the map
depth in uK-arcmin to mJy using the beam FWHDMs listed in table 1 and applying an inverse-
variance weighting with an atmospheric 1/¢ noise spectrum with a power-law index of —3.5
and lxnee = {500, 500, 2100, 3000, 3800, 3800} for {27, 39,93, 145, 225, 280} GHz, respectively.
Here, the fpee values are estimated based on ACT data.'? For the full-depth maps, we include
additional “noise” contributions from the CMB and the CIB, since these terms dominate over
the atmospheric noise in this case (other background sources like unresolved AGN are ignored).
We ignore these terms for the single-observation maps since they are subdominant. The
resulting sensitivities for both the single-observation and full-survey cases are given in table 3.
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