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Abstract 

Robotic systems hold significant potential for transforming industrial environments; 

however, ensuring a positive and effective User Experience (UX) in Human-Robot 

Interaction (HRI) remains a major challenge. While technical performance is crucial, 

factors such as user trust, cognitive load, and collaboration satisfaction are equally vital 

for the success of Human-Robot Collaboration (HRC). This thesis adopts a User-

Centred Design (UCD) approach, tailored to the manufacturing context, to 

systematically evaluate and enhance UX in HRI. 

 

Through semi-structured interviews with 19 factory employees and subsequent 

qualitative analysis, the study identifies 12 key UX themes spanning five facets, 

including physical interaction, cognitive load, and emotional response. These findings 

inform the development of the HRI UX Assessment Framework, which offers 

structured guidance for designing more intuitive and user-friendly robotic systems in 

industrial settings. 

 

Two case studies explore the integration of Augmented Reality (AR) into HRC tasks to 

address challenges related to trust and cognitive load. In the first case, AR-based robot 

facial expressions were compared with screen-based displays during a collaborative 

task. In the second case, a UCD-driven AR-assisted assembly system significantly 

enhanced task accuracy (97.49%) and user satisfaction, while also reducing cognitive 

workload. 

 

To facilitate broader implementation, a self-report questionnaire was developed based 

on the UX framework and validated through surveys conducted with 358 workers 
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across 35 factories. Exploratory factor analysis identified two core dimensions, 

comprehensive operational efficiency and cognitive usability, thus establishing a 

reliable UX measurement tool for industrial applications. 

 

Overall, this research presents a scalable, human-centred approach to the design and 

evaluation of robotic systems in manufacturing, contributing to the advancement of 

HRI practices and laying the groundwork for safer, more efficient, and user-friendly 

robotic collaboration. 
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1.1 Background and Motivations 

Robotic design is a rapidly evolving field that encompasses engineering, analysis, and 

implementation of robots that interact with humans in diverse settings (Chibani et al., 

2013, Licardo et al., 2024, Goodrich and Schultz, 2007). These interactions hold the 

potential to substantially transform various domains, including industrial 

manufacturing, healthcare, education, agriculture, and restaurant, by integrating 

robotics to enhance efficiency and innovation (Dautenhahn, 2007b). For instance, 

robots are revolutionizing automotive industrial manufacturing by enhancing 

production efficiency, reducing workplace injuries, and enabling precise assembly tasks 

(Javaid et al., 2021).  In healthcare, robotic-assisted surgeries, such as those performed 

by the Da Vinci Surgical System, illustrate how robots can deliver unparalleled 

precision and consistency, improving patient outcomes (Surgical, 2013). Similarly, in 

the education sector, robots like SoftBank’s Pepper are being used to engage students 

in interactive learning, teaching programming skills, and supporting special education 

needs (Pandey et al., 2018). For example, Pepper has been implemented in Japanese 

schools to foster interactive learning experiences and in Boston classrooms as a tool for 

teaching programming and aiding students with autism spectrum disorders (Guizzo, 

20204 ). In the restaurant industry, Miso Robotics, based in Pasadena, USA, created a 

mobile robotic platform called Flippy, featuring a 6-axis collaborative robot designed 

to work alongside humans at kitchen equipped with griddles and fryers (Pereira et al., 

2022). In agriculture, robots like John Deere’s autonomous tractors and Blue River 

Technology’s precision weed control systems are transforming farming practices by 

reducing labour demands, optimizing resource use, and improving crop yields (Albiero 

et al., 2021, Panpatte and Ganeshkumar, 2021). The retail sector is also embracing 

robotics with solutions like Amazon’s Kiva robots, which streamline warehouse 

operations by efficiently sorting and transporting goods, drastically reducing delivery 

times (Jain and Sharma, 2017).  As robots become more integrated into these sectors, 
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understanding how humans perceive, interact with, and accept these systems is crucial 

(Thrun, 2004, Sheridan, 2016, Bragança et al., 2019, Dautenhahn, 2007b, Ajoudani et 

al., 2018). 

 

Human-Robot Interaction (HRI) refers to the interdisciplinary study and design of 

interactions between humans and robots, aiming to create systems that allow intuitive, 

and efficient collaboration (Bartneck et al., 2024). Under the broad conceptual umbrella 

of HRI, the field of Human-Robot Collaboration (HRC) specifically focuses on 

scenarios where humans and robots work side by side, sharing tasks and environments 

(Simões et al., 2022, Ajoudani et al., 2018).  HRC focuses on fostering seamless 

collaboration between humans and robots, drawing on insights from disciplines such as 

robotics, psychology, cognitive science, and human-computer interaction (Wamba et 

al., 2023, Hentout et al., 2019, Sheridan, 2016). The goal of HRI is to bridge the gap 

between robotic capabilities and human expectations by addressing the technical, 

psychological, and social dimensions of these interactions (Feil-Seifer and Mataric, 

2009, Kwon et al., 2016). As robots become increasingly integrated into daily life, the 

importance of designing systems that are not only technically advanced but also user-

friendly and trustworthy cannot be overstated (Khan, 2024, Usmani et al., 2023, 

Engelhardt et al., 1992).  

  

To integrate robots seamlessly into operators' daily routines, it is essential for them to 

deliver purpose-driven and enjoyable interactions that foster a positive experience 

(Chen et al., 2020, Boden et al., 2017, Kahn Jr et al., 2007, Lindblom and Alenljung, 

2020, Prati et al., 2021a, Apraiz et al., 2023). Previous research has primarily 

concentrated on developing technically advanced robots, often neglecting the 

importance of UX (Shourmasti et al., 2021, Nielsen et al., 2024, Huang et al., 2021, 

Vaiani and Paternò, 2024). User experience (UX) is important in the interaction 
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between humans and robots. ISO 9241-210 defined UX as the perceptions and 

responses of a person resulting from the use or anticipated use of a product, system, or 

service (Standardization, 2019). Traditional UX evaluation frameworks, developed for 

consumer products or digital applications, fail to address the unique challenges of 

industrial HRI (Tong et al., 2024). These tools  UEQ (Laugwitz et al., 2008) and UMUX 

(Finstad, 2010) often overlook critical dimensions such as trust, safety, and operational 

accuracy, leaving organizations without systematic methods to assess and improve their 

HRI systems. This gap hampers progress in designing user-centred robotic systems that 

align with industrial requirements. 

 

Currently, UX in HRI encompasses several dimensions, including cognitive load 

(Ahmad et al., 2019), trust (Yagoda and Gillan, 2012), safety (Lindblom and Wang, 

2018) and Emotional engagement (Ahmad et al., 2017). Cognitive load refers to the 

mental effort required for users to interact with robotic systems, where intuitive 

interfaces can minimize mental strain and enhance productivity, while poorly designed 

ones can overwhelm users and lead to errors (Ahmad et al., 2019, Muradore et al., 2015).  

As robots become more advanced, the cognitive load on users increases. Poorly 

designed interfaces and workflows can overwhelm operators, resulting in errors, 

reduced productivity, and even safety risks (Öztürk et al., 2024, Hu, 2023). For example, 

The Three Mile Island nuclear accident in 1979 exemplifies how poor interface design 

can lead to catastrophic outcomes. Operators, overwhelmed by ambiguous indicators 

and excessive alarms during a coolant malfunction, misinterpreted the situation, 

delaying corrective actions. Addressing these cognitive challenges is critical for 

ensuring that humans and robots can collaborate effectively. Trust in automation is 

defined as “the attitude that an agent will help achieve an individual’s goals in a 

situation characterized by uncertainty and vulnerability” (Lee and See, 2004). Robotics 

represents a key area within automation, focusing on machines designed to perform 
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intricate tasks within dynamic and physical settings (Groover, 2016). Trust plays a 

critical role in ensuring effective collaboration, as appropriate levels of trust enable 

users to rely on robots without excessive supervision or overreliance, particularly in 

safety-critical environments (Coeckelbergh, 2012, Kok and Soh, 2020, Yagoda and 

Gillan, 2012, Lewis et al., 2018). Without appropriate levels of trust, users may avoid 

relying on robotic systems, choosing manual alternatives that undermine the potential 

benefits of automation. For instance, in November 2023, a South Korean agricultural 

centre saw tragedy when a robotic arm misidentified a worker as a box, fatally injuring 

him (Harris, 2023).  Conversely, over-reliance on robots due to misplaced trust can lead 

to catastrophic failures in high-risk settings. For example, on March 18, 2018, the first 

pedestrian fatality involving a self-driving car occurred in Tempe, Arizona. Elaine 

Herzberg, 49, was pushing her bike across a four-lane road when she was struck and 

killed by an Uber test car in self-driving mode (bbc, 2020). Striking this balance is a 

fundamental challenge in HRI, especially as systems become more autonomous and 

complex. Safety encompasses both physical and psychological aspects, ensuring 

collision avoidance and instilling confidence in users when interacting with robots 

(Zacharaki et al., 2020, Haddadin et al., 2009, Villani et al., 2018, Lasota et al., 2017). 

Emotional engagement reflects the user's emotional responses during interaction, where 

expressive behaviours or friendly interfaces can foster positive feelings and long-term 

acceptance (Khosla et al., 2017, Ahmad et al., 2017). Understanding these dimensions 

and their impact on HRC is essential for designing effective and user-friendly robotic 

systems (Tong et al., 2024). As the complexity of tasks and the need for seamless 

collaboration increase, UX considerations in HRI become particularly critical in 

manufacturing environments, where robots and humans must work closely together 

under dynamic and high-stakes conditions."  

 

Manufacturing environments present unique challenges for HRI because of their 
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dynamic, high-risk nature and the need for deeper collaboration between humans and 

robots (Hjorth and Chrysostomou, 2022, Jahanmahin et al., 2022). Despite 

technological advancements, robotic systems often prioritize functionality over user 

experience (Chen et al., 2010). This technical focus has resulted in systems that are 

highly efficient but difficult to operate, creating a steep learning curve for users 

(Tortorella et al., 2024). In manufacturing, operators often struggle with unintuitive 

control systems, leading to frustration, inefficiency, and diminished productivity 

(McQuillen, 2021). For example, according to a 2016 study, the task Settings of robotic 

systems in many smart factories are too rigid to be dynamically adjusted to the 

operator's personal preferences or different work rhythms. It is difficult for operators to 

flexibly adapt to the default processes of robotic systems, resulting in productivity 

suffering and impacting the user experience (Weiss and Huber, 2016). The other key 

challenge is managing cognitive load in dynamic tasks. Manufacturing tasks often 

require frequent reconfiguration of robotic systems to accommodate shifting production 

demands (Morgan et al., 2021). However, existing user interfaces are often not intuitive, 

forcing operators to rely on trial-and-error methods, which increases cognitive strain 

and leads to delays and errors (Ahmad et al., 2019, Apraiz et al., 2023). Another critical 

challenge is establishing and calibrating trust. Trust is essential for effective 

collaboration but remains a double-edged sword. Insufficient trust may lead operators 

to underutilize robotic systems, while over-reliance can pose safety risks. Current HRI 

systems often fail to provide the transparency required to build appropriate levels of 

trust (Kok and Soh, 2020). Ensuring safety and user satisfaction also presents 

significant challenges. While physical safety measures such as collision avoidance are 

well-established, psychological safety and user satisfaction are often neglected, 

especially in environments where robots operate in close proximity to humans 

(Haddadin et al., 2009, Villani et al., 2018). Moreover, the limited transparency in 

current HRI systems, combined with abrupt or non-intuitive robot behaviours, further 

exacerbates this challenge by preventing operators from fully understanding or 
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anticipating robotic actions (Lasota et al., 2017, Kok and Soh, 2020). Workers have 

reported discomfort and decreased productivity when working alongside robots with 

abrupt and unpredictable movements, highlighting the need for smoother, more human-

like interaction patterns. There is a lack of comprehensive frameworks for evaluating 

UX in HRI within manufacturing contexts. Most existing assessments focus narrowly 

on task efficiency, neglecting broader factors such as emotional engagement and 

adaptability.  

 

To summarise, the rapid integration of robotics into industrial and societal settings has 

unveiled significant challenges that hinder the seamless adoption of these systems. 

While robots have demonstrated remarkable capabilities in domains like manufacturing, 

critical gaps persist, primarily in how humans perceive, interact with, and ultimately 

trust these systems. In this context, I define four key points to address these issues: 

1. The Neglect of UX 

2. The Erosion of Trust in High-Stakes Collaboration 

3. Escalating Cognitive Demands 

4. The Lack of Comprehensive UX Evaluation Tools 

 

Based on the challenges and gaps identified in the background and motivations, this 

research focuses on addressing key questions related to UX in Human-Robot 

Interaction (HRI). Specifically, it aims to develop user-centred frameworks and tools to 

improve trust, reduce cognitive load, and enhance adaptability in industrial HRI 

systems. These insights will guide the formulation of research questions and objectives 

in the next section. 
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1.2 Research Question and Objectives 

Informed by the background and motivations, this thesis aims to investigate how UX 

can improve in HRC/HRI in manufacturing setting. By identifying key UX factors and 

structuring them into a systematic assessment framework, the study seeks to provide 

actionable insights and design strategies that can directly enhance the intuitiveness, 

efficiency, and user satisfaction of HRI systems in manufacturing environments. The 

following research questions have been formulated: 

 

RQ1: How can user experience factors be identified and systematically incorporated 

into a UX assessment framework to evaluate HRI in manufacturing environments? 

RQ2: How should I evaluate the effectiveness of a solution (e.g., AR assistive 

technology) to improve UX in a manufacturing setting? 

RQ3: How can a specialized UX assessment tool be developed and validated for 

evaluating HRI in manufacturing settings, and what dimensions should it measure to 

effectively capture UX? 

 

To ensure transparency and coherence in research design, Table 1.1 presents a 

structured mapping between the primary research challenges identified in the 

motivation, the corresponding research questions, and the chapters where these 

questions are systematically addressed. This overview provides a consolidated 

perspective on how each component of the thesis aligns with the central research 

objectives. 
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Table 1.1 Mapping of Research Challenges, Questions, and Chapter Structure. 

Challenge Research Question Chapter 

The Neglect of UX RQ1 Chapter 3 

The Erosion of Trust in 

High-Stakes 

Collaboration 

RQ2 Chapter 4 

Escalating Cognitive 

Demands 
RQ2 Chapter 5 

The Lack of 

Comprehensive UX 

Evaluation Tools 

RQ3 Chapter 6 

 

With the identification of the research questions, the research objectives following these 

research questions are listed below: 

 

1 To develop an assessment framework for UX in HRI within manufacturing settings 

by analysing key UX factors, such as cognitive load, trust, and safety, derived from in-

depth user feedback. This framework will serve as a foundation for evaluating the user 

experience in collaborative robotics across various manufacturing scenarios. 

 

2 To demonstrate a method for evaluating the effectiveness of AR interventions improv-

ing UX in HRC tasks through experimentation. This objective focuses on using experi-

mental methods to assess how AR technologies, such as facial expressions and immersive 
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interfaces, impact operator trust, task performance, and overall user experience in real-

world industrial settings. 

 

3 To create a specialized UX assessment tool for HRI in manufacturing, based on the 

developed framework, with a focus on dimensions like operational efficiency and cognitive 

usability. This tool will be specifically tailored for manufacturing environments, addressing 

gaps left by traditional UX assessments. 

 

1.3 Thesis Outline 

Designing for a positive user experience in HRI involves a structured process known 

as the user experience design process (Marcus and Wang, 2017). This process provides 

a systematic approach to understanding and addressing user needs, ensuring that robotic 

systems are not only functional but also user-friendly and satisfying to interact with. 

The process typically includes the following stages (Figure 1.1): user research (Baxter 

et al., 2015), problem definition and goal setting (Norman, 2013), conceptual design 

and prototyping (Arnowitz et al., 2010), testing (Nielsen, 1994a) and iteration and 

implementation and validation (Preece et al., 2015). This workflow serves as a guiding 

framework for ensuring that UX considerations are deeply integrated into the design 

and functionality of product or systems (Deaton, 2003). The rest of this thesis is 

structured around the UX design approach. This UCD process guide the development 

of HRI systems in manufacturing sector. Chapters 3 to 5 align with a specific phase of 

the UCD process.  
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Chapter 2 examines existing research on HRI, concentrating on key concepts like 

cognitive load, UX, trust, and safety in collaborative environments. The review 

highlights the interdisciplinary nature of HRI, where insights from psychology, 

engineering, and human-computer interaction converge to inform effective human-

robot collaboration. Research shows that managing cognitive load is critical to 

achieving efficient and intuitive interactions, especially in high-stakes industrial 

settings.  Additionally, UX is recognized as a multi-dimensional construct that includes 

emotional engagement, task satisfaction, and usability, all of which contribute to the 

acceptance and effectiveness of HRI systems. 

 

Chapter 3 introduces a specialized framework for assessing UX in manufacturing HRI. 

It outlines the development process and methodology for creating a comprehensive UX 

evaluation model, focusing on critical factors such as operational efficiency, reliability, 

safety, and cognitive load. This framework is designed specifically for industrial 

settings, where traditional approaches to user experience assessment may not fully 

capture the unique challenges of human-robot collaboration in manufacturing. 

Figure 1.1 User experience design process. 
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Chapter 4 delves into the role of AR in fostering trust during human-robot interactions. 

This section presents an experimental study that compares the effectiveness of AR and 

screen-based systems in communicating safety-critical information, such as facial 

expressions, during collaborative tasks. The findings reveal insights into how AR can 

enhance or hinder trust in robotic systems, offering practical implications for the design 

of future HRC environments. 

 

Chapter 5 focuses on the research in exploring the potential of augmented reality to 

enhance the user experience in industrial assembly tasks. It investigates how AR can be 

integrated into human-robot collaboration to reduce cognitive load, improve task 

accuracy, and boost overall efficiency. The chapter presents experimental results 

demonstrating the advantages of AR over traditional methods, highlighting its ability 

to streamline complex assembly tasks in real-world manufacturing settings. 

 

Chapter 6 builds on the UX framework by developing and validating a tailored UX 

evaluation tool. This tool provides a practical mechanism for measuring and analysing 

the user experience in industrial HRC scenarios, ensuring that both technological 

performance and human-centred design factors are considered. The chapter details the 

tool's design, implementation, and validation, offering an empirical basis for its 

effectiveness in improving HRI. 

 

Chapter 7 concludes the thesis by summarizing the key findings and contributions of 

the research. It outlines the achievements made in developing AR-assisted HRC 

systems and specialized UX evaluation tools, while also reflecting on the challenges 

encountered during the research. This chapter also presents future directions for 
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expanding the application of AR and HRI technologies in more complex industrial 

contexts. 

 

1.4 Contribution 

This thesis makes significant contributions to the fields of HRI, UX, and AR interface, 

with a particular focus on integrating UX principles into the design and implementation 

of industrial HRC systems. These contributions are organized following the key stages 

of the UX design approach: user research, problem definition, prototyping, testing, and 

implementation. 

 

A primary contribution of this research is the development of a tailored UX assessment 

framework specifically designed for industrial environments. Unlike traditional UX 

models which focused on consumer products, this framework addresses the unique 

demands of manufacturing settings, incorporating critical factors such as operational 

efficiency, cognitive load, safety, and trust. By providing a comprehensive 

understanding of UX in HRI, this framework bridges the gap between user-centred 

design principles and the technical requirements of industrial robotics, offering a 

foundation for further advancements in collaborative workspaces. 

 

Building on the UX framework, this research introduces a specialized UX evaluation 

tool designed to systematically measure user experience in industrial HRI scenarios. 

Validated through empirical studies, the tool identifies key dimensions, including 

"Operational Efficiency" and "Cognitive Usability," and provides a practical 

mechanism for assessing and optimizing HRI systems. This contribution equips 

organizations with a reliable method to enhance both system performance and worker 
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satisfaction, addressing a critical gap in the current research on industrial robotics. 

 

This thesis introduces a UX paradigm, with AR technology serving as a representative 

example. Experimental studies reveal both the benefits and limitations of using AR to 

communicate safety-critical messages and enhance transparency in collaborative 

scenarios. While the findings indicate challenges in achieving consistent improvements 

in trust levels, they underscore the potential of AR for flexible and immersive 

interaction designs. These insights provide critical lessons for the future development 

of trust-centric HRI systems. 

 

A major contribution of this thesis is the integration of the UX design process into HRI 

system development, demonstrating how each stage—user research, problem definition, 

prototyping, testing, and validation—can be applied to address real-world industrial 

challenges. By tailoring solutions to worker needs through iterative design and 

feedback, the research bridges the gap between academic theory and practical 

implementation, offering a cohesive methodology for developing user-centred HRC 

systems. This approach not only ensures usability and efficiency but also creates 

systems that are adaptive, intuitive, and aligned with the psychological and ergonomic 

needs of workers in industrial environments. 

 

1.5 Assumptions 

To ground the methodology in the context of the research questions and contributions 

outlined above, I operate under a number of key assumptions. I assume that participants 

will follow instructions and engage sincerely with the interaction tasks, such that their 

observed behavior reflects genuine user–robot collaboration in a manufacturing context. 
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I also assume that the data collection instruments (such as sensors, video recordings, 

and questionnaires) provide accurate and reliable measurements of system states and 

user responses. Furthermore, I assume that the scenario tasks chosen for evaluation are 

representative of real manufacturing activities; this means I treat the laboratory 

environment and task design as a valid proxy for analogous industrial situations. These 

methodological assumptions ensure that participant behavior and data quality align with 

the intended research context. 

 

In addition to methodological assumptions, I make explicit technological assumptions 

regarding the experimental setup. I assume that the robotic hardware and its control 

system operate stably and perform as intended throughout each trial, so that any 

hardware malfunctions or erratic behavior would be treated as anomalies outside the 

intended evaluation. Similarly, I assume that the augmented reality interface (for 

example, AR glasses or a tablet-based AR app) works reliably, with accurate tracking, 

stable registration, and negligible latency. This implies that the AR overlays or guidance 

cues appear correctly in the user’s field of view without significant errors. By assuming 

reliable technology operation, I can focus the study on user experience and interaction, 

accepting that any rare technical issues fall outside the core research scope. 

 

1.6 Limitations 

Nevertheless, I acknowledge that this study involves several important limitations. I 

note that I conducted the experimental evaluation in a controlled laboratory setting with 

a specific set of tasks, which may not capture the full variability of real-world 

manufacturing environments. This constrained setup means that contextual factors such 

as dynamic production line conditions, time pressure, or operator fatigue were not fully 

represented. The sample size of participants was also limited by practical constraints, 
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as only a small number of subjects could be recruited; this limitation may reduce the 

statistical power of the findings and their generalizability to the broader population of 

manufacturing workers. Furthermore, each participant’s exposure to the AR-assisted 

system was relatively brief, preventing the study from assessing longer-term user 

adaptation or learning effects. Together, these factors suggest caution when 

extrapolating the findings to broader contexts. 

 

Furthermore, the broader applicability of the developed framework and tools is 

inherently limited by the scope of this research. The prototype system and UX 

assessment framework were validated only for the specific tasks, robot model, and AR 

hardware used in this thesis, so applying them to different manufacturing contexts or 

interaction scenarios may require further adaptation. I recognize that factors such as 

different task types, production scales, or diverse user populations were not explored; 

these could influence how users experience the system. Additionally, the evaluation 

primarily focuses on short-term subjective and performance measures, so future work 

would be needed to assess long-term usability, learning, and organizational factors. 

These limitations imply that while the contributions of this thesis advance 

understanding of AR-supported HRI, their generalizability to all manufacturing 

situations is constrained by the defined research scope. 
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2.1 Introduction 

This chapter aims to provide a comprehensive literature review of HRI and UX, 

particularly in industrial settings.  It critically examines key concepts, interaction 

modalities, and evaluation tools, laying the groundwork for the development of a 

domain-specific UX assessment framework for manufacturing HRI.  The review is 

structured around four themes: the fundamentals of HRI, the principles of UX, current 

evaluation approaches, and the core dimensions of UX in collaborative robotics. 

 

Human-Robot Interaction (HRI) refers to the interdisciplinary study and design of 

interactions between humans and robots, aiming to create systems that allow intuitive, 

and efficient collaboration (Bartneck et al., 2024, Blessing and Klaus, 2024). This 

interaction is crucial in many applications, ranging from industrial automation to 

healthcare, education, and service industries (Dautenhahn, 2007b). The growing 

integration of robots into these sectors necessitates a comprehensive understanding of 

how humans perceive, interact with, and accept these robotic systems (Song and Kim, 

2022, Thrun, 2004, Blessing and Klaus, 2024). 

 

The significance of HRI lies in its potential to enhance productivity, safety, and 

efficiency in various tasks (Moustris et al., 2011). For instance, in manufacturing, 

cobots work alongside human workers to perform repetitive, dangerous, or precision 

tasks, thereby improving overall productivity and safety (Bogue, 2016). In a notable 

example (Figure 2.1), BMW's manufacturing plant in Spartanburg, South Carolina, 

integrates UR cobots to handle repetitive tasks such as inserting gear sticks into car 

chassis. These cobots not only reduce the physical strain on workers but also ensure 

consistent precision, thereby improving overall productivity and safety (Robots, 2020). 

In healthcare, robots assist in surgeries, rehabilitation, and eldercare, providing 
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significant benefits in terms of precision, consistency, and personalized care (Moustris 

et al., 2011). A prime example is the da Vinci Surgical System (figure 2.2), developed 

by Intuitive Surgical, which is used in over 6,000 hospitals worldwide. At the Cleveland 

Clinic, this robot performs minimally invasive procedures such as prostatectomies with 

enhanced precision and reduced recovery times for patients (Clinic, 2025). 

Figure 2.1 Universal Robots in factory. Source: (Robots, 2020). 
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However, the success of HRI depends heavily on the quality of the UX (Prati et al., 

2021a). A positive UX in HRI can lead to higher acceptance rates, better performance, 

and increased trust between humans and robots (De Graaf and Allouch, 2013). Key 

dimensions of UX in HRI include cognitive load, emotional engagement, trust, and 

safety (Ali et al., 2023). Understanding these dimensions and how they impact human-

robot collaboration is essential for designing effective and user-friendly robotic systems 

(Prati et al., 2021a). 

 

This chapter aims to provide a review of the literature on HRI, focusing on the 

fundamental principles, key dimensions of UX. The following sections will delve into 

the historical development of HRI, theoretical models, evolution of interaction 

modalities, and the impact of cognitive, emotional, and social factors on user experience. 

 

Figure 2.2 daVinci Surgical System. Source: (Center, 2025). 
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2.2 Fundamentals of Human-Robot Interaction (HRI) 

2.2.1 Historical Overview 

While robots have long existed, HRI as a field of research only began to take shape in 

the mid-20th century, thanks to advances in robotics  and human factors (Sheridan, 

1992, Sheridan et al., 2002, Goodrich and Schultz, 2008). In manufacturing, one of the 

earliest and most notable examples is the Unimate (show in Figure 2.3), introduced in 

1961 by General Motors. Developed by George Devol and Joseph Engelberger, 

Unimate was capable of performing welding and material handling tasks with high 

precision and efficiency (Awards, 1977). Early industrial robots lacked adaptive 

capabilities and sensors, making it difficult to ensure human safety. As a result, physical 

isolation was often required to protect operators from the robots (Goodrich and Schultz, 

2008). To address these issues, solutions such as proximity sensors, emergency stop 

devices, and safety standards like ISO 10218 were introduced (Fryman, 2014). The 

initial robot user interfaces were complex and not user-friendly, causing significant 

challenges for operators during learning and usage. To overcome this, researchers 

developed simpler programming interfaces and teach pendants, which significantly 

reduced the learning curve and improved the UX (Goodrich and Schultz, 2008). 

Contributions from psychology, engineering, and cognitive science converged in the 

mid-1990s, cementing HRI as a distinct field (Goodrich and Schultz, 2008, Sheridan, 

1992). 

 

The revolution in robotics enabled factories to automate hazardous and repetitive tasks, 

greatly enhancing productivity and improving safety on the assembly line (Engelberger, 

2012), such as performing pick-and-place operations, collaborative tasks, and 

inspection-related activities (Javaid et al., 2022). The success of Unimate marked the 

beginning of widespread industrial automation and set the stage for future 
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advancements in robotics. In recent years, collaborative robots, or cobots, have made 

significant strides in industrial automation. Unlike traditional industrial robots that 

operate in isolated environments, cobots are designed to work safely alongside human 

workers. Rethink Robotics' Baxter and Sawyer robots  are prime examples of this new 

generation of robots (Rosenbaum, 2022 , Guizzo, 2015 ). These cobots feature 

advanced sensors and intuitive programming interfaces, allowing them to assist with 

various tasks on the factory floor, such as assembly, packaging, and quality control 

(Cremer et al., 2016, Javaid et al., 2022, Liu et al., 2024). By handling repetitive and 

precision tasks, the intention behind the development of cobots is to enhance 

productivity while creating a safer working environment for human workers. The 

history of HRI also includes the development of military and exploration robots 

designed to undertake dangerous and complex tasks. NASA's Mars rovers, such as 

Spirit, Opportunity, and Curiosity, have demonstrated advanced HRI capabilities 

through their interactions with ground control teams. These robots navigate challenging 

terrains, conduct scientific experiments, and send valuable data back to Earth, 

showcasing the potential of robots in exploration and defense (Williford et al., 2018).  
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In the past, issues related to robot autonomy have mainly focused on safe interaction 

with the physical environment, but the growth of the field of personal robots acting in 

human environments has led to a greater need for robots to act on the social and 

emotional aspects of interaction (Lindblom and Andreasson, 2016). In 2000, Honda 

introduced ASIMO, a humanoid robot designed to assist with everyday tasks and 

interact socially with humans. ASIMO could walk, run, navigate stairs, and understand 

human gestures and commands, showcasing the potential for robots to operate in human 

environments (Sakagami et al., 2002). Around the same time, Sony launched AIBO 

(figure 2.4), an autonomous robotic pet that responded to voice commands and 

exhibited playful behaviors, demonstrating how robots could provide emotional 

companionship (Paws, 2018). This marked a significant shift in robotics, as robots 

began to be seen not just as tools for manufacturing, but as companions and assistants 

Figure 2.3 Unimate robot. Source: (IEEE, 1961). 
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in daily life.  

 

In addition to industrial and exploration applications, HRI has made significant 

contributions to the healthcare sector. Robots are now being used to assist in surgeries, 

rehabilitation, and eldercare, providing significant benefits in terms of precision, 

consistency, and personalized care. Surgical robots, such as the da Vinci Surgical 

System, allow surgeons to perform minimally invasive procedures with enhanced 

precision and control. Rehabilitation robots help patients recover mobility and strength 

through guided exercises, while social robots provide companionship and support to 

elderly individuals, improving their quality of life (Silvera-Tawil, 2024). 

 

Figure 2.4 Aibo. Source: (IEEE, 1999). 
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Overall, HRI research has gradually shifted from a technology-driven focus to a user-

centred approach (e.g., safety and emotional interaction), encompassing industrial and 

social interaction domains. This shift has not only driven technological innovation but 

also highlighted a profound understanding of human-robot coexistence and the 

importance of human factors. With the rise of collaborative and socially interactive 

robots, research has expanded beyond task efficiency and precision to explore how 

robots can better adapt to human environments and enhance UX. 

 

2.2.2 Theoretical Models in HRI 

The study of HRI relies on various theoretical models to understand and enhance the 

interactions between humans and robots. Such models play a crucial role in advancing 

the design of robots capable of interacting with humans effectively and safely across 

diverse environments, although challenges remain in adapting these interactions to 

dynamic and unpredictable contexts. 

 

Trust and transparency are critical components in HRI. In HRI, according to Hancock 

et al. (2011) trust in robots is built through clear communication and predictable 

behaviour. The definition of trust is: "A multidimensional latent variable that mediates 

the relationship between past events and the former agent's subsequent decision to rely 

on the latter in an uncertain environment" (Kok and Soh, 2020). Models of trust 

emphasize the need for robots to provide real-time feedback and transparent decision-

making processes. For instance, in healthcare, surgical robots must ensure that their 

actions and decisions are visible and understandable to surgeons and patients, thereby 

fostering trust and confidence in their use (Hancock et al., 2011). Balancing 

transparency and cognitive load in human-robot interaction is crucial, as excessive 

information can overwhelm users, while insufficient information may undermine trust. 
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Research indicates that increased transparency can enhance user trust without 

significantly affecting workload (Sanders et al., 2014). However, providing too much 

information can lead to cognitive overload, adversely impacting trust. Therefore, it's 

essential to calibrate the level of transparency to optimize both trust and cognitive load 

(Ahmad et al., 2019). 

 

Theories from human-computer interaction (HCI) have significantly influenced HRI, 

particularly in understanding cognitive load and emotional engagement. Cognitive load 

theory, as discussed by Wickens (2008), helps optimize robot interfaces to reduce the 

mental effort required by users during interaction (Wickens, 2008). Reducing cognitive 

load is crucial in high-stakes environments like surgery or manufacturing, where users 

must make quick and accurate decisions. However, the application of cognitive load 

theory in HRI often assumes uniform user responses, potentially overlooking individual 

differences in cognitive capacities and task complexity. Research has shown that factors 

such as personality traits can influence cognitive workload and task performance during 

human-robot interactions. For instance, a study by Cha et al. (2023) found that while 

personality traits did not have a direct effect on task performance, they were correlated 

with variations in cognitive load and affective responses during remote robot control 

tasks (Cha et al., 2023). Similarly, emotional engagement models, such as those 

explored by Breazeal (Breazeal, 2003)(2003), provide a framework for designing 

robots capable of recognizing and responding to human emotions. While such models 

have shown promise in enhancing user acceptance and satisfaction—particularly in 

eldercare—they often rely on pre-defined emotional categories, which may not fully 

capture the nuances of human affective states. These limitations highlight the need for 

further research to refine these theories, ensuring their applicability to diverse HRI 

contexts and user groups (Breazeal, 2003). 
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Social interaction is another critical aspect of HRI, particularly in applications requiring 

natural communication, such as customer service and education. Early work by 

Dautenhahn (2007) laid the foundation for understanding social robotics, emphasizing 

the importance of conversational capabilities, facial expression recognition, and social 

cue adaptation.  (Dautenhahn, 2007b). Subsequent studies, such as Fong et al. (2003), 

have expanded on these ideas, exploring how robots can seamlessly integrate into 

human social environments (Fong et al., 2003).  Despite these advancements, achieving 

naturalistic and contextually appropriate interactions remains a significant challenge, 

particularly in diverse and multicultural settings where social norms and expectations 

vary widely. 

 

Despite significant advancements, several challenges persist in HRI theoretical models. 

First, there is a need to integrate these models more comprehensively, as current 

approaches often address isolated aspects of interaction (e.g., trust, cognitive load, or 

social cues) without considering their interdependence. For instance, the integration of 

social cue processing into trust models has been explored to achieve more natural 

human-robot interactions (Taliaronak et al., 2023).  Second, many models rely on 

controlled experimental data, limiting their applicability to real-world scenarios 

characterized by unpredictability and complexity. Experimental studies in HRI often 

face methodological constraints that threaten the validity of their interpretations, 

highlighting the need for more ecologically valid research approaches (Innes and W. 

Morrison, 2021).  Third, cultural and individual differences remain underexplored, with 

most research focusing on homogeneous user groups. Studies have shown that 

personalization and localization in robotics need to move beyond simple language 

preferences to encompass intricate details of interface design, service expectations, and 

individual and cultural communication styles (Gasteiger et al., 2023). Future research 

should aim to address these gaps by developing integrative, context-aware models that 
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account for the dynamic nature of human-robot interactions. Such efforts will be crucial 

for advancing the field and enabling robots to operate effectively in diverse 

environments (Dautenhahn, 2007a, Goodrich and Schultz, 2008). 

 

2.2.3 Evolution of Interaction Modalities 

The evolution of interaction modalities in HRI reflects significant advancements in 

technology and understanding of human needs and capabilities. This section explores 

the transition from basic command-based interactions to sophisticated multimodal 

interfaces that enhance the user experience and effectiveness of robots in various 

applications. 

 

In the early stages of HRI, interactions between humans and robots were predominantly 

command-based, relying on predefined inputs through keyboards, buttons, and simple 

programming languages. These interactions were often limited and required users to 

have technical knowledge to operate the robots effectively (Fong et al., 2003). However, 

as technology advanced, the focus shifted towards creating more intuitive and 

accessible interaction methods. 

 

The introduction of multimodal interaction, which combines multiple forms of 

communication such as voice, gesture, touch, and visual feedback, marked a significant 

milestone in HRI. Azuma discusses the role of Augmented Reality (AR) in providing 

intuitive and immersive interfaces that improve spatial understanding and interaction 

with robots. These interfaces allow users to interact with robots in a more natural and 

efficient manner, enhancing the overall user experience (Azuma, 1997). 
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Voice and gesture recognition technologies have become integral components of 

modern HRI. These technologies enable users to communicate with robots using natural 

language and body movements, making interactions more intuitive and reducing the 

cognitive load on users. For example, voice-controlled assistants like Amazon's Alexa 

and Google's Assistant use advanced speech recognition algorithms to understand and 

respond to user commands. Similarly, gesture recognition systems, such as those used 

in Microsoft's Kinect, allow users to control robots and devices through simple hand 

movements (Turk, 2014). 

 

Haptic feedback technologies have further enriched the interaction modalities in HRI 

(Milgram and Kishino, 1994). These technologies provide users with tactile sensations 

that mimic the feel of real objects, enhancing the realism and immersion of interactions. 

Milgram and Kishino emphasize the importance of haptic feedback in creating more 

engaging and effective user experiences. Haptic gloves and force feedback devices are 

widely used in medical training and remote operations to improve user precision and 

experience (Milgram and Kishino, 1994). 

 

The integration of AR and VR technologies has opened new possibilities for HRI. 

Billinghurst et al. highlight the application of AR and VR in creating immersive 

environments where users can interact with robots in real-time. AR overlays digital 

information onto the physical world, allowing users to receive contextual information 

and guidance during interactions. VR, on the other hand, creates entirely virtual 

environments where users can practice tasks and interact with virtual robots without 

physical constraints. These technologies are particularly useful in fields such as surgery, 

where precise, real-time guidance can significantly impact outcomes (Billinghurst et al., 

2015). 
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Designing for natural interaction is a key focus in HRI research. Norman emphasizes 

that intuitive and user-friendly interfaces are crucial for enhancing user experience and 

acceptance of robotic systems (Norman, 2013). Natural interaction design aims to 

mimic human behaviour and responses, making interactions with robots seamless and 

efficient. For example, robots designed for social interaction often use natural language 

processing and machine learning to understand and respond to human speech and 

gestures, creating more engaging and effective interactions  (Goodrich and Schultz, 

2007, Breazeal, 2003). 

 

While HRI research has made substantial progress in developing theoretical models and 

interaction modalities, several challenges remain unresolved. Current theoretical 

models often address isolated aspects of interaction, such as trust, cognitive load, or 

social engagement, without considering their interdependence, limiting their ability to 

capture the holistic nature of HRI (Goodrich and Schultz, 2008, Dautenhahn, 2007b). 

Furthermore, these models frequently rely on controlled experimental data, which 

restricts their applicability to dynamic, real-world environments (Innes and W. 

Morrison, 2021). The diversity of users, including cultural and individual differences, 

is also underexplored, leading to designs that may fail to meet the needs of 

heterogeneous user groups (Gasteiger et al., 2023). In terms of interaction modalities, 

significant advancements have been achieved—from command-based systems to 

multimodal interfaces incorporating voice, gesture, and AR/VR technologies (Azuma, 

1997, Billinghurst et al., 2015). However, designing for natural, context-aware, and 

efficient interactions remains a formidable challenge, particularly in manufacturing and 

other dynamic environments where cultural and individual variability influences 

interaction success (Dautenhahn, 2007b, Turk, 2014). Integrating intuitive and adaptive 

interfaces that account for diverse user capabilities and preferences further compounds 

these issues. To address these challenges, future research should focus on developing 
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integrative, User-Cantered frameworks that prioritize the role of UX in HRI. By placing 

greater emphasis on UX, researchers can create robots that are not only technically 

effective but also intuitive, accessible, and adaptable to diverse user contexts (Norman, 

2013, Breazeal, 2003). This shift toward UX-driven HRI research will enable the design 

of systems that promote trust, reduce cognitive load, and enhance overall satisfaction, 

paving the way for seamless and effective human-robot collaboration in both industrial 

and social settings (Wickens, 2008, Lee and See, 2004). 

 

While HRI has made significant strides in developing sophisticated interaction 

modalities and theoretical models, many of these frameworks remain fragmented, 

context-limited, or narrowly focused on task performance. There remains a need for 

integrative models that address cognitive, emotional, and social dynamics, particularly 

within manufacturing environments where safety and trust are critical. 

 

2.3 Fundamentals of User Experience (UX) 

2.3.1 Definition and Importance of UX 

UX refers to the overall experience a person has when interacting with a product or 

system, encompassing all aspects of the end-user's interaction, including usability, 

accessibility, and emotional response (Norman, 2013, Sauer et al., 2020, Mahlke, 2007). 

UX design is not just about creating products that are usable, but also about creating 

products that are enjoyable to use and that meet the user's needs and expectations (Kraft, 

2012, Allam and Dahlan, 2013). It includes various factors such as the interface, 

graphics, industrial design, physical interaction, and the users’ manual (Jesse, 2011, 

Hartson and Pyla, 2018). The goal of UX design is to create products that provide 

meaningful and relevant experiences to users, addressing their needs effectively while 
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ensuring a seamless and enjoyable interaction (Hassenzahl, 2010). This involves an 

understanding of psychology, design, and user research to create a holistic experience. 

 

Good UX is crucial for the success of technology and design, as it directly impacts user 

satisfaction, engagement, and loyalty. High-quality UX can lead to increased user 

retention, positive word-of-mouth, and competitive advantage (Jesse, 2011). For 

example, a well-designed website or application that is easy to navigate and meets user 

needs can enhance user satisfaction and encourage repeat usage (Nielsen and Loranger, 

2006). Conversely, poor UX can result in frustration, reduced efficiency, and 

abandonment of the product (Albert and Tullis, 2013). For example, in industrial 

settings, interfaces that are not user-friendly can lead to confusion and errors among 

operators, potentially causing production delays and safety hazards (Team, 2023a). A 

real-world example is the initial rollout of Microsoft’s Clippy, the animated paperclip 

assistant introduced in Microsoft Office 97. While designed to help users with common 

tasks, Clippy was widely criticized for being intrusive, offering irrelevant suggestions, 

and interrupting workflows. Users found its behaviour frustrating and distracting, 

leading to negative public perception and widespread abandonment of the feature. 

Microsoft eventually retired Clippy from Microsoft Office in the early 2000s, 

acknowledging its failure as a user-friendly assistant (Balevic, 2024). The significance 

of UX is also evident in various successful products and companies that prioritize UX, 

such as such as Apple and Google, known for integrating intuitive interfaces and user-

centred design into their product (Kujala et al., 2011). This contrasts with companies 

like BlackBerry, which, despite early leadership in the smartphone market, failed to 

adapt to changing user experience trends in the early 2010s. Its devices, while known 

for secure email and physical keyboards, lagged in offering intuitive touch interfaces 

and app ecosystems compared to competitors like Apple’s iPhone. This lack of focus 

on user-friendly design and evolving UX trends contributed to BlackBerry’s dramatic 
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decline in market share and relevance (Bharath et al., 2023). Thus, investing in UX 

design can yield significant returns by improving user satisfaction and business 

outcomes (Donaire, 2009), such as Apple. Apple's emphasis on design and user 

experience has been a driving force behind its success and global influence. This focus 

has resulted in iconic products that define industries and contribute to Apple's 

profitability (Aksu, 2024). So good UX also can reduce the need for extensive customer 

support, as users are less likely to encounter problems that require assistance (Albert 

and Tullis, 2013). 

 

The field of UX has evolved significantly from its early stages, where the focus was 

primarily on usability. The concept of UX originated from the field of IT products, 

with its foundation laid in the 1980s through the development of Human-computer 

Interaction (HCI) principles. These principles emphasized the importance of user-

centred design and cognitive ergonomics, initially aimed at improving the usability and 

effectiveness of IT systems and interfaces (Johnson, 2020). The 1990s saw the rise of 

user-centred design methodologies, which focused on involving users throughout the 

design process to ensure products met their needs (Norman, 1995). During this period, 

the concept of usability became central, with researchers like Jakob Nielsen developing 

heuristics for usability evaluation, these heuristics are commonly applied in heuristic 

evaluations, where experts systematically assess a product against established usability 

principles. The method involves evaluators independently inspecting the interface to 

identify issues that violate these heuristics, such as consistency, error prevention, or 

aesthetic simplicity(Nielsen, 1994a). A deeper understanding of human behaviour, 

supported by fields such as psychology and neuroscience, has highlighted the 

importance of emotions in decision-making and user satisfaction. Studies have shown 

that emotional engagement can influence long-term user loyalty and product adoption 

(Hassenzahl and Tractinsky, 2006). More recently, the focus has expanded to include 
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emotional and aesthetic aspects of user interaction, recognizing that positive emotional 

experiences can enhance overall satisfaction and brand loyalty (Hassenzahl, 2010). This 

shift has led to the incorporation of fields such as psychology and sociology into UX 

research and design. Key milestones in the development of UX as a field include the 

formalization of usability principles by Nielsen, the rise of interaction design as a 

discipline, and the integration of UX practices into agile and lean development 

processes (Gothelf, 2013). The integration of UX practices into agile and lean 

development processes marked a turning point in how UX was incorporated into 

product development. Jeff Gothelf’s work on "Lean UX" highlighted the importance of 

iterative, collaborative approaches that align UX design with rapid prototyping and 

frequent user feedback. This approach enabled teams to address user needs more 

effectively while maintaining the flexibility to adapt designs based on real-world 

insights(Gothelf, 2013). By embedding UX into agile methodologies, organizations 

could better ensure that usability, accessibility, and user satisfaction were prioritized 

throughout the development lifecycle. The advent of mobile computing and the 

proliferation of digital interfaces have further driven the evolution of UX, highlighting 

the need for responsive and adaptive design (Wroblewski, 2012). Mobile devices, with 

their smaller screens and varying resolutions, introduced unique challenges for 

designers. Traditional fixed-layout interfaces were no longer sufficient to meet the 

needs of users who interacted with products across different devices. This shift 

necessitated the development of responsive design—a methodology that ensures 

interfaces adapt seamlessly to different screen sizes and orientations, providing a 

consistent user experience across devices. Ethan Marcotte's 2011 introduction of 

responsive web design principles, including flexible grids, fluid images, and media 

queries, became a cornerstone for modern UX design in the mobile era (Marcotte, 2017). 

These milestones collectively transformed UX from a niche focus on usability into a 

comprehensive discipline that integrates psychology, design, and engineering to create 

meaningful and engaging UX.  
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2.3.2 Key Principles and Frameworks of UX Design 

User Experience (UX) design is grounded in several key principles that guide the 

creation of intuitive, efficient, and enjoyable interactions between users and products. 

These principles have evolved over time, incorporating foundational concepts like 

usability while expanding to encompass modern frameworks such as user-centered 

design  and effective feedback mechanisms(Nielsen, 1994a, Gould and Lewis, 1985, 

Shneiderman, 1980). Usability refers to how effectively, efficiently, and satisfactorily a 

user can interact with a product. Key aspects of usability include ease of learning, 

efficiency of use, and error frequency and severity. Usability ensures that users can 

achieve their goals with a product without encountering significant obstacles (Nielsen, 

1994a). A product with high usability is intuitive, allowing users to perform tasks with 

minimal effort and confusion. The design should anticipate user needs and provide clear 

paths to achieve them. Simplifying complex processes and reducing the number of steps 

required to complete a task can significantly enhance usability (Donaire, 2009). Jakob 

Nielsen’s heuristics, such as visibility of system status, match between system and real 

world, and user control and freedom, are foundational principles that guide usability 

practices (Nielsen, 1994a). 

 

User-centered design (UCD) is a foundational framework that operationalizes key UX 

principles, such as usability and empathy, by placing the user at the center of the design 

process. It ensures that user needs, preferences, and limitations are systematically 

addressed throughout the design lifecycle. This approach involves continuous user 

involvement through techniques such as personas, user journeys, wireframes, 

prototypes, and usability testing (Pea, 1987). UCD emphasizes the importance of 

iterative design, where feedback from users is used to refine and improve the product 
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(Gould and Lewis, 1985). The ultimate goal of UCD is to create products that are not 

only functional but also provide a satisfying and enjoyable user experience. 

 

Feedback is a foundational principle of UX design, derived from early research in 

human-computer interaction (HCI) that emphasized the importance of communication 

between systems and their users  (Shneiderman, 1980). Effective feedback keeps users 

informed about system status, guides them toward desired actions, and helps them 

recover from errors. It can take various forms, such as visual indicators (e.g., progress 

bars), auditory cues (e.g., error sounds), or haptic feedback (e.g., vibrations on 

touchscreens) (Shneiderman, 1980). Providing feedback not only enhances usability 

but also supports user confidence by ensuring transparency in interactions. For example, 

visual feedback in e-commerce platforms, such as a confirmation message after placing 

an order, reassures users that their action has been successfully completed. Similarly, 

error prevention strategies, like requiring confirmation before performing irreversible 

actions, reduce the likelihood of mistakes and improve user satisfaction  (Shneiderman 

and Plaisant, 2010). When errors do occur, providing informative error messages that 

explain the problem and suggest a solution is crucial for helping users recover from 

mistakes. 

 

In addition to traditional principles like usability and feedback, recent advancements in 

UX design have introduced new frameworks and approaches that address evolving user 

needs and expectations. Microinteractions, for instance, focus on small, purposeful 

responses to user actions, such as animations or sound cues, which enhance feedback 

by making interactions more engaging and intuitive (Saffer, 2013). Similarly, 

anticipatory design leverages artificial intelligence to predict user needs, enabling 

systems to provide proactive assistance. For example, predictive algorithms in 

industrial systems can optimize workflows by suggesting the next step based on real-
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time data (Maeda, 2006). Modern UX design also emphasizes emotional and inclusive 

dimensions. Emotion-centered design highlights the importance of fostering positive 

emotional experiences, ensuring products not only meet functional requirements but 

also create a sense of delight and satisfaction (Hassenzahl, 2010). Meanwhile, inclusive 

design prioritizes accessibility and diversity, employing multi-modal feedback 

mechanisms—such as combining visual, auditory, and haptic feedback—to 

accommodate users with varying abilities and preferences (W3C, 2018). Ethical 

considerations have also gained prominence in recent years. The avoidance of dark 

patterns, which manipulate users into unintended actions, has become a critical aspect 

of ethical design practices. Instead, persuasive design aims to influence behavior 

positively, using techniques like progress indicators or gamification to motivate users 

while respecting their autonomy (Fogg, 2002 ). These emerging principles and theories 

demonstrate how UX design continues to evolve, addressing the complex interplay 

between functionality, emotion, and ethics. By integrating these modern approaches, 

designers can create systems that are not only efficient and intuitive but also inclusive, 

engaging, and aligned with user values. 

 

2.3.3 Cognitive Aspects of UX 

Designing effective user experiences requires not only addressing visual and functional 

aspects but also considering how users process information and interact with systems 

cognitively (Norman, 2013, Shneiderman and Plaisant, 2010). Cognitive aspects of UX 

focus on how mental effort, memory, and internal representations shape user behavior 

and decision-making (Sweller, 1988, Baddeley, 1992, Johnson-Laird, 1983). By 

understanding these cognitive processes, designers can create interfaces that are 

intuitive, reduce mental strain, and align with user expectations (Hassenzahl, 2010). 
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Cognitive load refers to the amount of mental effort required to process information 

and perform tasks. In the context of UX design, minimizing cognitive load is crucial to 

ensure users can efficiently interact with a product without becoming overwhelmed or 

frustrated (Sweller, 1988, Nielsen, 1994a, Norman, 2013). In 1988, Sweller's Cognitive 

Load Theory identifies three types of cognitive load: intrinsic, extraneous, and germane. 

Intrinsic load is related to the complexity of the information itself, extraneous load is 

associated with how the information is presented, and germane load pertains to the 

effort put into creating a schema (Sweller, 1988). UX designers aim to reduce 

extraneous cognitive load by simplifying interfaces, using clear and concise language, 

and providing visual hierarchies that guide the user’s attention effectively (Norman, 

2013). Techniques such as chunking information, using progressive disclosure, and 

maintaining consistency in design elements can significantly reduce cognitive load 

(Miller, 1956, Albert and Tullis, 2013). 

 

There are many ways to manage cognitive workload, one of which is to reduce memory 

load plays a critical role in how users interact with and learn about a product. Memory 

is believed to consist of two components: short-term memory (often referred to as 

working memory) and long-term memory (Baddeley, 1992, Cowan, 2008). Short-term 

memory is thought to hold a limited amount of information temporarily, while long-

term memory is associated with the storage of information over extended periods. These 

concepts are widely discussed in cognitive science, although their exact nature and 

mechanisms remain theoretical (Baddeley, 1992; Cowan, 2008).  Working memory has 

limited capacity and is sensitive to overload, which poses challenges in designing user 

experiences. According to Baddeley (1992), working memory can only hold a small 

amount of information at a time, making it vulnerable to cognitive strain when 

overloaded (Baddeley, 1992). Strategies like recognition over recall, where users 

recognize options rather than recall information from memory, can aid in reducing 
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cognitive load (Nielsen, 1994a). Additionally, leveraging familiarity and repetition can 

help users build long-term memory schemas, improving their efficiency and 

effectiveness when using a product. Consistent design patterns and familiar metaphors 

also facilitate quicker learning and better user retention (Shneiderman and Plaisant, 

2010). 

 

Mental models are the internal representations that users create to understand and 

interact with a system. These models are based on users' previous experiences and 

knowledge, influencing how they expect a system to work (Norman, 2014). For 

example, users familiar with traditional desktop computer interfaces might expect a file 

system on a new application to include folders, drag-and-drop functionality, and a 

search bar. If these expected elements are missing or behave inconsistently, users may 

feel frustrated or confused, as the system violates their mental model. Aligning design 

elements with common user expectations can significantly improve usability and 

reduce cognitive load (Nielsen, 1995, Norman, 2013). When designing user interfaces, 

it is essential to align the design with users’ mental models to reduce confusion and 

enhance usability. If a system behaves in ways that are consistent with users' 

expectations, it is easier to learn and use (Johnson-Laird, 1983). User research 

techniques, such as interviews and usability testing, can help designers understand users’ 

mental models and design interfaces that match their expectations. Providing clear 

affordances, using familiar icons, and maintaining consistency in navigation can 

support the development of accurate mental models (Lidwell et al., 2010). 

 

In summary, cognitive aspects such as cognitive load, memory, and mental models play 

a pivotal role in shaping user experiences.  By understanding and addressing these 

elements, UX designers can create interfaces that align with users’ cognitive 

capabilities, reducing frustration and enhancing usability.  These insights into cognitive 
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processes provide a foundation for exploring how users emotionally connect with 

systems, which is discussed in the next section. 

 

2.3.4 Emotional and Social Aspects of UX 

Emotional design focuses on creating products that elicit positive emotions and enhance 

user satisfaction. According to Norman (2007), there are three levels of emotional 

design: visceral, behavioural, and reflective (Norman, 2007). Visceral design pertains 

to the initial impact of a product’s appearance; behavioural design relates to the pleasure 

and effectiveness of use; and reflective design involves the personal meaning and value 

a user attaches to a product (Norman, 2013).  For example, consider a smartphone: its 

sleek and modern design, such as a slim body and vibrant display, appeals to users on 

a visceral level, creating a strong initial impression. At the behavioural level, the 

intuitive interface and smooth functionality, such as responsive touch gestures and easy 

access to apps, enhance the pleasure and effectiveness of its use. Reflectively, the 

smartphone might carry personal value for the user, such as being a status symbol, a 

source of entertainment, or a tool for personal productivity, which shapes their long-

term emotional attachment to the product. Emotional engagement can significantly 

influence user loyalty and brand perception (Desmet and Hekkert, 2007). Techniques 

to enhance emotional design include using aesthetically pleasing visuals, creating 

intuitive interactions, and providing rewarding feedback. Gamification elements, such 

as achievements and progress indicators, can also increase emotional engagement by 

making interactions more enjoyable and motivating (Deterding et al., 2011). 

 

Social interaction is closely linked to the emotional aspects of UX because positive 

social experiences can evoke strong emotional responses and shape users’ perceptions 

of a product (Preece et al., 2015). Social UX design considers the ways users interact 



- 41 - 

 

with each other through a product and aims to facilitate meaningful and positive social 

interactions. This involves designing features that support social connectivity, such as 

messaging, sharing, and collaborative tools (Preece et al., 2015, Boyd and Ellison, 2007, 

Biocca et al., 2003). Social presence theory suggests that higher levels of social 

presence in digital interactions can lead to greater user satisfaction and engagement 

(Biocca et al., 2003). For example, integrating social media features into applications 

can enhance social connectivity and create a sense of community among users (Boyd 

and Ellison, 2007). Ensuring privacy and security in social interactions is also critical 

to maintaining trust and comfort among users (Kramer et al., 2014). 

 

Building trust is an integral part of emotional and social aspects of UX, as it underpins 

long-term user engagement and satisfaction. Trust is particularly relevant in social 

interaction contexts, where users share personal information or collaborate with others. 

Without trust, even the most emotionally appealing or socially engaging features may 

fail to retain users. For instance, social platforms that lack transparent data policies or 

display inconsistent behaviour can erode user confidence, undermining both emotional 

attachment and social connectivity (Corritore et al., 2003). Strategies to build trust 

include providing clear and honest information, ensuring consistent and reliable 

performance, and implementing robust security measures. The appearance and 

behaviour of user interfaces also influence trust; for example, professional design and 

intuitive navigation can enhance perceived credibility (Fogg et al., 2003). Additionally, 

personalized experiences that address individual user needs and preferences can 

strengthen user relationships and foster loyalty (Hassenzahl and Tractinsky, 2006). 

Regularly updating the product with improvements and new features based on user 

feedback can also show users that their opinions are valued and that the company is 

committed to providing a high-quality experience (McKnight et al., 2002). 
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In summary, emotional and social aspects of UX are deeply intertwined and play a 

critical role in shaping user experiences. Emotional design focuses on creating positive 

feelings through aesthetics, usability, and personal relevance, while social interaction 

fosters a sense of community and belonging, both of which significantly influence user 

satisfaction and loyalty. Trust acts as a foundational element that bridges these aspects, 

ensuring users feel secure and valued in their interactions with products and other users. 

By integrating emotional, social, and trust-building strategies, UX designers can create 

holistic experiences that not only meet functional needs but also evoke lasting 

emotional connections. 

 

2.3.5 UX Evaluation and Metrics 

Usability testing is a crucial method for evaluating the effectiveness and efficiency of 

a product's user interface. It involves observing users as they interact with the product 

to identify usability issues and areas for improvement (Rubin and Chisnell, 2011). 

Common methods include task-based testing, where users complete specific tasks while 

researchers observe and record their performance and feedback. Usability testing helps 

designers understand how real users experience a product, revealing pain points and 

obstacles that might not be apparent through other forms of analysis (Nielsen, 1994a). 

Techniques such as think-aloud protocols, where users verbalize their thoughts during 

interaction, and eye-tracking, which records where users look on the screen, provide 

deeper insights into user behaviour (Lewis, 2014). Additionally, remote usability testing 

allows researchers to gather data from users in their natural environments, providing 

context-rich insights (Andreasen et al., 2007). 

 

User satisfaction is a critical metric for evaluating UX, reflecting how well a product 

meets user needs and expectations (Norman et al., 1998). Surveys and questionnaires 
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are common tools for gathering user feedback on satisfaction. The System Usability 

Scale (SUS) is a widely used questionnaire that provides a quick and reliable measure 

of usability (Brooke, 1996a). The SUS consists of 10 items rated on a five-point Likert 

scale, covering various aspects of usability, including ease of use and satisfaction. 

Additionally, the Net Promoter Score (NPS) measures user loyalty by asking users how 

likely they are to recommend the product to others (Reichheld, 2003). The NPS 

categorizes respondents into promoters, passives, and detractors, providing a 

straightforward metric for gauging user loyalty. Collecting qualitative feedback through 

open-ended survey questions or user interviews can also provide valuable insights into 

user satisfaction and areas for improvement (Albert and Tullis, 2013). Tools like the 

User Experience Questionnaire (UEQ) and the After-Scenario Questionnaire (ASQ) 

can also be used to assess different dimensions of user satisfaction (Lewis, 1991, 

Laugwitz et al., 2008). The UEQ, for example, covers six dimensions: attractiveness, 

perspicuity, efficiency, dependability, stimulation, and novelty, offering a 

comprehensive view of the user experience (Laugwitz et al., 2008). 

 

Performance metrics and analytics provide quantitative data on how users interact with 

a product. Key performance indicators (KPIs) such as task completion rates, error rates, 

and time on task help assess the efficiency and effectiveness of the user interface (Albert 

and Tullis, 2013). Analytics tools like Google Analytics or custom-built solutions can 

track user behavior, such as page views, click paths, and drop-off points, providing 

insights into how users navigate the product (Clifton, 2012). Heatmaps and session 

recordings can visualize user interactions, highlighting which areas of the interface 

receive the most attention and where users encounter difficulties (Boag, 2014). 

Combining these quantitative metrics with qualitative insights from usability testing 

and user feedback offers a comprehensive view of the user experience (Albert and Tullis, 

2013). Tools like Crazy Egg and Hotjar are popular for their heatmap and session 
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recording capabilities, providing valuable visual data on user interactions (Boag, 2014). 

 

Heuristic evaluation is an expert review method where usability experts evaluate a 

product against a set of established usability principles, known as heuristics (Nielsen 

and Molich, 1990). This method is efficient for identifying usability problems early in 

the design process (Nielsen and Molich, 1990). Jakob Nielsen’s ten heuristics for user 

interface design, such as visibility of system status, match between system and real 

world, and user control and freedom, provide a structured framework for evaluation 

(Nielsen, 1994b). Heuristic evaluations can uncover usability issues that might not be 

detected through user testing alone, offering a valuable complement to other evaluation 

methods (Nielsen, 1994b). Additionally, combining heuristic evaluation with cognitive 

walkthroughs can enhance the depth of the usability analysis by focusing on user goals 

and problem-solving processes (Spencer, 2000). 

 

UX scorecards are a method for systematically evaluating and comparing the user 

experience across different products or versions. They provide a structured way to 

assess various aspects of UX, such as usability, accessibility, performance, and user 

satisfaction (Sauro and Lewis, 2016). Scorecards typically use a combination of 

qualitative and quantitative measures to provide a holistic view of the user experience. 

They can be used to track improvements over time, benchmark against competitors, 

and communicate the state of the UX to stakeholders (Sauro and Lewis, 2016). UX 

scorecards can be tailored to the specific needs of a project, focusing on the most 

relevant metrics and KPIs (Albert and Tullis, 2013). The scorecards can include metrics 

like the SUS, NPS, and specific performance metrics relevant to the product, providing 

a comprehensive evaluation tool. 
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A/B testing, or split testing, is a method used to compare two versions of a product to 

determine which one performs better. It involves randomly assigning users to different 

versions and measuring their interactions to assess which version yields higher 

engagement, satisfaction, or other desired outcomes (Kohavi et al., 2009). A/B testing 

provides empirical evidence about which design elements are more effective, allowing 

for data-driven decision-making (Siroker and Koomen, 2015). This method is 

particularly useful for optimizing specific features or elements of a product, such as 

call-to-action buttons, headlines, or page layouts (Kohavi et al., 2009). Advanced A/B 

testing tools like Optimizely and VWO (Visual Website Optimizer) provide robust 

platforms for conducting experiments and analysing results (Siroker and Koomen, 

2015). 

 

Journey mapping and service blueprinting are techniques used to visualize and analyse 

the user experience across different touchpoints and interactions with a product or 

service. Journey mapping involves creating a visual representation of the user’s journey, 

highlighting key interactions, pain points, and emotional highs and lows (Stickdorn and 

Schneider, 2012). Service blueprinting extends this by mapping out the behind-the-

scenes processes and systems that support the user journey, providing a comprehensive 

view of the user experience and operational context (Bitner et al., 2008). These 

techniques help identify opportunities for improving the user experience and optimizing 

service delivery. 

 

Hedonic quality refers to the pleasure and enjoyment users derive from a product, while 

pragmatic quality relates to the product’s functionality and usability (Hassenzahl, 2001). 

Both aspects are essential for a comprehensive evaluation of UX. The AttrakDiff 

questionnaire is a tool designed to measure both hedonic and pragmatic qualities of a 

product. It includes pairs of opposite adjectives that users rate, providing insights into 
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how users perceive both the usability and the enjoyment aspects of the product 

(Hassenzahl et al., 2000). Incorporating hedonic and pragmatic quality evaluations 

helps ensure that the product not only meets functional requirements but also provides 

a satisfying and enjoyable user experience (Hassenzahl and Monk, 2010). Hedonic 

qualities often address users' emotional and aesthetic needs, enhancing their overall 

experience and satisfaction (Tractinsky et al., 2000). Meanwhile, pragmatic qualities 

ensure the product is efficient, reliable, and functional, meeting users' practical needs 

(Jordan, 2000). 

 

Although numerous frameworks and principles of UX design exist, most are developed 

for desktop or mobile applications and lack the specificity required for high-stakes, 

real-time industrial contexts. Current UX literature insufficiently addresses the 

psychosocial and cognitive demands unique to human-robot collaboration in 

manufacturing. 

 

2.4 Key Dimensions of User Experience in HRI 

The UX in HRI is multi-faceted and involves various dimensions that collectively 

influence how users perceive and interact with robots. Understanding these key 

dimensions is crucial for designing effective and user-friendly robotic systems. This 

section explores several critical aspects of UX in HRI, including performance, cognitive 

load, emotional and social connection, trust and safety, and methods for assessing and 

measuring UX. 
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2.4.1 Performance 

Performance is one of the most extensively evaluated factors in HRI studies, referring 

to how users execute tasks in collaboration with robotic systems (Bethel and Murphy, 

2010, van den Brule et al., 2014, Chanel et al., 2020). User performance is shaped by 

individual capabilities—such as interface complexity, attention, and flexibility—as 

well as the human factors embedded in the system's design. A human-centred approach 

to HRI highlights the importance of incorporating performance considerations into 

system evaluations. Performance-related indicators, which directly or indirectly reflect 

user performance, offer valuable insights into human factors and the broader UX. 

 

Among the various indicators used to evaluate system performance and user interaction, 

error frequency consistently emerges as one of the most commonly assessed metrics. It 

plays a pivotal role in measuring task efficiency, often serving as a benchmark for 

comparing different interface designs or interaction methodologies. Studies such as 

Daniel et al. (2013) emphasize the relevance of the number of interactions performed, 

which not only highlights the efficiency of task execution but also pinpoints potential 

flaws in the user interface, such as poorly designed input fields or confusing navigation 

structures. For instance, in their analysis of a data entry system, Daniel et al. observed 

that an increase in interaction steps often correlated with a higher incidence of input 

errors, suggesting that interface complexity is a critical factor influencing user 

performance (Daniel et al., 2013). Similarly, errors have been examined in depth by 

Almeida et al. (2020), who categorized mistakes based on their occurrence during task 

execution. Their findings underscored that errors often arise due to misaligned user 

expectations and inadequate system feedback. For example, in their study on industrial 

robotics interfaces, they demonstrated that simplifying visual feedback mechanisms 

significantly reduced error frequency, thereby improving task accuracy and user 
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satisfaction. These studies collectively establish error frequency and interaction metrics 

as essential tools for identifying areas of improvement in interface design, particularly 

in complex or high-stakes environments (Almeida et al., 2020). 

 

Robot idle time, assessed in studies by Lasota et al. (Lasota and Shah, 2015) and 

Hietanen et al. (Hietanen et al., 2020), measures the duration for which robots remain 

inactive, indicating inefficiencies in task synchronization.  Correspondingly, person idle 

time, evaluated by Lasota et al. (Lasota and Shah, 2015), reflects the period during 

which human operators are inactive, offering insights into task allocation and human-

robot integration.  Variability in production times, identified by Colim et al.(Colim et 

al., 2021), assesses the consistency of task execution, serving as an indicator of system 

stability and predictability. 

 

Additionally, production rate, also evaluated by Colim et al. (Colim et al., 2021), 

quantifies the number of items produced within a specific time frame, such as units per 

hour, highlighting the system's operational efficiency.  Lastly, the ratio of task 

completion time with and without robotic assistance, examined by Beschi et al. (Beschi 

et al., 2020), evaluates the impact of robot movements on human productivity, 

particularly during unsynchronized tasks.  This measure helps determine whether 

robotic systems enhance or impede task efficiency in collaborative scenarios. By 

analysing these performance indicators, researchers gain a holistic understanding of 

how system design influences user performance, task outcomes, and overall operational 

efficiency. 
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2.4.2 Emotional and Social Connection 

Emotional engagement is critical in HRI, particularly in contexts such as healthcare, 

education, and customer service. According to Dautenhahn, sociable humanoid robots 

are designed to engage with users on an emotional level using techniques such as facial 

expression recognition, tone of voice analysis, and context-aware behaviours 

(Dautenhahn, 2007b). These robots create meaningful interactions by responding to 

users' emotional states, enhancing the overall user experience (Dautenhahn, 2007b). 

For instance, in eldercare settings, robots can detect and respond to the emotional needs 

of residents, providing companionship and improving their quality of life (Kidd and 

Breazeal, 2008). 

 

Social presence refers to the extent to which a robot can create a sense of being with a 

social entity. Studies such as those by Wada and Shibata highlight the importance of 

social presence in HRI, showing how robots designed to exhibit human-like behaviours 

foster stronger social connections (Wada and Shibata, 2007). Robots that mimic human 

gestures, maintain eye contact, and adapt their behaviour based on social cues are more 

likely to be accepted and trusted by users (Wada and Shibata, 2007). Research by 

Bartneck et al. demonstrates that robots with high social presence can significantly 

improve user satisfaction and engagement (Bartneck et al., 2009). 

 

The social and emotional capabilities of robots significantly influence their acceptance 

and effectiveness in various applications. A study by Li found that robots capable of 

expressing emotions and understanding social cues are more likely to be accepted in 

domestic environments (Li, 2015). This acceptance is crucial for the successful 

integration of robots in daily life, as it determines how comfortably users can interact 

with them (Li, 2015). Additionally, social robots in educational settings have been 
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shown to enhance learning outcomes by creating a supportive and interactive 

environment for students (Vogt et al., 2017). 

 

In healthcare, social robots play a vital role in providing emotional support and 

companionship to patients. A study by Broadbent et al. demonstrated that patients 

interacting with socially capable robots experienced reduced anxiety and improved 

overall well-being (Broadbent et al., 2009). These robots, equipped with the ability to 

recognize and respond to patient emotions, provided personalized interactions that 

addressed the emotional needs of patients (Broadbent et al., 2009). Additionally, 

research by Wada and Shibata demonstrated that elderly residents interacting with 

social robots experienced reduced feelings of loneliness and increased social interaction, 

contributing to their overall well-being (Wada and Shibata, 2007). 

 

Despite the advancements in emotional and social robotics, challenges remain. 

Designing robots that can accurately interpret and respond to a wide range of human 

emotions is complex and requires sophisticated algorithms and sensors (Breazeal et al., 

2016). Additionally, cultural differences in emotional expression and social norms must 

be considered to ensure that robots are effective and acceptable across different contexts 

(Nomura et al., 2008). Future research should focus on improving the emotional 

intelligence of robots and exploring new ways to enhance their social presence and 

engagement capabilities. Advances in machine learning and affective computing could 

provide new opportunities for developing robots that can understand and respond to 

complex emotional states more effectively (Picard, 1999). 
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2.4.3 Trust and Safety 

Trust is fundamental to the acceptance and effective use of robots. Hancock et al. 

highlight that trust in robots is influenced by factors such as the robot's performance, 

transparency, and reliability (Hancock et al., 2011). Users are more likely to trust robots 

that perform consistently and provide clear, understandable feedback (Hancock et al., 

2011). Trust is particularly important in high-stakes environments like healthcare and 

industrial automation, where errors can have significant consequences (Hancock et al., 

2011). 

 

Several factors influence trust in HRI. According to Lee and See, these factors include 

the robot's reliability, predictability, and transparency. Reliability refers to the robot's 

ability to perform tasks accurately and consistently over time. Predictability involves 

the robot behaving in ways that users can anticipate based on previous interactions. 

Transparency is the degree to which the robot's actions and decision-making processes 

are understandable to the user (Lee and See, 2004). Studies have shown that enhancing 

these factors can significantly increase user trust and satisfaction (Desai et al., 2012). 

For example, robots that clearly explain their actions and provide feedback can help 

users understand and anticipate their behaviours, leading to greater trust (Desai et al., 

2012). 

 

Safety is paramount in HRI, particularly in environments where robots and humans 

interact closely. Robots must be designed to prevent accidents and injuries. Riek 

discusses the importance of incorporating safety measures such as collision detection 

and avoidance, emergency stop mechanisms, and compliant control systems. These 

measures ensure that robots can operate safely even in dynamic and unpredictable 

environments (Riek, 2016). For instance, in collaborative manufacturing settings, 
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robots equipped with sensors and adaptive control systems can detect human presence 

and adjust their actions accordingly to avoid collisions (Colgate et al., 1996). 

 

Healthcare is a field where trust and safety are critical. For example, surgical robots 

like the da Vinci Surgical System are designed with multiple safety features, including 

redundant control systems, real-time monitoring, and precise movement control, to 

ensure patient safety (Lanfranco et al., 2004). These features help build trust among 

surgeons and patients, leading to broader acceptance and adoption of robotic surgery. 

Additionally, social robots in healthcare settings must be designed to interact safely 

with vulnerable populations, such as the elderly or children, ensuring that their 

interactions are supportive and non-threatening (Broadbent et al., 2009). 

 

Autonomous vehicles (AVs) represent another area where trust and safety are 

paramount (Adnan, 2024). Studies have shown that users' trust in AVs is influenced by 

the vehicle's ability to provide clear information about its actions and ensure the safety 

of its passengers (Schoettle and Sivak, 2014). AVs equipped with advanced sensors, 

real-time data processing, and machine learning algorithms can predict and respond to 

road conditions more effectively, enhancing both safety and trust (González et al., 2015). 

Ensuring that AVs can handle complex driving scenarios and communicate their 

intentions to passengers and other road users is critical for their widespread adoption 

(Schoettle and Sivak, 2014). 

 

Despite advancements in enhancing trust and safety in HRI, challenges remain. One 

significant challenge is balancing robot autonomy with the need for human oversight. 

Over-reliance on automation can lead to complacency and reduced situational 

awareness among human operators (Schoettle and Sivak, 2014). Another challenge is 
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designing robots that can adapt to diverse user needs and preferences while maintaining 

high safety standards. Future research should focus on developing more sophisticated 

models of trust and safety that account for the dynamic nature of HRI and the evolving 

capabilities of robotic systems (Hancock et al., 2011). Additionally, integrating ethical 

considerations into the design and deployment of robots will be crucial to ensure that 

they operate in ways that are aligned with societal values and expectations (Lin et al., 

2011). 

 

Designing for a positive UX in HRI involves a structured process known as the user 

experience design workflow (Marcus & Wang, 2017). This workflow provides a 

systematic approach to understanding and addressing user needs, ensuring that robotic 

systems are not only functional but also user-friendly and satisfying to interact with. 

The workflow typically includes the following stages: user research (Baxter et al., 

2015), problem definition and goal setting (Norman, 2013), conceptual design and 

prototyping (Arnowitz et al., 2010), testing (Nielsen, 1994a) and iteration and 

implementation and validation (Preece et al., 2015). This workflow serves as a guiding 

framework for ensuring that UX considerations are deeply integrated into the design 

and functionality of product or systems (Deaton, 2003). By applying these principles, 

researchers and designers can address critical UX dimensions like trust, safety, and 

cognitive load, ultimately creating more effective and intuitive HRI.  In summary, this 

research is driven by the need to systematically address these challenges through a user-

centred approach to HRI design and evaluation. By bridging the gap between robotic 

capabilities and human expectations. 

 

Despite the diversity of UX measurement instruments, such as SUS, UEQ, and 

AttrakDiff, they often lack relevance to the complexities of HRI in manufacturing. 

These tools are typically not designed to assess trust, safety, or cognitive load in 
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physically dynamic, multi-agent environments, which are central to industrial HRI. 

This shortcoming underscores the necessity of domain-specific evaluation approaches. 

 

2.5 Research Gap and Motivation 

Despite the increasing integration of collaborative robots into manufacturing 

environments, there remains a notable disconnect between technical system design and 

human-centered evaluation. Most existing studies on Human-Robot Interaction (HRI) 

emphasize performance optimization and safety compliance, while relatively few 

address the broader UX from the perspective of cognitive, emotional, and social factors. 

This gap limits the effective deployment and user acceptance of robotic systems in real-

world industrial contexts. 

 

Furthermore, although a range of UX assessment tools exists—such as the SUS, UEQ, 

and AttrakDiff—these instruments were originally developed for general HCI scenarios. 

As such, they do not fully capture the unique demands of HRI in manufacturing, 

particularly regarding cognitive workload, operator trust, emotional engagement, and 

real-time adaptability in shared physical spaces. 

 

In addition, the theoretical models of HRI often treat key concepts such as trust, 

cognitive load, and social interaction as isolated constructs, without adequately 

accounting for their interdependence in high-stakes, collaborative settings. This 

fragmentation hinders the development of cohesive, empirically grounded evaluation 

frameworks. 

 

Therefore, this research is motivated by the urgent need to develop a domain-specific 



- 55 - 

 

UX assessment framework tailored to manufacturing HRI. Such a framework must 

incorporate interdisciplinary insights and be validated through empirical studies to 

ensure it reflects the complex realities of industrial work environments. Addressing this 

research gap not only contributes to academic discourse but also provides practical tools 

for improving the design and deployment of collaborative robotic systems. 

 

2.6 Summary 

This chapter reviewed the key theoretical foundations and empirical developments 

related to HRI and UX, with a particular focus on their application in manufacturing 

settings. It outlined how HRI has evolved through various modalities and conceptual 

models, and how UX, though well-studied in general HCI contexts, remains 

underexplored within industrial HRI. 

 

Several core dimensions of UX in HRI were identified—such as performance, cognitive 

load, emotional engagement, and trust—which are particularly relevant in complex, 

collaborative manufacturing environments. The chapter also examined a range of 

existing evaluation tools, noting that most are inadequate for capturing the nuances of 

UX in this context due to their general-purpose design and limited consideration of 

domain-specific challenges. 

 

Through this review, a critical research gap has been identified: the absence of a 

validated, domain-specific UX assessment framework tailored to the unique demands 

of HRI in industrial environments. This motivates the following chapter, which outlines 

the methodological approach taken to address this gap through the development and 

validation of a novel HRI UX Assessment Framework for manufacturing applications. 
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3.1 Introduction 

This chapter builds upon the discussions in Chapter 2, where the foundational concepts 

and challenges of HRI in manufacturing were explored. While the previous chapter 

provided a comprehensive review of the technological advancements and research gaps 

in HRI, this chapter shifts focus towards addressing the critical need for a structured 

framework to assess and enhance UX within manufacturing environments. By doing so, 

it bridges the theoretical understanding of HRI with practical implications, laying the 

groundwork for developing human-centred solutions in industrial settings. UX plays a 

pivotal role in determining the success of HRI systems, particularly in high-stakes 

environments such as manufacturing, where productivity, safety, and worker 

satisfaction are tightly interlinked (Ntoa, 2025, Peruzzini and Pellicciari, 2018, Lin, 

2018). However, as highlighted in Chapter 2, existing HRI systems often prioritize 

technical efficiency over UX, leading to suboptimal human-robot collaboration and 

limited technology adoption. To address these issues, this chapter introduces an HRI 

UX Assessment Framework specifically tailored to manufacturing contexts, designed 

to evaluate and improve the overall user experience in collaborative scenarios. 

 

In this chapter, I aim to lay the foundation for a user-centred HRI framework to evaluate 

and enhance the user experience within manufacturing environments.  Employing a 

qualitative approach, which comprise semi-structured interviews (as depicted in Figure 

3.1), I primarily recruited people from manufacturing factories to gather insights that 

directly inform the development of my assessment framework. This approach enables 

us to uncover and define the essential elements necessary to evaluate and improve the 

HRI user experience. My primary objective is to facilitate the optimization of HRI 

within the manufacturing industry through the development of my tailored HRI UX 

Assessment Framework. The specificity of my framework ensures its efficacy as an 
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instrumental resource for meeting the unique requisites of the industry. I posit that my 

methodological approach will yield theoretical and empirical guidelines for the design 

of HRI systems in advanced manufacturing settings, thereby contributing significantly 

to the discipline by promoting more effective, secure, and human-oriented interactions 

between robots and humans. 

 

The growing emphasis on tailored products and bespoke manufacturing solutions has 

intensified the need for flexibility in production systems, as companies strive to 

accommodate diverse and dynamic customer expectations  (Zhang et al., 2003).   In the 

manufacturing industry, with the increasing demand for product personalization and 

customize with the requirements for small batches and high customization production, 

traditional fixed automation robot systems, designed primarily for large-scale and 

single-product production modes, often struggle to cater for these rapidly changing 

demands (Giberti et al., 2022). Smart factories have emerged as a promising solution 

to address the growing demands for manufacturing flexibility. By leveraging advanced 

technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and real-

time data analytics, these factories enable adaptive production processes, optimized 

resource utilization, and enhanced operational efficiency (Kusiak, 2018, 

Schlechtendahl et al., 2015). However, achieving the full potential of smart factories is 

contingent upon overcoming critical challenges in HRI. As robots take on increasingly 

complex and dynamic roles within these environments, traditional modes of 

interaction—designed for static, repetitive tasks—are insufficient for addressing the 

fluid and unpredictable nature of modern production lines (Giberti et al., 2022). To 

ensure effective collaboration, new HRI paradigms must be developed, emphasizing 

intuitive communication, shared decision-making, and mutual adaptability between 

humans and robots (Ghodsian et al., 2023).  
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HRI refers to the process of communication, collaboration, and joint operation between 

humans and robots in a shared work environment (Prati et al., 2021a). Although the 

development of HRI technology (such as gesture recognition) has provided new 

possibilities for human-machine cooperation, existing research on HRI mainly focuses 

on technological challenges and solutions, with relatively less consideration of the 

importance of UX (Lindblom and Andreasson, 2016). UX refers to the feelings, 

cognition, and responses formed by users in the process of interacting with products or 

systems, directly affecting users' acceptance of technology, satisfaction with use, and 

work efficiency (Hassenzahl, 2008, Law et al., 2009). 

 

3.2 Related Works 

3.2.1 HCI in Manufacturing 

In the manufacturing sector, HRI plays a critical role in addressing the growing demand 

for product customization and enhancing manufacturing flexibility (Wang et al., 2020).  

It enables a more adaptable production line where robots can assist in tasks requiring 

precision and endurance, while humans contribute with decision-making and problem-

Figure 3.1 Semi-structured interviews in enterprises. 
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solving skills (Alessio et al., 2022). This collaboration is vital in creating efficient 

workflows that can adjust to small batches and high customization demands - a common 

challenge in modern manufacturing processes (Umbrico et al., 2022). 

 

The effectiveness of HRI in manufacturing heavily relies on the design of user 

interfaces that facilitate natural and intuitive communication between humans and 

robots (Marvel et al., 2020).  These interfaces range from visual displays, gestures, and 

speech to more advanced natural language and haptic interactions, each suited to 

different levels of interaction (Gentile et al., 2011).  For instance, graphical user 

interfaces and augmented reality interfaces are prevalent for tasks requiring coexistence, 

while more complex cooperative and collaborative tasks may benefit from speech, 

gesture, and physical interactions (Gentile et al., 2011). The choice of interface impacts 

the efficiency of human-robot teams, emphasizing the need for designs that are intuitive, 

adaptable, and capable of supporting a seamless flow of information, thereby ensuring 

safety and enhancing productivity in manufacturing environments (Prati et al., 2021b). 

 

3.2.2 Role of User Experience in Manufacturing HRI 

In the realm of manufacturing, integrating UX within HRI is crucial, especially as 

cobots become standard, designed to operate alongside humans within shared 

workspaces (Lorenzini et al., 2023).  These cobots adhere to ISO safety standards 

(Valori et al., 2021), focusing on behaviours like speed and power adjustments based 

on human proximity, yet often overlook the critical role of interfaces in facilitating 

effective human-robot communication (Ghodsian et al., 2023).  This oversight 

highlights the need for a human factors perspective in designing communication 

strategies that allow for intuitive and effective cooperation between humans and robots, 

incorporating principles from Human-Computer Interaction (HCI) and Human-
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Machine Interaction (HMI) to ensure that technological advancements in HRI 

genuinely benefit human operators (Kopp et al., 2021). For instance, studies have 

shown that poorly designed interfaces in HRI systems can increase cognitive load, 

leading to operator errors and reduced task efficiency (Goodrich and Schultz, 2007).  

 

The necessity of a structured human-centered approach in HRI design is underscored 

by the significant impact robots have on human work dynamics in manufacturing (Kopp 

et al., 2021).  This approach should prioritize clear communication and intuitive 

information exchange between operators and robots, addressing not only the technical 

but also the cognitive and psychosocial aspects of human-robot collaboration 

(Dautenhahn, 2013).  By using a human centred methodology aims to seamlessly 

integrate cobots into industrial settings, enhancing efficiency and the overall user 

experience by leveraging insights from qualitative HCI methods to inform interface 

design and interaction strategies (Apraiz et al., 2023). However, to effectively 

implement this approach, it is essential to first establish reliable tools for assessing UX 

in HRI settings. Such tools would provide a structured means of evaluating critical 

factors like usability, cognitive load, and emotional response, thereby guiding the 

design and optimization of HRI systems. This need underscores the importance of 

developing a comprehensive UX assessment framework, as detailed in the next section. 

 

3.2.3 Assessment of User Experience 

Incorporating UX into manufacturing HRI is pivotal, enhancing operational efficiency 

and user satisfaction within constrained interactions (Lorenzini et al., 2023). In the 

literature on UX, various questionnaires are instrumental in assessing the multifaceted 

nature of user interactions with systems. Beginning with an evaluation of overall 

satisfaction and system usability, the Post-Study System Usability Questionnaire 
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(PSSUQ) and the System Usability Scale (SUS) stand out for their ability to offer rapid, 

yet insightful metrics (Lewis, 2002, Brooke, 2013). These foundational assessments are 

complemented by more focused inquiries into software and interface satisfaction, as 

evidenced by the Software Usability Measurement Inventory (SUMI) (Kirakowski, 

1996) and the Questionnaire for User Interaction Satisfaction (QUIS) (Norman et al., 

1998). 

 

In the broader context of technology acceptance and comprehensive UX assessment, 

the Technology Acceptance Model (TAM) (Marangunić and Granić, 2015) provides a 

theoretical framework to predict user acceptance, while the modular evaluation of 

Components for User Experience (meCUE) questionnaire (Minge et al., 2017), the User 

Experience Questionnaire (UEQ) (Schrepp et al., 2017), and AttrakDiff (Schrepp et al., 

2017) offer a multi-dimensional exploration of user experience, encompassing 

efficiency, stimulation, and the hedonic and pragmatic quality of HRI systems. 

 

These tools highlight the multifaceted nature of UX in HRI. However, there is no 

evaluation tool that is suitable for the UX of HRI, especially in the manufacturing. The 

tools reviewed earlier, such as PSSUQ, SUS, AttrakDiff, and UEQ, provide valuable 

insights into various dimensions of UX but fall short in capturing the full complexity 

of HRI in manufacturing. For instance, tools like PSSUQ and SUS primarily focus on 

pragmatic aspects, such as usability and operational efficiency, but they lack the depth 

needed to assess how these systems impact collaboration between human operators and 

robots in dynamic and high-stakes manufacturing tasks. Similarly, while AttrakDiff and 

UEQ incorporate both pragmatic and hedonic dimensions, these tools are often too 

generic to address domain-specific concerns, such as the cognitive load associated with 

operating industrial robots, or the emotional responses triggered by physical interaction 

in manufacturing contexts. Moreover, many of these tools were originally developed 
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for general HCI scenarios, which typically involve desktop or mobile applications. 

When applied to HRI in manufacturing, they fail to account for critical factors such as 

real-time task adaptability, safety protocols, and the ergonomic requirements of shared 

workspaces. For example, the modular evaluation framework of meCUE might offer a 

balanced exploration of hedonic and pragmatic qualities but does not consider the 

hierarchical and procedural workflows inherent in industrial settings. This mismatch 

could lead to incomplete or misleading evaluations, where the tools overlook key 

aspects such as the physical and cognitive demands placed on operators or the interplay 

between human and robotic roles during collaborative tasks. Applying these tools 

without adaptation could result in significant issues. For instance, ignoring the specific 

safety and reliability concerns in manufacturing could lead to designs that compromise 

worker trust and satisfaction. Similarly, the failure to address how manufacturing 

workers learn and adapt to robotic systems might result in an underestimation of the 

training required, ultimately reducing the effectiveness of HRI implementations. These 

limitations highlight the urgent need for a domain-specific UX assessment framework 

that can integrate these unique requirements and provide actionable insights for 

improving HRI in manufacturing. 

 

3.3 Methodology 

This study adopts a qualitative approach by semi-structured interviews to investigate 

HRI (such as usability, cognitive load, efficiency, safety, trust, physical interaction, 

ergonomics and system adaptability) in manufacturing environments. And based on 

interview, I developed a pioneering HRI UX Assessment Framework tailored for the 

manufacturing industry. 
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3.3.1Research factories background 

In this study, I selected 3 different scales of manufacturing enterprises. Factory 1 which 

belongs to CITIC Dicastal (the world's largest automobile wheel hub and automobile 

chassis parts manufacturing enterprise, website: 

https://www.citic.com/ar2016/en/dicastal.php) and JIEL joint-venture factory is shown 

in Figure 3.2 (a). Factory 2 which is a small and medium-sized outdoor production 

machinery factory (HWASDAN, website: http://www.hwasdan.com/) is shown in 

Figure 3.2 (b). Factory 3 (KHM, website: http://en.cqkhm.com/) which is Cummins 

Engine key parts supplier, shows in Figure 3.2 (c). The robot completes the parts 

processing and operators checks the quality of the parts. And 3 factories have different 

levels of automation. Factory 1 achieved a high level of automation maturity with the 

assistance of ABB and FANUC in 2009. Due to the complexity and variety of its 

products, Factory 2 utilizes human-robot collaboration, with workers and Chinese 

AGVs (Automated Guided Vehicles) jointly completing assembly tasks. However, its 

automation level is low, and workers are not yet fully accustomed to working alongside 

robots. Factory 3 focuses on precision production and has achieved complete robot 

autonomous production (by Nachi) in key process parts. 

 

Figure 3.2 Pictures from the three factories where I interviewed personnel. (a) Factory 1 (b) Factory 2 

(c) Factory 3. 
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3.3.2 Participants 

In this study, 19 employees directly involved with robotic systems, ranging from 

novices to experts and spanning various manufacturing roles, were selected. A 

comprehensive selection process was employed to include all workers interacting with 

robotic systems across three distinct manufacturing plants, ensuring a diverse analysis 

of interactions stemming from various operational roles, experience levels, and 

intensities of engagement with robotic technology. Participants’ backgrounds varied in 

terms of their ages (average age is 43), education backgrounds (from high school to 

college), and genders (seventeen males, two females), ensuring diverse insights into 

HRI experiences.  Table 3.1 shows different factory operators interacted with robots in 

different ways. 

Table 3.1 The way of interacting with robots. 

 
Number of 

participants 
Interacting with robots 

Factory 1 4 
After completing the task, the operators 

reposition the robot and change the tool. 

Factory 2 8 
Operators complete the assembly task on the 

AGV, the AGV is sent to the next task flow. 

Factory 3 7 

Operators reposition robots and change tools 

while inspecting the quality of manufactured 

products. 

3.3.3 Materials 

The research design incorporates semi-structured interviews (example of semi-

structured interviews questions were shown in Table 3.2) to capture qualitative insights 
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into the experiences and perceptions of manufacturing employees regarding HRI. The 

semi-structured interview questions were developed through a systematic process to 

ensure they comprehensively addressed the research objectives related to UX in HRI 

within manufacturing environments. This process began with an extensive literature 

review to identify key themes such as usability, safety, cognitive load, and emotional 

responses, which are critical in HRI studies. Drawing on insights from existing research 

and practical industry needs, the questions were aligned with the study’s focus on 

evaluating worker interactions with robotic systems. Input from experts in robotics and 

manufacturing was sought to refine the questions, ensuring their relevance to real-world 

applications. An iterative review process within the research team further enhanced 

clarity and relevance, resulting in open-ended questions designed to elicit in-depth 

responses about physical interaction, intuitive design elements, learning processes, and 

the impacts of robotics on productivity and safety. This approach ensured that the 

questions were both theoretically grounded and practically meaningful. The interview 

guide was developed with semi-structured, open-ended questions to facilitate a flexible 

yet focused dialogue, ensuring thorough exploration of key themes such as usability, 

collaboration efficiency, and safety. With participants' consent, interviews were 

conducted and recorded audibly. The recording was transcribed into text and translated 

into English and later transcribed verbatim for a detailed thematic analysis to uncover 

recurring patterns and insights. 
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Table 3.2 Example of semi-structured interview questions. 

How do you feel about the physical interaction with the robot? 

What positive and negative impacts do you think it has had? 

During the operation, which parts of the robot do you find intuitive, and which 

parts might need improvement? 

How did you learn to operate the robot? 

During the learning process, which resources or methods were most helpful to 

you? 

What specific difficulties or challenges did you encounter when you first started 

using the robot? 

What specific changes have you noticed in your work efficiency? 

What positive or negative impacts do you think robot technology has had on 

your productivity? 

 

3.4 Result 

3.4.1 Data Processing 

The qualitative data was collected through semi-structured interviews. Analysis in 

NVivo 12 (NVivo, 2020) revealed different themes representing the aspects of HRI 

assessment experienced by participants. In the qualitative analysis conducted using 

NVivo, 28 themes were initially identified (figure 3.3), each representing a distinct 

aspect of HRI pertinent to the user experience in manufacturing environments. These 

themes encompass critical dimensions such as 'Usability,' denoting the ease and 

intuitiveness of interaction with HRI systems; ‘Adaptability,' reflecting the system's 

ability to adjust to user and environmental variables; ‘Safety,' indicating the presence 



- 68 - 

 

of protective measures for users; 'Efficiency,' relating to the system's contribution to 

productivity; along with other specific themes including 'Emotional Response,' 

'Cognitive Load,' and 'Physical Ergonomics.' This comprehensive identification ensures 

a nuanced understanding of the multifaceted HRI user experience. Each theme was 

supported by direct quotes or summaries of participant responses.  

 

 

Figure 3.3 Qualitative Data Analysis Conducted in NVivo. Including 28 themes and 

their occurrence frequencies 
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The process of condensing the themes extracted from the qualitative dataset involved a 

systematic and iterative methodology (Service, 2009). Initially, open coding was 

employed to identify preliminary themes directly from the data. This was followed by 

axial coding, where these initial themes were categorized based on their relationships 

and relevance to the study's objectives. To ensure rigor, this coding process was 

conducted independently by two researchers, followed by a consensus meeting to 

resolve any discrepancies and to refine the themes further. Subsequently, selective 

coding was applied to distill these themes into broader categories that encapsulate the 

core aspects of HRI within manufacturing contexts. This multistep process ensured that 

the final set of themes was both comprehensive and aligned with the research questions, 

providing a structured basis for the analysis.  

 

In the meticulous refinement of themes for the HRI UX Assessment Framework, my 

inquiry adopted a systematic and iterative protocol to whittle down the initial 

enumeration of 28 themes to a pivotal cadre of 12. This cautious process commenced 

with an exhaustive evaluation of the thematic occurrences across the dataset, 

underscored by their significance to user experience within HRI scenario. Intersecting 

themes—defined as those that emerged across multiple user contexts and contributed 

to more than one dimension of user experience—such as ‘Acceptance’ and ‘Emotion,’ 

were amalgamated to fortify the framework's conceptual cohesion. Conversely, themes 

that did not significantly impact UX—based on low frequency, limited relevance, or 

minimal user emphasis—such as ‘Age,’ ‘Education,’ and ‘Price,’ were excised with 

judicious precision to refine the framework’s focus. This process of distillation resulted 

in the retention of 12 core themes, which were then systematically incorporated into 5 

distinct facets, using a theory-informed thematic synthesis approach. First, the 12 

emergent themes identified through qualitative coding were reviewed in light of 

established constructs in UX and HRI literature (e.g., Norman, 2013; Hassenzahl, 2010; 
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Ahmad et al., 2019). I identified conceptual overlaps and functional relationships 

among themes to enable higher-level abstraction. For instance, themes related to 

efficiency, accuracy, and reliability were consolidated into the Operational Performance 

Facet, capturing users’ perceptions of how effectively and reliably robots supported task 

completion. Elements such as ergonomic and interaction interface design were 

conceptually clustered into the Physical Interaction Facet, reflecting the physical 

comfort, safety, and coordination during human-robot encounters. Themes addressing 

usability, ease of learning, and memory burden were mapped to the Cognitive Load 

Facet, representing the mental demands of understanding and operating robotic systems. 

User satisfaction, trust, and safety feeling informed the Emotional Response Facet, 

encapsulating users’ psychological states during interaction. Lastly, themes related to 

personalization settings were organized under the System Adaptability Facet, 

emphasizing the robot system’s ability to adapt to user needs and contextual variations. 

This categorization process involved iterative peer discussions to ensure internal 

consistency and theoretical alignment.  

(Interview data: https://github.com/tongyanzhanggithub/UX-HRI-Farmework) 

 

3.4.2 Example of Interview Data 

In the process of formulating the HRI UX Assessment Framework, interview data 

played a pivotal role in elucidating the critical dimensions of user experience in human-

robot interaction within manufacturing environments. This section aims to illustrate the 

rationale behind the delineation of the framework's facets, drawing on qualitative 

evidence from participant feedback to elucidate the genesis of each facet. It's important 

to clarify that the intention here is not to re-validate the framework with the same data 

from which it was conceived but to provide a transparent account of how participants' 

experiences and insights directly informed the framework's structure (Table 3.3). 

https://github.com/tongyanzhanggithub/UX-HRI-Farmework
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For instance, the Operational Performance Facet was informed by participants' 

testimonials regarding efficiency, accuracy, and reliability in robot-assisted tasks. 

Similarly, the Physical Interaction Facet emerged from discussions on ergonomic 

interactions and user comfort, highlighting the significance of physical aspects in user 

experience. The Cognitive Load, Emotional Response, and System Adaptability Facets 

were similarly developed, each rooted in specific participant feedback that underscored 

the importance of ease of learning, emotional factors, and system flexibility, 

respectively. 
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Table 3.3 Examples of the semi-structured interview in UX assessment facets. 

Facet Participant Feedback 

Operational Performance Facet 

Efficiency 
“For the specific line it’s used on, efficiency has 

increased by more than 30%.” 

Accuracy 

“Previously, we had issues with the assembly line, but 

now, with the robots, the quality has significantly 

improved. The defect rate used to be around 30% before, 

and now the quality rate (or pass rate) is over 90%.” 

Reliability 

“If properly trained, it’s reliable. But without proper 

training, it can be risky, perhaps only two or three out of 

ten. I’ve heard of accidents where people were injured 

due to operational errors.” 

Physical Interaction 

Ergonomics 

“The robots have significantly improved the work 

environment. Before, we used to work in uncomfortable 

postures which was quite taxing on our bodies. Now, 

with the robots, we work standing up, which is much 

more comfortable and has also improved the quality of 

our work.” 

Interaction Design 

“Comparing ABB and Fanuc robots, I find ABB’s 

interface to be more user-friendly. The setup and 

operation require fewer steps, which saves time and 

makes it easier for new operators to learn.” 

Cognitive Load Facet 

Ease of Learning “Learning the basics and getting the robot to operate 
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automatically takes about a day or two.” 

Usability 

“Using it can be frustrating. I’d rate the satisfaction as 

eight out of ten, as it can be quite troubling when it 

doesn’t work properly” 

Memory Burden 

“Its operating interface, some primary menus, secondary 

menus, those are more concise, those things are easy to 

remember. Some are not easy to operate, with some 

machine menus that you really have to press many times 

to enter, or some places are not easy to remember.” 

Emotional Response Facet 

User satisfaction “I actually really enjoy operating it.” 

Trust “I trust it quite a lot, maybe 90%.” 

Safety Feeling 

“Our automated line is enclosed with protective barriers, 

ensuring safety. Once the safety doors are opened, the 

system automatically shuts down” 

System Adaptability Facet 

Personalization settings 
“About seven or eight out of ten. Different robot brands 

have their own unique features and functions.” 

3.4.3 HRI UX Assessment Framework in Manufacturing 
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The HRI User Experience Assessment Framework, through methodical analysis, 

integrates 12 selected themes into five rigorously defined facets (Figure 3.4): 

 

Operational Performance Facet: Investigates efficiency, accuracy, and reliability of 

robot-assisted tasks, highlighting the critical role of these factors in optimizing 

manufacturing processes and outcomes. 

 

Physical Interaction Facet: Focuses on the ergonomics of human-robot interfaces, the 

design and responsiveness of interaction systems, and the importance of effective 

operation feedback, underlining the need for physical comfort and effective 

communication between humans and robots. 

 

Cognitive Load Facet: Addresses the ease of learning, usability, and memory burden 

associated with operating robotics, emphasizing the significance of intuitive design to 

Figure 3.4 An HRI UX assessment framework in manufacturing. Dotted lines repre-

sent the framework's potential for expansion to incorporate additional user experi-

ence aspects. 
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minimize cognitive strain and enhance user engagement. 

 

Emotional Response Facet: Explores user satisfaction, trust, and safety perceptions, 

acknowledging the profound impact of emotional factors on user acceptance and the 

overall success of HRI systems. 

 

System Adaptability Facet: Assesses the system's capacity for personalization and role 

differentiation, as well as the ease of conducting system upgrades and maintenance, 

underscoring the need for flexible and adaptable HRI systems. 

 

The HRI User Experience Assessment Framework, through methodical analysis, 

integrates 12 selected themes into five rigorously defined facets (Figure 3.4). Here, a 

facet refers to a higher-order conceptual category that encapsulates a group of 

interrelated UX themes sharing similar functions or psychological dimensions within 

the human-robot interaction context. These facets are designed to reflect distinct yet 

complementary domains of user experience. While conceptual boundaries were drawn 

to maintain analytical clarity, some degree of thematic overlap between facets is 

acknowledged—for example, the theme of trust may contribute to both the Emotional 

Trust Facet and Operational Performance Facet, as it relates to both affective perception 

and task confidence. These five facets group related UX themes into coherent categories. 

While some thematic intersections naturally occur, each facet is analytically distinct in 

its contribution to understanding UX in HRI.  

 

3.5 Discussion 

My exploration into optimizing HRI within the manufacturing industry, guided by my 
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tailored HRI UX Assessment Framework, reveals critical insights into enhancing 

operational efficiency and worker engagement. This framework's suitability to 

manufacturing distinguishes it from generic models, making it a potent tool for 

addressing unique industry challenges. 

 

The Operational Performance facet underscores the efficiency, effectiveness, and 

satisfaction derived from HRI systems. Theoretically, it challenges and extends current 

understandings of productivity in human-robot collaborations, The Operational 

Performance facet underscores the efficiency, effectiveness, and satisfaction derived 

from HRI systems. Interview results suggest a nuanced relationship between task 

performance and UX. Practically, insights into operational performance can guide the 

design of more responsive and intuitive HRI systems, emphasizing the balance between 

automation and human oversight. 

 

Physical Interaction addresses the ergonomic and safety aspects of HRI. It highlights 

the importance of designing interactions that minimize physical strain and maximize 

safety. This facet contributes to a growing body of literature emphasizing the physical 

harmony between humans and robots, advocating for designs that accommodate human 

physical limitations and preferences (Chen et al., 2013). 

 

The Cognitive Load facet examines the mental effort required to engage with HRI 

systems. suggesting that minimizing cognitive load can enhance user satisfaction and 

efficiency. From a practical standpoint, understanding cognitive load implications can 

lead to more intuitive system interfaces and interaction protocols, reducing barriers to 

HRI adoption. 
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Emotional Response captures the affective dimension of HRI, including feelings of 

trust, frustration, and satisfaction. I underscore the need for HRI systems to be designed 

with an understanding of human emotions, fostering positive emotional connections 

between users and robots. 

 

System Adaptability focuses on the flexibility of HRI systems to accommodate diverse 

user needs and preferences. By emphasizing adaptability as a critical component of UX. 

The practical implications of this facet lie in the development of adaptable systems that 

can cater to a broad spectrum of operational contexts and user characteristics. 

 

While the framework developed in this chapter offers a structured approach to 

evaluating UX in manufacturing HRI, its practical application requires further 

operationalization. To address this, the subsequent chapter focuses on translating the 

conceptual framework into a specialized, empirically validated UX evaluation tool. 

This transition marks a pivotal step in enabling quantitative assessment of HRI systems 

in real-world industrial contexts, building on the foundational work laid out here. 

 

3.6 Comparison with Existing Frameworks 

To contextualize our HRI-UX framework, we compare it with standard UX 

questionnaires (Table 3.4).  Notably, the User Experience Questionnaire (UEQ) is a 26-

item survey (7-point semantic scales) that measures six attributes including 

attractiveness and dependability (Schrepp et al., 2017). It is widely used for general 

interface evaluation, but it does not explicitly include dimensions like trust or cognitive 

effort.  The Post-Study System Usability Questionnaire (PSSUQ) is a 16–19 item 

survey of overall system satisfaction (Lewis, 2002). PSSUQ yields an aggregate UX 
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score and subscale scores for system usefulness, information quality, and interface 

quality. It is technology-agnostic and suited for usability studies, but again it focuses 

on pragmatic aspects (usability and satisfaction) rather than HRI-specific factors. The 

Usability Metric for User Experience (UMUX) is an ultra-brief, four-item scale aligned 

with ISO 9241-11 usability (Finstad, 2010).  UMUX correlates strongly with the 

System Usability Scale (SUS) and provides a quick usability score, but like SUS it 

essentially captures general usability and does not cover emotional or cognitive load 

factors (Brooke, 1996a). 
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Table 3.4 Comparison of UX Evaluation Frameworks in HRI Contexts. 

Framework 
Item 

Count 

Dimensions 

Covered 

Trust 

Measured 

Cognitive 

Load 

Measured 

Tailored for 

Manufacturing 

HRI 

UEQ 26 

Attractiveness, 

Perspicuity, 

Efficiency, 

Dependability, etc. 

✘ ✘ ✘ 

PSSUQ 16-19 

System 

Usefulness, 

Information 

Quality, Interface 

Quality 

✘ ✘ ✘ 

UMUX 4 
Ease of Use, 

Utility 
✘ ✘ ✘ 

Proposed 

HRI-UX 
12 

Operational 

Performance, 

Physical 

Interaction, 

Cognitive Load, 

Emotional 

Response (Trust), 

System 

Adaptability 

✔ ✔ ✔ 

 

In summary, while UEQ/PSSUQ/UMUX are proven general UX tools, none were 

designed for the nuances of industrial HRI. For instance, Lindblom and Andreasson 

note that UX factors like trust and safety are often only “briefly touched” in HRI 



- 80 - 

 

research (Lindblom and Andreasson, 2016). Standard questionnaires therefore cover 

usability and satisfaction but miss HRI-specific aspects. By contrast, our framework’s 

dimensions (especially trust and cognitive load) were derived from operator feedback 

and are thus tailored to the unique requirements of human–robot collaboration. In 

practice, this means UEQ/PSSUQ/UMUX might provide a quick usability snapshot, 

but our framework offers deeper insight into factors (e.g. trust, mental workload, 

adaptability) that directly affect performance and acceptance in manufacturing HRI. 

 

3.7 Contributions and Trust Emphasis 

The proposed framework advances UX evaluation by introducing elements not covered 

in standard tools.  It operationalizes trust as an explicit dimension of user experience.  

In our Emotional Response facet, we measure users’ trust and safety perceptions 

alongside satisfaction.      This is novel: previous work has noted that UEQ and similar 

questionnaires “have shown that UX factors are missing (e.g. Trust)”, and that trust is 

a key aspect of HRI UX that is. By embedding trust directly into the framework, we 

provide a structured method to evaluate trust in HRI – an area where prior frameworks 

offered no specific metric. Likewise, the framework’s Cognitive Load facet (ease of 

learning, memory burden) fills another gap: while UX broadly includes cognitive effort, 

common surveys usually do not measure it explicitly.  Thus, our framework contributes 

new knowledge by adding targeted measures for trust and cognitive workload in HRI 

environments.   

 

The focus of Chapter 3 was chiefly on constructing the multi-faceted assessment 

framework, rather than exclusively on trust.  However, the importance of trust emerged 

naturally through this design process. The literature review (Chapter 2) had identified 

trust in HRI as an unsolved challenge, and we confirmed this through stakeholder 
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interviews.   In other words, while developing the framework to cover all relevant UX 

aspects, we found that trust was indeed a missing dimension highlighted by both 

literature and practitioners. Therefore, the framework’s inclusion of trust is not an 

unrelated afterthought but a direct response to that gap.  Chapter 3’s outcome is the 

framework itself, but within it we explicitly address the previously recognized lack of 

trust evaluation.  This dual focus means our contribution is both the novel structure of 

the HRI-UX framework and the insight into trust’s critical role in human–robot 

interaction. 

 

3.8 Summary 

This chapter developed a pioneering HRI UX Assessment Framework tailored to the 

manufacturing industry. Through qualitative data analysis from semi-structured 

interviews, I identified and refined 12 key themes relevant to HRI UX. These themes 

were consolidated into five core facets: Operational Performance, Physical Interaction, 

Cognitive Load, Emotional Response, and System Adaptability. This framework serves 

as a structured tool for evaluating and improving HRI in manufacturing, providing 

valuable insights for both academic research and practical applications. 

 

However, while this framework represents a significant step forward, it is still in the 

preliminary stages because the refinement process from 28 to 12 items, although 

focused on capturing core themes, may have omitted nuanced factors that could emerge 

in broader manufacturing contexts. The reduction was necessary for usability and focus, 

but it also necessitates further empirical validation to ensure the framework's 

comprehensiveness and reliability across diverse settings. Future research should 

deploy a broader questionnaire derived from this framework to test its applicability and 

robustness in various manufacturing environments, ensuring that the distilled factors 
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adequately reflect the complexities of HRI.  Additionally, focusing on specific key 

factors, such as trust and safety, could reveal deeper insights into these critical 

dimensions, which play a pivotal role in fostering effective and sustainable human-

robot collaboration. 

 

Building on the foundation of this UX assessment framework, the next phase of the 

research shifts focusses to trust, a critical dimension of user experience that plays a 

pivotal role in the success of HRC. Trust is integral to fostering effective and sustainable 

partnerships between humans and robots, especially in manufacturing environments 

where safety, transparency, and reliability are paramount (Maurtua et al., 2017, 

Lindblom and Wang, 2018). Insights from the UX assessment framework highlighted 

trust as a recurring theme influencing overall user satisfaction and system adoption. As 

a result, investigating how to enhance trust in collaborative robots emerges as a logical 

next step. 
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Chapter 4  Enhancing Operator Trust in 

Human-Robot Collaboration (HRC) 

by Facial Expression 
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4.1 Introduction 

Building on the findings of Chapter 3, which emphasized the critical role of trust in 

enhancing UX in Human-Robot Interaction (HRI), this chapter delves into a specific 

strategy for fostering trust in HRC. Chapter 3 identified that while manufacturing 

flexibility necessity driven by the growing demand for product customization—

requires hybrid systems where humans and robots collaborate, the effectiveness of these 

systems heavily depends on establishing trust as a cornerstone of the interaction. 

Furthermore, it revealed the limitations of existing HRI frameworks in addressing trust-

related challenges in dynamic manufacturing environments. Insights from Chapter 3 

highlighted the need for user-centered, intuitive communication mechanisms capable 

of supporting collaborative tasks in high-customization scenarios. This chapter extends 

that discussion by investigating the potential of AR-facilitated facial expression systems 

to enhance trust in HRC, leveraging AR's immersive and context-sensitive capabilities 

to address the gaps identified in prior frameworks. 

 

As the demand for personalized and customized products continues to grow, 

manufacturing systems are increasingly required to handle diverse and dynamic 

customer requests—a capability referred to as manufacturing flexibility  (Camison and 

Lopez, 2010). Traditional cage robots, optimized for large-scale, standardized 

production, struggle to meet the evolving needs of small-batch and high-customization 

workflows (Palmarini et al., 2018a). To address these challenges, smart factories are 

shifting towards hybrid systems that integrate human and robotic collaboration, 

enabling greater adaptability and efficiency in handling complex production demands 

(Prati et al., 2021a). The concept of HRC is very relevant and holds the potential for the 

future development of smart factories. However, most research on HRC is highly 

“robot-centred”, primarily focusing on technological challenges and technical solutions, 



- 85 - 

 

while lacking considerations of human aspects (Nordqvist and Lindblom, 2018), such 

as user experience (UX) (Prati et al., 2021a). According to recent research, trust is 

considered one of the three most critical factors, namely trust, safety, and operator 

experience, that affect HRC user experiences (Maurtua et al., 2017, Lindblom and 

Wang, 2018).  

 

Facial expressions in robot design have been shown to play a pivotal role in fostering 

trust and facilitating intuitive communication between humans and robots. While many 

robots are designed without facial expressions, those equipped with expressive features 

offer several advantages. Research suggests that facial expressions enhance a robot's 

ability to convey emotional states, intentions, and feedback, making interactions more 

relatable and transparent for human users (Dunn and Schweitzer, 2005). For instance, 

facial expressions help bridge the gap in nonverbal communication, which is critical 

for establishing trust and reducing uncertainty during collaborative tasks (Krumhuber 

et al., 2007). Moreover, robots with facial expressions positively impact user 

perceptions, leading to higher levels of trust and acceptance. Studies have shown that 

users are more likely to interpret a robot’s actions and intentions correctly when facial 

expressions are used to complement verbal or physical cues (Paradeda et al., 2016). For 

example, research by Krumhuber et al. (2007) revealed that facial dynamics influence 

trust-related decision-making, such as cooperative behaviours in social experiments 

(Krumhuber et al., 2007). Additionally, animated or dynamic facial features make 

robots appear more engaging and approachable, which is especially beneficial in safety-

critical or high-stress environments  (Galinsky et al., 2020). These findings underline 

the potential of facial expressions as a tool for improving HRC system design, making 

robotic interactions more human-like and effective. 

 

The conventional approaches towards facial expressions in HRC usually rely on 
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physical screens as the delivery medium, such as the animated face used in a Baxter 

robot (Fitter and Kuchenbecker, 2016). The advent of augmented reality (AR), a 

technology characterized by the superimposing of computer images on real-world 

objects or settings through a head-mounted device (HMD) or handheld display (Shen 

et al., 2010), provides a vast opportunity for researchers and industries to explore new 

ways of information exchange in the context of HRC (Dianatfar et al., 2021). In a semi-

immersive AR environment, users can observe the real world while modelling the 

characteristics of digital products (Kaufmann and Schmalstieg, 2002). There is no need 

to model the background environment entities (Shen et al., 2010). The application of 

AR-mediated facial expressions in HRC presents a valuable research direction, 

grounded in AR’s capacity for contextualized and intuitive interaction. 

 

This chapter explores how AR may enhance trust in HRC by conveying safety-critical cues 

through facial expressions in a semi-immersive environment. The motivation for focusing on 

AR stems from its advantages over traditional screen-based approaches. Unlike fixed screens, 

which are limited by their static placement and narrow field of view, AR provides a dynamic 

and context-sensitive medium that allows digital elements, such as facial expressions, to be 

superimposed onto real-world environments in precise spatial locations (Shen et al., 2010). This 

flexibility offers an opportunity to create more intuitive and immersive communication 

channels between humans and robots, particularly in dynamic and collaborative tasks 

(Dianatfar et al., 2021). Prior research suggests that AR systems can improve task efficiency, 

reduce cognitive load, and enhance user engagement compared to traditional display 

technologies (Green et al., 2010, Alenljung and Lindblom, 2021). Additionally, AR's ability to 

integrate visual cues into the operator's field of view has been shown to improve the clarity of 

information delivery and user situational awareness (Liu and Wang, 2017). Based on these 

theoretical advantages, this chapter investigates how AR compares to traditional screens in 

delivering robot facial expressions and their impact on trust. The approach is tested through a 
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controlled experiment in which participants experience two conditions: one using an AR 

headset and the other using a screen display to observe the robot’s facial expressions during an 

HRC task. Trust is then measured using a validated questionnaire after each condition. The 

remaining sections of this chapter are structured as follows: first, a brief summary of previous 

research on the use of AR for facial expressions in HRC is provided. Next, the proposed 

paradigm for integrating AR-based facial expressions into HRC tasks is introduced, followed 

by an explanation of the trust measurement methodology. Finally, the experimental results are 

presented, along with a discussion of their implications and future research directions. 

 

4.2 Related Works 

4.2.1 Trust in HRC 

Researchers believe that reliable HRC requires trust of the robot partner (Gaudiello et 

al., 2016). Trust directly influences users’ willingness to engage with robots and their 

reliance on robot-generated outputs, such as data, suggestions, recommendations, and 

instructions, which are essential for task completion and decision-making (Hancock et 

al., 2021). For human-robot teams to function effectively, humans must believe that 

their robotic partners will act in ways that uphold the interests and welfare of the team 

(Hancock et al., 2011). Despite its importance, research on trust in industrial HRC has 

been relatively limited, with only a few studies exploring how trust develops in these 

settings (Charalambous and Fletcher, 2022). This gap is particularly significant given 

that trust is recognized as a critical factor in evaluating the UX goal framework for HRC 

(Lindblom and Wang, 2018). Building trust in Human-Robot Collaboration (HRC) has 

been a key focus in recent research, with various studies exploring different approaches 

to enhance trust. For instance, Kahn et al. (2015) found that people are generally open 

to forming close and trustworthy relationships with robots, suggesting a foundation of 
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trustworthiness that can be nurtured through design and interaction strategies (Kahn Jr 

et al., 2015).  Building on this, Palmarini et al. (2018) demonstrated that human 

confidence and trust in robots can be enhanced through the design of AR interfaces for 

HRC, which offer more intuitive and engaging interactions (Palmarini et al., 2018a). To 

address challenges in maintaining trust, Luo et al. (2021) proposed a trust repair 

framework based on human-to-robot attention transfer, providing a structured approach 

for regaining trust after errors (Luo et al., 2021). Similarly, Rabby et al. (2020) 

introduced a time-driven, performance-aware mathematical model for trust, enabling 

systematic evaluations of both human operators and robot performance (Rabby et al., 

2020). Furthermore, Körber (2018) identified key factors—such as reliability, 

transparency, controllability, and effective communication—that significantly 

influence users' trust when evaluating new automation systems (Körber, 2018).  

Together, these studies underscore the multifaceted nature of trust in HRC and highlight 

various design and evaluation strategies that can enhance or restore trust. However, 

despite these advancements, a cohesive framework that integrates these diverse 

findings into practical applications for industrial HRC remains underexplored. 

 

4.2.2 Role of Facial Expression 

Facial expressions play a critical role in nonverbal communication, serving as a 

universal language that conveys emotions, intentions, and trustworthiness (Gendron et 

al., 2018, Galinsky et al., 2020). In the context of HRC, leveraging facial expressions 

can enhance intuitive communication and foster trust between humans and robots 

(Paradeda et al., 2016, Dunn and Schweitzer, 2005). Research in human psychology 

and human-agent interaction provides foundational insights into how facial expressions 

influence trust, which can be applied to robotic design (Krumhuber et al., 2007, 

Lindblom and Wang, 2018). 
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Trustworthiness is often evaluated through facial expressions, as humans instinctively 

rely on these cues to assess the intentions and emotional states of others (Krumhuber et 

al., 2007). In human-to-human interactions, dynamic facial expressions significantly 

impact decision-making and cooperative behavior, as shown in studies like the two-

person trust game conducted by Krumhuber et al. (2007). While this research was not 

robot-specific, it highlights the fundamental role of facial expressions in building trust, 

which can be extrapolated to human-robot interaction scenarios. 

 

In the domain of robotics, expressive facial features can make robots appear more 

relatable and trustworthy, enhancing the overall user experience. Robots equipped with 

animated facial expressions can convey emotional states and task-related feedback 

more effectively, helping reduce user uncertainty during collaborative tasks (Dunn and 

Schweitzer, 2005, Galinsky et al., 2020). For instance, robots with dynamic facial 

expressions have been shown to positively influence user trust and acceptance, 

particularly in high-stress or safety-critical environments (Paradeda et al., 2016). These 

findings suggest that facial expressions can bridge the gap in nonverbal communication 

between humans and robots, promoting intuitive interactions and improved 

collaboration. 

 

The application of facial expressions in HRC often leverages technological solutions 

such as screen-based displays or AR systems. Traditional approaches, such as using 

static or animated faces on screens, have limitations in terms of flexibility and 

immersion (Fitter and Kuchenbecker, 2016). AR offers a more dynamic and context-

sensitive medium for delivering facial expressions, enabling robots to superimpose 

expressive features onto real-world environments (Shen et al., 2010). This approach has 

the potential to enhance user engagement and situational awareness, making HRC more 
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effective and satisfying. 

 

While expressive facial features can foster trust, other factors such as cultural 

perceptions, task context, and the appropriateness of expressions must also be 

considered. For example, research shows that cartoon-like appearances often increase 

perceptions of approachability and trustworthiness due to their association with 

pleasant memories and positive emotions (Sun and Botev, 2021). However, the design 

of robotic facial expressions must balance these factors with the functional 

requirements of the task to avoid creating unrealistic expectations or over-reliance on 

emotional cues (Caudwell and Lacey, 2020). 

 

In conclusion, integrating facial expressions into HRC systems presents a promising 

pathway for improving trust and communication in collaborative environments. By 

leveraging AR technologies to deliver expressive features, future research can explore 

how these systems can be optimized for diverse industrial tasks. The following sections 

will investigate the use of AR to enhance facial expressions in HRC, focusing on its 

impact on trust, task efficiency, and user satisfaction. 

 

4.2.3 Augmented Reality (AR) Solution in HRC 

Based on the review of existing research and applications, AR solutions have three main 

advantages in human-robot collaboration: increased efficiency, improved safety, and 

enhanced UX (Dianatfar et al., 2021). AR technologies can help workers complete tasks 

more quickly and accurately, simulate dangerous environments for training purposes, 

and improve the immersion and interactivity of human-robot interaction (Dianatfar et 

al., 2021). However, there are challenges related to technical costs and operability that 
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need to be addressed for the wider adoption of AR (Green et al., 2010). Green et al. 

presented an HRC system based on AR technology and evaluated its performance 

(Green et al., 2010),  in which the proposed system significantly improved work 

efficiency and reduced error rates. Compared to traditional human-machine 

collaboration methods, the AR-based system was widely accepted and positively 

evaluated by workers. 

 

Alenljung et al. (2021) introduced the user experience evaluation results of a prototype 

system for assembly instructions based on the AR technology. They found that AR 

technology has a great potential to improve user efficiency and accuracy and provide 

more intuitive and easy-to-understand guidance to follow assembly instructions. 

Amtsberg et al. designed a human-robot collaboration interface based on the AR 

technology (Amtsberg et al., 2021). This system has many advantages, such as reducing 

communication costs, improving task execution efficiency, and reducing error rates 

(Amtsberg et al., 2021). In addition, the system can dynamically adjust the 

collaboration relationship between robots and personnel according to the characteristics 

of the task and work requirements to achieve more flexible and intelligent task sharing 

(Amtsberg et al., 2021). Therefore, an AR-based Worker Support System was designed, 

consisting of an AR-based teaching system, task sequence planning and re-planning 

system, worker monitoring system, and industrial robot control system that was used 

for investigation of the possibilities of AR applications in HRC (Liu and Wang, 2017). 

However, the user experience of AR technologies is also influenced by factors such as 

system stability, user training, and technology acceptance (Alenljung and Lindblom, 

2021). 

 

Recent studies have begun to explore the integration of AR and facial expressions in 

collaborative scenarios. For example, Palmarini et al. (2018) demonstrated that AR 
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interfaces could enhance trust in HRC by making robot intentions more transparent and 

intuitive (Palmarini et al., 2018a). Similarly, Dianatfar et al. (2021) identified AR’s 

potential to improve safety and efficiency in collaborative tasks but emphasized the 

need for further research on its application in emotional and trust-related interactions. 

These findings suggest that while AR has already proven effective in task execution, its 

role in nonverbal communication and trust-building remains a largely untapped area of 

investigation (Dianatfar et al., 2021). Compared to traditional human-machine 

collaboration, AR-based HRC offers significant potential advantages in terms of user 

experience, task efficiency, and operational safety, as demonstrated by recent studies  

(Dianatfar et al., 2021). Additionally, AR has been shown to improve task efficiency by 

enabling faster part identification and reducing assembly errors (Green et al., 2010). 

Meanwhile, there is still a lack of research on AR facial expressions in HRC. To fill this 

research gap, I introduce an AR approach that uses facial expressions to convey safety-

critical messages in HRC tasks. 
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4.3 System Design 

4.3.1 AR for HRC framework 

Figure 4.1 The AR facial expression system diagram. The ellipse software blocks. 



- 94 - 

 

This section describes the paradigm used for the experiments in this study (Figure 4.1), 

which comprises three modules: Object detection, Robot control, and AR facial 

expression. The Robot Operating System (ROS) is used to coordinate message 

communication among modules, acquire and display information, and control the robot. 

For my HRC scenario, I used a Kuka iiwa robot arm with 7 degrees of freedom and a 

Robotiq 3-finger gripper attached to the flange. Besides that, an Intel RealSense camera 

is mounted on the top of the table. The designated AR device is the Microsoft HoloLens 

2, which provides relatively accurate spatial tracking and enables the AR facial 

expressions to be fixed in precise locations. The HoloLens and the robot were linked 

on the same local area network, and the current robot state information was transmitted 

via TCP for AR facial expression switching. 

4.3.2 Object Detection 

This module segments the image from the camera based on the color of the blocks on 

the table. The RealSense camera, in conjunction with OpenCV libraries (team, 2023b), 

is used to extract the centroid position of each object in pixels. The depth cloud provided 

by the RealSense D435i camera enables the calculation of the object's position in meters, 

referenced from the robot’s base. 

 

The positional accuracy of the object detection system is approximately ±1.5 cm in the 

x and y directions and ±1 cm in the z direction (Tetsuri Sonoda, 2023). This level of 

accuracy is derived from the depth resolution of the Intel RealSense D435, which offers 

a depth precision of up to 1% of the distance from the camera. In this experimental 

setup, the average object distance from the camera is about 1 meter, yielding a tolerance 

of approximately ±1 cm (Tetsuri Sonoda, 2023). 
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This tolerance is adequate for the collaborative block-stacking task, as the blocks are 

relatively large (typically greater than 4 cm per side) and the robot’s end-effector (a 3-

finger Robotiq gripper) has sufficient compliance to compensate for minor 

misalignments during grasping. Moreover, because the robot is not required to perform 

precision placement at sub-millimeter levels, and the AR-based feedback does not rely 

on exact placement but rather on gross position estimation, the current level of accuracy 

is sufficient for maintaining task success and user confidence. 

Figure 4.2 Panda model design and shape key creation. 
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4.3.3 Robot Control 

This module aims to control the robot's actions while it collaborates with the user to 

complete a block-stacking task. During the execution of the task, the robot publishes 

state topics via TCP communication to the HoloLens2 or the screen, depending on the 

experiment. The image displayed on the device reacts according to the robot's state by 

switching facial expressions. 

 

4.3.4 AR Facial Expression 

Using cute objects as emotional triggers can prompt individuals to exhibit careful 

behaviours in certain situations, such as when driving or working in an office (Nittono 

et al., 2012). Cartoonish faces seem more trustworthy than other facial aesthetics 

(Pinney et al., 2022). Based on this research (Nittono et al., 2012, Pinney et al., 2022), 

I designed a cute panda model (Figure 4.2). First, I created a basic panda model in 

Blender and added details to it. The panda model consists of 4,749 polygons. Next, I 

drew and applied textures and materials to the model to give it a panda-like appearance. 

Then, I added bones to the model to enable facial movement and adjusted the bone 

Figure 4.3 The expression on the left is angry, and the expression on the 

right is happy. 
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weights to make the movements more natural. Finally, controlling the panda's facial 

expressions was implemented using the function of shape keys. This method enables 

the panda model to make any desired facial expressions. 

 

Figure 4.3 shows two expressions: angry and happy. The angry expression is mainly 

displayed when the robot is moving. The happy expression indicates that the robot has 

completed the object-picking-and-placing task. The information about which facial 

expression must display is transmitted from the robot to the Hololens2 via the local area 

network (LAN) protocol. 

 

4.4 Experiment Methodology 

I hypothesize that in HRC tasks, facial expressions are more effective in facilitating 

trust in the robot if they are delivered by AR than if they are delivered by a fixed screen 

because they offer better visual effects and reduce some of the constraints imposed by 

the screen, such as reflections and fixed location.  Based on my hypotheses, I expect to 

observe a higher level of trust after deploying AR facial expressions than using a screen 

display, operationalized by four subjective metrics, namely reliability, predictability, 

propensity to trust and trust in system.  

 

This research was conducted in accordance with ethical guidelines and was approved 

by the Cardiff university Ethics Panel. All participants provided informed consent prior 

to their involvement in the study, and data collection was conducted in compliance with 

data protection regulations.  

 

For more details, please see: https://github.com/tongyanzhanggithub/facial-expression 
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4.4.1 Participants 

I recruited 14 participants from Cardiff University, including 10 males and 4 females, 

whose ages range from 24 to 31 years old. The participants were not compensated. 

Among them, 4 participants had prior experience with robots, while 10 participants had 

never interacted with a collaborative robot before. In addition, 4 participants had prior 

experience with AR devices, while 10 participants only heard about AR devices through 

media. 

 

In determining the minimum number of participants required for the experiment, a 

priori power analysis was conducted using G*Power 3.1. Based on a two-tailed 

matched-sample t-test, a medium effect size (Cohen’s d = 0.5), α = 0.05, and power (1 

- β) = 0.8, the minimum required total sample size was calculated to be 27 participants. 

However, due to constraints related to participant availability and experimental logistics, 

the final number of valid participants included in this study was 14. 

 

4.4.2Materials 

The materials used in this experiment included task-related artifacts, procedural 

elements, and hardware necessary for delivering facial expressions in two experimental 

conditions: AR and a fixed screen display. These materials were carefully selected and 

designed to simulate a collaborative industrial scenario while ensuring the reliability 

and consistency of the experiment. 

 

The task required participants to collaborate with a robot to complete a block-stacking 



- 99 - 

 

activity, designed to mimic a typical HRC scenario in industrial settings. The objective 

of the task was to evaluate how different visualization methods (AR versus screen) for 

delivering facial expressions influenced participants’ trust in the robot. Participants 

were provided with task instruction cards illustrating the final block configurations they 

needed to build. The artifacts consisted of seven blocks, divided into three green 

rectangular prisms, two blue cylinders, and two red rectangular prisms. These blocks 

were chosen for their uniform sizes and distinct shapes and colors, ensuring that 

participants could easily identify and handle them during the task. 

 

Two hardware configurations were used to deliver the robot's facial expressions. In the 

AR condition, facial expressions were projected into the participants’ real-world 

environment using the Microsoft HoloLens 2. The HoloLens 2 provided precise spatial 

tracking, allowing facial expressions to appear directly adjacent to the robot’s 

operational area. The device ensured an immersive and contextually relevant 

visualization experience. In the screen condition, the same facial expressions were 

displayed on a 24-inch high-definition LED monitor with a resolution of 1920 x 1080 

pixels. The screen was placed at a fixed location on the participant’s left side, 

approximately 1 meter away from the robot, at a 30-degree angle relative to their field 

of view. This placement ensured consistency in visibility while simulating a typical 

industrial screen-based interaction. 

 

The task procedure required participants to complete the block-stacking activity under 

both visualization conditions, with the order counterbalanced across participants to 

minimize sequence effects. Facial expressions, such as "happy" to indicate task 

completion and "angry" to signal potential safety hazards, were delivered through 

animated panda models created in Blender. In the AR condition, these expressions were 

superimposed onto the physical environment near the robot’s arm, while in the screen 
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condition, they were displayed on the fixed monitor. These expressions were 

synchronized with the robot’s operational states to provide real-time feedback to 

participants. 

 

4.4.3 Design 

In this study, I manipulated the visualization mode as a within-subject independent 

variable. Participants experienced both of these conditions below: 

⚫ AR: Participants will wear AR device and complete the human-robot collaborative task of 

block building (HRC-AR) 

⚫ Screen: Participants will observe the screen displayed changes in facial expressions and 

complete the human-robot collaborative task of block building. (HRC-S) 

 

Each participant experienced both conditions, with the order of conditions 

counterbalanced across participants to mitigate potential sequence effects. This design 

ensured that individual differences, such as prior experience with robots or AR devices, 

did not bias the results. 

 

4.4.4 Procedure 

The experiment took place in the Robotics Lab of Cardiff University under the 

supervision of two experimenters. Upon arrival, participants were welcomed and 

provided with an information sheet detailing the purpose, structure, and ethical 

considerations of the study. They were given sufficient time to review the information 
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sheet and ask any questions before signing a consent form to confirm their voluntary 

participation. 

 

After providing informed consent, participants completed a short demographic 

questionnaire, collecting information such as age, gender, and prior experience with AR 

or robots. Following this, the experimenter explained the experimental process using a 

standardized script to ensure consistency across sessions. Participants were then 

introduced to the robotic arm and shown an example of the block-stacking task to 

familiarize them with the setup. 

 

Participants were instructed to wear the Microsoft HoloLens 2 AR headset for the AR 

condition and to stand in a designated position in front of the robotic arm. In the screen 

condition, participants stood in the same position, but without the AR headset, and 

instead relied on a fixed 24-inch monitor placed on their left side, approximately 1 

meter away from the robot, at a 30-degree angle. The monitor and AR system both 

displayed the robot's facial expressions during the task. 

 

Participants received a task card indicating the specific block structure they needed to 

build. Once they verbally confirmed their readiness, the experimenter manually started 

the robot program. The robot assisted participants by picking and placing blocks, while 

facial expressions were used to communicate the robot’s state. For example, an "angry" 

expression appeared when the robot was in motion, signalling participants to maintain 

caution. Conversely, a "happy" expression indicated task completion, signalling that 

participants could proceed to pick up the blocks and continue building. 

 

The AR system superimposed these facial expressions onto the physical environment, 
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directly adjacent to the robot’s operational area, ensuring that participants could easily 

perceive the expressions. In the screen condition, the same facial expressions were 

displayed on the fixed monitor, providing participants with a comparable visual 

experience. 

 

After completing the task in each condition, participants were asked to complete the 

Trust in Automation (TiA) questionnaire, which was adapted to include specific 

references to either the AR or screen-based facial expression system. The questionnaire 

utilized a 100-point scale (0 - Strongly disagree; 25 – Disagree; 50 – Neutral; 75 – 

Agree; 100 - Strongly agree) and assessed four dimensions of trust: reliability, 

predictability, propensity to trust, and trust in system, shown in Table 4.1. To minimize 

sequence effects, the order of the conditions (AR and screen) was counterbalanced 

across participants. The total duration of the experiment, including the briefing, task 

completion, and questionnaire, was approximately 20 minutes. The same model and 

technical code were used for both visualization systems to ensure consistency across 

conditions. 
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Table 4.1 Questionnaire for facial expression system test. 

 Subscale 

 Reliability/Competence 

Q1 The screen/AR facial expression system is capable 

of interpreting situations correctly 

Q2 The screen/AR facial expression system works 

reliably 

Q3 The screen/AR facial expression system 

malfunction is likely 

Q4 The screen facial expression system is capable of 

taking over complicated tasks 

Q5 The screen/AR facial expression system might make 

sporadic errors 

Q6 I am confident about the system's capabilities 

 Understanding/Predictability 

Q7 The screen/AR facial expression system state was 

always clear to me 

Q8 The screen/AR facial expression system reacts 

unpredictably 

Q9 I can understand the reasons for things happening. 

Q10 It's difficult to identify what the screen/AR facial 

expression system will do next 

 Familiarity 
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Q11 I already know similar systems 

Q12 I have already used similar systems 

 Intention of Developers 

Q13 The developers are trustworthy 

Q14 The developers take my well-being seriously 

 Propensity to Trust 

Q15 One should be careful with unfamiliar screen/AR 

facial expression system 

Q16 I rather trust a system than mistrust it 

Q17 this system generally works well 

 Trust in System 

Q18 I trust the system 

Q19 I can rely on the system 

4.5 Experimental Results 

I organised the ratings of the 19 questions in the questionnaire under 6 categories 

following the recommendations of TiA [21], (Cronbach’s Alpha 0.617) calculated the 

mean for each category (after reverse-coding some items with a negative statement), 

and then performed pair-sample t-test analysis on the data to explore differences 

between conditions. The main results are presented in Table 4.2 showing the 

comparison between the AR and screen cases. The “t-test” values in Table 4.2 represent 

the comparison of means between the AR and Screen groups for each subscale, with 

significance evaluated using two-tailed independent samples t-tests. 



- 105 - 

 

 

Table 4.2 Results from the experiment comparing AR and screen. 

 AR Screen 

t-test P 

 µ σ µ σ 

Reliability/Co

mpetence 

60.24 10.37 66.98 8.99 -1.84 0.04 

Understanding/

Predictability 

69.61 10.89 77.09 10.79 -1.83 0.04 

Familiarity 21.89 21.26 28.93 31.40 -0.70 0.25 

Intention of 

Developers 

75.86 17.32 78.32 15.54 -0.40 0.35 

Propensity to 

Trust 

56.60 11.10 68.79 14.84 -0.44 0.33 

Trust in System 70.25 14.96 67.00 12.04 0.63 0.26 

Contrary to the initial expectation, the mean score of the AR group was lower than that 

of the screen group. However, on the understanding/predictability subscale (Q7–Q10), 

the AR group still scored above the neutral benchmark of 50, suggesting a generally 

positive response. According to the t-test, the difference between the two groups was 

statistically significant, though the direction was opposite to our hypothesis. Q11 and 

Q12 represent the familiarity subscale. Although the AR group’s mean score on this 

subscale was 7.1 points lower than the screen group’s, this difference was not 

statistically significant. The subscale of intention of developers is composed of Q13 to 

Q14. The results show a more favourable judgment of developers in the screen 

condition than in the AR condition, although the difference has not achieved the level 

of significance.  With the second-to-last subscale, propensity to trust, including Q15 to 
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Q17, the average score of the AR group is 12.1 points lower than that of the screen 

group, although the difference is not significant. The last subscale is about "Trust in 

System", which includes Q18 to Q20. The t-test yielded a value of 0.63 (p = 0.26). This 

indicates that the difference in mean trust scores between the AR condition (M = 70.25, 

SD = 14.96) and the Screen condition (M = 67.00, SD = 12.04) was not statistically 

significant. The p-value exceeds the conventional alpha level of 0.05, suggesting that 

any observed difference could be due to random variation rather than a real effect of 

the display mode. 

 

Although AR-based systems have been previously associated with enhanced user 

engagement and transparency, the results of this study showed no statistically 

significant difference in trust or cognitive load between the AR and Screen conditions. 

One possible explanation is user unfamiliarity with AR, which may have introduced 

cognitive distraction or novelty effects, thereby neutralizing the expected benefits. 

Moreover, the task complexity in this experiment was moderate, possibly making the 

visual augmentation less impactful compared to more demanding scenarios. 

Additionally, individual differences in technology acceptance and prior experience with 

AR could have influenced the results. This suggests that AR interfaces may require 

longer-term exposure or more complex task contexts to yield measurable benefits in 

trust and user experience. Future work could consider longitudinal studies or controlled 

exposure durations to isolate these effects. 

 

4.6 Discussion 

Based on the description of the results, I did not find evidence supporting my hypothesis 

that AR can improve trust in collaborative robots in comparison to a fixed screen by 

incorporating AR facial expressions into HRC. On the contrary, the measures of 
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perceived reliability/competence and understanding/predictability indicate that AR 

facial expressions could damage trust. At the beginning of the experiment, participants' 

familiarity with AR and robots was measured using a demographic questionnaire. The 

familiarity scores revealed that only 4 out of 14 participants had prior experience using 

AR devices, while 10 participants reported familiarity with robots, primarily in non-

collaborative contexts. In this experiment, prior experience with AR or robots could be 

a factor affecting participants’ performance when using the system in an unfamiliar 

situation. It might be challenging for those without prior experience to operate and 

predict the system with the robot and AR. The familiarity and adaptation of participants 

to screen might explain why the mean scores of the screen group were higher than the 

AR group in reliability/competence and understanding/predictability subscales. 

Furthermore, the limitations of AR devices could also affect the reliability/competence 

and understanding/predictability subscales. For example, AR goggles have a limited 

field of view, and operator movements such as bending can cause dizziness (Dianatfar 

et al., 2021). 

 

An observation from the experiment is that AR system can accurately convey 

information that can be used to express the state of robot. This interpretation is 

supported by the mean scores for the understanding/predictability subscale in the AR 

condition, which were relatively high (M = 69.61, SD = 10.89) despite being lower than 

the screen condition. While the AR system did not demonstrate any clear advantages 

over the screen in several aspects of the results, the mean score of the trust in system 

subscale suggests that the potential of the AR facial expression system to gain user’s 

trust should not be dismissed. The AR approach incorporates facial expression 

communication into the real-world environment, providing participants with a more 

immersive experience during interactions. Additionally, the screen is difficult to move, 

while the AR model can be placed in the user's visual comfort zone according to their 
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needs, enhancing the user experience. The AR facial expression system might have the 

potential to enhance trust in HRC because it allows for greater flexibility, enabling the 

model to generate any expression. 

 

4.7 Contributions 

In this Chapter of this thesis, a novel contribution is presented through the investigation 

of AR as a means to enhance operator trust in HRC by employing a facial expression 

system. Specifically, an AR-based system was developed using a stylized panda model 

capable of displaying dynamic facial expressions—such as “angry” during robot 

motion and “happy” upon task completion—to communicate the robot’s internal states. 

The expressions were spatially anchored in the real-world environment via a head-

mounted AR display (Microsoft HoloLens 2), aiming to provide more immersive and 

intuitive interaction cues compared to conventional screen-based interfaces. 

 

To evaluate the effectiveness of this system, a controlled within-subjects experiment 

was conducted, comparing the AR condition with a traditional fixed-screen condition. 

Participants performed a block-stacking task collaboratively with a robot, while trust 

was measured using the Trust in Automation (TiA) questionnaire, which includes 

subscales such as reliability, predictability, propensity to trust, and overall system trust. 

Contrary to the initial hypothesis, the results indicated that AR-based facial expression 

delivery did not significantly outperform the screen-based condition in fostering trust. 

In fact, lower scores were observed in some trust dimensions under the AR condition, 

which may be attributed to users’ unfamiliarity with AR technology and limitations 

such as restricted field of view and potential discomfort during use. 
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Despite the lack of significant improvement in trust outcomes, this study makes a 

valuable contribution by proposing and implementing an original method for 

integrating expressive AR content into HRC systems. It offers a comprehensive 

experimental paradigm for assessing trust in immersive interaction scenarios and 

provides practical insights into the design challenges and user experience 

considerations associated with AR deployment in industrial settings. This work thus 

lays the groundwork for future research seeking to leverage immersive technologies to 

enhance social transparency and trust in collaborative robotic systems. 

 

4.8 Summary 

In this chapter, I proposed an AR approach to improve operator trust by using facial 

expressions to convey safety-critical messages in HRC tasks. The AR facial expression 

system was designed to provide an immersive experience, allowing participants to 

perceive the robot's state directly within their field of view. Through experiments, I 

found no evidence that the AR approach could significantly improve trust in HRC 

compared to a screen display, as participants rated the screen condition higher in key 

trust metrics such as reliability and predictability. However, the AR system 

demonstrated flexibility and the ability to superimpose facial expressions in real-world 

environments, making it a promising tool for future applications. Although AR offers 

theoretical advantages, such as immersion and flexibility, the current task design may 

not have been optimal for showcasing these strengths. Participants were generally more 

familiar with screen-based interfaces, which likely influenced their perceptions of trust 

and usability in favor of the screen condition. Additionally, AR’s advantages, such as 

dynamic and spatially integrated visualizations, may have been underutilized in the 

block-stacking task, as the task itself required minimal cognitive engagement and 

spatial awareness. 
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In Chapter 5, I will explore a more complex and cognitively demanding task, 

specifically a working memory task, to better leverage the unique capabilities of AR. 

By selecting a task that requires real-time decision-making, spatial coordination, and 

higher levels of cognitive load, I aim to better demonstrate AR’s potential to enhance 

user experience and trust in HRC environments. This transition will also provide a more 

robust evaluation of AR’s effectiveness in supporting human-robot collaboration under 

more realistic industrial conditions. 
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5.1 Introduction 

Building upon the findings from Chapter 4, this chapter explores a new case study to 

further investigate the potential of AR in HRC. In Chapter 4, I examined the use of AR 

for conveying robot facial expressions during a block-stacking task, aiming to enhance 

trust and communication. While the AR system demonstrated technical feasibility and 

flexibility, the block-stacking task was ultimately deemed suboptimal for showcasing 

AR's unique advantages. Specifically, the task lacked the cognitive and spatial 

complexity needed to fully leverage AR’s strengths, such as its ability to provide real-

time, immersive, and spatially integrated visualizations. To address this limitation, I 

have designed a new case study focusing on a working memory task that incorporates 

higher levels of cognitive demand, decision-making, and spatial coordination.  This task 

is intended to better utilize AR's potential for enhancing user experience in HRC. 

 

As mentioned in chapter 3 and 4, the increasing demand for customized products has 

made manufacturing adaptability essential for addressing diverse consumer preferences 

(Camison and Villar Lopez, 2010). Conventional robotic systems, conceived for 

elevated throughput yet minimal diversity in production, often struggle to 

accommodate the rapidly increasing prerequisites of limited volumes yet elevated 

personalization (Palmarini et al., 2018a). Contemporary intelligent manufacturing 

facilities necessitate integrated configurations where the human workforce and robotic 

entities synergize (Prati et al., 2021a). However, a substantial proportion of scholarly 

work on HRC seems to have a stronger emphasis on the robotic aspect, primarily 

tackling technological issues and their solutions, while the human aspect (Nordqvist 

and Lindblom, 2018), such as UX considerations (Prati et al., 2021a), has been mainly 

left under-addressed.  
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In assembly operations, workers must adapt to product specification variations that 

come in diverse batch magnitudes (Wahlster, 2014). The predominant mode of 

information dissemination, typically defined by stationary and paper-based assembly 

directives, fails to meet these adaptability demands, leading to issues such as cognitive 

strain among employees and diminished operational efficiency (Falck et al., 2017). The 

emergence of augmented reality (AR) has the potential to reduce cognitive strain and 

improve operational efficiency (Dianatfar et al., 2021). AR is a technological 

innovation defined by its overlay of digital visuals onto physical entities or 

surroundings via devices, such as head-mounted displays (HMD) or portable screens 

(Shen et al., 2010). It offers a profound prospect for both scholars and industrial sectors 

to delve into novel paradigms of data communication within the HRC framework 

(Dianatfar et al., 2021).   

 

Building on the findings from Chapter 4, which explored the potential of AR facial 

expression systems to enhance trust in HRC, this chapter further investigates operators' 

user experience in an AR-enhanced HRC assembly process. In Chapter 4, while the AR 

system demonstrated its ability to convey robot states effectively, the results highlighted 

challenges related to task suitability and participants' familiarity with AR technology. 

These insights inform the design of the AR-assisted HRC system discussed in this 

chapter, which has been tailored to a specific industrial use case. This system integrates 

observations and feedback from real-world applications and interviews to address the 

limitations identified previously, aiming to better leverage AR’s immersive capabilities 

and enhance operator experience in more cognitively demanding tasks. Utilizing a 

comprehensive user experience design process, my research rigorously evaluates user 

satisfaction and cognitive load through the AttrakDiff Mini and NASA TLX 

questionnaires. This chapter aims to enhance assembly accuracy and efficiency through 
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AR integration, improve user satisfaction, reduce operator cognitive load, and provide 

a replicable methodology for future studies and practical applications in industrial 

settings. By focusing on the practical application of user-centred design in HRC 

systems, this research addresses a critical gap in the literature. My approach 

demonstrates the significant value of integrating real-world user feedback into the 

design and evaluation of AR-assisted HRC systems. 

 

5.2 Related Works 

5.2.1 AR-Based Solutions for HRC in Manufacturing 

The increasing complexity and customization demands in modern manufacturing 

necessitate agile and adaptive assembly processes (Abele and Reinhart). Traditional 

assembly methods, which rely heavily on static, paper-based instructions, often fail to 

meet the dynamic requirements of varied product batches, leading to cognitive overload 

and worker inefficiencies (Falck et al., 2017). HRC has emerged as a pivotal solution 

to these challenges, integrating the precision and consistency of robots with the 

flexibility and problem-solving abilities of human worker (Eswaran et al., 2024). 

 

HRC systems are designed to facilitate seamless cooperation between humans and 

robots, thereby enhancing productivity and reducing ergonomic risks (Cardoso et al., 

2021). For example, Realyvásquez-Vargas et al. demonstrated that integrating 

collaborative robots in assembly tasks can significantly mitigate occupational hazards 

and improve operational efficiency (Realyvásquez-Vargas et al., 2019). Furthermore, 

Cherubini et al. developed a cooperative human-robot assembly cell that emphasizes 

the importance of physical interaction and task sharing between humans and robots 

(Cherubini et al., 2016). In this setup, the robot alternates between active and passive 
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roles, effectively reducing human operators' cognitive and physical workload (Kaber et 

al., 2000). This dual-mode operation ensures that the robot can assist in both direct 

assembly tasks and support activities, creating a more balanced and efficient workflow 

(Wang et al., 2019). Their study highlighted how robots can take over repetitive and 

hazardous tasks, allowing human workers to focus on more complex and value-added 

activities (Benos et al., 2020). 

 

The importance of ergonomics and human factors in the design of HRC systems cannot 

be overstated. Studies by Villani et al. and Nordqvist and Lindblom have shown that 

user-centred design approaches in HRC can significantly enhance operator satisfaction 

and productivity (Villani et al., 2018, Nordqvist and Lindblom, 2018). Their research 

emphasizes the integration of ergonomic principles and real-time feedback mechanisms 

to create adaptive interfaces that cater to human operators' needs (Fabio et al., 2025). 

 

Despite these advancements, the success of HRC systems heavily relies on their 

integration into human-centric workflows. It is crucial to address human operators' 

cognitive and ergonomic needs to maximize the benefits of HRC. User-centered design 

approaches incorporating real-time feedback and adaptive interfaces can enhance the 

overall effectiveness of HRC systems. By focusing on the user experience, 

manufacturers can ensure that these systems are not only technically proficient but also 

intuitive and supportive for human operators (Prati et al., 2021a). 

 

5.2.2 Evaluating UX in HRC 

As with all interactive systems, a positive user experience is essential for robots to 

achieve the anticipated benefits.  If users feel negative towards interactions with robots, 
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it may result in a reluctance to engage with them, which could prevent the acceptance 

of future robotic technologies (De Graaf and Allouch, 2013).  A favourable user 

experience supports the widespread adoption of robots in society. Such a positive user 

experience does not materialize automatically but through deliberate, conscious 

systematic design and evaluation (Hartson and Pyla, 2012).  Consequently, the user 

experience for robots should be at the forefront of considerations when developing such 

machines. According to prior studies in the realm of UX, the user experience is 

delineated by a system’s pragmatic (often termed as 'instrumental product', 'task-

focused', or 'ergonomic') attributes and its hedonic ('non-functional or 'non-task-

focused') attributes (Hassenzahl, 2018, Merčun and Žumer, 2017). Pragmatic quality 

can be characterized by how much aspects like utility, efficiency, and ease of use are 

actualized, and are commonly denominated as usability and utility (Merčun and Žumer, 

2017). ISO 9241-11 defines usability as the "extent to which specific users can use a 

system, product, or service to achieve specified goals with effectiveness, efficiency, and 

satisfaction in a specified context of use". It is worth emphasizing that usability pertains 

to the outcomes of system interactions. According to the definition of the ISO standard, 

usability is not an intrinsic attribute of the system. However, appropriate characteristics 

of the system can facilitate usability within a given usage environment (Bevan, 2001). 

 

Researchers have devised various questionnaires to gauge subjective pragmatic quality 

(usability).  For instance, the System Usability Scale (SUS) developed by DEC in the 

UK encompasses ten items and was unveiled in 1996 (Brooke, 1996b).   Furthermore, 

the Technology Acceptance Model (TAM), designed initially to predict technological 

adoption likelihood, has been moderately adapted to function as a standardized user 

experience questionnaire, preserving its renowned factorial structure to measure 

perceived ease of use and utility (Silva, 2015). In recent years, aiming to offer more 

succinct assessment tools, the UMUX was formulated as a brief four-item perceived 
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usability measure with scores designed to align with the SUS (Finstad, 2010).  For 

further simplification, the UMUX-Lite consists of just two items, targeting the 

perceived utility and ease of use (Lewis et al., 2013).  It serves not only as a compact 

version of the UMUX but also as a condensed version of TAM (Lewis et al., 2015). Its 

scores exhibit a high congruence with those of the SUS (Lewis et al., 2015). The 

AttrakDiff Mini is a brief, 10-item evaluation tool that assesses an interactive product’s 

pragmatic quality, hedonic quality, and overall attractiveness (Hassenzahl et al., 2008). 

Attributes are rated on a 7-point Likert scale using bipolar semantic differentials (e.g., 

negative to positive) (Hassenzahl and Monk, 2010). I chose the AttrakDiff Mini because 

it is widely used to evaluate user experience, particularly in measuring usability, identity, 

stimulation, and appeal (Vieira et al., 2023). However, it does not address the cognitive 

workload involved in using the system (Hartson and Pyla, 2012). To provide a 

comprehensive assessment of UX, it is also important to consider cognitive workload 

and user satisfaction. The NASA Task Load Index (NASA-TLX) questionnaire is a 

well-established tool for measuring cognitive workload across six dimensions: mental 

demand, physical demand, temporal demand, performance, effort, and frustration (Hart 

and Staveland, 1988). By evaluating these factors, researchers can gain insights into the 

cognitive strain experienced by users during their interactions with HRC systems (Hart 

and Staveland, 1988). 

 

Studies have shown that incorporating user-centered design approaches in HRC 

systems can significantly enhance operator satisfaction and productivity (Villani et al., 

2018, Prati et al., 2021a). By integrating ergonomic principles and real-time feedback 

mechanisms, adaptive interfaces can be created to meet the specific needs of human 

operators, ensuring that HRC systems are both technically proficient and user-friendly 

(Nordqvist and Lindblom, 2018). For example, Nordqvist and Lindblom found that 

trust and satisfaction among operators increased when HRC systems were designed 
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with user experience in mind (Nordqvist and Lindblom, 2018). 

 

My study leverages these established methodologies to evaluate the UX of an AR-

enhanced HRC system tailored for a specific industrial case. By incorporating real-

world observations and interviews into the design process, I ensure that the system 

addresses its users' practical needs and preferences. This comprehensive approach not 

only improves assembly accuracy and efficiency but also enhances overall user 

satisfaction and reduces cognitive load (Prati et al., 2021a). 

 

5.2.3 AR-Based Solutions for HRC in Manufacturing 

AR technology has emerged as a transformative tool for enhancing HRC by providing 

real-time, context-specific guidance and feedback to operators (Nee et al., 2012). AR 

systems can overlay digital information onto the physical workspace, facilitating more 

intuitive and efficient task execution (Syberfeldt et al., 2017). This integration is 

particularly beneficial in complex assembly processes where precision and adaptability 

are crucial (Villani et al., 2018). 

 

The potential of AR in industrial applications has been highlighted in several studies. 

For instance, AR could significantly improve task performance and reduce the 

likelihood of errors in human-robot collaborative environments (Green et al., 2008). 

Their study showed how AR can provide immediate feedback and detailed instructions, 

helping operators perform tasks more accurately and efficiently (Wang et al., 2022). 

Similarly, Nee et al. emphasized the importance of AR in enhancing task performance 

by reducing cognitive load and providing clear visual cues (Nee et al., 2012). 
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Cherubini et al. also explored the benefits of AR in cooperative human-robot assembly 

cells. Their research emphasized that AR can enhance the physical interaction and task-

sharing capabilities between humans and robots (Cherubini et al., 2016). By displaying 

digital instructions and real-time data onto the operator's field of view, AR helps in 

reducing cognitive load and minimizing errors, thus improving overall task 

performance (Alessa et al., 2023). Syberfeldt et al. further supported these findings, 

demonstrating that AR can significantly enhance the efficiency and accuracy of 

complex assembly tasks (Syberfeldt et al., 2017). 

 

AR's ability to provide adaptive instructions based on real-time user feedback makes it 

a versatile tool in HRC settings. Studies by Villani et al. have shown that user-centred 

design approaches, which incorporate ergonomic principles and real-time feedback 

mechanisms, can significantly enhance operator satisfaction and productivity (Villani 

et al., 2018). By tailoring the AR interface to the specific needs of human operators, it 

is possible to create more user-friendly and efficient HRC systems (Subramanian et al., 

2024). Similarly, Syberfeldt et al. highlighted that AR can improve operator 

performance and satisfaction by providing interactive and context-aware assistance 

(Syberfeldt et al., 2017). 

 

Based on AR's benefits, the AR-assisted HRC system developed in my study offers a 

promising solution for enhancing the efficiency, accuracy, and safety of assembly 

processes. By leveraging AR technology, manufacturers can create more adaptable and 

user-friendly work environments, increasing productivity and reducing cognitive load 

on operators. This chapter’s findings contribute to the literature that supports the 

integration of AR technology in HRC systems and provide practical insights for future 

implementations. 

 



- 120 - 

 

5.3 Materials Development 

5.3.1 Insight from Factory 

In this study, observations and interviews were conducted at the HWASDAN conveyor 

belt assembly workshop in Chongqing (company website: http://www.hwasdan.com/ ) 

(see Figure 5.1). This production line primarily handles the assembly of small batches 

of diverse agricultural machinery products and general machinery. On average, the 

assembly line transitions between several to over a dozen different products daily. Over 

the course of a year, it assembles approximately 200 different types of machinery, with 

an annual output of around 100 units of agricultural machinery. This workshop is 

representative of medium-sized manufacturing enterprises in the western region of 

China, providing a valuable case study of the operational conditions within an assembly 

workshop. 
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Through observations and interviews conducted at the factory, several critical insights 

have been identified regarding the traditional conveyor belt assembly line. The factory 

is tasked with assembling a diverse range of over a dozen different products daily, 

which imposes significant learning demands on the workers and results in frequent 

assembly errors. The findings from these insights are crucial for understanding the 

current inefficiencies and identifying areas for improvement. A service blueprint was 

employed to systematically document and analyse these insights (Figure 5.2). This 

service blueprint provides a detailed mapping of the entire assembly process, 

highlighting key pain points and identifying potential areas for improvement. The main 

components of the service blueprint include: 

Figure 5.1 HWASDAN conveyor belt assembly workshop. 
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Operator Actions: Detailed steps undertaken by workers during the assembly process 

for each type of product. 

Frontstage (Visible Contact): Interactions between workers and the machinery or 

tools used in the assembly process. 

Backstage (Invisible Contact): Support processes that are not visible to the workers 

but are crucial for the assembly line's functionality. 

Support Processes: Auxiliary processes that support the assembly line, including 

inventory management, quality control, and maintenance. 

Pain Points and Opportunities: Identify areas where errors and inefficiencies are most 

prevalent, along with suggestions for process optimization and enhanced training 

programs. 

 

Figure 5.2 Service blueprint from HWASDAN conveyor’s operator. 
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The process begins with operators receiving their daily tasks through task sheets. Once 

tasks are received, operators review the assembly instructions to understand the steps 

and parts required.  Preparing the work area is a crucial next step, ensuring all necessary 

tools and parts are available and organized. Operators then identify the different parts 

and screws required for the task. After identification, operators pick the necessary parts 

from the conveyor belt and separately pick the screws either from the conveyor belt or 

designated bins. The assembly of parts follows, where operators use specified tools 

such as screwdrivers and wrenches to assemble the parts onto the product correctly.  

Finally, the assembled product is placed back onto the conveyor belt, ready for the next 

process stage. Figure 5.3 shows the worker performing the assembly task. 

 

The assembly process faces several challenges. Operator errors in identifying and 

picking parts and screws can affect product quality, while initial quality checks may not 

Figure 5.3 I observed the workers who were assembling parts. 
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catch all issues. Errors in picking the correct parts and screws, as well as misinterpreting 

assembly instructions, can also lead to assembly mistakes (see Figure 5.4). However, 

there are numerous opportunities for improvement. Enhanced training focused on the 

identification and correct use of parts and screws, potentially using AR aids, can 

improve accuracy. Introducing automated inspection equipment can increase the 

accuracy of quality checks, and utilizing digital aids or AR systems can help operators 

accurately identify parts and screws, reducing assembly errors. Optimizing the picking 

process with systems such as color-coded bins or part identification labels can improve 

efficiency and improving instruction delivery through digital or AR-enhanced 

instructions can help operators better understand assembly steps, reducing errors. 

 

5.3.2 AR-assisted HRC system design 

This research adopts a multi-faceted approach integrating robot control, data communication, 

and Unity3D visualization (Figure 5.5). The detailed methodology is described below. 

Figure 5.4 Screws of different sizes that look similar. 
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Figure 5.5 The AR-Guided Assembly Procedures diagram. The blue ellipse software blocks 

were developed in this system. 
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5.3.3 Robot Control 

In this work, I introduce an assembly task, where the operator is required to complete an 

assembly of a part, as illustrated in Figure 5.6. The part comprises 4 components that require 

the user to select the screws of different sizes. In the task, the robot is responsible for picking 

and sorting the screws, and the user is mainly responsible for the actual assembly. 

 

A comprehensive robot control system was developed using Python as the primary 

programming language. This system served as an integrated platform based on MATLAB, 

centralizing various operations and tasks and ensuring consistency and continuity throughout 

the experiments. 

 

Figure 5.6 3D printed assembly parts. 
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For screw picking and sorting, I designed my own end-effector tool attached to the 

robot. The end-effector used in this experiment was custom designed and built by the 

research team. Rather than relying on off-the-shelf solutions, we developed a tailored 

tool featuring an Arduino-controlled electromagnet to meet the specific requirements 

of the screw sorting task (see Figure 5.7). The robot uses its end-effector to pick up a 

group of screws and then drops them into the tray. This process separates the screws, 

allowing the robot to pick them up one by one. The robot counts the number of screws 

in the tray, and if, after picking up a screw, the number of screws decreases by 2 or 

more, it means that more than one screw was picked. In this case, the robot drops the 

screws back into the tray. When there are no more screws in the tray, but the assembly 

process still requires more, the robot picks up additional screws from the screw tray and 

Figure 5.7 The robot's end-effector tool in-

cludes an electromagnet, which is con-

trolled via an Arduino microcontroller. 
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repeats the process. Once the robot has dispensed all the required screws, if there are 

any screws left in the tray, it returns them to the original screw tray. For a better 

understanding of the process, please refer to the video at 

https://www.youtube.com/watch?v=qoJvonsQUGk. 

 

This tool can communicate with the control system through a serial port. The task is 

divided into three distinct boxes: in the first box, the robot selects the correct screws 

from a set of fourteen different parts. Using the magnet, it picks and sorts these screws 

into a central black box (see Figure 5.8). The correct screws are then placed in a box 

closer to the user, while surplus parts are returned to the first box. Each successful 

retrieval of the correct screw results in a change in the robot process state. These state 

Figure 5.8 Assembly bench. 
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changes are recorded in a global state variable, preparing the data for subsequent 

transmission via the User Datagram Protocol (UDP).  

 

5.3.4 User Datagram Protocol (UDP) Communication 

In this system, efficient real-time communication facilitated by the UDP is crucial for 

the interaction between AR goggles and the robot control system. The choice of UDP, 

known for its low latency and less overhead than TCP, is pivotal in ensuring seamless 

data transfer and coordinated functioning. This communication framework, leveraging 

the strengths of UDP, is adept at handling the rapid exchange of information, which is 

essential for the responsive operation of the system. My focus on UDP highlights its 

suitability for scenarios where speed and efficiency are paramount, aligning perfectly 

with the system's fast and reliable communication requirements. 

 

5.3.5 Unity3D Visualization 

To achieve real-time visualization of the robot's operations, Unity3D was chosen as the 

development environment. Within Unity, a specialized UDP manager was developed, 

who was responsible for continuously monitoring a specified UDP port and awaiting 

state messages from the robot control system. 

 

Once the UDP manager received these state messages, it promptly updated a variable. 

This allows other scripts or objects within the Unity scene to react in real-time based 

on the robot's state, displaying corresponding animation effects or other visualization 

elements (see Figure 5.9). 
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Exception-handling mechanisms were incorporated at each stage to enhance the overall 

system's stability. This not only ensured the timely resolution of any communication 

discrepancies but also fortified the system's robustness and stability during its 

operational course.  

 

For more details, please see: https://github.com/tongyanzhanggithub/HRC-Scorting-

screws 

5.4 Experiment Methodology 

5.4.1 Participants 

Participants were recruited through personal acquisition and announcements at Cardiff 

University's School of Engineering, each receiving a 5-pound reward (Fig. 7 shows 

Participant in the experiment). Their ages ranged from 23 to 30 years. Of the 

participants, 7 (23%) were female and 23 (77%) were male. In this cohort, 8 individuals 

Figure 5.9 The corresponding screws are displayed on the HoloLens. 
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had previous experience with robots, whereas the other 22 had no prior interaction with 

collaborative robots. Moreover, 15 participants had firsthand experience with AR 

technology, while the other 15 were only familiar with AR through media channels. All 

participants reported no experience in factory assembly (Fig. 10 shows the experimental 

setup). 

 

To ensure the statistical validity of the experimental findings in this study, the minimum 

required sample size was determined using a power analysis conducted via G*Power 

3.1. Based on a repeated-measure ANOVA F test, a medium effect size (f = 0.25), α = 

0.05, and power (1 - β) = 0.8, the minimum required total sample size was calculated 

to be 28 participants. 

 

Figure 5.10 A participant performing experiments. 
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5.4.2 Materials 

The primary task of this experiment involved completing a complex industrial assembly 

process using an AR-supported collaborative robotic system. The task was designed to 

simulate scenarios requiring high precision and efficiency, emphasizing cognitive 

complexity and spatial coordination. Participants were required to perform a series of 

assembly steps, including selecting appropriate screws, positioning components 

accurately, and completing assembly instructions under varying conditions. The 

objective of the experiment was to evaluate the impact of the AR-enhanced 

collaborative robotic system on UX, assembly performance (including accuracy and 

efficiency), and cognitive workload. Specifically, the study sought to determine 

whether AR guidance, combined with collaborative robotic assistance, could 

significantly improve assembly accuracy, reduce cognitive load, and enhance user 

experience while optimizing task completion time. 

 

The experiment followed a structured procedure. First, participants were briefed on the 

experimental setup and equipped with AR headsets (HoloLens 2) to familiarize 

themselves with the process. They were then asked to complete the assembly task under 

three conditions: (1) using AR guidance and a collaborative robot (AR-Robot), (2) 

referring to paper-based instructions alongside a collaborative robot (No AR-Robot), 

and (3) using paper-based instructions without robotic support (No AR-No Robot). 

Researchers recorded assembly time and accuracy for each condition, while subjective 

data, such as user experience and cognitive workload, were collected via the AttrakDiff 

Mini and NASA-TLX questionnaires. To ensure accurate results, the experimental tasks 

were closely monitored, and data analysis was conducted using IBM SPSS 27, 

employing repeated-measures ANOVA and paired t-tests to compare outcomes across 

conditions. 
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The equipment and hardware utilized in this study included the HoloLens 2 AR headset, 

a KUKA iiwa collaborative robot, a custom-designed electromagnet end-effector 

controlled via Arduino, an assembly workstation, and 3D-printed standardized 

assembly parts. The HoloLens 2 provided real-time digital guidance to assist 

participants throughout the assembly process. The KUKA iiwa robot played a pivotal 

role by using its electromagnet end-effector to pick and sort screws, ensuring precise 

delivery to participants. The robot’s control system was developed using Python and 

MATLAB, facilitating consistent task execution and seamless integration with other 

components. Real-time data transmission between the robot and AR interface was 

achieved using the User Datagram Protocol (UDP), enabling dynamic updates in the 

Unity3D visualization module. These elements were carefully integrated to create a 

stable and efficient experimental platform capable of supporting both task execution 

and data collection. 

 

The collaborative robot, KUKA iiwa, was central to the experiment. Equipped with a 

custom-built electromagnet end-effector, it handled screw sorting and dispensing tasks 

with precision. The robot communicated in real time with the AR system via UDP, 

ensuring low-latency and high-efficiency data exchange. The control platform, 

primarily developed in Python and MATLAB, provided a reliable and cohesive 

environment for robot operation. 

 

5.4.3 Design 

The experiment was set up at Cardiff University's Robotics and Autonomous Intelligent 

Machines Laboratory, which is equipped with the hardware necessary for the 
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experiments. Under these conditions, 30 participants (N = 30) were to complete 

assembly tasks under three different conditions:  

 

⚫ Assembly with the assistance of an AR worker guidance system and a collaborative robot. 

(AR) 

⚫ Assembly referring to paper instructions alongside a collaborative robot. (HRC) 

⚫ Assembly referring to paper instructions manually. The dependent variables investigated 

included assembly time, assembly success rate, user experience, and subjective stress. (M) 

 

5.4.4 Procedure 

Participants followed a structured procedure to ensure consistency and reliability in the 

experiment. Upon arrival at the laboratory, participants were welcomed by the research 

team and guided through the experimental setup. They were provided with an 

information sheet detailing the purpose of the study, the tasks they would be performing, 

and any potential risks or benefits of participation. Before proceeding, participants were 

required to sign an informed consent form, acknowledging their understanding of the 

experiment and agreeing to take part voluntarily. 

 

After providing consent, participants received a comprehensive instruction session, 

during which they were introduced to the experimental environment, including the 

collaborative robot (KUKA iiwa), AR headset (HoloLens 2), and the assembly task 

workflow. Researchers demonstrated the correct use of the AR guidance system and 

collaborative robot to ensure participants were familiar with the tools and understood 
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the steps required for the task. 

 

During the task, measures were taken to evaluate both objective and subjective 

performance. Assembly time and assembly quality were used as the primary indicators 

of performance. Assembly time was recorded from the moment participants picked up 

the first part until the entire assembly was completed, with pauses applied only in cases 

of unrelated interruptions (e.g., emergency maintenance). Assembly errors were 

defined as any deviations from the AR guidance or task instructions that negatively 

impacted assembly quality. In addition to objective measures, participants' user 

experience (UX) was assessed using the AttrakDiff Mini questionnaire (Diefenbach & 

Hassenzahl, 2010), which evaluates UX on a 7-point scale, and their subjective 

workload was assessed using the NASA TLX questionnaire (Hart & Staveland, 1988), 

quantified on a scale from 0 to 100. 

 

The survey was conducted from January 2024 to February 2024 at the laboratory's 

collaborative robot workstation, equipped with all the tools needed for assembly, 

HoloLens 2, and an iiwa KUKA collaborative robot. Two investigators recorded the 

assembly time and accuracy. Other dependent variables were measured through an 

online survey questionnaire completed by participants after the assembly task. 

Statistical analysis of the hypothesized differences in measurements of dependent 

variables was conducted using paired t-tests with IBM SPSS Statistics 27. Due to the 

issue of multiple testing when re-testing the same samples, the α level was adjusted 

according to Hochberg  with a Bonferroni correction (Hochberg, 1988). This means the 

threshold for statistical significance was corrected to reduce the risk of false positives 

when conducting multiple comparisons. An alpha level of α* = 0.033 was applied for 

this laboratory study. 
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5.4.5 Results 

In this section, I present the results of my experimental study aimed at evaluating the 

effectiveness of an AR-assisted HRC system on user experience, assembly performance, 

and cognitive workload. To assess UX and cognitive workload, I utilized the AttrakDiff 

Mini questionnaire and the NASA TLX questionnaire, respectively. Statistical analysis 

of the hypothesized differences in measurements of dependent variables was conducted 

using repeated-measures ANOVA with IBM SPSS Statistics 27. Due to the issue of 

multiple testing when re-testing the same samples, the α level was adjusted according 

to Hochberg with a Bonferroni correction (Hochberg, 1988). Descriptive statistics of 

experiment results are shown in Table 5.1 and the results of inferential statistics were 

shown in Table 5.2.  
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Table 5.1 Descriptive statistics of experiment results. 

User Experience 

 µ σ 

AR-Robot 4.94 0.75 

No AR-Robot 4.21 0.84 

No AR-No Robot 3.47 1.08 

   

Assembly Time 

 µ σ 

AR-Robot 8'37" 00'42" 

No AR-Robot 8'19" 01'02" 

No AR-No Robot 6'33" 02'01" 

   

NASA TLX 

 µ σ 

AR-Robot 7.91 3.05 

No AR-Robot 8.91 2.57 

No AR-No Robot 11.10 2.89 
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Assembly Accuracy 

 µ σ 

AR-Robot 97.49% 0.95 

No AR-Robot 81.94% 1.05 

No AR-No Robot 71.66% 1.26 

 

Table 5.2 Statistical analysis of experiment results. 

User Experience 

 Mean Difference P 

AR-Robot vs No AR-Robot 0.723 <0.001 

AR-Robot vs No AR-No Robot 1.470 <0.001 

No AR-Robot vs No AR-No Robot 0.747 0.019 

   

Assembly Time 

 Mean Difference P 

AR-Robot vs No AR-Robot 18.400 
0.653 
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AR-Robot vs No AR-No Robot 124.167 
<0.001 

No AR-Robot vs No AR-No Robot 105.767 
<0.001 

   

NASA TLX 

 Mean Difference P 

AR-Robot vs No AR-Robot -1 0.178 

AR-Robot vs No AR-No Robot -3.194 <0.001 

No AR-Robot vs No AR-No Robot -2.194 0.001 

   

Assembly Accuracy 

 Mean Difference P 

AR-Robot vs No AR-Robot 15.557% 0.001 

AR-Robot vs No AR-No Robot 25.836% <0.001 

No AR-Robot vs No AR-No Robot 10.280% 
0.07 

 

The analysis shows that the main effect of conditions on UX is significant, F (2, 58) = 21.64, p 

<.001, η² =.427, indicating that AR and robot use have a significant impact on UX. The post 

facto pair-comparison further shows that the AR-Robot condition produces a significantly 

higher UX score than the No AR-Robot and No AR-No Robot conditions (p <.001 for both 

comparisons), suggesting that augmented reality provides a more positive user experience 
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compared to other methods. In addition, UX scores in the No AR-Robot condition were 

significantly higher than those in the No AR-No Robot condition (p =.019), which means that 

robot-assisted assembly improves user satisfaction compared to manual assembly without 

technical support. The average UX score for each condition showed that the AR-Robot 

condition produced the highest UX score (M = 4.94, SD = 0.75), followed by the No AR-Robot 

condition (M = 4.21, SD = 0.84) and the No AR-No Robot condition (M = 3.47, SD = 1.08). 

This model supports the hypothesis that technology-enhanced assistance, particularly through 

augmented reality, has a positive impact on user experience in complex assembly tasks. 

 

For cognitive workload, the repeated measures ANOVA indicated a significant main effect of 

condition, F (2, 58) = 15, p < .001, η² = .341. This result suggests that the type of assembly 

support significantly influenced participants' cognitive workload. Pairwise comparisons 

revealed that the AR-Robot condition (M = 7.91, SD = 3.05) resulted in a lower cognitive 

workload compared to the No AR-No Robot condition (M = 11.10, SD = 2.89), with a mean 

difference of -3.194, p < .001. Additionally, the No AR-Robot condition (M = 8.91, SD = 2.57) 

also showed a significantly lower cognitive workload than the No AR-No Robot condition, with 

a mean difference of -2.194, p = .001. However, the difference in cognitive workload between 

the AR-Robot and No AR-Robot conditions was not statistically significant (mean difference = 

-1, p = 0.178). 

 

In terms of assembly time, there was a significant main effect of condition, F (2, 58) = 19.43, 

p < .001, η² = .401. This result indicates that the type of assembly support significantly 

influenced the time required to complete the task. Pairwise comparisons showed that the AR-

Robot condition (M = 8'37", SD = 42") and the No AR-Robot condition (M = 8'19", SD = 1'02") 

did not differ significantly in assembly time (mean difference = 18.4 seconds, p = 0.653). 

However, both conditions with robotic assistance took significantly longer than the fully 

manual No AR-No Robot condition (M = 6'33", SD = 2'01"). Specifically, the AR-Robot 
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condition took an additional 124.167 seconds compared to the No AR-No Robot condition (p 

< .001), and the No AR-Robot condition took 105.767 seconds longer than the No AR-No 

Robot condition (p < .001). 

 

The analysis for assembly accuracy revealed a significant main effect of condition, F (2, 58) = 

19.76, p < .001, η² = .405. This result indicates that the type of assembly support significantly 

influenced the accuracy of task completion. Pairwise comparisons (see Pairwise Comparisons 

table) showed that the AR-Robot condition (M = 97.49%, SD = 0.95%) resulted in significantly 

higher assembly accuracy than both the No AR-Robot condition (M = 81.94%, SD = 1.05%) 

and the No AR-No Robot condition (M = 71.66%, SD = 1.26%). Specifically, the AR-Robot 

condition showed a mean difference of 15.557% compared to the No AR-Robot condition (p 

= .001) and a mean difference of 25.836% compared to the No AR-No Robot condition (p 

< .001). Although the No AR-Robot condition had a higher accuracy than the No AR-No Robot 

condition, this difference was not statistically significant (mean difference = 10.280%, p = .07). 

5.5 Discussion 

The findings from my study underscore the significant benefits of integrating AR into 

HRC systems in assembly operations. This discussion section will explore the 

implications of these results, emphasizing the uniqueness of my UX design process 

based on a real industrial case, comparing them with existing literature, and suggesting 

potential areas for future research. 

 

My results are consistent with the findings of other studies that have explored the 

integration of AR in industrial applications. For instance, Liu and Wang demonstrated 

that AR-based worker support systems could enhance task performance and reduce 

error rates in human-robot collaborative environments (Liu and Wang, 2017). Similarly, 
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Kousi et al. highlighted the benefits of AR in improving the flexibility and efficiency 

of production systems (Kousi et al., 2019). 

 

What sets my study apart is the comprehensive evaluation of both UX and assembly 

performance metrics and the application of these findings to a real industrial case. By 

focusing on user-centric outcomes alongside traditional performance metrics, my 

research offers a more complete understanding of the impact of AR on assembly 

operations. 

5.5.1 User Experience and Cognitive workload 

The AR-assisted HRC system demonstrated substantial improvements in UX. These 

enhancements can be attributed to the intuitive and interactive nature of AR, which 

likely made the assembly tasks more engaging and less cognitively demanding. My 

findings align with prior research indicating that AR can significantly enhance user 

satisfaction and engagement in various interactive systems. 

 

Cognitive workload, as measured by the NASA TLX questionnaire, was significantly 

lower in the AR-Robot condition and No AR-Robot condition compared to No AR-No 

Robot condition. This reduction in cognitive workload highlights that the presence of a 

collaborative robot can make complex tasks more manageable by providing physical 

assistance, which reduces cognitive demands. Although AR did not significantly lower 

cognitive workload compared to the HRC condition, it may still contribute additional 

real-time guidance and feedback that enhance task comprehension and efficiency. 

These results corroborate earlier studies that highlighted the potential of AR in 

mitigating cognitive strain in industrial settings. 
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5.5.2 Assembly Performance 

My study revealed that the AR-assisted HRC system significantly improved assembly 

accuracy, achieving a mean accuracy of 97.49%, substantially higher than No AR-

Robot condition and No AR-No Robot condition. This improvement is likely due to the 

precise and clear instructions provided through AR, which help minimize human errors. 

Previous research has also documented similar improvements in task accuracy when 

using AR systems in various applications, including manufacturing and maintenance. 

 

However, the assembly time was slightly longer for the AR-assisted HRC system than 

the traditional HRC system, although this difference was not statistically significant. 

This minor increase in time could be due to the initial learning curve associated with 

using the AR system. Despite this, the significant improvement in accuracy may justify 

the marginally longer assembly time, as higher accuracy reduces the need for rework 

and increases overall efficiency in the long run. 

5.5.3 Integration of User Experience Design in Real Industrial 

Context 

A distinctive aspect of my study is integrating a UX design process based on a real 

industrial case. By conducting observations and interviews at the HWASDAN conveyor 

belt assembly workshop, I gathered authentic insights into the operational conditions 

and challenges that workers must face. This approach allowed us to tailor my AR-

assisted HRC system specifically to the needs and behaviours of actual users in a real-

world setting. 

 

The service blueprint used to document and analyse these insights highlighted critical 
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pain points in the traditional assembly process, such as cognitive strain due to varied 

product specifications and frequent errors in part identification and assembly. By 

addressing these pain points through my AR-HRC system, I were able to design a 

solution that not only improved performance metrics but also significantly enhanced 

user experience. 

 

This real-world application of UX design principles is a key contribution of my study, 

demonstrating how user-centred design methodologies can be effectively applied to 

industrial settings to achieve meaningful improvements in both efficiency and worker 

satisfaction. 

 

5.5.4 Transition from Classical Approaches to AR-based 

Systems 

 

One significant gap worth discussing is the transition from classical approaches to AR-

based systems. Implementing AR technology in an industrial setting can be a complex 

and time-consuming process, often taking several months. During this transition period, 

companies can adopt interim solutions to bridge the gap and gradually integrate AR. 

Literature suggests several approaches that can be applied before fully moving into AR: 

(1) Enhanced Training Programs: Implementing comprehensive training programs 

focused on AR principles and basic functionalities can prepare workers for the 

upcoming technological shift. Utilizing simulations and VR environments can help 

workers become familiar with AR interfaces and operations. (2) Incremental Integration: 

Gradually introducing AR components into the existing workflow can ease the 

transition. For instance, starting with AR-based instructional aids for complex tasks can 
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help workers adapt to the new system without overwhelming them. (3) Hybrid Systems: 

Combining traditional methods with AR elements can create a hybrid system that 

leverages the strengths of both approaches. This can include using AR for specific high-

error tasks while maintaining classical methods for routine operations. 

5.5.5 Lack of Development Tools for Customizing AR system 

Another critical gap is the lack of development tools that allow for the quick 

customization of AR systems for industrial applications. The current landscape shows 

a deficiency in libraries and frameworks tailored for rapid AR app development, which 

hinders the scalability and adaptability of AR technologies in manufacturing. 

 

To address this, future work could focus on developing robust development frameworks 

and toolkits that provide: Modular Libraries: (1) Modular Libraries: These libraries can 

offer pre-built AR components that can be easily customized and integrated into 

different industrial processes. (2) User-Friendly Interfaces: Development tools with 

intuitive interfaces can enable non-expert users to create and modify AR applications, 

reducing dependency on specialized developers. (3) Interoperability Standards: 

Establishing standards for AR systems can ensure compatibility and integration with 

existing industrial software and hardware.  

5.5.6 Implications for Practice 

Integrating AR into HRC systems holds significant practical implications for the 

manufacturing industry. Enhanced user experience and reduced stress levels can 

increase worker satisfaction and retention, crucial for maintaining a skilled workforce. 

Moreover, the substantial improvement in assembly accuracy can translate into higher 

product quality and reduced rework and quality control costs. 
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To maximize AR's benefits, companies should invest in comprehensive training 

programs to familiarize workers with AR technologies. Additionally, iterative testing 

and refinement of AR interfaces are essential to ensure that they meet the specific needs 

of users and the tasks at hand. 

 

Future research should explore the long-term effects of AR integration on worker 

performance and satisfaction. Studies could investigate how continuous use of AR 

affects learning curves, skill development, and job satisfaction over time. Additionally, 

research could examine the scalability of AR-assisted HRC systems in different 

manufacturing contexts and for various types of assembly tasks. Further investigation 

into the development of comprehensive toolkits for AR customization, focusing on 

modularity, user-friendliness, and interoperability, is also needed. 

 

5.6 Contributions 

Chapter 5 makes a significant contribution by introducing and empirically validating 

an AR-assisted HRC) system tailored for complex industrial assembly tasks. Grounded 

in real-world insights gathered from observations and interviews at the HWASDAN 

conveyor belt assembly workshop, the system was designed using a user-centered 

design (UCD) process that directly responds to practical challenges faced by operators, 

such as frequent part misidentification and cognitive overload. The AR system 

integrates real-time visual guidance via HoloLens 2, a collaborative robot equipped 

with a custom-designed electromagnet end-effector, and a robust control architecture to 

support adaptive, precise assembly workflows. This integration allows operators to 

perform tasks with greater clarity and accuracy, while the system dynamically adjusts 
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to support user needs in cognitively demanding environments. 

 

The effectiveness of the AR-assisted HRC system was validated through a controlled 

experiment involving thirty participants, comparing three conditions: AR with robot 

assistance, robot assistance without AR, and manual assembly using paper instructions. 

Results revealed that the AR-enhanced condition significantly outperformed the others 

in terms of assembly accuracy (97.49%), user experience (as measured by the 

AttrakDiff Mini), and reduced cognitive workload (NASA-TLX). Although assembly 

time was slightly longer with the AR system, this was offset by substantial gains in 

quality and user satisfaction. Notably, this chapter completes a full UX design 

workflow—from initial user research to iterative development and evaluation—within 

an industrial setting. This work not only demonstrates the tangible benefits of AR in 

improving user experience and task performance but also offers a replicable 

methodological framework for future research and implementation in smart 

manufacturing systems. 

 

5.7 Summary 

This chapter successfully demonstrated the application of an AR-assisted collaborative 

robotic system to enhance UX, assembly performance, and cognitive workload in a 

manufacturing context. By employing a user-centred approach, the study evaluated the 

effectiveness of AR and collaborative robotics in improving assembly accuracy, 

reducing cognitive strain, and enhancing user satisfaction. The structured methodology, 

which included both objective performance measures and subjective user feedback, 

provides valuable insights into the potential of integrating AR technologies into 

industrial assembly tasks. 
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Key findings from this chapter highlight the significant advantages of AR in reducing 

errors, improving assembly quality, and offering real-time guidance that supports users 

in complex tasks. The integration of collaborative robots further emphasized the 

benefits of shared tasks between humans and machines, balancing physical workload 

and cognitive demands. The use of tools such as AttrakDiff Mini and NASA TLX 

provided a comprehensive understanding of user perceptions, satisfaction, and 

workload, contributing to the validation of the AR-assisted system as a viable solution 

for industrial applications. 

 

Importantly, this chapter illustrates the completion of the entire UX design workflow, 

encompassing user research, task analysis, system design, prototyping, testing, and 

evaluation. This comprehensive process ensures research aligns with real-world 

industrial needs while addressing critical gaps in literature. The findings pave the way 

for practical implementation in manufacturing environments and provide a solid 

foundation for future exploration. 

 

Building on this work, the final chapter transitions to discussing broader measurement 

challenges in UX evaluation. Specifically, it identifies the limitations of existing tools, 

which are often too general and not tailored to manufacturing contexts. To address this, 

the next chapter proposes the development of a specialized tool grounded in the 

conceptual framework established in Chapter 3. This tool aims to refine and advance 

the measurement of UX in manufacturing, addressing domain-specific requirements 

and offering a more precise, impactful solution for evaluating human-robot interaction 

in industrial settings. 
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6.1 Introduction 

In previous chapters, this thesis has explored how modern manufacturing demands for 

product personalization and customization have created significant challenges for 

maintaining efficient production processes, necessitating the integration of advanced 

HRI systems. Chapter 3 established a conceptual framework for understanding the 

critical dimensions of UX in manufacturing HRI, such as operational efficiency, trust, 

and cognitive workload. Chapter 5 applied this framework in the context of an AR-

assisted collaborative robotic system, demonstrating how user-centered design 

approaches can improve assembly performance, enhance user satisfaction, and reduce 

cognitive strain. These findings underscored the importance of aligning HRI 

technologies with the unique requirements of industrial environments, providing a 

strong foundation for further investigation. 

 

Building on these insights, this chapter focuses on addressing a critical limitation 

identified in previous chapters: the lack of specialized tools for measuring UX in 

manufacturing HRI. While existing UX evaluation methods have been adapted from 

consumer-focused applications, they are often inadequate for capturing the complexity, 

precision, and unique demands of industrial tasks. The need for a domain-specific 

measurement tool that reflects the operational and cognitive challenges faced by human 

operators in manufacturing is evident. 

 

This chapter introduces the development of a tailored UX evaluation tool for 

manufacturing HRI, grounded in the framework established in Chapter 3 and informed 

by the practical findings in Chapter 5. By focusing on operational efficiency, cognitive 

usability, and trust, this chapter aims to bridge the gap between generic UX evaluation 

tools and the specific needs of manufacturing environments. The proposed tool is 
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designed to provide actionable insights for researchers and practitioners, enabling more 

effective and human-centred HRI system design. 

 

6.2 Related Works 

6.2.1 Research on HRI in Manufacturing 

As discussed in previous chapters, HRI plays a pivotal role in modern manufacturing, 

driving improvements in productivity, safety, and adaptability. Prior research has 

emphasized the dual benefits of cobots, which combine robotic precision with human 

oversight to meet the growing demand for flexible, small-batch, and customized 

production (Villani et al., 2018, Prati et al., 2021a). While these advancements highlight 

the technological potential of HRI systems, many studies have focused on operational 

efficiency rather than addressing human-centred aspects, such as UX, cognitive 

workload, and trust (Wang et al., 2017, Kopp et al., 2021). 

 

6.2.2 Role of User Experience in Manufacturing HRI 

UX is increasingly recognized as a critical factor in the adoption and effectiveness of 

HRI systems. As discussed earlier, UX extends beyond usability to include dimensions 

such as reliability, safety, and personalization, which directly impact user satisfaction 

and system performance. However, existing UX evaluation tools, such as general 

usability scales (e.g., SUS, AttrakDiff), lack the specificity needed to address the unique 

demands of manufacturing environments (Hassenzahl, 2008, Diefenbach et al., 2014). 

This gap highlights the necessity of developing specialized UX evaluation tools tailored 

to industrial HRI contexts. 
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6.2.3 Assessment of User Experience 

Over the years, many scales have been developed to assess user experience (UX) across 

various contexts. These scales reflect evolving trends and a deeper understanding of 

what constitutes a positive user experience. In early research concerning UX 

assessment, the focus was primarily on usability. The System Usability Scale (SUS), 

introduced by John Brooke in 1986, became one of the most widely used tools for 

quickly evaluating the usability of a system (Brooke, 1996a). SUS is a simple, ten-item 

questionnaire that allowed researchers to gauge how easy and pleasant a system was to 

use (Brooke, 1996a). 

 

As the field matured, it became evident that usability alone could not capture the full 

spectrum of user experience. The User Experience Questionnaire (UEQ), developed by 

Schrepp et al., expanded the assessment criteria to include both pragmatic qualities like 

efficiency and dependability, and hedonic qualities such as stimulation and 

identification (Schrepp et al., 2017). This broader approach highlighted the importance 

of users' emotional and motivational responses to interacting with a product. 

 

Similarly, the AttrakDiff scale, developed by Hassenzahl and colleagues, emphasizes 

the dual nature of UX by distinguishing between pragmatic and hedonic qualities. Using 

a semantic differential technique, this scale captures users' perceptions of both the 

functional and pleasurable aspects of a product (Hassenzahl et al., 2003b). For example, 

the hedonic aspects measured by AttrakDiff include how stimulating and novel the 

product feels, as well as the pleasure derived from using the product's design and 

features (Hassenzahl et al., 2003a). This reinforced the idea that a comprehensive UX 

assessment must account for both utilitarian and experiential dimensions. 
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As the focus on holistic UX assessment grew, researchers recognized the need for 

specialized tools tailored to specific contexts, since general UX measures often failed 

to capture unique factors relevant to different domains (Marques et al., 2021). For 

instance, the Game Experience Questionnaire (GEQ) was designed to measure unique 

aspects of user experience in gaming, including factors like immersion, flow, and 

competence (IJsselsteijn et al., 2013). Similarly, the Technology Acceptance Model 

(TAM) evolved to include perceived enjoyment as a critical factor influencing 

technology adoption, reflecting a broader understanding that positive emotional 

responses drive user engagement and acceptance (Silva, 2015). 

 

While these scales are useful in their respective domains, applying them directly to 

manufacturing settings presents challenges. The unique environment of manufacturing 

involves complex, repetitive tasks that require high precision and seamless integration 

with existing industrial processes (Kopp et al., 2021). These specific conditions are not 

fully addressed by scales developed for consumer products or general UX assessment 

(Spatola et al., 2021). For instance, the emotional satisfaction and enjoyment 

(Hassenzahl et al., 2003a) derived from using a household product may not translate 

directly to the satisfaction experienced by an operator interacting with a cobot on an 

assembly line (Apraiz et al., 2023). Additionally, the stakes in manufacturing 

environments are higher, with potential impacts on safety, productivity, and worker 

well-being (Spatola et al., 2021). Therefore, specialized tools and methodologies 

tailored to the unique requirements of manufacturing HRI are necessary to capture the 

full spectrum of user experience in these settings 

 

Incorporating UX into manufacturing HRI is crucial, as it enhances operational 

efficiency and user satisfaction within constrained interactions (Lorenzini et al., 2023). 

Despite these advances, current methodologies still lack robust, industry-specific UX 
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evaluation frameworks. This study aims to address this gap by developing a specialized 

evaluation scale for assessing HRI UX in manufacturing environments. By doing so, it 

will provide a tool for practitioners to enhance both the design and implementation of 

HRI systems, ultimately improving efficiency and user satisfaction in industrial settings.  

 

6.3 Experimental Methodology 

6.3.1 Participants 

The study recruited manufacturing professionals with direct experience in HRI from 

various industries, including automotive assembly, component processing, chip 

manufacturing, engine production, wheel hub processing, and household appliance 

manufacturing.  Participants held diverse roles such as industrial line operators, 

maintenance engineers, safety managers, quality assurance personnel, and system 

designers to ensure a comprehensive representation of different perspectives within 

manufacturing environments. 

 

An initial dataset of 358 responses was collected, but after data cleaning and quality 

checks, 215 valid responses were retained for analysis. The final sample included 

participants with varying levels of experience in HRI, ranging from those new to robot-

assisted work environments to highly experienced professionals.  To ensure relevance, 

only those who had direct interaction with robotic systems in manufacturing were 

included in the study.  Participants also provided demographic information such as age, 

gender, education level, years of experience working with robots, and the types of 

robotic systems used in their workplaces. With accordance to the recommendation of 

Comrey (2013), as a rule of thumb, 200 is considered to be an adequate sample size for 

exploratory factor analyses (Comrey and Lee, 2013). 
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The data for this study were collected through a structured questionnaire distributed to 

employees in the manufacturing sector who interact or collaborate with robots. I 

selected a variety of manufacturing enterprises, including automotive assembly, 

component processing, chip manufacturing, engine manufacturing, wheel hub 

processing, and household appliance manufacturing, to ensure representativeness 

across the industry, company list see Table 6.1. To capture a broad spectrum of user 

experiences, I targeted different roles within these enterprises, such as Industrial Line 

Operators, Maintenance Engineers, Safety Managers, Quality Assurance Personnel, 

and System Designers and Developers, representing diverse job roles and departments 

as shown in Table 6.2. 
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Table 6.1 The Top 10 companies from which the participants came. 

Company name 

Haier Co., Ltd. 

Lynk & Co (Geely Holding Group) 

Bosch Hydrogen Power (Chongqing) Co., Ltd. 

Dicastal Jieli Wheel Manufacturing Co., Ltd. 

Chongqing Kanghui Machinery Manufacturing Co., Ltd. 

Quanzhou Intelligent Manufacturing 

Chongqing Genori Technology Co., Ltd. 

Chongqing Automobile Muffler Co., Ltd. 

Minsheng Logistics 

Chongqing Zhicheng Machinery Co.,Ltd. 

Chongqing Yanpu Auto Parts Co., Ltd. 
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Table 6.2 Participants and Sampling in Manufacturing. 

Role Action Reason 

Industrial Line 

Operators 

Operate and monitor machinery with 

integrated robotic systems. 

They directly interact with robotic 

systems, providing first-hand 

information on the usability and 

efficiency of HRI from an 

operator’s perspective. 

Maintenance 

Engineers 

Perform regular maintenance and 

troubleshooting on robotic systems. 

Their expertise in system 

functionality and maintenance 

gives insight into the long-term 

usability and serviceability of 

HRI. 

Safety 

Managers 

Implement safety protocols and 

conduct regular reviews of human-

robot interaction zones. 

They have a comprehensive 

understanding of the safety 

implications of HRI and the 

effectiveness of safety protocols. 

Quality 

Assurance 

Personnel 

Inspect and verify the quality of 

products produced with the 

assistance of robotic systems. 

Their role in ensuring product 

quality offers a unique perspective 

on how HRI affect production 

outcomes and adherence to 

quality standards. 

System 

Designers and 

Developers 

Design user interfaces and develop 

software for robotics control 

systems. 

They provide a critical view on 

the design and implementation of 

HRI, highlighting potential areas 

for improvement from a technical 

standpoint. 

 

6.3.2 Materials 

To develop an evaluation framework for UX in HRI within the manufacturing, my 
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previous work used semi-structured interviews with factory robot operators to identify 

twelve themes most pertinent to HRI user experience in manufacturing: Efficiency, 

Accuracy, Reliability, Ergonomics, Interaction Interface Design, User Satisfaction, 

Trust, Safety, Personalization Settings, Ease of Learning, Usability, and Memory 

Burden. Based on these themes,  

 

This study developed a scale which contains 44 items – 3 or 4 for each selected theme 

(See Table 6.3). Each item features a statement against which respondents indicate their 

degree of agreement on a 100-point scale – 1 (strongly disagree) to 100 (strongly agree). 

 

To ensure the relevance of each question and the accuracy of its wording, a rigorous 

development process was implemented. This process involved a thorough review by 

three experts in the field. Each question was examined for clarity, appropriateness, and 

alignment with the research objectives. This iterative review process was conducted 

three times, with each round of review followed by necessary revisions.  

 

Besides the 44 items in the HRI UX measures, the questionnaire also contains some 

demographic questions. The demographic section included questions on gender, age, company, 

education level, robot brand, work with robot experience and types of robots encountered in 

their jobs. Data were collected either in person or online. For online data collection in China, 

Chongqing, I used the Tencent Questionnaire platform, sending links to participants’ mobile 

phones. The Chinese translation of the full questionnaire can be seen at the link: 

https://github.com/tongyanzhanggithub/UX-HRI-scale/tree/main/scale. The survey lasted for 

20 days, and the average time to complete questionnaire was 568 seconds. All participants 

provided informed consent before participating. 

 

https://github.com/tongyanzhanggithub/UX-HRI-scale/tree/main/scale
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Table 6.3 Preliminary HRI-UX assessment in manufacturing scale. 

Themes NO. Question 

Efficiency 

Q1 
The system’s efficiency meets my expectations for the tasks at 

hand. 

Q2 
I am able to complete tasks with the system within the expected 

time. 

Q3 The system’s response speed meets my task needs. 

Q4 
Using this system effectively reduces the working time for 

individual tasks. 

Accuracy 

Q5 
The system’s accuracy meets my expectations for the tasks at 

hand. 

Q6 The system performs tasks accurately with few errors. 

Q7 
The information provided by the system is accurate and reliable 

for decision-making. 

Q8 
The system’s handling of complex tasks meets my accuracy 

requirements. 

Reliability 

Q9 I find the system reliable during operation. 

Q10 The system performs consistently during continuous use. 

Q11 I trust the system will not fail at critical moments. 

Q12 
The system’s maintenance and fault recovery capabilities give me 

confidence in its reliability. 

Ergonomics 

Q13 
I have a comfortable working environment while interacting with 

the system.  

Q14 
The system’s physical layout is designed to make me feel 

comfortable. 
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Q15 
The physical interface of the system (such as buttons and 

switches) is easy to use. 

Q16 
Prolonged interaction with the system does not cause me physical 

discomfort. 

Interaction 

Interface 

Design 

Q17 The design of the interactive interface is intuitive. 

Q18 The user interface design of the system is easy to operate. 

Q19 
The design of interface elements (such as icons, buttons, and text) 

aligns with my usage habits. 

Q20 
The interaction design of the system helps me complete tasks 

efficiently without causing confusion. 

Ease of 

learning 

Q21 I can quickly learn how to use the basic functions of the system. 

Q22 I do not feel a memory burden when using the system. 

Q23 
I can easily learn how to use the system without extensive 

training. 

Q24 The learning difficulty of the system is reasonable for beginners. 

Usability 

Q25 The system is simple and easy to use. 

Q26 I find all the functions of the system useful in my daily work. 

Q27 
I can use the system without frequently referring to the help 

documentation. 

Q28 
The operation logic and user interface design of the system make 

daily use simple. 

Memory 

Burden 

Q29 
I do not need to remember too much information to use the system 

effectively. 

Q30 
The system’s reminders and prompt features eliminate my 

memory burden. 
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Q31 I rarely need to recall previous steps when operating the system. 

User 

Satisfaction 

Q32 I am satisfied with the overall experience of using this system. 

Q33 The system’s performance and features meet my expectations. 

Q34 I would recommend this system to my colleagues. 

Trust 

Q35 I believe the system will maintain its performance standards. 

Q36 
I trust the system to be secure and reliable in handling my 

information and tasks. 

Q37 I trust the system to respond correctly in unexpected situations. 

Safety 

Q38 I feel safe when interacting with the system. 

Q39 I feel safe during the operation of the system. 

Q40 
The system’s security measures give me confidence when using 

it. 

Q41 I am satisfied with the system’s emergency response measures. 

Personalization 

setting 

Q42 
The system provides sufficient personalization options to suit my 

work habits. 

Q43 
I can easily adjust the system settings according to my 

preferences. 

Q44 
The system’s personalization settings help improve my work 

efficiency. 

 

6.3.3 Design 

The study followed an exploratory survey design with the primary goal of developing 

and validating a domain-specific UX evaluation tool for manufacturing HRI. The 

research objectives were: (1) to identify key UX factors in manufacturing HRI, (2) to 
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refine the UX scale through factor analysis, and (3) to validate the instrument’s internal 

consistency and construct validity. 

 

Data were collected through a 20-day online and in-person survey distributed via 

workplace networks and professional contacts. To ensure robust measurement, the 

study employed exploratory factor analysis (EFA) to determine how UX-related factors 

clustered into meaningful subscales. The analysis was conducted using principal 

component extraction with Kappa 4 rotation, an oblique rotation method that allows 

factors to be interrelated. 

 

To minimize response biases, the questionnaire included reverse-coded items, and 

responses with uniform ratings (e.g., all items marked as 50 or 100) were flagged and 

removed. Additionally, a minimum completion time of 200 seconds was enforced to 

ensure thoughtful responses. 

 

6.3.4 Procedure 

Participants were recruited through professional networks, workplace announcements, 

and direct email invitations. The survey was administered using the Tencent 

Questionnaire platform for online responses, while printed versions were distributed at 

selected industrial sites. Before participation, all respondents were presented with an 

information sheet detailing the study’s objectives, risks, and expected contributions. 

They were required to sign an informed consent form acknowledging their voluntary 

participation and the confidentiality of their responses. 

During the survey administration, participants were given clear instructions on how to 

complete the questionnaire, which took an average of 9.5 minutes (568 seconds). The 
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survey included demographic questions, UX assessment items, cognitive workload 

measures (NASA-TLX), and an open-ended section for additional feedback. 

 

After data collection, several preprocessing steps were conducted to ensure data quality. 

The initial dataset of 358 responses was filtered to remove (1) uniform or random 

responses, (2) submissions completed in above 200 seconds, and (3) respondents with 

no prior experience in HRI. After cleaning, 215 valid responses remained for analysis. 

According to established guidelines for EFA, a commonly recommended minimum sample size 

is between 5 to 10 participants per item, with an absolute minimum of 100 to 200 participants 

to ensure statistical validity and factor stability (Comrey and Lee, 2013, Hair, 2009). Given that 

the preliminary HRI-UX scale in this study included 44 items, the ideal sample size would 

range between 220 and 440 participants. The final valid dataset for this study includes responses 

from 215 participants, which is near the lower boundary of this recommended range and 

exceeds the minimum threshold suggested by several empirical studies. Therefore, the sample 

size is considered adequate for conducting EFA while ensuring the robustness of the findings. 

 

6.4 Results 

6.4.1 Descriptive Statistics 

To gain a preliminary understanding of the demographic characteristics of the 

participants, I use SPSS 29.0 statistical software to conduct a general descriptive 

statistical analysis of the participants' gender, age, education level, and work with robot 

experience. The statistical results are shown in Table 6.4. The Table 6.5 describes the types 

of robots most used by the participants. The Table 6.6 shows six the robot brands most used by 

the participants. 
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Table 6.4 Description of Participants' Demographic Characteristics. 

Attribute Category Frequency Percentage 

Gender 

Male 191 88.8% 

Female 15 7% 

Prefer not to say 9 4.2% 

Age 

Under 18 years old 1 0.5% 

18 to 24 years old 23 10.7% 

25 to 30 years old 45 20.9% 

31 to 40 years old 78 36.3% 

41 to 50 years old 51 23.7% 

51 to 60 years old 9 4.2% 

Prefer not to say 8 3.7% 

Education Level 

Middle school and below 11 5.1% 

High school/Vocational 

school/Technical school 
76 35.3% 

Associate degree 80 37.2% 

Bachelor's degree 31 14.4% 

Master's degree and above 5 2.3% 

Prefer not to say 12 5.6% 

Work with Robot 

Experience 

Less than 1 year 58 27% 

1 to 2 years 51 23.7% 

2 to 3 years 35 16.3% 
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3 to 4 years 31 14.4% 

4 to 5 years 2 0.9% 

More than 5 years 23 10.7% 

More than 10 years 13 6% 

More than 20 years 2 0.9% 

 

 

 

Table 6.5 Type of robot for participants to work with. 

Types of robots Frequency Percentage 

Articulated Robots 158 73.5% 

SCARA Robots 168 78.6% 

Delta Robots 17 7.9% 

Cartesian Robots 42 16.9% 

Cylindrical Robots 37 17.2% 

Polar or Spherical Robots 32 12.9% 

Automated Guided Vehicles (AGV) 46 21.4% 

Collaborative Robots (Cobots) 29 13.5% 

Hybrid Robots 17 7.9% 
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Table 6.6 Robot brands for participants to work with. 

Types of robot brand Frequency Percentage 

KUKA 47 21.9% 

ABB 52 24.2% 

FANUC 21 9.8% 

NANCHI 12 4.8% 

Boston Dynamics 22 10.2% 

KAWASAKI 16 7.4% 

 

6.4.2 Inter-item Reliability and Validity Testing 

Inter-item Reliability Analysis 

Inter-item reliability is a crucial aspect of data consistency and dependability, reflecting 

the stability and authenticity of measurements. The Cronbach's alpha coefficient, 

ranging from 0 to 1, is the most widely used metric for assessing internal consistency, 

with values closer to 1 indicating higher reliability (Nunnally, 1975). Generally, a 

Cronbach's alpha value above 0.6 is acceptable, while values above 0.8 denote high 

reliability and practical value (Yockey, 2016). 

 

Using SPSS 29.0 to analyse the reliability of my questionnaire. For my scale, the 

Cronbach's alpha coefficient is 0.989. Since the Cronbach's alpha value exceeds the 

acceptable threshold of 0.7, it indicates that the reliability of each scale is very high, 

and the questionnaire demonstrates excellent internal consistency. 
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Factor Analysis Suitability Assessment 

Before conducting factor analysis, it’s important to establish the validity of scale. 

Validity refers to the extent to which a scale accurately reflects the characteristics of the 

subject being measured, essentially assessing the effectiveness and correctness of the 

scale (Price et al., 2015). Higher validity indicates that the questionnaire results more 

accurately represent the true behaviours of the subjects being measured. Content 

validity and construct validity are commonly used indicators of validity. Content 

validity is a subjective indicator, and its evaluation primarily involves consulting 

experts to analyse and judge whether the measurement items effectively represent the 

content intended to be measured. Typically, the design process of a questionnaire can 

reflect its content validity. The questionnaire designed for this study was informed by 

previous research and was repeatedly revised and adjusted in consideration of the 

specific context of small and medium-sized enterprises; thus, it can be considered to 

have good content validity. Construct validity refers to the extent to which the 

measurement results explain a certain construct. Common indicators used to test 

construct validity include the Kaiser-Meyer-Olkin (KMO) value and Bartlett’s Test of 

Sphericity. It is generally believed that a KMO value of 0.9 or higher is ideal, though 

values greater than 0.6 are also acceptable (Hair, 2009). The ideal significance level for 

Bartlett's Test of Sphericity is less than 0.05 (Hair, 2009). 

 

If the KMO value exceeds 0.6 and the Bartlett’s Test is significant with a p-value less 

than 0.01, exploratory factor analysis is considered appropriate. Given that my scale is 

derived is a relatively immature questionnaire, I conducted these tests on my scale as 

shown in the following Table 6.7. 
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Table 6.7 KMO and Bartlett's Test of Sphericity. 

 
KMO DF 

Bartlett’s Test of 

Sphericity 
Sig. 

HRI-UX Assessment 

in Manufacturing 

scale 

0.969 946 11872.695 <0.001 

Based on the results, the KMO values for the HRI-UX Assessment in Manufacturing 

scale is 0.968, respectively. The significance level of the Bartlett's Test of Sphericity is 

less than 0.001, meeting the requirements for conducting exploratory factor analysis. 

 

6.5 Exploratory Factor Analysis (EFA) 

In this study, SPSS 29.0 software was utilized to conduct an exploratory factor analysis 

on the HRI-UX Assessment in Manufacturing scale. EFA was chosen as the develop 

method because it simplifies the data structure by identifying a few latent factors that 

explain most of the observed variables, thereby enhancing the reliability and validity of 

the scale (Fabrigar et al., 1999). Principal Component Analysis (PCA) is employed for 

the factor analysis, with the extraction criterion set to eigenvalues greater than one. PCA 

for factor extraction because PCA effectively reduces the dimensionality of the data 

while retaining as much of the original information as possible, which helps identify 

the main components that best represent the data structure (Abdi and Williams, 2010). 

Additionally, I employed the Kappa 4 rotation method, an oblique rotation technique, 

which allows for correlations between factors, providing a clearer and more 

interpretable factor structure and simplifying the factor loading matrix (Browne, 2001). 

This method is more common in practical applications because the constructs being 

measured in real-world settings are often not entirely independent (Jennrich, 2002). 
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Items were screened based on the following criteria: items with factor loadings less than 

0.4 were deleted, items with loadings greater than 0.4 on two or more common factors 

were also deleted, and items that did not match their expected category under the 

common factors were removed.  

 

Subsequent analysis identified that the factor loading for item Q11 was below the 

threshold of 0.4, necessitating its exclusion from further analysis. Additionally, items 

exhibiting significant cross-loadings, with factor loadings exceeding 0.4 across two or 

more common factors—namely Q4, Q7, Q18, Q19, Q21, Q25, Q39 and Q41—were 

also removed. Items that did not conform to the established categories and lacked 

theoretical justification, such as Q9, Q16, Q28, Q30, Q36 and Q43, were further 

excluded. For example, item Q9, which was expected to load on the “Reliability” factor, 

did not align well with other items in this category and did not load significantly on any 

other factor either, indicating that it did not fit within the theoretical framework of the 

established categories. A revaluation through exploratory factor analysis subsequently 

revealed that the cumulative variance explained by the identified common factors was 

72.935%, as presented in Table 6.8. It should be noted that only the first two 

components were retained based on the Kaiser criterion (eigenvalues > 1), and as such, 

Extraction and Rotation Sums of Squared Loadings are only reported for these 

components. For components 3 through 30, eigenvalues were below the threshold, and 

therefore no further extraction or rotation values were computed or displayed by the 

software. This is a standard outcome in exploratory factor analysis, as only components 

deemed significant are subjected 
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Table 6.8 Total Variance explained. 

 Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Rotatio

n Sums 

of 

Squared 

Loading

s 

Compone

nt 
Total 

% of 

Varianc

e 

Cumulative 

% 
Total 

% of 

Varianc

e 

Cumulative 

% 
Total 

1 
20.72

2 
69.072 69.072 

20.72

2 
69.072 69.072 20.172 

2 1.159 3.863 72.935 1.159 3.863 72.935 16.007 

3 0.823 2.743 75.678     

4 0.612 2.039 77.716     

5 0.570 1.900 79.616     

6 0.523 1.744 81.360     

7 0.456 1.519 82.879     

8 0.432 1.439 84.319     

9 0.398 1.326 85.645     

10 0.382 1.272 86.917     

11 0.375 1.249 88.166     

12 0.354 1.180 89.346     

13 0.305 1.017 90.363     

14 0.301 1.004 91.368     
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15 0.286 0.953 92.320     

16 0.252 0.840 93.160     

17 0.238 0.795 93.955     

18 0.201 0.672 94.627     

19 0.192 0.640 95.266     

20 0.184 0.613 95.880     

21 0.175 0.585 96.464     

22 0.161 0.538 97.002     

23 0.153 0.509 97.511     

24 0.137 0.455 97.967     

25 0.132 0.440 98.407     

26 0.115 0.383 98.790     

27 0.101 0.336 99.126     

28 0.099 0.325 99.541     

29 0.088 0.292 99.743     

30 0.077 0.257 100     

 

In this exploratory analysis, a total of two common factors were extracted from the 

scale, with each measurement item demonstrating a factor loading greater than the 

threshold of 0.5. Based on the specific measurement items included in each factor, these 

two common factors were named in sequence as: (1) Comprehensive operational 

efficiency. (2) Cognitive Usability. As presented in Table 6.9. 
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Table 6.9 Pattern matrix. 

Component 
Comprehensive 

operational efficiency 

Cognitive 

Usability 

Q1. The system’s efficiency meets my expectations for 

the tasks at hand. 
0.783  

Q2. I am able to complete tasks with the system within 

the expected time. 
0.780  

Q3. The system’s response speed meets my task needs. 0.805  

Q5. The system’s accuracy meets my expectations for 

the tasks at hand. 
0.964  

Q6. The system performs tasks accurately with few 

errors. 
0.710  

Q8. The system’s handling of complex tasks meets my 

accuracy requirements. 
0.831  

Q10. The system performs consistently during 

continuous use. 
0.908  

Q12. The system’s maintenance and fault recovery 

capabilities give me confidence in its reliability. 
0.782  

Q13. I have a comfortable working environment while 

interacting with the system. 
0.688  

Q14. The system’s physical layout is designed to make 

me feel comfortable. 
0.825  

Q15. The physical interface of the system (such as 

buttons and switches) is easy to use. 
0.920  

Q17. The design of the interactive interface is intuitive. 0.776  
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Q20. The interaction design of the system helps me 

complete tasks efficiently without causing confusion. 
0.743  

Q22. I do not feel a memory burden when using the 

system. 
 0.753 

Q23. I can easily learn how to use the system without 

extensive training. 
 0.941 

Q24. The learning difficulty of the system is reasonable 

for beginners. 
 0.662 

Q26. I find all the functions of the system useful in my 

daily work. 
 0.476 

Q27. I can use the system without frequently referring 

to the help documentation. 
 0.680 

Q29. I do not need to remember too much information 

to use the system effectively. 
 0.927 

Q31. I rarely need to recall previous steps when 

operating the system. 
 0.691 

Q32. I am satisfied with the overall experience of using 

this system. 
0.869  

Q33. The system’s performance and features meet my 

expectations. 
0.836  

Q34. I would recommend this system to my colleagues. 0.804  

Q35. I believe the system will maintain its performance 

standards. 
0.813  

Q37. I trust the system to respond correctly in 

unexpected situations. 
0.675  

Q38. I feel safe when interacting with the system. 0.631  
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Q40. The system’s security measures give me 

confidence when using it. 
0.699  

Q41. I am satisfied with the system’s emergency 

response measures. 
0.892  

Q42. The system provides sufficient personalization 

options to suit my work habits. 
0.606  

Q44. The system’s personalization settings help 

improve my work efficiency. 
0.826  
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Table 6.10 Factor Structure and Corresponding Questionnaire Items. 

Factor Theme Item Numbers Cronbach’s Alp 

Factor 1: 

Comprehensive 

Operational 

Efficiency 

Efficiency Q1, Q2, Q3 0.983 

 Accuracy Q5, Q6, Q8  

 Reliability Q10, Q12  

 Ergonomics Q13, Q14, Q15  

 
Interaction 

Interface Design 
Q17, Q20  

 User Satisfaction Q32, Q33, Q34  

 Trust Q35, Q37  

 Safety Q38, Q40, Q41  

 
Personalization 

Settings 
Q42, Q44  

Factor 2: 

Cognitive 

Usability 

Ease of Learning Q22, Q23, Q24  

 Usability Q26, Q27  

 Memory Burden   

 

The Table 6.10 presents the results of the factor analysis conducted on the questionnaire 
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items used to evaluate user experience in HRI within manufacturing environments. Two 

distinct factors emerged from the analysis: Factor 1: Comprehensive Operational 

Efficiency (Cronbach’s alpha = 0.983) captures aspects related to the overall 

performance of robotic systems from the user’s perspective. It encompasses multiple 

themes such as system efficiency, accuracy, reliability, ergonomics, interface design, 

user satisfaction, trust, safety, and personalization. This factor reflects how effectively 

and safely the robot functions in a production setting, as perceived by the users. Factor 

2: Cognitive Usability (Cronbach’s alpha = 0.920) focuses on the cognitive dimension 

of the user experience; particularly how easy it is for users to learn and operate the 

system. Themes under this factor include ease of learning, general usability, and the 

mental effort required (memory burden). This reflects users’ cognitive workload and 

how intuitive the system is to use. High Cronbach’s alpha values for both factors 

indicate strong internal consistency, suggesting that the items grouped under each factor 

reliably measure their respective constructs. 

 

6.6 Discussion 

This study successfully developed a specialized evaluation scale for assessing HRI UX 

in manufacturing environments. The scale, divided into ‘Comprehensive Operational 

Efficiency’ and ‘Cognitive Usability’, provides a robust framework for evaluating the 

effectiveness and usability of robotic systems in manufacturing. Through EFA, I 

ensured the reliability and validity of the scale, confirming its applicability in real-world 

settings 

 

The new HRI UX evaluation scale has significant implications for the manufacturing 

industry. It offers a practical tool for companies to assess and improve the interaction 

between workers and robots, thereby potentially enhancing overall productivity and 
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operator satisfaction. By addressing both technological performance and user 

experience aspects, this scale promotes a more holistic approach to integrating robotic 

technology in manufacturing, contributing to the sustainable development of the 

industry. Moreover, improving HRI UX can potentially lead to better working 

conditions for employees by making interactions with robots more intuitive and user-

friendly. 

 

The application of my HRI UX scale in various manufacturing settings demonstrates 

its versatility and relevance. For instance, in automotive assembly lines, the scale can 

help identify specific areas where the interaction between humans and robots can be 

improved, potentially leading to more efficient production processes. Similarly, in 

electronic component manufacturing, where precision and reliability are paramount, the 

scale can be used to evaluate how effectively robots are supporting human workers, 

which can inform strategies to reduce errors and enhance productivity. Nevertheless, 

the insights gained from applying this scale can inform the design and development of 

future robotic systems. By understanding the specific needs and challenges faced by 

human operators, designers can create more intuitive and user-friendly interfaces, 

ultimately enhancing the overall effectiveness of HRI in manufacturing settings. This 

user-centered approach is critical for the successful integration of advanced robotic 

technologies in industry. 

 

However, one notable difference between my scale and other established UX scales is the 

apparent absence of a “hedonic” aspect, which pertains to the pleasure and enjoyment derived 

from using a system. Traditional UX scales, such as the AttrakDiff (Hassenzahl et al., 2003b) 

and the UEQ (Schrepp et al., 2017) emphasize both pragmatic and hedonic qualities to capture 

the full spectrum of user experience. While my scale focuses on operational efficiency and 

cognitive usability, the inclusion of hedonic elements could provide a more holistic 
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understanding of UX in manufacturing HRI. Future research could explore the integration of 

hedonic aspects to evaluate how enjoyment and emotional satisfaction influence the acceptance 

and effectiveness of HRI systems in industrial contexts. 

 

Despite the promising results, this study has several limitations. The sample size was relatively 

small, and data were collected from a limited number of manufacturing settings. Moreover, all 

data were collected in China, so the results might not be generalizable. Furthermore, the scale 

was translated into Chinese, and results need to be interpreted with caution due to possible 

translation errors. Future research should aim to include a larger and more diverse sample to 

validate and refine the scale further. Additionally, the exploratory factor analysis, while 

effective, may not fully capture all dimensions of HRI UX in diverse industrial contexts. Future 

research could benefit from incorporating more diverse data collection methods, such as direct 

observation and experimental designs, to gain a comprehensive understanding of HRI UX. 

 

Expanding this research to include other types of industrial environments will ensure the 

robustness and versatility of the HRI UX evaluation scale. It is also crucial to investigate the 

impact of improved user interface designs on reducing cognitive load and increasing user 

satisfaction. Future studies should aim to design better user interfaces and interaction methods, 

potentially incorporating augmented reality (AR) and virtual reality (VR) technologies to 

provide more intuitive and interactive user experiences. Furthermore, integrating advanced 

technologies such as AI and machine learning into HRI systems could be explored to enhance 

UX further. These technologies have the potential to make robotic systems more adaptive and 

responsive to the needs of human operators, thereby improving the overall efficiency and 

satisfaction of HRI in manufacturing environments. 
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6.7 Contributions 

This chapter represents a distinctive and culminating contribution of the thesis: the development 

of a specialized UX evaluation tool tailored for manufacturing HRI. Unlike traditional UX 

instruments that are often generic and not well-suited to industrial environments, the tool 

introduced here is grounded in the conceptual framework established in Chapter 3 and refined 

through rigorous empirical studies described in Chapters 4 and 5. Its design reflects real-world 

manufacturing challenges, incorporating insights from both qualitative interviews and large-

scale survey data, thereby ensuring both theoretical robustness and practical relevance. 

 

What sets this contribution apart is its dual capacity for precision and adaptability. While 

purpose-built for manufacturing contexts, the structure and methodology of the tool —such as 

the use of factor analysis to define key dimensions like operational efficiency and cognitive 

usability—can be adapted to other high-stakes or collaborative environments where humans 

interact with complex systems. For example, it holds potential for adaptation in sectors like 

healthcare robotics, warehouse automation, and collaborative AI interfaces. This positions the 

UX tool not only as an endpoint of the thesis's design process but also as a transferable resource 

that extends the impact of the research beyond its immediate domain. 

 

6.8 Summary 

This chapter successfully developed and tested a specialized evaluation scale for 

assessing HRI UX in manufacturing environments. The new scale, divided into two 

primary subscales – "Comprehensive Operational Efficiency" and "Cognitive 

Usability" – offers an effective framework for evaluating the effectiveness and usability 

of robotic systems in manufacturing settings. By focusing on both operational 

efficiency and cognitive usability, the scale addresses the multifaceted nature of user 
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interactions with robotic systems. Through rigorous validation using EFA, the study 

ensures the reliability and validity of the developed scale. This validated tool can be 

used by manufacturing companies to assess and improve their HRI systems, leading to 

enhanced productivity and user satisfaction. The research fills a significant gap in the 

existing literature by providing a dedicated UX evaluation tool for manufacturing 

environments. It also offers practical insights for industries looking to integrate 

advanced robotic technologies while maintaining a focus on user experience. 
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Chapter 7 Achievements and 

conclusions 
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7.1 Achievements 

This thesis adopts a structured UX Design Approach, systematically addressing critical 

UX dimensions in HRI to improve operational performance, user trust, and satisfaction 

in manufacturing environments. A key contribution of this research lies in presenting a 

comprehensive integration of UX design principles at each stage of the HRI 

development process, demonstrating how user-centred methodologies can be 

effectively applied to real-world industrial challenges. The key achievements are 

organized around the core stages of the UX design workflow: user research, problem 

definition and goal setting, conceptual design and prototyping with iterative testing, and 

implementation and validation. 

 

The research begins with an extensive user research phase, involving qualitative 

interviews with manufacturing operators to identify critical UX dimensions in HRI. 

These dimensions include trust, cognitive load, efficiency, and ergonomics. Insights 

from this phase informed the development of a tailored HRI UX Assessment 

Framework, specifically designed to evaluate user interactions in industrial contexts. 

This framework identifies twelve key factors shaping effective human-robot 

collaboration and provides a foundation for subsequent design and evaluation efforts. 

This phase aligns with the discovery stage of the UX workflow, ensuring the research 

addresses real-world user needs. 

 

Building on these insights, the thesis transitions to the problem definition and goal 

setting phase, addressing the identified gaps in evaluating UX in industrial HRI. The 

study formalized these findings into actionable goals, leading to the development of a 

specialized self-report evaluation tool, like chapter 6. This tool systematically measures 

dimensions such as operational efficiency and cognitive usability. Through EFA, the 
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tool was validated as a reliable method for assessing and optimizing UX in 

manufacturing environments. By bridging qualitative insights and quantitative metrics, 

this stage provided a robust foundation for advancing UX evaluation in HRI. 

 

The research further progressed to conceptual design and prototyping with iterative 

testing, presenting two AR-based case studies to address key UX challenges in 

manufacturing HRI. The first case study focused on AR facial expressions to enhance 

trust in collaborative robots. This prototype enabled robots to visually communicate 

task states and intentions through expressive animations displayed in AR, addressing 

critical UX dimensions of transparency and cognitive load. While this prototype 

demonstrated AR’s potential for fostering trust and improving communication, the 

findings revealed several limitations. Participants found the AR-enhanced facial 

expressions helpful for understanding robot states but noted that the task itself—

focused on conveying trust through simple visual cues—lacked the complexity and 

cognitive demands required to fully showcase AR’s immersive capabilities. Moreover, 

the novelty of AR technology may have contributed to participants' mixed reactions, 

highlighting the need to explore its application in more intricate and task-specific 

industrial scenarios. Building on these reflections, the second case study was developed 

as an extension of the first, aiming to address the identified limitations by applying AR 

to a more demanding industrial context. This case study, an AR-assisted HRC system, 

targeted task performance by incorporating AR elements that reduced cognitive strain, 

improved assembly accuracy, and enhanced user engagement in precision-driven tasks. 

By integrating AR into the assembly process, the second study sought to capitalize on 

AR’s strengths while addressing the shortcomings observed in the first study. Both 

prototypes were designed based on insights from the user research phase, ensuring 

alignment with industrial needs and providing a logical progression between the studies. 

Rigorous usability evaluations and trust testing followed the prototyping phase, 
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employing methods such as the AttrakDiff Mini and NASA TLX questionnaires. The 

AR-assisted HRC system demonstrated significant improvements in task accuracy and 

user satisfaction, while further emphasizing AR’s ability to reduce cognitive workload. 

Together, the findings underscore the importance of iterative testing in refining 

solutions and ensuring their effectiveness in real-world applications, with the second 

case study building directly on the lessons learned from the first. 

 

Finally, in the implementation and validation phase, the AR-assisted HRC system was 

tested for its applicability in manufacturing environments. By integrating user-centred 

design principles, the system addressed both functional and psychological needs, 

providing a comprehensive solution for human-robot collaboration. This phase 

emphasizes the practical impact of UX-driven designs, demonstrating how AR-based 

solutions can bridge the gap between technical performance and user satisfaction. 

 

A unique contribution of this thesis is the demonstration of how each stage of the UX 

design workflow can be seamlessly integrated into the development of HRI systems. 

By addressing user needs through research, defining actionable design goals, 

prototyping solutions, iteratively testing designs, and validating implementations in 

real-world contexts, this research provides a cohesive and practical roadmap for 

applying UX principles to industrial robotics. This integrative approach highlights the 

synergy between UX methodologies and HRI development, paving the way for more 

human-centred and effective collaborative systems. 

 

7.2 Future Works 

Expanding AR Applications to Complex Industrial Tasks 
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While this research focused on AR applications in collaborative assembly tasks, future 

work could explore its applicability in more complex and dynamic industrial 

environments. AR has been shown to facilitate real-time fault diagnosis by overlaying 

diagnostic information directly onto machinery, enabling operators to identify and 

address malfunctions efficiently (Nee et al., 2012, Dianatfar et al., 2021). Additionally, 

multi-step assembly processes requiring intricate sequences with multiple tools and 

components could benefit from dynamic AR systems that adapt to task complexity and 

operator performance (Syberfeldt et al., 2017, Kousi et al., 2019). These applications 

could extend AR’s utility beyond repetitive or straightforward tasks to support real-time 

decision-making in high-pressure manufacturing environments. 

 

Long-Term Impacts of AR on UX 

While the short-term benefits of AR, such as improved task performance and user 

satisfaction, have been demonstrated in this study, understanding long-term usability 

and cognitive effects remains critical for sustainable implementation. Previous studies 

suggest that prolonged AR use may lead to mental fatigue and cognitive overload, 

particularly in tasks requiring sustained attention (Alessa et al., 2023). Conversely, 

extended exposure could also improve operator efficiency and trust, as familiarity with 

AR interfaces increases over time (Villani et al., 2018, Kopp et al., 2021). Future 

research should examine how long-term AR usage influences learning curves, operator 

satisfaction, and trust in HRI, particularly in high-stakes environments requiring 

precision and adaptability (Sharkawy and Koustoumpardis, 2022). 

 

Integrating Artificial Intelligence into AR Systems 

The integration of artificial intelligence (AI) into AR interfaces represents a promising 

direction for HRI. AI-powered AR systems can monitor user performance in real-time, 
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dynamically adjusting guidance based on individual skill levels or task complexity 

(Palmarini et al., 2018b). For example, machine learning algorithms could predict 

common operator errors and provide contextualized feedback to minimize mistakes 

during assembly tasks (Green et al., 2008, Wang et al., 2022). AI-enhanced AR 

interfaces could also offer personalized training environments, ensuring adaptability for 

operators with different experience levels (Lorenzini et al., 2023). Future work should 

explore the design and development of adaptive AI-AR systems that dynamically adjust 

feedback and assistance to optimize human performance. 

 

Advanced UX Design Tools for HRI 

Although this research employed qualitative interviews and usability evaluations, 

integrating advanced UX methodologies could uncover deeper insights into user 

behavior and system interactions. Heuristic evaluations, which involve experts 

systematically reviewing an interface to identify usability issues, have been widely used 

in HRI to assess interaction quality (Clarkson et al., 2013). Similarly, cognitive 

walkthroughs evaluate a system’s learnability by analyzing how easily new users can 

complete tasks (Nielsen, 1994a). Scenario-based design further helps researchers model 

how users interact with HRI systems in complex, real-world environments, aiding in 

identifying usability bottlenecks (Carroll, 2003). Integrating these methodologies 

systematically into HRI workflows would help refine interaction models and foster the 

development of more intuitive interfaces. 

 

Designing Adaptive and Personalized HRI Systems 

HRI systems that adapt to diverse user needs and preferences remain an underexplored 

frontier. Future research should focus on developing adaptive interfaces capable of 

tailoring interaction modalities in real-time. For instance, a system might detect 
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heightened stress levels in an operator and switch from complex visual instructions to 

simpler auditory guidance. Such personalization could extend to task pacing, where the 

system dynamically adjusts based on operator performance metrics. Research into 

adaptive systems could also explore multi-sensory feedback mechanisms, combining 

haptic, auditory, and visual cues to accommodate operators with different sensory 

preferences or impairments (Rosin et al., 2024). 

 

Exploring Cross-Domain Applications of AR-Enhanced HRI 

While this research was conducted in manufacturing settings, AR-enhanced HRI 

systems have broader potential applications in various industries. For example, in 

healthcare, AR can assist surgeons by providing real-time anatomical overlays during 

complex procedures, improving precision and reducing errors (Nee et al., 2012). In 

public safety, AR-enhanced interfaces can improve situational awareness for first 

responders by displaying hazard zones and emergency exit routes in real-time (Alessa 

et al., 2023). Similarly, in education, AR-assisted robotic tutors can create immersive 

learning environments, making abstract concepts more tangible for students 

(IJsselsteijn et al., 2013). Exploring these cross-domain applications would provide 

valuable insights into how AR and HRI can improve efficiency and user engagement 

beyond manufacturing. 

 

Addressing Ethical and Cultural Considerations 

As HRI adoption expands globally, addressing ethical and cultural differences in system 

design is crucial. Research suggests that cultural variations influence user trust and 

acceptance of robotic systems, particularly in hierarchical societies where people may 

prefer robots that exhibit deference and humility in their interactions (De Graaf and 

Allouch, 2013, Sharkawy and Koustoumpardis, 2022). Additionally, data privacy 
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concerns and algorithmic transparency are critical for building trust in AI-enhanced AR 

interfaces (Apraiz et al., 2023). Future research should investigate how cultural factors 

shape UX expectations in HRI and develop adaptive system designs that respect ethical 

guidelines and user privacy across diverse contexts. 

 

Investigating Collaborative Robot Ecosystems 

Future studies should explore the dynamics of multi-robot and human ecosystems, 

where collaborative robots interact not only with human operators but also with one 

another. AR could serve as an orchestrating interface, providing operators with a unified 

view of robot activities and enabling efficient task allocation. Research could examine 

how AR systems support real-time conflict resolution, ensuring seamless cooperation 

among multiple robots in dynamic environments (Liu et al., 2019). 

 

Evaluating Social and Psychological Impacts of HRI 

Beyond operational metrics, future research should delve into the social and 

psychological impacts of HRI systems. For example, studies could investigate whether 

prolonged interactions with collaborative robot’s influence workplace dynamics, 

employee motivation, or mental well-being. Exploring how robots can foster team 

cohesion or alleviate workplace stress in high-pressure environments would provide 

valuable insights for holistic system design. Research has shown that robot social 

presence significantly influences human attitudes and behaviours, making it an 

essential factor in HRI design (Lee et al., 2006). 

 

Exploring Future-Proofing Strategies for HRI Systems 

The rapid evolution of technology necessitates designing HRI systems that remain 

relevant over time. Future work should explore future-proofing strategies, such as 
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incorporating modular hardware components and upgradable software architectures. 

This would allow systems to adapt to emerging technologies like quantum computing, 

next-generation sensors, or novel AI algorithms, ensuring longevity and scalability 

(Murphy, 2019). 

 

7.3 Conclusions 

This thesis has explored the integration of UX methodologies into HRI for 

manufacturing, demonstrating how UX principles can enhance operational efficiency, 

user trust, and system adaptability. By adopting a structured UX design workflow, this 

research has contributed to bridging the gap between technical performance and human-

centered system design. Through iterative studies, including AR-assisted HRI 

experiments and the development of a UX evaluation tool, the findings emphasize the 

interdependence between technology and human factors in industrial robotics. 

 

Firstly, through qualitative interviews with manufacturing operators, the study 

identified twelve key UX factors—including trust, cognitive load, operational 

efficiency, and ergonomics—that impact the effectiveness of HRI in industrial settings. 

These insights informed the development of a specialized HRI UX Assessment 

Framework tailored to manufacturing, filling a gap where existing evaluation methods 

lacked contextual sensitivity. 

 

Secondly, a questionnaire-based UX evaluation tool was developed and validated using 

exploratory factor analysis (EFA) with data collected from 358 manufacturing workers. 

The analysis yielded two subscales—"Comprehensive Operational Efficiency" and 

"Cognitive Usability"—which together offer a reliable, scalable method for assessing 
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HRI systems. This tool bridges qualitative user insight with quantitative validation and 

can be deployed in real-world industrial environments. 

 

Thirdly, two AR-assisted HRC case studies demonstrated how immersive technology 

can address specific UX challenges. The first case investigated the use of AR facial 

expressions to convey robot intention and promote user trust. While participants found 

the system helpful, results showed limited trust enhancement due to the task’s low 

complexity. The second case built on these findings, applying AR to a high-demand 

assembly task. Results showed that AR significantly improved task accuracy and 

reduced cognitive load, as measured by the NASA-TLX and AttrakDiff Mini tools. 

 

Finally, the implementation and validation phase confirmed that AR-assisted HRC 

systems, grounded in a UX-centric approach, offer meaningful improvements in both 

performance and user satisfaction. This validates the proposed “framework–tool–

application” pipeline as a repeatable model for designing effective human-robot 

systems in manufacturing contexts. 

 

While this thesis has made meaningful contributions to HRI UX evaluation and AR-

enhanced collaboration, its broader significance extends beyond specific experimental 

results. The research highlights a paradigm shift in industrial HRI—one that moves 

from technology-centric optimization toward human-centred intelligence. Future 

robotic systems will not only be judged by their precision and efficiency but also by 

their ability to seamlessly integrate into human workflows, anticipate operator needs, 

and foster long-term trust and collaboration. 

 

As manufacturing landscapes evolve, the next frontier for HRI lies in autonomous 
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adaptation and personalization. Advances in AI-driven interfaces, biofeedback-driven 

interaction models, and real-time cognitive state monitoring will transform how 

humans and robots collaborate. Future systems will need to be self-optimizing, learning 

from operators and adjusting workflows dynamically to accommodate skill levels, 

fatigue, and stress. This shift toward adaptive, responsive, and human-aware robots will 

require a fundamental rethinking of UX design principles in HRI. 

 

Moreover, as robotic collaboration expands beyond manufacturing, industries such as 

healthcare, education, public safety, and personal assistance will present new challenges 

and opportunities for human-centred robotics. The principles developed in this thesis—

UX evaluation frameworks, iterative human-centred design, and AR-enhanced 

interactions—can serve as a foundation for broader cross-domain applications. 

 

Beyond technology, this research raises important ethical and societal considerations. 

As AI and robotics become deeply embedded in daily life, questions surrounding 

autonomy, transparency, and accountability will define the next era of HRI research. 

The future of robotic systems should not only prioritize performance but also align with 

human values, cultural expectations, and ethical frameworks to ensure meaningful and 

sustainable integration. 

 

Although this research was conducted in three specific manufacturing factories with 

varying degrees of automation and involved participants from diverse roles such as 

operators, engineers, and designers, the findings provide a foundational framework that 

can be adapted to other industrial contexts. The HRI UX Assessment Framework and 

measurement tool were developed based on cross-factory insights and structured 

qualitative and quantitative analysis, offering relevance for similar smart manufacturing 
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settings. However, it is important to acknowledge that the applicability of the results 

may be influenced by cultural, organizational, and technological differences across 

regions. As such, further validation in different industries and geographical settings is 

recommended to enhance the generalisability of the framework and tools. 

 

Overall, this thesis has demonstrated how UX-driven methodologies can reshape the 

design, evaluation, and adoption of HRI systems. However, the true impact of this 

research lies in its vision for the future—a world where human-robot collaboration is 

not only functional and efficient but also intuitive, adaptive, and seamlessly embedded 

into human lives. To achieve this, the next wave of research must push beyond 

performance metrics toward holistic, context-aware, and ethically grounded robotic 

ecosystems that redefine how humans and intelligent machines work together. 
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