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Abstract

Human cerebrovasculature is finely tuned to enable local changes in blood flow to

meet the brain’s demands, whilst protecting the brain from systemic changes in blood

pressure, both acutely during a heartbeat and chronically over time. This review

summarises cerebrovascular structure and function, their role in disease and neuro-

degeneration and the partMRI measurements can play in probing them.MRI methods

to measure various aspects of cerebrovascular physiology are described and placed

in context of applications studying cerebrovascular health. The role of the cardio-

vascular system linking the cardiac pulse wave to cerebrovascular disease and gaps in

mechanistic knowledge are highlighted.
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1 CEREBROVASCULAR FUNCTION

The human cerebrovasculature supplies the metabolic substrates

required to meet the brain’s energetic demands (Bordone et al.,

2019; Camandola & Mattson, 2017), whilst being able to react to

local increases in demand through functional hyperaemia, that is,

corresponding local increases in blood flow (Buxton, 2021; Fox &

Raichle, 1986). Recently, the cerebrovascular network has come to be

thought of as playing a key role in the brain’s waste clearance system

(Agarwal & Carare, 2021; Iliff et al., 2012), with a mechanism post-

ulated whereby transport occurs through perivascular spaces, driven

by vasomotion and pulsatility of blood vessels.

The anatomy of the cerebrovasculature is covered extensively

elsewhere (Cipolla MJ., 2009; Duvernoy et al., 1981), but a brief

summary is given here. The brain’s blood supply is fed by the

left and right internal carotid and vertebral arteries. The vertebral

arteries converge into the basilar artery, supplying the brainstem and

cerebellum. The internal carotid arteries and basilar artery feed the

circle of Willis, which supplies the cerebral cortex via the anterior,
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middle and posterior cerebral arteries (Figure 1a). These arteries

branch into smaller arteries, then arterioles, which supply the capillary

bed, from which most of the exchange of metabolic substrates occurs

with perfused tissue. An MRI technique called arterial spin labelling

(ASL) can be used to track blood from the larger cerebral arteries as

it perfuses into tissue (Okell et al., 2019; van Harten et al., 2021;Wong

& Guo, 2012). The circle of Willis allows collateral flow, so in the case

of abnormal arterial anatomy or occluded vessels, the regions perfused

by each artery can adapt to preserve local blood flow (Helle et al., 2013;

Wu et al., 2008). The capillary bed is drained by venules, which feed

into a series of larger veins, until they drain into the venous sinuses.

Recently, MRI has been used to form atlases of arterial (Bernier et al.,

2018;Mouches&Forkert, 2019) and venous (Bernier et al., 2018;Huck

et al., 2019) structures across healthy brains, suggesting more spatial

variability in venous than arterial anatomy.

Cerebral blood vessels are lined with endothelial cells, which form

the blood–brain barrier, regulating the exchange of metabolic

substrates and waste products. The blood–brain barrier pre-

vents macromolecules in blood plasma from entering the brain,
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2 DRIVER andMURPHY

F IGURE 1 (a) An example of the predominant configuration of the circle ofWillis, with the posterior circulating arteries in copper and the
anterior circulating arteries in light blue. ACA, anterior cerebral artery; BA, basilar artery; ICA, internal carotid artery; MCA, middle cerebral
artery; PCA, posterior cerebral artery; VA, vertebral artery. (b) Illustration of the cerebrovascular tree. MRImeasures of themicrovasculature
(arterioles, capillaries and venules) are covered in Sections 3 and 4.MRImeasures of themacrovasculature (feeding arteries and draining veins) are
covered in Section 5.

whilst maintaining the chemical environment required for healthy

metabolism (Abbott et al., 2010; Zlokovic, 2008).

A key component of cerebrovascular function is the concept

of neurovascular coupling. Arterial vascular tone is controlled by

smooth muscle cells, which constrict and relax to change vascular

resistance through vessel diameter changes and, ultimately, blood

flow. Smooth muscle cells react to neuronal signalling, leading to

a localised vasodilatation in the arteries and arterioles feeding the

site of neuronal activation (Iadecola, 2017; Stackhouse & Mishra,

2021). This vasodilatation increases perfusion to the capillary bed,

providing an increase in metabolic substrates, including oxygen trans-

ported by oxygenated haemoglobin. The increased oxygen delivery

exceeds the increased oxygen extraction arising from an elevated

oxygen metabolism (Ito et al., 2005), so the oxygenation of veins

draining the site of neuronal activation is, counterintuitively, increased

(Fox & Raichle, 1986). Increased venous oxygenation means less

deoxygenated haemoglobin, which provides the source of contrast

(Ogawa et al., 1990) for blood oxygenation-level-dependent functional

MRI (BOLD fMRI). As such, BOLD fMRI demonstrated local signal

increases in response to task performance (Bandettini et al., 1992;

Kwong et al., 1992; Ogawa et al., 1992), which has since been

extensively used as a surrogate measurement for mapping neuronal

responses.

The cerebrovasculature cannot be treated in isolation from the

rest of the cardiovascular system, with the aorta feeding the internal

carotid and vertebral arteries (via the common carotid and sub-

clavian arteries, respectively). Therefore, aortic stiffness will directly

affect blood flow (Jefferson et al., 2018) and energy of the cardiac

pulse wave entering the cerebrovasculature (Tarumi et al., 2014).

The aorta stiffens throughout the adult lifetime, especially beyond

middle-age (Parikh et al., 2016). Aortic stiffness is associated with

hypertension and diabetes (Cavalcante et al., 2011; Cruickshank et al.,

2002), and aortic stiffness may cause hypertension (Najjar et al.,

Highlights

∙ What is the topic of this review?

This review considers MRI measurements of the

human cerebrovasculature and how they are

impacted by the cardiovascular system.

∙ What advances does it highlight?

This review article appraises the current state-

of-the-art MRI measurements of cerebrovascular

function in the context of healthy ageing and

disease and links them to underlying cardiovascular

factors.

2008). Aortic stiffness is lower in athletes, compared to those with

a sedentary lifestyle, and aortic stiffening appears to be reduced

by aerobic exercise (Ashor et al., 2014; Lavie et al., 2015; Li et al.,

2023; Seals, 2014). Considering aerobic exercise training can also

improve cognitive performance in participants with mild cognitive

impairment, concurrently with reductions in carotid arterial stiffness

and cerebrovascular reactivity (Penukonda et al., 2025), furthering

understanding of the cerebrovasculature will help to link cardio-

vascular health to the healthy function and decline of the ageing

brain. The interaction of aortic and cerebrovascular function is further

explored in Section 5.3.

In this review we discuss how MRI can measure various aspects

of the cerebrovasculature. Section 2 provides examples where

cerebrovascular dysfunction has a role in the pathophysiology of a

range of diseases. Section 3 provides an overview of MRI measures

for studying the brain’s microvasculature (capillaries, arterioles and

venules, see Figure 1b). Section 4 provides examples of applications
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DRIVER andMURPHY 3

of these microvascular MRI measures, which are furthering under-

standing of the role of the cerebrovasculature in sustaining a healthy

brain. Section 5 summarises MRI measures of the macrovasculature

(arteries and veins, see Figure 1b) and the role the cardiovascular

system can have on cerebrovascular function, highlighting the role of

cardiovascular health in neurodegeneration and the gaps in knowledge

required to develop successful interventions to prevent or reverse this

neurodegeneration.

2 CEREBROVASCULAR HEALTH

Cerebrovasculature has a role in most diseases that affect the brain,

although it is often unclear whether cerebrovascular mechanisms

are causative or consequential. In this section, we briefly focus

on disorders where the cerebrovasculature has a clear and major

contribution to disease aetiology.

In 2021, there were over 100 million incidences of stroke globally,

with approximately two-thirds being ischaemic and one-third being

haemorrhagic (Feigin et al., 2024). Whilst the main risk factors over-

lap with cardiovascular risk factors (Tsao et al., 2023; Vangen-Lønne

et al., 2017), a wide range of cerebrovascular diseases have also been

identified as risk factors for stroke, such as atherosclerosis, aneurysm

and arteriovenous malformation (Juttukonda &Donahue, 2019). Small

vessel disease is a group of pathologies affecting the perforating

arteries and arterioles in the brain (Wardlaw et al., 2013). Broadly,

small vessel disease is either local occlusion or haemorrhage, leading

to white matter hyperintensity or lacune, which are detectable using

MRI. Generally, cerebrovascular diseases lead to neurodegeneration

through infarction (tissue death due to impaired blood supply) and

breakdown of the blood–brain barrier. White matter hyperintensities,

also knownas leukaraiosis, present as regionsof lowsignal in computed

tomography (CT) and high signal in some MRI contrasts (Wardlaw

et al., 2015). They are generally considered to be a form of small

vessel disease (Wardlaw et al., 2013), often found with lacunes and

containing blood-born proteins that do not typically cross the blood–

brain barrier (Wardlaw et al., 2015). White matter hyperintensities

are associated with cognitive decline, risk of stroke, dementia and,

ultimately, mortality (Debette &Markus, 2010).

In hypertension, vascular resistance is increased to preserve

cerebral blood flow (CBF) in the presence of high systemic blood

pressure (Kety &Hafkenschiel, 1948;Warnert, Rodrigues et al., 2016).

The higher vascular resistance leads to less compliance, that is, less

capability to dilate to meet spontaneous increases in demand. This can

lead to neurodegeneration and cognitive decline, whilst being a major

risk factor for both dementia and stroke (Faraco & Iadecola, 2013).

There is controversy as to the aetiology of hypertension, as to whether

there is a cerebrovascular origin, with hypoperfusion to the auto-

nomic centres in the brainstem leading to increased sympathetic nerve

activation, increasing blood pressure (Grassi et al., 2015; Hart, 2016;

Warnert, Rodrigues et al., 2016). Hypoperfusion has been suggested to

arise from abnormal arterial anatomy in the vertebral arteries, such as

vertebral artery hypoplasia, or variants to the circle ofWillis (Warnert,

Rodrigues et al., 2016).

Breakdown of the blood–brain barrier is implicated in several

diseases. The blood–brain barrier prevents harmful chemicals from

entering the central nervous system (CNS), whilst having a role in

removing metabolic waste products (Abbott et al., 2010; Zlokovic,

2008). Blood–brain barrier dysfunction is linked tobuild-upof amyloid-

beta in Alzheimer’s disease (Deane et al., 2003; Sweeney et al., 2018),

with an association between amyloid-beta and prevalence of micro-

bleeds (Kantarci et al., 2013). In multiple sclerosis, immune T-cells

cross the blood–brain barrier, leading to an autoimmune response and

inflammation (Correale & Villa, 2007). Inhibited clearance of waste

products has been observed in Parkinson’s disease (Bartels et al.,

2008; Kortekaas et al., 2005), whilst blood-borne proteins have been

found in ex vivo CNS tissue in Alzheimer’s disease, Parkinson’s disease,

Huntington’s disease, amyotrophic lateral sclerosis and multiple

sclerosis (Sweeney et al., 2018).

3 MEASURING MICROVASCULAR FUNCTION
WITH MRI

MRI is a very versatile modality for imaging different aspects of the

cerebrovasculature, exploiting the magnetic properties of blood and

tissue to provide different sources of signal contrast depending on the

physiological parameter of interest. This section highlights some of

the methods used for studying the brain’s microvasculature (arterio-

les, capillaries and venules) and how they interact with the tissue that

they perfuse. Table 1 summarises eachMRI method and presents their

strengths andweaknesses in context of alternativemethods.

3.1 Cerebral blood flow

In the context of MRI research, CBF refers to perfusion and is defined

as the volume of blood that perfuses a unit mass of tissue per unit

time, with common units of mL/100 g/min (50–70 mL/100 g/min are

typical values for healthy grey matter). Whilst CBF can be mapped

using radioactive tracers using positron emission tomography (PET)

(Fan et al., 2015) or CT (Takemaru et al., 2017), or with an exogenous

MRI contrast agent (Østergaard et al., 1998), MRI also provides an

endogenous means to non-invasively map CBF, called arterial spin

labelling (ASL). In ASL, water in arterial blood is labelled, then, after a

time for the blood water to perfuse into tissue, an image is acquired,

whereby the labelled water provides perfusion contrast. Historically,

several methods and locations for the labelling of arterial blood water

have been developed in parallel (Dai et al., 2008; Detre et al., 1992;

Edelman et al., 1994; Kim, 1995; Williams et al., 1992; Wong et al.,

1998, 2006). With a view to promoting clinical adoption, the ASL

research community have come togetherwith consensus paperswhich

provide focussed recommendations for clinical use (Alsop et al., 2015;

Qin et al., 2022). The recommendations are to use a labelling technique

called pseudo-continuous ASL (pCASL), whereby arterial blood water

is labelled as it passes through a labelling plane. The labelling plane is

positioned at the level of the internal carotid and vertebral arteries, at
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F IGURE 2 Example images for microvascular mappingMRImethods. (a) Example CBFmap acquired with ASL. (b) The respective CBFmap
where participants inhaled 5%CO2, inducing vasodilatation. The change in CBF from (a) to (b) is used to calculate CVR (when normalised by the
change in arterial CO2). Data andmethods for (a) and (b) were presented previously (Driver et al., 2025). (c, d) Example CMRO2 map (d) and
example OEFmap (d), based on the breath hold calibrated fMRImethod, with data andmethods presented previously (Driver et al., 2024). ASL,
arterial spin labelling; CBF, cerebral blood flow; CMRO2, cerebral metabolic rate of O2; CVR, cerebrovascular reactivity; OEF, oxygen extraction
fraction (the fraction of oxygenated haemoglobin converted to deoxygenated haemoglobin in the capillary bed).

a position where both pairs of arteries are approximately straight and

parallel, such that a labelling plane can be positioned perpendicular to

all four arteries. However, in the case of long arterial arrival times, such

as in some cerebrovascular diseases (Bokkers et al., 2009; Bolar et al.,

2019; Fan et al., 2017; Qiu et al., 2012; D. J. J. Wang et al., 2013) and

healthy ageing (Mahroo et al., 2024; Scheel et al., 2000), this approach

can be biased by the late arrival of the labelled blood. In these cases, an

alternative ASL approach is more appropriate, whereby the labelling

is applied by velocity-encoding, which can label arterial blood water

much closer to the site of perfusion than the spatially selective pCASL

(Qin et al., 2022; Wong et al., 2006). Figure 2a demonstrates example

CBFmaps fromASL data.

3.2 Cerebrovascular reactivity

A key advantage of ASL over exogenous tracer-based measurements

of CBF is that changes in CBF can be observed over the time scale

of several seconds, whereas tracer-based measurements are limited

by the kinetics of the delivery of the tracer. Measuring changes in

perfusion on a finer time scale allowsmeasurement of cerebrovascular

reactivity (CVR), which is a key measure of the capacity of the

cerebrovasculature to react to local changes in demand. CBF CVR

can be measured directly using ASL, or indirectly, using BOLD fMRI

(Smeeing et al., 2016). CBF CVR has lower sensitivity but provides

a direct measure of vascular reactivity. BOLD CVR has greater

sensitivity, but has less specificity, measuring the combination of

oxygenation and blood volume changes of veins draining the tissue of

interest. Various vasoactive challenges can be used to measure CVR,

with a detailed overview provided previously (Fierstra et al., 2013;

Pillai & Mikulis, 2015). Acetazolamide is administered intravenously

and is a potent cerebral vasodilator (Vagal et al., 2009; Vorstrup et al.,

1986; Zhao et al., 2021), but the vasodilatory effect is not easily

reversable. Arterial CO2 concentration also acts as a potent vaso-

dilator (Reivich, 1964) and can be modulated either by inhalation of

air supplemented by a small percentage of CO2 (Blockley et al., 2011;

Kastrup et al., 2001; Slessarev et al., 2007; Wise et al., 2007), or by

modifying breathing frequency and/or depth (Bright & Murphy, 2013;

Bright et al., 2009; Kastrup et al., 1998). The advantage of modulating

arterial CO2 is that the effect can be easily reversed on the order

of seconds, by returning to normal breathing conditions, allowing

repeated block paradigms andminimising risk of adverse physiological
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6 DRIVER andMURPHY

reactions to the hypercapnia (Gitelman et al., 1991; Woods et al.,

1988). The simplest method for modulating arterial CO2 is for the

participant to hold their breath for a short period (15–30 s), or change

breathing pace or depth. This is achieved in the MRI environment by

providing visual or auditory cues at the desired timings. Thesemethods

are simple to implement, not requiring dedicated hardware, and are

generally well tolerated by participants. However, these respiratory

challenges give transient MRI signal changes and there is a large

variability in task performance affecting the individual changes in

arterial CO2. Monitoring exhaled CO2 levels can somewhat mitigate

for task performance variability (Bright & Murphy, 2013). Modulating

inhaled CO2 can be used to provide steady-state changes, which are

more conducive to a robust estimation of MRI signal changes required

to calculateCVR. These are contrasted to air, or a gasmixturematching

air (21%O2, 79%N2, without CO2). However, the inhaled gasmixtures

are delivered through close-fitting face masks or mouthpieces that

can cause some participant discomfort, whilst these methods require

dedicated hardware and expertise that are not always available in

either research or clinical settings. Broadly, inhaled gas methods can

be divided into fixed-inspired (Kastrup et al., 1998) and computer-

controlled targetingmethods (Slessarev et al., 2007;Wise et al., 2007).

Fixed-inspired gas delivery involves a set percentage of CO2 delivered

to the participant, commonly 5%. This approach does not account

for individual physiological differences (ventilation and metabolism),

so induces different changes in arterial CO2 across participants.

Computer-controlled targeting of CO2 involves dynamically changing

inhaled gas mixtures based on either feedback of exhaled CO2, or on a

prospectivemodel based on the participant’s initial physiological state.

These methods can produce more repeatable changes in arterial CO2

than fixed-inspired methods, but require careful and time-consuming

initial calibration measurements, which require operator experience

to avoid drifts in CO2 levels across the experiment. Figure 2a shows

an example CBF map when breathing air and Figure 2b shows the

corresponding CBF map when participants breathed in a gas mixture

with 5% CO2, causing vasodilatation. The resulting CBF increase is

used to calculate CVR, by dividing the change in CBF by the change in

arterial CO2.

3.3 Oxygen metabolism

Local oxygen metabolism can be mapped with MRI. One approach,

termed dual-gas calibrated fMRI, measures the CBF, and oxygenation

responses to hypercapnia (inspired CO2) and hyperoxia (increasing

inspired O2) to map oxygen extraction from the tissue capillary

bed (Bulte et al., 2012; Gauthier et al., 2012; Wise et al., 2013).

Recently, this approach has been extended by considering oxygen

diffusionbetweencapillaries andmitochondria (Germuskaet al., 2019),

which allows oxygen extraction to be mapped using only hypercapnia

(Chiarelli et al., 2022) and even from breath holding (Driver et al.,

2024), which avoids the need for a complicated set-up for delivery

of exogenous gases and associated participant discomfort. Example

maps of oxygen metabolism and extraction fraction are shown in

Figure 2c and d. From a similar motivation of avoiding complicated

experimental set-up and participant discomfort associated with

delivering exogenous gas challenges, otherMRI approaches have been

developed to measure basal cerebral oxygen extraction, without the

need for a perturbation. These methods make use of the effect of

deoxygenated haemoglobin on the local magnetic environment, with

deoxygenated haemoglobin having a higher magnetic susceptibility

than both oxygenated haemoglobin and the surrounding tissue

environment (Spees et al., 2001). Oxygen extraction is mapped either

by measuring local susceptibility using a technique called quantitative

susceptibility mapping (QSM), or by characterising the transverse

relaxation of theMRI signal, or by a combination of both contrasts (An

& Lin, 2000; Cherukara et al., 2019; Cho et al., 2021; He & Yablonskiy,

2007; Küppers et al., 2022; Lee & Wehrli, 2022; Ulrich & Yablonskiy,

2016). Challenges of these methods include how to distinguish blood

oxygenation from blood volume, their inability to resolve susceptibility

contributions from other sources, such as non-haem iron and myelin,

and sensitivity to bias from non-local contributions to the magnetic

field (Christen et al., 2014). However, once these issues are overcome,

the advantage of not relying on exogenous gas challenges makes these

approachesmore promising for clinical translation.

3.4 Cerebral autoregulation

Cerebral autoregulation maintains stable perfusion during changes

in blood pressure (Cipolla, 2009; Paulson et al., 1990). In healthy

cerebrovasculature, CBF is fairly constant over a blood pressure range

of 60–150mmHg (Paulson et al., 1990), whilst CBF varies linearly with

blood pressure outside of these ranges, with ischaemia arising in the

low pressure limit. MRI can be used to probe cerebral autoregulation

mechanisms, such as measuring the effect of a lower-body negative

pressure task on intracranial arterial blood volume (Whittaker, Bright

et al., 2019), observing the effect of thigh-cuff occlusion on oscillations

in cerebral blood oxygenation (Whittaker, Steventon et al., 2022) and

measuring the effect of natural spontaneous changes in blood pressure

on cerebral blood oxygenation (Whittaker, Driver et al., 2019).

3.5 Blood–brain barrier

The blood–brain barrier integrity can be measured with MRI by

measuring the exchange of an intravascular tracer into brain tissue.

This is commonly achieved through intravenous injection of a

gadolinium-based macromolecule (Tofts & Kermode, 1991); however,

this method is not sensitive to early stages of blood–brain barrier

breakdown (Armitage et al., 2011; Heye et al., 2016; Manning et al.,

2021). Recently, several MRI methods for measuring the exchange

of water (an endogenous tracer) across the blood–brain barrier have

been proposed (Bai et al., 2020; Dickie et al., 2020; Lin et al., 2018,

2021; Ohene et al., 2023; Shao et al., 2019; St. Lawrence et al., 2012;

J. Wang et al., 2007; Wells et al., 2013). As a small molecule, exchange

of water may indicate breakdown of the blood–brain barrier at an
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DRIVER andMURPHY 7

earlier stage than the gadolinium macromolecule. Applications of

thesemethods have found heightenedwater permeability in ischaemic

stroke (Tiwari et al., 2017), sickle cell disease (Lin et al., 2022) and

the ageing brain (Ohene et al., 2021), whilst contrarily lower water

permeability was observed in obstructive sleep apnoea (Palomares

et al., 2015).

3.6 Small vessel disease

MRI can detect various aspects of small vessel disease, as reviewed

previously (Wardlaw et al., 2013) and summarised as follows. Fluid-

attenuated inversion recovery MRI (FLAIR) is routinely used to detect

white matter hyperintensities, which present as diffuse regions of high

signal intensity (Melazzini et al., 2021; Wardlaw et al., 2015). Lacunes

present with low signal on FLAIR images, but often with a border of

high signal. Cerebral microbleeds are visible as areas of low signal on

T2*-weightedMRI due to the magnetic susceptibility of deoxygenated

haemoglobin in blood. Small infarcts present as areas of high signal in

diffusion-weightedMRI.

4 APPLICATIONS OF MICROVASCULAR MRI
MEASURES

The previous section summarised how MRI can measure the brain’s

microvasculature. This section highlights some applications of these

methods to further understanding of the brain in health and disease.

4.1 Functional brain networks

By measuring spontaneous activity patterns in the absence of an

explicit task (‘resting state’), fMRI has been used to observe a set

of functional brain networks which display coordinated activation

patterns (S. M. Smith et al., 2009). Measurements of these networks

have also been reproduced using magnetoencephalography (Brookes

et al., 2011), which measures electrophysiological magnetic field

changes and so does not rely on measuring haemodynamic responses

to the activation patterns. Recently, a second set of networks have

been observed, which have a strong spatial overlap with the functional

brain networks, but their temporal characteristics follow arterial

CO2 (Bright et al., 2020), or breathing depth, which modulates

arterial CO2 (Chen et al., 2020). As arterial CO2 acts as a vaso-

dilator, these networks are considered vascular networks, suggesting

an organisation of the cerebrovascular regulation that matches the

functional network structure. The origin of this vascular/functional

network complementarity is currently unclear. Potential mechanisms

could be developmental, with the cerebrovasculature developing to

meet the evolving demands of the developing cortex (Black et al.,

1990; Quaegebeur et al., 2011; Swain et al., 2003); it could be due

to similarities in vascular density across the functional brain network

(Vigneau-Roy et al., 2014); or it could indicate a long-distance form

of vascular signalling, although signalling along smooth muscle cells

(Haddock & Hill, 2005) is an unlikely route, as the cerebrovascular

structure does not directly link nodes in these networks (Tak et al.,

2015), so another signalling method is required (Quaegebeur et al.,

2011). Further evidence of these vascular networks was found in

a study of CVR in stroke patients (Geranmayeh et al., 2015). CVR

was inhibited in stroke lesion regions, compared to healthy tissue

and, interestingly, the homologous region in the opposite hemisphere

also showed lower CVR compared to healthy tissue. The similar CVR

between stroke region and contralateral region is suggestive of a

long-distance vascular network.

4.2 Cerebral autoregulation

Our group is interested in how systemic changes in blood pressure

affect the cerebrovasculature. A lower body negative pressure task is

an orthostatic challenge which reduces pressure in the legs, causing

blood to pool in the legs. ASL was used to map arterial blood volume

during lower body negative pressure, finding vasoconstriction of large

arteries and vasodilatation of smaller vessels (Whittaker, Bright et al.,

2019). This provides evidence for the mechanism of cerebral auto-

regulation, with vascular tone tuned to adapt to changes in systemic

blood pressure. Another systemic blood pressure perturbation is a

thigh-cuff release task, which causes a transient reduction in mean

arterial pressure. Using BOLD fMRI as a surrogate measurement of

CBF, we were able to see a global CBF response to the reduction

in mean arterial pressure, providing insight into dynamic cerebral

autoregulation (Whittaker, Steventon et al., 2022). Further, there was

heterogeneity in the delay of the CBF response, with grey matter

leading white matter, but also spatial patterns in the delays in the

cortex consistent with the vascular networks observed previously

(Bright et al., 2020; Chen et al., 2020). The dynamic cerebral auto-

regulation relationship between mean arterial pressure and BOLD

fMRI can even be observed without a blood pressure challenge, but

with spontaneous fluctuations in blood pressure (Whittaker, Driver

et al., 2019).

4.3 Aerobic exercise

A direct example of where cardiovascular function affects

cerebrovascular health is the impact of aerobic exercise on cerebral

perfusion. Aerobic exercise is known to have a positive impact

on cognition (Erickson et al., 2011; Hillman et al., 2008; Kennedy

et al., 2016). Focussing on the hippocampus, which has a key role

in memory, hippocampal CBF is increased following 15–20 min of

moderate aerobic exercise (Palmer et al., 2023; Steventon, Foster

et al., 2020; Steventon, Furby et al., 2020; Vidoni et al., 2022). This

acute cerebrovascular response to exercise appears to precede

hippocampal angiogenesis (Maass et al., 2015; A. C. Pereira et al.,

2007). Hippocampal CBF increases after 1 week (Steventon et al.,

2021) and 12 months (Kaufman et al., 2021; Thomas et al., 2020)
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8 DRIVER andMURPHY

of moderate aerobic exercise training. Further, there is a positive

correlation between hippocampal CBF and aerobic fitness (V̇O2max) in

pre-adolescent children (Chaddock-Heyman et al., 2016). However,

the data relating perfusion to exercise training are equivocal, with no

significant change in CBF after 12 weeks of aerobic exercise training

(Chapman et al., 2013; Kaiser et al., 2022; Maass et al., 2015). The

ambiguity in results could be due to variability in the underlying

fitness of the populations studied, differences in the exercise training

or heterogeneity in the ages studied, rather than indicating a 12-

week nadir in the perfusion adaptation to aerobic exercise training. A

common theme through these studies is a positive association between

memory task performance and hippocampal perfusion (Chapman et al.,

2013; Kaufman et al., 2021; Maass et al., 2015; A. C. Pereira et al.,

2007; Thomas et al., 2020). Furthermore, the effect of aerobic exercise

on hippocampal CBFwas augmented in Apolipoprotein E ɛ4 (APOE-ε4)
carriers, compared to non-carriers (Kaufman et al., 2021; Vidoni et al.,

2022). APOE-ε4 is a major genetic risk factor for Alzheimer’s disease,

so the exercise-augmented hippocampal perfusion might be a neuro-

protective mechanism in a group vulnerable to a neurodegenerative

condition.

Aerobic exercise fitness also affects cerebrovascular reactivity

(CVR), which is commonly considered as a surrogate measurement of

cerebrovascular health. Cardiorespiratory fitness (CRF) is associated

with higher CVR as measured as the change in middle cerebral artery

velocity by transcranial Doppler (TCD) ultrasound (E. C. Smith et al.,

2021). Contrarily,MRImeasurements of BOLDCVR consistently show

a lower CVR with higher CRF (DuBose et al., 2022; Gauthier et al.,

2015; Intzandt et al., 2020; Thomas et al., 2013). These cross-sectional

studies are supported by a longitudinal exercise intervention study,

finding a decrease in BOLD CVR following 12 months of aerobic

exercise training (Penukonda et al., 2025). The lower BOLD CVR with

increasing CRF has been replicated with CBF CVR (Intzandt et al.,

2020), confirming that the BOLD CVR association with CRF is due to

CBFCVR, rather than vascular plasticity. TCDmeasures blood velocity

in the middle cerebral artery, whereas BOLD and CBF are sensitive

to local changes in tissue perfusion. A possible explanation for the

discrepancy between macrovascular (TCD) and microvascular (MRI)

CVR was proposed by Thomas et al. (2013), whereby microvascular

reactivity to CO2 could be reduced by sustained exposure to CO2, as

occurs during aerobic exercise. In support of this hypothesis, 12 weeks

of aerobic exercise training in a groupwith lowbaseline fitness resulted

in an increase in BOLD CVR (DuBose et al., 2022). A microvascular

adaptation of reduced reactivity to CO2 would take longer to establish

than the short-term 12 weeks of aerobic exercise, whereas the impact

is only seenafter 12months (Penukondaet al., 2025).However, caution

shouldbe taken in interpreting theassociationbetweenCRFandBOLD

CVR reported in DuBose et al. (2022), as the BOLD CVR data are pre-

sentedonly aspercentage change to thebreathhold, notnormalising to

the actual change in arterial CO2. The consequence is that this assumes

that the whole population perform and react to the breath hold in the

same way, which is not the case (Bright &Murphy, 2013), especially as

changes in arterial CO2 are likely to be driven by CRF. Interestingly,

the effect of aerobic fitness on both macrovascular (TCD) and micro-

vascular (BOLD MRI) CVR only arises in old age (>55 years), with no

association observed in young cohorts (Barnes et al., 2013; Intzandt

et al., 2020). This suggests that sustained aerobic exercisemaypartially

reverse age-related changes in cerebrovascular function, which could

account for improving cognitive performance following 12 months of

aerobic exercise training in participants with amnestic mild cognitive

impairment (Penukonda et al., 2025).

4.4 Genetic risk factors

Continuing the theme of genetic risk to Alzheimer’s disease, MRI

measurements of CBF have identified lower greymatter CBF in young,

healthy APOE-ε4 carriers, compared to non-carriers and established

a negative association between CBF and genetic risk of Alzheimer’s

disease, even once APOE status was removed (Chandler et al., 2019).

Furthermore, the negative association between genetic risk and grey

matter CBF was also observed in an older cohort (55–85 years),

hinting that hypoperfusion throughout the lifetime contributes to

risk of Alzheimer’s disease (Chandler et al., 2022). A recent study

investigating the relationship betweenAlzheimer’s disease genetic risk

and white matter hyperintensities found a link between genes over-

expressed in vascular smooth muscle cells and white matter hyper-

intensity volume (Chandler et al., 2025). This suggests a mechanism

related to smooth muscle cells, which regulate vascular tone, and the

formation of white matter hyperintensities, which are characteristic

of small vessel disease (Wardlaw et al., 2013) and are a risk factor for

developing Alzheimer’s disease and other dementias.

5 MEASURING MACROVASCULAR FUNCTION
WITH MRI

Several MRI measurements have been developed to study the large

arteries feeding and large veins draining the brain. This section

briefly introduces them, before focussing on measurements of arterial

stiffness. Table 1 summarises each MRI method and presents their

strengths andweaknesses in context of alternativemethods.

5.1 Cerebral blood flow

Previous sections have focussed on measurements of local perfusion

and blood oxygenation; however, global equivalent measurements can

be made in the large arteries and veins at the base of the brain.

Blood flow through the internal carotid and vertebral arteries can be

measured using a technique called phase-contrast (pc)MRI (Spilt et al.,

2002; Stoquart-ElSankari et al., 2007; Zarrinkoob et al., 2015). The

speed of blood can be encoded into the phase of the MRI signal by

imposing a spatial gradient inmagnetic field along the direction of flow

(known as a velocity encoding gradient). The phase of theMRI signal in

the blood vessel can be converted to speed based on knowledge of the

amplitude, shape and duration of the spatial magnetic field gradient.

 1469445x, 0, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P092467 by N
IC

E
, N

ational Institute for H
ealth and C

are E
xcellence, W

iley O
nline L

ibrary on [10/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DRIVER andMURPHY 9

The speed in cm/s is converted into blood flow inmL/min bymultiplying

by the cross-sectional area of the blood vessel. To calculate global CBF,

the summed blood flow across internal carotid and vertebral arteries

is divided by the total brain volume (Vernooij et al., 2008). There are

two common variants of pcMRI, 2D and 4D (Markl et al., 2012). The

2D variant involves acquiring a single 2D slice at a time, positioning the

slice to be perpendicular to the vessel(s) of interest. The 4D variant,

also known as 4D flow MRI, is a 3D acquisition, so can cover the

whole brain. Velocity encoding gradients are applied sequentially in

the three cardinal directions, so a blood flow velocity vector can be

calculated. The extra spatial dimension and three velocity encoding

directions lead 4D flow to have significantly longer acquisition times

than 2D pcMRI; however, work on accelerating acquisitions, mostly

driven by cardiovascular researchers, has reduced acquisition times to

clinically feasible durations (van Schuppen et al., 2024). These pcMRI

measurements have been extended to downstream arteries to study

how blood flow is distributed across different variants of the circle of

Willis (Zarrinkoob et al., 2015). Pushing this method to its limits, blood

velocity was measured in perforating arteries in the basal ganglia and

centrum semioval (Bouvy et al., 2016), although the conversion to flow

was not possible, as reliable estimates of cross-sectional area were not

measurable in these small arteries.

5.2 Cerebral oxygen extraction

Blood oxygenation can be calculated based on the magnetic

susceptibility (Driver et al., 2014; Fernández-Seara et al., 2006;

Haacke et al., 1997; Jain et al., 2010) or transverse relaxation (Jain

et al., 2013; Lu & Ge, 2008; Lu et al., 2012; Oja et al., 1999) in large

draining veins. This has been combined with CBF measurements to

calculate global cerebral oxygenmetabolism (Jain et al., 2010; Xu et al.,

2009). Further, these methods can be extended to smaller veins, to

restrict oxygen extraction measurements to specific brain regions

(Fan et al., 2012; Krishnamurthy et al., 2014). However, these regional

measurements are limited by minimal vessel diameters, to avoid

the measurements being biased by uncertainty over the vessel size.

This can be avoided by calibrating the oxygenation measurements

with a hyperoxia challenge (Driver et al., 2014), but these regional

measurements have largely been superseded by the microvascular

mappingmethods described in Section 3.

5.3 Arterial stiffness

The large arteries and veins have a role in dampening the cardiac

pulse wave as it passes through the brain. Pulsatile flow enters the

brain through the feeding arteries and creates pressure waves that

propagate through brain tissue (Van Hulst et al., 2024; Wagshul et al.,

2011). However, the brain lies within the skull, which acts as a solid

container. Blood and cerebrospinal fluid (CSF) are incompressible

fluids, so to protect brain tissue from damage from the cardiac pulse

pressure waves, the incoming pulse wave is buffered by arterial

compliance and transmitted out of the brain through veins and CSF

(Bateman et al., 2008). Arteries stiffen with age (Parikh et al., 2016),

so the ability of arteries to attenuate the pulse wave is diminished

(Chirinos et al., 2019; Lefferts et al., 2020; Tarumi et al., 2014;

Zarrinkoob et al., 2016). The strength of the pulse wave entering the

brain is regulated by the aortic stiffness (Lefferts et al., 2020), which

is generally assessed using carotid–femoral pulse wave velocity (PWV)

measurements (Milan et al., 2019; Parikh et al., 2016). The mechanism

for the attenuation of the pulse wave within the skull remains to be

established. One study observed that the damping of the pulse wave

between the common carotid artery andmiddle cerebral artery (MCA)

appears to dependmore on the reflections in the pulsewavemeasured

in the common carotid than the forward pulse wave propagation

from the aorta (Lefferts et al., 2020). However, this observation lacks

a mechanistic underpinning to establish how reflected power could

sufficiently dampen the pulse wave (Chirinos et al., 2019).

The increase in carotid–femoral PWV beyond middle-age

(Heffernan et al., 2018; Lefferts et al., 2020; Parikh et al., 2016;

Tarumi et al., 2014) is accompanied by increased single-point common

carotid PWV (Lefferts et al., 2020) and internal carotid blood flow

velocity pulsatility (Fico et al., 2022; Tarumi et al., 2014), and decreases

in carotid pulse wave reflection (Lefferts et al., 2020; Tarumi et al.,

2014) and in the damping of the pulse wave between carotid and

MCA (Lefferts et al., 2020; Zarrinkoob et al., 2016). There is a negative

association between aortic stiffness and memory in older adults,

mediated by cerebrovascular resistance through the basilar and

internal carotid arteries (Cooper et al., 2016). Further, aortic PWV, and

carotid andMCA pulsatility are increased during a cognitive challenge

(Stroop task) in older, but not younger adults (Heffernan et al., 2018),

suggesting that stiffer arteries are less able to adapt to the stress of

increased cognitive load. Arterial stiffness has been linked to small

vessel disease (O’Rourke & Safar, 2005; Stone et al., 2015) and white

matter hyperintensity volume (Cooper et al., 2016; Tarumi et al., 2014).

Whilst these studies are cross-sectional, and longitudinal studies

are needed to establish causality, it is likely that heightened arterial

stiffness and reduced damping in cerebral arteries lead to propagation

of the pulse wave into microvasculature, damaging the blood–brain

barrier and resulting in the formation of whitematter hyperintensities.

Therefore, measurements of arterial stiffness and propagation of the

cardiac pulse wave through intracranial blood vessels are needed to

understand the mechanisms linking cardiovascular health to neuro-

degeneration and to help to measure the efficacy of interventions,

such as aerobic exercise.

Arterial compliance (blood volume changes per unit change in

pressure) has been measured in the arteries above the circle of

Willis (anterior, middle and posterior cerebral arteries) using ASL

with a short delay between label and image to capture arterial blood

volume, before the label can perfuse into tissue (Warnert et al.,

2015). Arterial distensibility (cross-sectional area of the blood vessel

change between diastole and systole) was also measured by the same

group, by recording high spatial resolution T2-weighted MRI images

synchronised to the cardiac cycle (Warnert, Verbree et al., 2016).

Pulsatility wave analysis and pulsatility index can be measured in the
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10 DRIVER andMURPHY

large intracranial arteries using pcMRI (Bouillot et al., 2018; Owashi

et al., 2023; Rivera-Rivera et al., 2017) and this has been extended

to smaller perforating arteries (Arts et al., 2022; Geurts et al., 2019).

However, the key established measurement for arterial stiffness is

pulse wave velocity (Alastruey et al., 2023; Marshall et al., 2024; Milan

et al., 2019; T. Pereira et al., 2015). MRI has the unique ability to non-

invasively measure the pulsatile flow of arteries deep within the brain,

making a local intracranial pulse wave velocity possible. Pulse wave

velocity measured across the circle of Willis has been demonstrated

using 4D flow MRI (Björnfot et al., 2021), which is a version of pcMRI

withmagnetic gradients in the three cardinal directions to encode flow

velocity, with cardiac gating to resolve the pulse waveform across the

average heartbeat. The problem with pcMRI is that the measurement

takes several minutes, or hundreds of heartbeats. Natural heart rate

variability will smooth out these averaged pulse waveforms, limiting

their ability to resolve the fine scale pulse delays of tens of milli-

seconds between intracranial arteries. In our lab, we have developed

an inflowMRI method that is sensitive to flow speed and gives a single

image in <15 ms, allowing us to resolve the pulse waveform of a single

heartbeat in intracranial arteries (Whittaker, Fasano et al., 2022). This

method shows promise for application to calculate the pulse delay as

it propagates across the circle of Willis, with potential for measuring

beat-to-beat pulse wave velocity.

6 CONCLUSION: THE IMPACT OF THE
CARDIOVASCULAR SYSTEM ON
CEREBROVASCULAR HEALTH

The heartbeat provides a constant driving force entering the skull;

this is initially buffered by compliant arteries, but as the brain

ages, factors like arterial stiffness and blood pressure impair this

buffering. The constant insult of the cardiac pulse wave starts to

cause tissue damage. It leads to damage to smooth muscle cells

and the endothelium. The compromised blood–brain barrier allows

macromolecules to enter the brain parenchyma, such as immune

cells, which cause multiple sclerosis, or amyloid proteins, leading to

dementia. MRI provides a range of tools to measure cerebrovascular

health. The next step towards understanding the mechanisms under-

lying cerebrovascular health and neurodegeneration and to inform

intervention decisions will be to study the link between systemic

cardiovascular and cerebrovascular physiology.
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