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A B S T R A C T

The rising global demand for environmentally friendly energy sources calls for the development of effective 
hybrid renewable power plants. This work addresses the design and operation optimization of an off-grid PV/ 
Wind/Fuel cell system to meet energy needs in the Najran area of Saudi Arabia, with plenty of renewable re
sources. The mantis search algorithm (MSA) can effectively lower the cost of energy (COE) while preserving 
system dependability considering its superior convergence characteristics based on the foraging and mating 
activities of praying mantises. Using the loss of power supply probability (LPSP) as the reliability metric, the MSA 
algorithm was applied on two system configurations to optimizing the capacities of photovoltaic panels, wind 
turbines, fuel cells, electrolyzers, and hydrogen tanks. The analysis of the cost of energy (COE) and loss of power 
supply probability (LPSP) for the PV/Wind/FC and PV/FC configurations, based on four cases each with various 
objective functions, shows that the PV/Wind/FC system generally provides a lower COE and LPSP compared to 
the PV/FC system. For the PV/Wind/FC system, COE ranges from 0.161154 US$/kWh to 0.237477 US$/kWh, 
and LPSP ranges from 0.022517 % to 0.057322 %. In contrast, the PV/FC system shows higher COE values, 
ranging from 0.380493 US$/kWh to 0.500352 US$/kWh, with LPSP values ranging from 0.036985 % to 
0.099117 %. Moreover, Statistical analysis of results from various system configurations confirms the accuracy 
and stability of the MSA algorithm. The findings demonstrate that MSA effectively achieves optimal system 
design while ensuring acceptable energy fluctuation and efficient use of renewable resources. The Break-Even 
Grid Extension Distance (BED) analysis for the PV/Wind/FC and PV/FC configurations shows that the PV/ 
Wind/FC system is more cost-effective for off-grid solutions over shorter distances, with the PV/FC system 
providing a more favorable option for longer distances, where the break-even distance for the PV/Wind/FC 
system ranges from 18.21 km to 143.66 km and for the PV/FC system from 376.41 km to 572.14 km.

1. INTRODUCTION

1.1. Motivation and background

The world is seeing a growing trend toward the use of renewable 
energy sources, particularly solar and wind power, in electric utility 

operations [1,2]. However, the integration of large amounts of variable 
renewable energy generation poses various challenges [3,4]. These 
challenges include navigating uncertain weather conditions, coping 
with fluctuations in consumer demand, addressing the mismatch be
tween demand and variable generation, and dealing with technical 
system constraints, regulatory policy requirements, and economic cost 
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considerations [5,6]. In simple terms, batteries play a vital role in hybrid 
power systems in remote areas [6,7]. Accurate prediction of battery 
lifetime and analysis of battery performance over time is important for 
designing efficient and cost-effective renewable energy storage systems 
[8]. Researchers have suggested methods for assessing total operating 
costs and identifying optimal designs for microgrid hybrid power sys
tems with energy storage, thereby helping to make these systems more 
effective and economical [9,10].

1.2. Literature review

Researchers often use different strategies when it comes to deter
mining the appropriate size for hybrid renewable energy systems 
(HRES) [11]. The reviewed studies thoroughly examined the available 
literature, used software tools, applied traditional methodologies, and 
investigated metaheuristic approaches [12,13,14,15]. Among the soft
ware tools commonly employed in this domain, the hybrid optimization 
model for multiple energy resources (HOMER) stands out as a popular 
choice. It aids in the unit sizing process for HRES by providing a 
comprehensive and efficient platform for analyzing multiple energy 
resources [16]. In [17], researchers examined the applicability of HRES 
in Kallar Kahar, Punjab, Pakistan. HOMER software was used to analyze 
the WT, PV, and biomass installations. The research found that Kallar 
Kahar has excellent potential for HRES energy generation, owing to its 
sun irradiation, wind, and animal manure. The estimated price of 
implementing the HRES to meet the 73.6 MW peak demand was 180.2 
million US dollars. This article examines whether a mini-grid renewable 
energy system can power Kibran Gabriel Island in Ethiopia. Research 
[18] compared a mini-grid system with diesel generation and grid 
expansion systems using HOMER Pro simulation, optimization, and 
sensitivity analysis. The hybrid photovoltaic (PV)/DG/battery system 
was the most cost-effective, with a COE of USD 0.175/kWh, NPC of USD 
119,139, and RF of 86.4 %. This technology decreases pollutant emis
sions by 33,102 kg/yr compared with diesel generation alone. According 
to the sensitivity analysis, the system works effectively with fluctuations 
in global horizontal irradiance (GHI), diesel prices, and load 
consumption.

The classical method employs differential calculus as a tool for 
optimizing solutions [15,19,20]. This method utilizes mathematical 
techniques to ascertain the optimal outcome or approach to a given 
problem [21]. Given the limited effectiveness of classical methods in 
optimizing spatial resources, researchers have not frequently utilized 
these techniques [22,23]. However, academic discourse has acknowl
edged and explored several classical optimization approaches, such as 
the linear programming (LPM) model [24]. To determine the optimal 
size for HRESs, the present study introduces the mixed-integer linear 
programming (MILP) optimization algorithm. The MILP algorithm was 
tested in a real-world case involving a mountain hut in South Tyrol. The 
optimization approach considered different configurations using solar 
panels, wind turbines, and diesel generators. This MILP-based tool 
supports engineering decisions by identifying the most cost-effective 
and energy-efficient configuration during the planning stage of a 
hybrid renewable energy system [25].

Metaheuristic problem-solving methodologies have recently 
emerged [26,27,28]. In [29], researchers attempted various optimiza
tion techniques, such as ant colony optimization, firefly algorithm, 
particle swarm optimization (PSO), and genetic algorithm (GA). They 
found that PSO outperformed the other methods in optimizing the lev
elized cost of energy (LCOE). Another investigation [30] determined the 
optimal size of a hybrid energy system (HES) using a Social Spider 
optimizer. Moving on to a different research paper [12], it was found 
that the harmony search algorithm outperformed PSO and Jaya in 
optimizing a PV-WT-biomass-BAT system. The primary aim was to 
enhance the efficiency of this system in terms of renewable energy, cost- 
effectiveness, and reliability, all of which meet consumers’ energy 
needs. Furthermore, Ref. [31] utilized the salp swarm algorithm to 

optimize the LCOE, considering various combinations of three types of 
batteries. Moreover, a systematic review has examined the progress with 
HRES optimization using software-driven, hybrid, AI-based, and clas
sical methods [32]. The research in [33] explores optimization strategies 
that balance economic, environmental, social, and technical criteria 
using algorithms including MOPSO, NSGA-II, CSA, GWO, LF-SSA, and 
MILP in conjunction with tools including HOMER Pro and MATLAB. 
Examining 138 research papers from Scopus that investigate renewable 
energy system optimization over the past 24 years [34] using the 
PRISMA framework and bibliophagy.

Moreover, Table 1 introduces a review of the research effort to 
confirm the diversity of the applied methods as well as the variety of 
suggested microgrid configurations [35 36 37 5 8 38 39 40 11 41]. The 
key observations from the comparative analysis of the studies reveal 
several critical insights. First, PV/Wind/Battery systems consistently 
emerge as the most cost-effective configuration across multiple studies, 
with the cost of energy (COE) ranging from $0.151/kWh to $0.8056/ 
kWh [39 11 41]. However, Koholé et al. [37] highlight the PV/Wind/ 
Fuel Cell system as the most efficient for energy production, achieving a 
COE as low as $0.94/kWh for multimedia facilities in Maroua. Second, 
optimization methods such as the Cuckoo Search Algorithm (CSA) and 
Teaching-Learning-Based Optimization (TLBO) are frequently employed 
and demonstrate superior performance in designing and optimizing 
hybrid renewable energy systems, ensuring cost efficiency and reli
ability [35 5 39 11]. Third, these systems offer significant environmental 
benefits, with reductions in CO2 emissions of up to 98.79 % in some 
cases, contributing to global efforts to combat climate change [35 36 40 
41]. Fourth, wind energy systems show considerable promise for 
hydrogen production, with the cost of hydrogen (COH) as low as 
$4.3865/kg in Kousseri [38]. Koholé et al. [37] further highlight the 
photovoltaic/fuel cell system as the most cost-effective for hydrogen 
production, achieving a levelized cost of hydrogen (LCOH) of $8.91/kg 
for multimedia facilities in Mbouda. Finally, systems incorporating 
thermal energy storage (TES) and pumped-hydro storage (PHES) are 
noted for TES and PHES systems’ reliability and environmental advan
tages, further enhancing the value of such technologies for sustainable 
energy solutions [35 5 40]. Overall, existing studies provide a compre
hensive framework for optimizing hybrid renewable energy systems, 
emphasizing the systems’ contributions to cost-effectiveness, reliability, 
and sustainability.

Researchers in [42 43 3 44 45] demonstrate the techno-economic 
and environmental potential of hybrid renewable energy systems for 
hydrogen generation and storage. Ref. [42] highlights the performance 
of hybrid PV/Wind systems in different locations, with Mersa Matruh 
producing 118,115 kWh/year of electricity and 1,972 kg/year of 
hydrogen, Aswan generating 107,285 kWh/year and 1,795 kg/year of 
hydrogen, and Cairo producing 84,096 kWh/year and 1,418 kg/year of 
hydrogen. The levelized cost of hydrogen (LCOH) in this study ranged 
from $4.54/kg to $7.48/kg, indicating competitive hydrogen produc
tion costs. Ref. [43] focuses on large-scale hydrogen generation, 
showing that Dakhla, Morocco, achieved the lowest LCOH of $2.54/kg 
through an optimized combination of solar arrays and wind farms. 
Ref. [3] emphasizes the efficiency of PV/Wind/Diesel/Battery/Electro
lyzer systems for co-generating electricity and hydrogen, achieving an 
optimal ecological footprint with a cost of electricity at $0.252/kWh and 
a cost of hydrogen at $2.59/kg. Ref. [44] explores the scalability of 
renewable energy systems, with a 100 MW PV system producing 
158,484–175,675 MWh/year of electricity and 2,524–2,761 tonnes/ 
year of hydrogen, achieving an LCOH of 22.54–28.38 CNY/kg and an 
energy efficiency of 9.03–9.31 %. Finally, Ref. [45] showcases the 
environmental and economic benefits of a hydrogen-methane thermal 
power plant, which achieved a 16-year payback period with 100 % 
hydrogen combustion and an annual CO2 reduction of 155 tones. Ourya 
et al. (2023) [43] conducted a techno-economic analysis of large-scale 
hydrogen production using hybrid PV/Wind systems in Morocco, iden
tifying Dakhla as the most cost-effective location with a levelized cost of 
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Table 1 
A review of research effort to confirm the diversity of the applied methods and platforms as well as the variety of suggested microgrid configurations.

Ref. Focus Technologies Evaluated Optimization Method Key Findings Cost Metrics

Ref. [35] Comparison of battery, hydrogen, 
pumped-hydro, and thermal energy 
storage technologies

PV, Wind, Battery, Fuel Cell, 
Pumped-Hydro, Thermal Energy 
Storage (TES)

Cuckoo Search Algorithm 
(CSA)

PV/Wind/TES system most cost-effective; COE: $0.2100/kWh (heavy 
activity); TES outperforms other storage technologies in cost and reliability.

COE: $0.2100–$0.2277/kWh

Ref. [36] Optimization of hybrid PV/Wind/ 
Diesel/Fuel Cell systems for residential 
applications

PV, Wind, Diesel, Fuel Cell Evolutionary Algorithms PV/Wind/Diesel/FC system was the most cost-effective; COE: $1.087/kWh 
(high demand); CO2 emissions: 1504.2 kg/year (low demand).

COE: $1.087–$2.384/kWh

Ref. [37] Green hydrogen production and storage 
via hybrid systems

PV, Wind, Fuel Cell, Electrolyzer, 
Hydrogen Tank

Teaching-Learning-Based 
Optimization (TLBO)

PV/Wind/Fuel Cell system most efficient for energy production; COE: $0.94/ 
kWh (Maroua); COH: $8.91/kg (Mbouda).

COE: $0.94–$1.93/kWh; COH: 
$8.91–$24.61/kg

Ref. [5] Optimization of hybrid PV/Wind systems 
with thermal and pumped-hydro storage

PV, Wind, Thermal Energy Storage 
(TES), Pumped-Hydro Energy 
Storage (PHES)

Cuckoo Search Algorithm 
(CSA)

PV/Wind/TES most cost-effective; Wind/PHES most reliable and eco-friendly; 
significant CO2 emission reductions.

COE: $0.2100–$0.2641/kWh

Ref. [8] Hybrid PV/Wind/Battery/Diesel systems 
for rural electrification

PV, Wind, Battery, Diesel Teaching-Learning-Based 
Optimization (TLBO)

PV/Wind/Battery/Diesel system most cost-effective; COE: $0.2158/kWh 
(healthcare center); break-even grid extension distance: 0.443 km 
(household).

COE: $0.2158–$0.2419/kWh

Ref. [38] Wind energy potential for electricity and 
hydrogen production

Wind Turbines, Electrolyzer, 
Hydrogen Storage

None (Techno-economic 
analysis)

Kousseri is best for hydrogen production; COE: $0.0578/kWh; COH: $4.3865/ 
kg (GE 1.5SL turbine); payback period: 2.9 years (Enercon E-48/800).

COE: $0.0578–$0.0838/kWh; 
COH: $4.3865–$6.5065/kg

Ref. [39] Quantitative techno-economic 
comparison of PV/Wind systems with 
various storage technologies

PV, Wind, Battery, Fuel Cell Cuckoo Search Algorithm 
(CSA)

PV/Wind/Battery system most cost-effective; COE: $0.1570/kWh (heavy 
activity, Fotokol); PV/Wind/Fuel Cell system viable but higher cost.

COE: $0.1570–$0.8056/kWh

Ref. [40] Techno-economic analysis of hybrid PV/ 
Wind/Diesel systems with multiple 
storage technologies

PV, Wind, Diesel, Battery, Pumped- 
Hydro, Hydrogen, Thermal Energy 
Storage (TES)

Cuckoo Search Algorithm 
(CSA)

PV/Wind/Diesel/TES system is the most cost-effective; COE: $0.2461/kWh; 
CO2 emissions reduced by up to 98.79 % compared to diesel-only systems.

COE: $0.2461–$0.2649/kWh

Ref. [11] Techno-economic analysis of standalone 
PV/Wind hybrid systems with battery 
and fuel cell

PV, Wind, Battery, Fuel Cell Cuckoo Search Algorithm 
(CSA)

PV/Wind/Battery system most cost-effective; COE: $0.1959/kWh (heavy 
activity); superior performance of CSA in optimizing system design.

COE: $0.1959–$0.2641/kWh

Ref. [41] Techno-economic and environmental 
assessment of hybrid PV/Wind/Diesel 
systems

PV, Wind, Diesel, Battery, Fuel Cell Cuckoo Search Algorithm 
(CSA)

PV/Wind/Battery/Diesel system most cost-effective; COE: $0.151/kWh 
(Idabato); CO2 emissions reduced by 94.32 % for high consumers.

COE: $0.151–$0.220/kWh

Ref. [42] Techno-economic analysis of hybrid PV/ 
Wind systems for hydrogen generation 
and storage

PV, Wind, Electrolyzer, Hydrogen 
Storage

A transient mathematical 
model using MATLAB/ 
Simulink

Mersa Matruh produced 118,115 kWh/year and 1,972 kg/year of hydrogen; 
Aswan produced 107,285 kWh/year and 1,795 kg/year of hydrogen; Cairo 
produced 84,096 kWh/year and 1,418 kg/year of hydrogen.

The levelized cost of hydrogen 
(LOCH) ranges from 4.54 $/kg 
to 7.48 $/kg

Ref. [43] Techno-economic study of large-scale 
hydrogen generation via hybrid PV/ 
Wind systems

PV, Wind, Electrolyzer, Hydrogen 
Storage

Optimization of PV/Wind 
ratio

Dakhla, Morocco, achieved the lowest LCOH of $2.54/kg using a combination 
of solar arrays and wind farms.

LCOH: $2.54/kg

Ref. [3] Techno-economic and environmental 
assessment of PV/Wind/Diesel/Battery/ 
Electrolyzer systems

PV, Wind, Diesel, Battery, 
Electrolyzer

Multi-criteria decision- 
making

PV/Wind/Diesel/Battery/Electrolyzer system most efficient for co-generation 
of electricity and hydrogen; achieved optimal ecological footprint and lowest 
hydrogen production cost.

cost of electricity-$ 0.252/kWh, 
cost of hydrogen-$ 2.59/kg,

Ref. [44] Computational strategy for 100 MW PV 
system coupled to hydrogen generation

PV, Electrolyzer, Hydrogen Storage Process Modeling based 
MATLAB

System produced 158,484–175,675 MWh/year of electricity and 2,524–2,761 
tonnes/year of hydrogen; LCOH: 22.54–28.38 CNY/kg; energy efficiency: 
9.03–9.31 %.

LCOH: 22.54–28.38 CNY/kg

Ref. [45] Hydrogen-methane thermal power plant 
for a high school

PV, Electrolyzer, Hydrogen Storage ON/OFF control The system achieved a 16-year payback period with 100 % hydrogen 
combustion; an annual CO2 reduction of 155 tonnes.

N/A

Ref. [46] Hydrogen-methane thermal power plant 
for a high school

PV, Electrolyzer, Hydrogen Storage HOMER Pro The system achieved a 16-year payback period with 100 % hydrogen 
combustion; an annual CO2 reduction of 155 tones.

LCOH: 2.54$/kg
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hydrogen (LCOH) of $2.54/kg. Their findings highlight the potential of 
combining photovoltaic panels and wind turbines for low-cost hydrogen 
production, emphasizing that the cost of water desalination is negligible, 
representing only 0.12 % to 0.35 % of the net present costs.

Mutually, the presented literature studies illustrate the significant 
potential of hybrid renewable energy systems for sustainable hydrogen 
production, cost-effectiveness, and environmental impact reduction. It is 
notable that metaheuristic algorithms possess inherent limitations pri
marily due to the challenge of balancing exploration and exploitation, 
which directly impacts algorithmic performance. Moreover, parameter 
selection is crucial for optimizing efficiency; however, identifying the 
optimal parameters is difficult. Novel methods lacking parameter 
sensitivity and qualitative analysis may struggle to address complex 
problems. Certain algorithms rank conceptual novelty over computa
tional efficiency, leading to suboptimal performance for various prob
lem types. The No Free Lunch (NFL) theorem emphasizes the necessity of 
enhancing existing techniques or developing novel approaches, as it 
demonstrates that no singular method can optimally address all opti
mization problems [46].

1.3. Research gap

As introduced, while much research gives attention to the optimal 
design of the hybrid renewable energy systems (HRES), the optimization 
of off-grid systems—particularly in areas with plenty of renewable re
sources like Najran—remains underactive. The difficulty of creating an 
effective off-grid PV/Wind/Fuel Cell system that can consistently satisfy 
energy needs while minimizing costs is addressed by this work.

Metaheuristic algorithms are essential for optimization but have 
certain limitations: (i) Balancing exploration and exploitation phases is 
challenging but critical for overall performance. (ii) The performance of 
most algorithms is heavily influenced by parameters, and determining 
optimal parameters for specific problems is difficult. Without addressing 
parameter sensitivity, algorithms may struggle with complex issues. (iii) 
Some algorithms focus on novel metaphors without improving compu
tational performance, leading to inefficiency and suboptimal results. 
The No Free Lunch (NFL) theorem suggests no single algorithm excels at 
all optimization problems, highlighting the need for adapting or creating 
new methods. Moreover, MSA is reported as a promising recent meta
heuristic algorithm that has proven effective in addressing complex, 
nonlinear, and optimization challenges. Its unique approach integrates 
both exploration and exploitation phases, allowing it to strike a balance 
between the global search for optimal solutions and avoidance of local 
minima. This capability is particularly important for systems with 
nonlinear constraints, such as those met in energy and resource 
management.

Although conventional metaheuristic methods including PSO and 
GA and other reported works have been extensively applied for HRES 
optimization, To the best of the authors’ knowledge, the Mantis Search 
Algorithm (MSA) has not been thoroughly investigated in this context. 
This work closes this gap by proving MSA’s better convergence prop
erties in system configuration optimization, so guaranteeing both system 
reliability and economy. This study assesses several system designs and 
shows the ability of the MSA algorithm to minimize the cost of energy 
(COE) while keeping an acceptable loss of power supply probability 
(LPSP), so achieving an optimal cost-reliability balance. Furthermore 
sometimes disregarded in research on renewable energy is statistical 
validation of optimization results. Employing a thorough statistical 
analysis of system configurations, this work validates the stability and 
accuracy of the MSA algorithm. The results confirm MSA’s capacity to 
keep constant performance under different environments. Although off- 
grid uses of hydrogen-based energy storage systems are under increasing 
consideration, their optimization inside HRES is still under insufficient 
research. Especially pertinent for arid areas with great solar and wind 
potential, this study offers insights into the effective integration of 
hydrogen storage by including electrolyzers and hydrogen tanks in the 

optimization process.

1.4. Contribution and paper organization

This paper introduces the application of the MSA optimization al
gorithm for the optimal design of various configuration models within a 
hybrid off-grid energy system proposed for Najran, KSA. The developed 
algorithm aims to minimize the COE generated by the suggested models 
over their presumed lifetime. Additionally, minimizing the LPSP is a 
primary objective for the developed algorithm. The algorithm is tested 
on two distinct configurations of a hybrid off-grid energy system to 
evaluate its effectiveness. Statistical measures are subsequently pre
sented to assess the reliability and efficiency of the developed algorithm. 
The MSA algorithm stands out as a competitive alternative to existing 
metaheuristic algorithms due to several key advantages. It is straight
forward to implement and effectively maintains population diversity 
throughout the optimization process. The algorithm demonstrates a 
strong capability to avoid local optima and includes a robust exploita
tion operator, enabling it to handle unimodal functions efficiently. 
Additionally, MSA achieves an optimal balance between exploration and 
exploitation by dynamically switching between searching for prey and 
attacking prey.

The subsequent sections of this paper are organized as follows: 
Section II delves into the System configuration and sizing formulation. 
Section III elucidates the operating strategy employed in the proposed 
hybrid system, followed by Section IV, which outlines the optimization 
algorithm. Section V provides a comprehensive presentation of the ob
tained results and ensuing discussions. Finally, Section VI offers a 
summarized conclusion of the work.

2. System configuration and sizing formulation

This study focuses on the residential area in Najran, KSA. As shown in 
Fig. 1, the proposed HRES uses wind turbines and solar panels to meet 
consumer demand. A combination of fuel cells, electrolyzers, and 
hydrogen fuel tanks was employed for energy storage to ensure reli
ability. This setup is considered a “green” system with environmentally 
friendly energy resources. Excess PV-WT energy triggers hydrogen 
production by the electrolyzer, whereas fuel cells provide energy when 
renewable sources fall short. The hybrid (AC–DC) bus structure sim
plifies the model, featuring inverters and converters. Due to oxidation 
effects from the acidic content in water, desalination must be imple
mented before introducing water into the electrolyzer to prevent 
component degradation. The cost of desalination is negligible compared 
to overall system expenses, making it a viable addition without signifi
cantly affecting economic feasibility [43]. This process is essential for 
optimizing hydrogen production and ensuring the reliability of hybrid 
renewable energy systems. While desalination was assumed negligible 
in this study, its necessity depends on the water source.

2.1. PV system model

Getting detailed information about the amount of sunlight reaching 
the solar panels every hour is crucial for planning the hybrid system 
effectively. To accurately calculate the power output of each photovol
taic panel in relation to the available solar radiation, you can use 
equation (1) [47]: 

PPV(t) = PR,PV ×
(
R/Rref

)
×
[
1+NT

(
Tc − Tref

) ]
(1) 

The amount of power a single solar panel produces at a specific time, 
labeled as PPV(t), is figured out using equation (1), t. PR,PV stands for the 
panel’s rated power. R represents solar radiation, measured in watts per 
square meter (W/m2), and Rref is the standard radiation, usually set at 
1000 W/m2. Tref is the cell’s temperature under standard conditions, 
typically at 25◦C. There’s a temperature coefficient called “NT,” set at 

S.A. AL Dawsari et al.                                                                                                                                                                                                                         Energy Conversion and Management: X 27 (2025) 101209 

4 



− 3.7 x 10–3 per degree Celsius (◦C), applicable to both mono and 
polycrystalline silicon types. Equation (2) helps calculate the actual cell 
temperature, denoted as Tc. 

Tc = Tair +(((NOCT − 20)/800 ) × Ra ) (2) 

The air temperature, denoted as_Tair, is in degrees Celsius, and Ra 

represents radiation. Also, there’s something called “NOCT,” which 
stands for the operating cell temperature, measured in degrees Celsius. 
Manufacturers provide these important details for photovoltaic (PV) 
modules. Now, if we have a bunch of PV systems, let’s define that. NPV, 
the total power they generate at a specific time is PPV(t), can be calcu
lated PPV(t) = NPV × pPV(t).

2.2. Wind turbine (WT) system model

Wind power is seen as a really promising type of energy. One cool 
thing about it is that it doesn’t produce greenhouse gas emissions, 
making it environmentally friendly. Plus, it’s economically efficient, 
which makes people like it even more. We use a wind turbine with 
several blades connected to a generator to harness wind energy. This 
setup captures the wind’s energy, and the turbine is placed on a high 
structure to do this effectively. We can figure out how much power each 
wind turbine produces using a specific equation (3) [48,49]: 
⎧
⎪⎪⎨

⎪⎪⎩

PWT(t) = 0 V(t) < VIN
PWT(t) = a(V(t) )3

− bPR VIN < V(t) < VR
PWT(t) = PR VR < V(t) < VUP
PWT(t) = 0 V(t) > VUP

(3) 

The values for a and b are found by using equation (4). 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a =
PR,WT

V3
R − V3

IN

b =
V3

IN

V3
R − V3

IN

(4( 

Expressing the overall power generated can be done as: 

PR =
1
2
AWT⋅CP⋅ρa⋅ηWT⋅V3

R (5) 

The power produced by individual wind turbines at a specific time is 

denoted by PWT(t). The nominal power of a wind turbine is represented 
as PR,WT, and the wind speed is indicated by V. VIN stands for the speed 
triggering the low cut, while VUP is the speed causing the up cut. Also, VR 

is the speed linked to the nominal power. The swept area of the wind 
turbines is represented as AWT, and ηWT is the efficiency of the wind 
turbine. The power coefficient, labeled as CP, and the air density, 
denoted by ρa.

Equation (3) defines wind turbine efficiency based on its output 
characteristics and wind velocity (V). Power production PWT is zero 
when wind velocity is below the cut-in speed VIN or exceeds the cut-off 
speed VUP. Within the range between cut-in and rated wind velocity VR, 
power generation follows a nonlinear increase. When wind velocity falls 
between the rated and threshold speeds, the turbine maintains a con
stant power output at its rated capacity.

2.3. Modelling electrolyzers

The surplus energy produced by solar panels (PVs) and wind turbines 
is employed to power the electrolyzer. This device is responsible for 
producing hydrogen by splitting water into oxygen (at the cathode) and 
hydrogen (at the anode) through the application of a direct current (DC) 
across two electrodes (refer to Equation (6)) [50]. Subsequently, the 
generated hydrogen is stored in high-pressure tanks [51]. 

Electricity+ H2O = H2 +
1
2

O2 (6) 

The illustration outlines the process of the electrolyzer directing 
energy to the hydrogen storage tank, as explicitly stated in the equation 
(7) [50]. 

Pele− H2t = Prenele × ηele (7) 

The electrolyzer’s power output Pele− H2t, measured in kilowatts, is 
calculated by multiplying its input power Prenele , also in kilowatts, by the 
constant efficiency factor ηele.

2.4. Hydrogen tank modeling

During peak demand periods, when power generation from photo
voltaic (PV) and wind sources is insufficient, a defined amount of stored 
hydrogen is supplied to fuel cells (FCs) to compensate for the energy 

Load Demand

AC Bus

Hydrogen Tank

PV cells 

Fuel Cell

Wind Turbine

DC Bus

Electrolyzer

Bi-directional 
Converter

Fig. 1. Conceptual illustration of the proposed renewable energy hybrid PV-Wind-FC system.
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deficit. The hydrogen energy balance at any time step (t) is outlined as 
follows:

The quantities EH2t(t) and EH2t(t − 1) represent the energy stored in 
the tank at times t and (t − 1), respectively. PH2t− fc(t) denotes the power 
provided to the fuel cells. The efficiency of the hydrogen tank ηstt is 
consistently assumed to be 95 % for all operations. The mass of hydrogen 
generated by the electrolyzers can be calculated using the following 
approach [52]: 

MH2t(t) =
EH2t(t)
HHVH2

(8) 

The term HHVH2 represents the higher heating value of hydrogen, 
standardized at 39.7 kWh/m2.

The energy stored in the tank can be represented as follows: 

EH2t(t) = EH2t(t − 1)+
(

Pele− H2t −
PH2t− fc(t)

ηstt

)

(9) 

2.5. Fuel cell modeling

A fuel cell (FC) converts chemical energy into direct current (DC) 
electricity using an electrolyzer, where electrodes—anode and 

cathode—are separated by an electrolyte. Key advantages of fuel cells 
include operational simplicity, low maintenance requirements, high 
efficiency, and environmental compatibility. These characteristics 
establish fuel cells as a viable and sustainable energy source [53].

The power generated from the fuel cell can be calculated using 
Equation (10) as outlined below: 

Pfc− inv(t) = PH2t− fc(t) × ηfc (10) 

Here, PH2t− fc represents the power supplied to the fuel cell, and ηfc is the 
efficiency of the fuel cells.

3. Methodology

3.1. Strategy for operating hybrid systems

The operational procedures of the proposed hybrid renewable system 
are structured as follows: 

i) When the combined electric energy generated by the PV and wind 
components surpasses the load demand, the surplus power is 
directed to the electrolyzer. The excess energy is employed to 

Fig. 2. Flowchart of the MSA optimization algorithm.
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convert water molecules into their constituents, oxygen (O2) and 
hydrogen (H2), storing the energy chemically in compressed H2 
tanks.

ii) If the surplus energy exceeds the electrolyzer’s maximum con
sumption and the hydrogen tank is filled, the remaining difference is 
supplied to a dummy load. The dummy load power at time ’t’ is 
represented as:

Pdummy (t) = Pren-inv (t) × ηinv − Pload (t) (11) 

iii) In instances where the energy generated by the wind farm and PV 
system falls short of the load consumption, the deficiency is 
addressed by utilizing the stored hydrogen. This stored hydrogen 
is directed to the FC, where the chemical energy is converted into 
electrical energy to meet the load demand.

iv) When the quantity of stored hydrogen in the tank reaches its 
minimum permissible level, the shortfall is considered as LPS. 
The LPS at time ’t’ is determined by:

PLps(t) = Pload(t) −
(
Pren-inv (t)+Pfc− inv(t)

)
× ηinv (12) 

The investigation into the optimal sizing of the hybrid energy system 
employs the MSA optimization algorithm, aiming to minimize the COE 
while ensuring the reliability of the proposed power supply system. The 
objective function involves achieving a reliability index (LPSP) below 
the predefined threshold of 5 %. The optimal sizing optimization 
problem and the details of the MSA algorithm are elaborated upon in the 
subsequent subsections.

3.2. Preparation of the optimization problem

The objective function is derived from the annual cost of units (kWh) 
produced by the developed hybrid system, encompassing various annual 
charges for each subsystem. These costs include the annual interest on 
capital investment ((Ccap\_ann)), the annual replacement cost (

(
Crep\_ann)

)

for devices with a lifespan shorter than the entire system, the annual 
operation and maintenance cost ((COM)), the annual penalty cost ((Cpc)) 
applied when the reliability index and fluctuation level are unaccept
able. The total annual cost of energy ((Ctot\_ann)) is calculated as follows: 
[
Ctot\_ann = Ccap\_ann + Crep\_ann + COM + Cpc

]
(13) 

As per references,[54,55], the net present cost (NPC) of the project 
(PV/wind/FC system) is expressed as: 
[

NPC =
Ctot\_ann

CRF

]

(14) 

Here, CRF represents the capital recovery factor of the proposed 
energy system, calculated based on a 6 % rate of interest and a system 
lifespan of 25 years. The cost of energy (COE) in ($/kWh) to be mini
mized is formulated as: 
[

COE =
NPC

∑8760
i=1 Pload(ti)

× CRF

]

(15) 

where (Pload) is the hourly load demand.
The minimization of COE is subject to specific operating conditions 

to ensure the effective and reliable performance of the power supply 
system. The defined minimum and maximum values for LPSP are zero 
and one, respectively. If LPSP = 0, the load demand will be completely 
met. Minimizing LPSP is a primary objective of this study, as the system 
exhibits greater reliability with reduced levels of LPSP. Therefore, the 
maximum quantity of LPSP was deemed to be 20 % [20]. The LPSP must 
be below the predefined reliability index value ((βL = 0.2)).

These factors are computed and constrained as follows: 

LPSP =

∑8760
i=1 (Pload(ti) − (PPV(ti) + PWT(ti) + PFC− inv(ti) ) )

∑8760
i=1 Pload(ti)

≤ βL (16) 

Pdump =

∑8760
i=1 Pdummy(ti)

∑8760
i=1 Pload(ti)

(17) 

where Pdump denotes the ratio among the total dummy load to the total 
load demand.

A novel objective function, aiming to minimize the COE produced 
from the proposed system while adhering to the constraints, is expressed 
as: 

minxf = minx
(
σ1 × COE+ σ2 × LPSP+ σ3 × Pdump

)
(18) 

Here, (x) is a vector representing the optimization parameters and σ1,σ2,

and σ3 denote the weighting factors. The process of trial and error is 
used to accomplish the finest outcomes [56]. KLPSP ensures compliance 
with the LPSP constraint. It equals 1000 when LPSP exceeds a pre
defined threshold and 0 otherwise.

4. Developing mantis search algorithm (MSA) for optimizing the 
hybrid microgrid configuration

The mantis search algorithm (MSA) is influenced by the unique 
hunting behaviors and sexual cannibalism observed in praying mantises. 
MSA is composed of four optimization stages: Initializing, exploring for 
prey, attacking prey, and incorporating sexual cannibalism. These stages 
are simulated using diverse mathematical models, effectively addressing 
optimization challenges across varied search spaces. The first stage in
volves the mathematical representation of mantis locations, symbolizing 
the initialization of the population. The second stage encompasses the 
exploration phase, the third stage focuses on the exploitation phase, and 
the fourth stage involves the discussion of sexual cannibalism. Before 
commencing the optimization procedure, specific parameters are 
defined for MSA. Parameters include T for the maximum number of it
erations, A for the length of an archive, N for the population size, p for 
the probability of exchange between the exploitation and exploration 
stages, for the probability of strike failure, ρ for the gravitational ac
celeration rate of the mantis’s strike, P for the recycling factor that 
balances between spearers and pursuers, and Pc for estimating the 
percentage of sexual cannibalism. Fig. 2 provides the flowchart out
lining the MSA process. The details mathematical representation of the 
MSA can be found in [57].

Within the MSA, the search mechanisms are meticulously crafted to 
harmonize exploration and exploitation, ensuring an efficient traversal 
of the solution space. MSA strives to strike a balance between these two 
facets by amalgamating distinct search mechanisms. The synergy of 
random search and global search mechanisms fosters exploration, 
diversifying the population and venturing into novel regions. Simulta
neously, the local search mechanism exploits and refines promising 
solutions.

The adaptive search mechanism plays a pivotal role in dynamically 
adjusting the equilibrium between exploration and exploitation, guided 
by the algorithm’s performance. This dynamic adjustment ensures an 
adept and efficient search process that effectively navigates and exploits 
the solution space. In the flowchart, the diamond signifies the adaptive 
control governing the interplay between exploration and exploitation 
characteristics. Here, a probability (p) of 50 % is employed to facilitate 
the exchange between the exploration and exploitation stages. The 
mathematical representation of the MSA algorithm can be formulated 
as:

4.1. Initial population

The algorithm begins by initializing the population of mantises. Each 
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mantis represents a candidate solution to an optimization problem. The 
initial population of N mantises in a D-dimensional search space is 
represented by a matrix x of size N× D.

The position of the ithh mantis at iteration t is defined as a vector 
initialized randomly within the problem’s bounds: 

xt
i = xl + r⋅(xu − xl), (19) 

where, xu and xl represent the upper and lower bounds of the jth 

dimension. Moreover, r denotes a random vector with values uniformly 
distributed between 0 and 1.

Each mantis’s effectiveness is assessed using a fitness function. If a 
new location yields a better solution, the mantis moves there; otherwise, 
it stays in place.

4.2. Search for prey: Exploration stage

Mantises exhibit two types of behaviors during the exploration of 
Pursuers which is the Actively searching for prey by moving through 
different regions and Spearers which is Stay camouflaged and ambush 
prey.

4.2.1. Pursuers’ behavior
The pursuers’ exploration is modeled using a hybrid strategy that 

combines Lévy flight and normal distribution to balance step sizes. The 
mathematical model for pursuers’ movement is given by: 

xt+1
i =

{
xt

i + τ1⋅
(
xt

i − xt
a
)
+ τ2⋅U⋅

(
xt

a − xt
b
)
, if r1 ≤ r2,

xt
i ⋅U + xt

a + r3⋅
(
xt

b − xt
c
)
⋅(1 − U), otherwise,

(20) 

where, xt
i denotes the position of the i-th mantis at iteration t. τ1 denotes 

the vector generated using Lévy flight. τ2 denotes a random number 
from a normal distribution with mean 0 and standard deviation 1. 

Moreover, r1, r2, r3 are random numbers uniformly distributed between 
0 and 1, while xt

a, xt
b, x

t
c are randomly selected solutions from the pop

ulation (xt
a ∕= xt

b ∕= xt
c ∕= xt

i). U represents binary vector which can be 
determined as: 

Uj =

{
0, r 4 < r 5
1, otherwise (21) 

where r4, r5 are random numbers uniformly distributed between 0 and 1.

4.2.2. Spearers’ behavior
Spearers remain stationary and ambush prey. This behavior is 

modeled by constructing an archive of the best solutions and updating 
their positions based on prey movement. The mathematical model is: 

Fig. 3. Discrepancy of site data; average hourly over the year; (a) solar radi
ation, (b) wind speed.

Fig. 4. A) average hourly load demand over the year at the selected site and b)
Fig. 6. Location of the case study (Najran, in southern KSA).

Table 2 
The technical specifications of different components within the planned system.

Component Capital 
Cost (US 
$/unit)

Repl. 
cost 
(US 
$/unit)

M cost 
(US 
$/unit- 
yr)

Lifetime 
(yr)

Effic. 
(%)

Unit

Wind [58] 11,000 10,000 30 20 – 10 
kW

PV [58] 400 400 10 25 – 1 
kW

Electrolyzer 
[59]

1500 1500 25 20 75 1 
kW

Hyd. Tank 
[59]

700 700 15 20 95 1 kg

Fuel cell [59] 2000 2000 175 5 50 1 
kW

DC/AC Conv. 
[58]

200 200 1 15 90 1 
kW
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TABLE 3 
Results of the system designed based on MSA algorithm.

Configuration 1 Configuration 2
CONFIGURATION PV/wind/FC PV/wind/FC PV/wind/FC PV/wind/FC PV /FC PV /FC PV /FC PV /FC

CASE Case 1-Config 1 Case 2-Config 1 Case 3-Config 1 Case 4-Config 1 Case 1-Config 2 Case 2-Config 2 Case 3-Config 2 Case 4-Config 2
OBJ_COST 0.1*COE+

0.1*P_dum+

0.8*LPSP

0.2*COE+
0.2*P_dum+

0.6*LPSP

0.2*COE+
0.2*P_dum+

0.6*LPSP+
KLPSP

0.1*COE+
0.1*P_dum+

0.8*LPSP+
KLPSP;

0.1*COE+
0.1*P_dum+

0.8*LPSP

0.2*COE+
0.2*P_dum+

0.6*LPSP

0.1*COE+
0.1*P_dum+

0.8*LPSP+
KLPSP

0.2*COE+
0.2*P_dum+

0.6*LPSP+
KLPSP

BEST OBJECTIVE FUNCTION 0.066583 0.096356 0.098046 0.066583 0.156387 0.244733 0.156386 0.266870
PV (UNITS) 557.3844 383.1594S 406.3768 557.4693 3464.684 2602.796 3464.663 3257.109
WIND (UNITS) 119.0065 96.71602 101.9845 119.0213 – – – –
ELECTROLYZER (kW) 734.6092 491.0164 550.3073 736.3357 2221.152 1618.843 2221.705 2033.427
HYDROGEN TANK (kg) 257.9347 156.071 172.6082 257.9353 515.8707 271.5453 515.8693 372.422
FUEL CELL (kW) 130.5979 69.40371 75.91922 131.262 373.6823 314.0313 373.6835 362.9108
ITERATIONS 18 16 18 18 20 19 19 19
COST ANN. TOT. (US$) 5.4106E + 05 3.6717E + 05 3.9856E + 05 5.4218E + 05 1.1399E + 06 8.6691E + 05 1.1400E + 06 1.0587E + 06
COE(US$/KWH) 0.237477 0.161154 0.174933 0.23797 0.500295 0.380493 0.500352 0.4646543
LPSP (%) 0.022570 0.057322 0.04978 0.022517 0.036985 0.099117 0.036986 0.049997
DUMMY LOAD 0.2477888 0.1486598 0.165956 0.247718 0.767687 0.545822 0.76762438 0.7197066
TIME (SEC.) (AVERAGE 

208.4752 SEC)
211.3860 197.5983 250.2866 207.2957 147.0929 197.7074 216.7183 239.7164

Fig. 5. Convergence curves of the MSA for the two studied systems, a) PV/wind/FC and b) PV /FC.
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xt+1
i = xt

i + α⋅
(
xʹ

ar − xt
a
)
, (22) 

where, x́ar is a random solution from the archive. α is a factor controlling 
the ambush distance, that can be defined as: 

α = cos(πr6)⋅μ, (23) 

With considering r6 as a random number uniformly distributed be
tween 0 and 1. And μ is the distance factor, which can be computed as: 

μ = 1 −
t
T
, (24) 

where T is the maximum number of iterations.

4.3. Combined exploration

The prey’s movement within the ambush region is modeled as: 

x→t+1
i =

⎧
⎪⎪⎨

⎪⎪⎩

x→t
i + α⋅

(

x→ʹ
ar − x→t

a

)

, r9 ≤ r10

x→ʹ
ar + (r7*2 − 1)*μ*

(
x→l

+ r8
→

×
(

x→u
− x→l

))
, Otherwise

,

(25) 

Fig. 6. Operation of the proposed PV /FC off-grid hybrid energy system.

Fig. 7. Operation of the proposed PV/wind/FC off grid hybrid energy system.
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where r7, r8, r9, r10 are random numbers uniformly distributed be
tween 0 and 1.The exploration phase is balanced using a recycling 
control factor F: 

F = 1 −

t%
(

T
P

)

T
P

, (26) 

where P is the number of cycles.

4.3.1. Attacking the Prey: Exploitation stage
Mantises use stealth and precision in predation, relying on visual 

triangulation to estimate strike distance and velocity for effective cap
tures. Their strike distance typically ranges from 70 %–80 % of their 
foreleg length, with optimal strikes occurring at 30 %–40 %. Binocular 
triangulation through their triangular head and compound eyes enables 
accurate distance measurement. Strikes are ballistic, predetermined by 
visual and proprioceptive data, with corrective pauses addressing initial 

speed estimation errors. These behaviors inspire mathematical models 
in the mantis search algorithm, simulating natural strategies for 
optimization.

4.3.2. Strike velocity
Strike velocity can be modeled using a sigmoid function: 

vs =
1

1 + elρ (27) 

where, vs is strike velocity. ρ represents a constant gravitational accel
eration rate. l is a random value − 1 ≤ l ≤ − 2).

4.3.3. Position update
The mantis updates its position by combining prey location, strike 

distance, and velocity: 

xt+1
i,j = xt

i,j +
x*

j

2.0
+ vs⋅

(
x*

j − xt
i,j

)
(28) 

xt+1
i,j is the updated position. x*

j represents the prey position. xt
i,j de

notes current position.

4.3.4. Failed strikes
When a strike fails, the mantis adjusts direction: 

xt+1
i,j = xt

i,j + r12⋅
(

xt
a,j − xt

b,j

)
(29) 

where, xt
a,j, xt

b,j represents the random mantis positions. r12 is the random 
factor (0 ≤ r12 ≤ 1).

Additional adjustments enhance diversity and avoid stagnation: 

xt+1
i,j = xt

i,j + e2l⋅cos(2lπ)⋅
(

xt
i,j − xt

ar,j

)
+ r13⋅

(
xj,u − xj,l

)
(30) 

where, xt
ar,j is the random mantis position. xj,u, xj,l are the upper and 

TABLE 4 
Statistical indices for the two proposed configurations hybrid systems.

PV/wind/FC PV/FC

Metric Case 1-Config 1 Case 1-Config 2
Mean 0.0666 0.1564
Median 0.0666 0.1564
Min 0.0666 0.1564
worst 0.0666 0.1564
SD 5.5039e-06 5.6091e-06
RE 1.1993e-05 4.4793e-06
MAE 7.9850e-08 7.0050e-08
RMSE 9.5407e-08 8.7969e-08
Efficiency 99.9999 100.0000
Wilcoxon signed rank
p 0.0020 0.0020
h 1 (logical) 1 (logical)

Fig. 8. The results of 10 individual runs using MSA: a) PV/Wind/FC and b) PV/ FC.
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lower bounds. r13 represents the random value (0 ≤ r13 ≤ 1).

4.4. Exploration vs. Exploitation probability

Pf = a⋅
(

1 −
t
T

)
(31) 

where, a represents the control parameter. t is the current iteration. T 
denotes the total iterations.

4.5. Sexual cannibalism mechanism

4.5.1. Mate attraction
Female mantises attract males using position updates: 

xt+1
i = xt

i + r16⋅
(
xt

i − xt
a
)

(32) 

where, r16 is a random attraction factor.

4.5.2. Mating
Offspring positions are generated using uniform crossover: 

xt+1
i = xt

i ⋅U+ xt
11 + r18⋅

(
xt

11 − xt
i
)
⋅(1 − U) (33) 

where, U is the uniform crossover factor.

4.5.3. Cannibalism
After mating, females consume males to enhance diversity: 

xt+1
i = xt

a⋅cos(2πl)⋅ (34) 

where, μ is the fraction of male consumed.

This stage integrates biological hunting and mating behaviors into 
optimization models. Strike distance, velocity, and failed strike adjust
ments ensure effective exploitation. Sexual cannibalism diversifies so
lutions while maintaining exploration–exploitation balance.

5. Results and discussion

5.1. Case study

This paper explores the optimal sizing of a proposed hybrid energy 
system using the MSA optimization technique. The study considers two 
scenarios: the first scenario involves a hybrid system consisting of PV, 
WT, and FC, whereas the second scenario comprises a hybrid system 
with PV and FC. By analyzing these scenarios, this study aims to 
determine the most efficient and effective configuration for an energy 
system. A practical case study was conducted in Najran, KSA (latitude 
17.4924 ◦N and longitude 44.1277 ◦E). The geographical location of 
Najran, characterized by a high intensity of solar radiation and consis
tent wind flow, makes it exceptionally suitable for renewable energy 
initiatives. Fig. 3 illustrates the average hourly intensity of solar radia
tion, and the average hourly wind speed observed at the chosen site. 
Moreover, the fixed-tilt alternatives for monthly, seasonal, and annual 
assessments have all been analyzed, and the optimal one has been 
selected. The annual optimal tilt for Najran was determined to be 
20.97◦, as indicated in [4]. Additionally, the average hourly load de
mand of 260.0888 kW at this location is depicted in the load graph in 
Fig. 4.a. Fig. 4.b shows the location of the study area in southern KSA. 
Table 2 summarizes the technical specifications of the different com
ponents of the planned system. The annual interest rate is selected to be 

Fig. 9. Sensitivity analysis considering the variation in the PV and WT at fixed values of other components for PV/Wind/FC.
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6 % and the project lifetime is 25 years.

5.2. Optimal configuration

The validation of the optimization program extends to the entire 
system, encompassing the PV, wind, and FC subsystems. To further 
scrutinize the reliability and precision of the proposed MSA technique, 
the optimization program was evaluated in distinct scenarios involving 
PV and wind power plants. Across all instances, the optimization pro
gram underwent 10 individual runs, and a statistical analysis of the 
objective function values is conducted. Throughout the simulation, the 
maximum iteration count is set to 50 and the maximum population size 
is 20. The boundaries and search space for the variables have been set 
between 1 and 4000 for each variable in vector x. The MSA imple
mentation has been carried out using MATLAB version R2023b on a 
Laptop with an Intel Core i7-10510U CPU @ 1.80 GHz, 2.30 GHz pro
cessor, 16 GB of RAM, and running the Windows 11 Pro (64-bit) 
platform.

The Mantis Shrimp Algorithm (MSA) was applied to solve the 
photovoltaic (PV) model extraction problem using specific parameter 
settings. The probability of switching between exploration and exploi
tation stages was set to p = 0.5, allowing a balanced search process. The 
archive length (A) was set to 1.0 to maintain a single elite solution. The 
probability of a strike failure was defined as a = 0.5, introducing vari
ability in local exploitation. A recycling factor P = 2 controlled the dy
namic exchange between pursuers and spearers during the search 
process. The gravitational acceleration of the mantis’s strike, repre
sented by α = 6, influenced the convergence speed of the algorithm. 

Moreover, the percentage of sexual cannibalism was set to Pc = 0.2, 
which helped increase solution diversity and reduce the risk of prema
ture convergence.

For validating the microgrid configurations, there are 4 objective 
functions have been tested for each system. The four objective functions 
are based on equation (18). The values of the σ1, σ2, and σ3 have been 
varied from one case to another. Moreover, the KLPSP factor has been 
considered in two studied cases for each system configuration. The 
values of the σ1,σ2, and σ3 have been listed for the four objective 
functions in Table 3. The average time during the run of the MSA for the 
8 cases of study is 208.4752 Sec.

Table 3 presents the performance comparison of two system con
figurations—PV + Wind + FC (Configuration 1) and PV + FC (Config
uration 2)—each evaluated across four cases with distinct objective 
functions. The results highlight the impact of different optimization 
priorities on system cost, reliability, and energy efficiency.

Among all cases, Case 1 of Configuration 1 (PV + Wind + FC) ach
ieves the best overall performance, with an objective function value of 
0.066583, a low LPSP of 0.02257 %, and moderate COE (0.2375 USD/ 
kWh). This case effectively balances cost and reliability, ensuring min
imal unmet energy demand while maintaining an affordable cost of 
energy. Moreover, its dump load (0.2478) is relatively low, indicating 
efficient energy utilization.

For Configuration 2 (PV + FC), Case 1 also emerges as the best- 
performing scenario, with an objective function value of 0.156387, 
LPSP of 0.036985 %, and COE of 0.5003 USD/kWh. However, its dump 
load (0.7677) is significantly higher than that of Configuration 1, sug
gesting greater energy wastage. Additionally, despite having the lowest 

Fig. 10. Sensitivity analysis considering the variation in the Electrolizer and FC power at fixed values of other components for PV/Wind/FC configuration.
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LPSP among the cases in Configuration 2, its COE is more than double 
that of Configuration 1, making it a less cost-effective option.

In Configuration 1 (PV + Wind + FC), the four cases reflect different 
trade-offs between system cost, LPSP, and energy efficiency. Case 4 
achieves an equally low LPSP (0.022517 %) compared to Case 1, but the 
inclusion of KLPSP in the objective function leads to a slightly higher 
cost (0.23797 USD/kWh), making it less favorable. Case 2 and Case 3, 
which prioritize COE and dump load, exhibit higher LPSP values 
(0.057322 % and 0.04978 %) and slightly lower COE (0.1612 and 
0.1749 USD/kWh, respectively). While these cases reduce cost, they 
compromise reliability, making them less suitable for applications 
where uninterrupted power supply is crucial.

In Configuration 2 (PV + FC), LPSP values are consistently higher 
than in Configuration 1, confirming that the absence of wind power 
reduces system reliability. Case 4 exhibits the highest objective function 
value (0.266870) due to KLPSP enforcement, indicating a significant 
cost increase to meet LPSP constraints. Cases 2 and 3 show a moderate 
reduction in COE (0.3805 and 0.5004 USD/kWh, respectively) but suffer 
from high LPSP values (0.099117 % and 0.036986 %). Overall, 
Configuration 2 struggles to achieve both low COE and low LPSP 
simultaneously, making it a less efficient and cost-effective choice.

The results confirm that Case 1 of Configuration 1 (PV + Wind + FC) 
is the best overall scenario, providing low LPSP (0.02257 %), reasonable 
COE (0.2375 USD/kWh), and minimal energy waste. The integration of 
wind power significantly enhances system performance by reducing 
LPSP while maintaining cost-effectiveness. In contrast, Configuration 2 
(PV + FC) exhibits higher COE and dump load across all cases, making it 
a less viable option despite some improvements in specific scenarios. 
These findings highlight the importance of selecting an appropriate 

energy mix to balance cost, reliability, and efficiency.
The inclusion of the wind turbine in the hybrid system helps manage 

energy more effectively, reducing the need for dump loads and 
improving overall system efficiency. Although the dump load ratio is 
huge in the two systems, especially in the PV + FC system, one should 
note that the two systems did not meet the constraint of the LPSP value 
of 5 %. A demand-side management could improve the system’s per
formance. One should note that in order to maintain the LPSP value 
within its limits, the cost of the system may be increased. Such case 
study has been analyzed and the results have been shown in Table 3.

The convergence curves of the objective functions for the two sys
tems are depicted in Fig. 5. The convergence curves show that the MSA 
has a fast convergence speed among 18 and 29 iterations for the 8 cases 
of study, to converge the best value of the objective function. One reason 
for the lower COE is the use of the wind turbine (WT), which helps meet 
load demand during the night when there is no sunlight, thereby 
reducing reliance on energy storage. So, the addition of the wind turbine 
in the hybrid system reduces dependency on fuel cells and energy 
storage, leading to a more cost-efficient solution.

The overall system operation is visualized by utilizing the optimal 
results from the PV/wind/FC and PV /FC off-grid hybrid energy systems, 
as presented in Table 3 for Case 1-Config 1 and Case 1-Config 2. The 
performance during a specific time (48-hour simulation) is illustrated in 
Figs. 6 and 7. The figures show the load demand, renewable generation, 
and resultant variance between them (dummy and LPS power). Mean
while, the figures elucidate the operation of the electrolyzer, fuel cell 
(FC), and tank. Fig. 6 shows the operation of the proposed PV/FC off- 
grid hybrid energy system. While Fig. 7 shows the operation of the 
proposed PV/Wind/FC hybrid energy system. It should be noted that the 

Fig. 11. Sensitivity analysis considering the variation in the Electrolizer and FC power at fixed values of other components for PV/FC configuration.
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Fig. 12. Break-Even Grid Extension Distance Analysis for the cases of PV/FC configuration.

Fig. 13. Break-Even Grid Extension Distance Analysis for the cases of PV/Wind/FC configuration.
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dummy load and LPS in the PV/FC system were higher than those in the 
PV/Wind/FC system. It is recommended to use the excess energy in 
industrial applications and for hydrogen production.

5.3. Statistical analysis

The reliability of the MSA algorithm for optimizing the considered 
nonlinear optimization problem of sizing the RES has been ensured 
through statistical analysis and validation by conducting multiple indi
vidual runs. The statistical results have been conducted for the for Case 
1-Config 1 and Case 1-Config 2. The results of the statistical analysis are 
presented in Table 4. The negligible values observed in various metrics, 
including the relative error (RE), root mean square error (RMSE), and 
standard deviation (SD), provide compelling evidence to confirm the 
stability of the proposed system. Although MSA generates diverse values 
of the objective function in each run, the presence of a smaller overshoot 

attests to the robustness of the system. Moreover, the results of 10 in
dividual runs have been shown in Fig. 8. The results show the reliability 
and effectiveness of the MSA considering the lower value of SD of 
5.5039e-06 and 5.6091e-06 for PV/Wind/FC and PV/FC configurations, 
respectively. The Efficiencies of the MSA algorithm to get the optimal 
value over the individual runs are 99.9999 % and 100 % for PV/Wind/ 
FC and PV/FC configurations, respectively. Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) are calculated for both configu
rations. The MAE for PV/Wind/FC is 7.9850e-08 and for PV/FC is 
7.0050e-08. moreover, the RMSE for PV/Wind/FC: 9.5407e-08 and PV/ 
FC is 8.7969e-08. the results are minimal in both cases, showing high 
precision in terms of reliability. The PV/Wind/FC configuration records 
a consistent cost value of 0.0666 across the mean, median, minimum, 
and worst-case metrics, while the PV/FC setup shows a higher value of 
0.1564 for all four. This uniformity in the PV/Wind/FC results suggests a 
more stable and controlled system response. The consistently lower cost 

Table 5 
Comparative performance metrics for PV/Wind/FC and PV/FC hybrid energy systems optimized using WOA, DOMA, and the proposed MSA.

PV/Wind/FC using 
WOA

PV/Wind/FC using 
DOMA

PV/Wind/FC using 
MSA

PV /FC using WOA PV/ FC using 
DOMA

PV/ FC using 
MSA

​ PV/Wind/FC PV /FC
COE 0.223004 0.240968 0.237477 0.442573 0.515905 0.500295
LPSP 0.025811 0.022149 0.022570 0.065506 0.028874 0.036985
P_dum 0.244696 0.248852 0.2477888 0.625022 0.82122 0.767687
n_PV 447.1246 517.3104 557.3844 2893.362 3660.374 3464.684
n_WT 127.2209 124.107 119.0065 0 0 –
P_ELEC_rated 701.2022 778.0097 734.6092 1784.264 2331.823 2221.152
M_Tank_max 268.1961 258.5637 257.9347 319.9784 520.8169 515.8707
P_FC_rated 99.18108 123.2906 130.5979 393.0788 373.1475 373.6823
TIME (SEC.) (for the 10 indiviudal 

runs)
Average ≈ 41.5492 
Minimum = 34.7607 
Maximum = 48.0188

Average ≈ 66.0793 
Minimum = 55.4594 
Maximum = 91.4013

Average≈ 236.24 
Minimum≈ 174.67 
Maximum≈ 286.84

Average ≈
40.2862 
Minimum =
32.8673 
Maximum =
47.5558

Average ≈ 72.4486 
Minimum =
63.4912 
Maximum =
101.6409

Average≈ 236.05 
Minimum≈

177.85 
Maximum≈

294.76

Fig. 14. The results of 10 individual runs using using WOA: a) PV/Wind/FC using WOA and b) PV/ FC using WOA.
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indicates improved optimization performance and possibly better en
ergy management compared to the PV/FC configuration.

Moreover, the Wilcoxon Signed-Rank Test has been performed for 
the application of the MSA for optimizing the two systems. The p-value 
is 0.0020 and the h (hypothesis result) is 1 (significant). This non- 
parametric test confirms a statistically significant difference between 
the two configurations at the 5 % level, since p < 0.05 and h = 1.

5.4. Sensitivity analysis

Sensitivity analysis has been performed to show the impact of the 
changes in the number of renewable sources—specifically PV panels and 
wind turbines in the performance of a smart grid system. By keeping the 
electrolyzer, FC, and hydrogen Tank fixed at their optimal values, the 
effect of renewable components has been considered on key metrics such 
as total cost, cost of energy (COE), loss of power supply probability 
(LPSP), and dummy load.

The results show that increasing the number of PV panels and wind 

turbines from zero to a level that meets the load generally increases total 
cost and COE during the search for optimal sizing, as shown in Fig. 9 for 
PV/Wind/FC configuration. While total cost eventually declines with 
more renewables, the rate of improvement drops after a certain point. 
This indicates an optimal capacity beyond which additional units offer 
minimal economic gain. As more PV panels and wind turbines are 
added, LPSP decreases sharply. This means the system becomes more 
reliable and better at meeting demand. LPSP is a key measure of reli
ability: a value of zero or less means the system fully meets the load, 
while a positive value signals a shortfall. Dummy load values fluctuate 
with renewable output, highlighting the variability of these sources. 
This supports the need for energy storage to smooth out fluctuations. 
Overall, the analysis confirms that finding the right mix and number of 
renewable sources is essential to balance cost and reliability. Fig. 10
presents the sensitivity analysis of the PV/Wind/FC configuration, 
focusing on variations in electrolyzer and fuel cell (FC) power while 
keeping other components fixed. The results indicate that increasing the 
power of both the FC and electrolyzer leads to a rise in system costs. 

Fig. 15. The results of 10 individual runs using using DOMA: a) PV/Wind/FC using DOMA and b) PV/ FC using DOMA.

Table 6 
Comparative performance metrics of the PV/Wind/FC and PV/FC hybrid energy systems optimized using WOA, DOMA, and the proposed MSA.

Metric PV/Wind/FC using 
WOA

PV/Wind/FC using 
DOMA

PV/Wind/FC using 
MSA

PV/ FC using 
WOA

PV/ FC using 
DOMA

PV/ FC using 
MSA

Mean Cost 0.0685 0.066687 0.0666 0.1589 0.156637 0.1564
Median Cost 0.0680 0.066684 0.0666 0.1587 0.156676 0.1564
Minimum Cost 0.0673 0.066635 0.0666 0.1567 0.156458 0.1564
Worst (Max) Cost 0.0714 0.066742 0.0666 0.1626 0.156812 0.1564
Standard Deviation (SD) 0.1345 0.003568 5.5039e-06 0.1572 0.01203 5.6091e-06
Relative Error (RE) 0.1749 0.007786 1.1993e-05 0.1382 0.011411 4.4793e-06
Mean Absolute Error (MAE) 0.0012 5.19E-05 7.9850e-08 0.0022 0.000179 7.0050e-08
Root Mean Square Error 

(RMSE)
0.0017 6.19E-05 9.5407e-08 0.0026 0.000212 8.7969e-08

Efficiency (%) 98.3147 99.92223 99.9999 98.6456 99.88608 100.0000
Wilcoxon Signed Rank ​ ​ ​ ​ ​ ​
p-value 0.0020 0.001953 0.0020 0.0020 0.001953 0.0020
Hypothesis Test Result (h) 1 (Significant) 1 (Significant) 1 (Significant) 1 (Significant) 1 (Significant) 1 (Significant)
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However, advancements in technology and the future development of 
more efficient and cost-effective FCs and electrolyzers could signifi
cantly enhance the reliability of the microgrid. Reduced costs for these 
components would improve economic feasibility while maintaining 
system stability and performance. The results are also performed for the 
second configuration of PV/FC configuration. Fig. 11 shows the sensi
tivity analysis considering the variation in the electrolyzer and FC power 
at fixed values of other components for PV/FC configuration.

5.5. Break-even grid extension distance

The Break-Even Grid Extension Distance (BED) is an effective indi
cator for selecting installations situated at a considerable distance from 
the grid [35]. BED aims to illustrate the cost-effectiveness of off-grid 
hybrid energy solutions in comparison to grid extension [60]. The 
BED can be calculated using the subsequent expression [61]: 

Dgrid =
NPCoff-grid × CRF − COEgrid × AL

Costgrid × CRF + O&Mgrid 

The break-even grid extension distance is denoted as Dgrid (km), the 
net present cost of the stand-alone system is indicated by NPCoff-grid ($), 
the cost of purchasing power from the grid is represented by 

COEgrid

(
$

kWh

)
, the total investment cost for grid expansion is denoted as 

Costgrid ($/km), the annual operating and maintenance expenses for the 
grid extension are represented by O&Mgrid ($/km/year), the total annual 
load demand is indicated by AL (kWh

year), and the capital recovery factor is 
represented by CRF. The total projected cost for investment, operation, 
and maintenance of the grid extension was estimated at $14,000 and 
$300 per kWh year, correspondingly. Considering the geography of the 
location implies that in geographically challenging areas, where grid 
expansion is difficult and costly. In KSA, power costs differ by user 
category: high-energy customers are charged $0.17/kWh, medium- 
energy consumers $0.15/kWh, and low-energy consumers $0.09/kWh. 
In the paper, it has been considered $0/15/kWh. This research exam
ined the specified hybrid systems for each of the three consumer 
categories.

The BED for the PV/FC system varies significantly across cases, 
ranging from 376.41 km (Case 2) to 572.14 km (Case 3) as shown in 
Fig. 12. Cases 1 and 3 have the highest BED values, around 572 km, 
indicating that off-grid solutions remain cost-effective over long dis
tances. Case 4 falls in between at 513.84 km, while Case 2 has the lowest 
BED, suggesting that grid extension becomes viable at a much shorter 
distance. These variations highlight the impact of system costs, energy 
demand, and operational expenses on the economic feasibility of off-grid 
versus grid-connected solutions.

The BED for the PV/Wind/FC system varies significantly across 
cases, ranging from 18.21 km (Case 2) to 143.66 km (Case 4). Cases 1 
and 4 have the highest BED values, around 143 km, indicating that off- 
grid solutions are cost-effective for relatively long distances. In contrast, 
Case 2 has the lowest BED, suggesting that grid extension is the more 
economical option for shorter distances. Case 3, with a BED of 40.72 km, 
falls between these extremes. The substantial differences in BED across 
cases show the influence of system costs, energy demand, and grid 
electricity pricing on the economic feasibility of off-grid hybrid energy 
solutions. The results of such a case study are shown in Fig. 13.

A higher BED means that the grid extension is less economically 
viable, making the off-grid system more cost-effective for longer dis
tances. The PV/Wind/FC system, with a lower BED (18.21–143.66 km), 
is more economically competitive in off-grid scenarios compared to the 
PV/FC system, which has a higher BED (376.41–572.14 km). This sug
gests that integrating wind power improves the cost-effectiveness of off- 
grid solutions, reducing reliance on grid extension.

5.6. Algorithm comparison and justification

In accordance with the No Free Lunch (NFL) theorem, which states 
that no optimization algorithm performs best across all problem types, a 
comparative analysis was conducted using two well-known algorithms 
alongside the proposed MSA. This comparison aims to validate the 
robustness and effectiveness of MSA under the same problem settings. 
The first is the Whale Optimization Algorithm (WOA) [62], a widely 
recognized and established benchmark optimization algorithm. The 
second is the Dwarf Mongoose Optimization Algorithm (DMOA) [63], a 
recent method known for its efficiency and adaptability.

Both algorithms were applied to optimize the PV/Wind/FC and PV/ 
FC off-grid hybrid energy systems under Case 1–Config 1 and Case 
1–Config 2 scenarios. The optimal results obtained are summarized in 
Table 5. This comparison aims to evaluate the performance, robustness, 
and applicability of the proposed solution under different algorithmic 
strategies. The results motivate the strengths and trade-offs of each 
method, offering valuable insights for selecting appropriate algorithms 
in future system designs.

Figs. 14 and 15 present the optimization consistency across 10 in
dependent runs for both system configurations using WOA and DOMA. 
Fig. 14 shows the results using WOA for (a) PV/Wind/FC and (b) PV/FC 
systems. Fig. 15 illustrates the outcomes using DOMA for the same 
configurations.

Table 5 presents the comparative performance of two hybrid energy 
system configurations—PV/Wind/FC and PV/FC—each optimized using 
three different algorithms: WOA, DOMA, and the proposed Modified 
MSA. The PV/Wind/FC system optimized with MSA achieved the lowest 
Loss of Power Supply Probability (LPSP) at 0.02257 and a moderate Cost 
of Energy (COE) of 0.2375 \$/kWh, showing a balanced trade-off be
tween reliability and cost. The same configuration under DOMA yielded 
the lowest LPSP at 0.02215 but at a slightly higher COE of 0.2410. WOA 
resulted in a marginally higher COE and LPSP. In terms of system 
components, the MSA required 557 PV units, 119 wind turbines, a 734.6 
kW electrolyzer, a 257.9 kg maximum hydrogen tank, and a 130.6 kW 
fuel cell.

In contrast, the PV/FC configuration, which excludes wind turbines, 
showed significantly higher COE and dumped energy (P\_dum) across 
all algorithms. For instance, MSA produced a COE of 0.5003 and P\_dum 
of 0.7677, both higher than their counterparts in the PV/Wind/FC 
configuration. The number of required PV panels was also substantially 
larger, with MSA needing 3465 units. Moreover, the fuel cell rating and 
tank size were much larger in this configuration, indicating increased 
system size and cost to maintain reliability in the absence of wind 
generation. Overall, the PV/Wind/FC system optimized using MSA of
fers the best balance between cost, reliability, and component sizing 
among all evaluated configurations and algorithms.

Despite the promising and competitive results achieved by the MSA, 
it suffers from a major drawback in terms of computational efficiency. 
The execution time of MSA for both system configurations (PV/Wind/FC 
and PV/FC) is significantly higher than that of the WOA and the DOMA. 
Although MSA yielded strong optimization results, the longer runtime 
limits its practical deployment in time-sensitive or real-time applica
tions. This trade-off must be considered when selecting an algorithm for 
hybrid renewable system design.

Table 6 presents the comparative performance metrics for the PV/ 
Wind/FC and PV/FC off-grid hybrid energy systems optimized using 
three algorithms: WOA, DOMA, and the proposed MSA. The results 
clearly demonstrate the strong performance of MSA across both system 
configurations. It achieved the lowest mean, median, and worst-case 
costs, indicating better convergence behavior. MSA also recorded the 
smallest standard deviation, reflecting consistent and stable outcomes 
across multiple runs. In terms of error metrics, MSA outperformed WOA 
and DOMA with the lowest relative error, MAE, and RMSE values, 
confirming its superior accuracy. Additionally, it reached nearly 100 % 
efficiency in both system types. Although all algorithms passed the 
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Wilcoxon signed-rank test with statistically significant results (p < 0.05, 
h = 1), MSA exhibited the tightest performance spread and highest 
reliability. These results validate MSA as a robust and precise optimizer 
for hybrid renewable energy system design.

5.7. Assumptions, and limitations

The modeling and optimization of the off-grid system rely on as
sumptions to simplify the analysis while maintaining computational 
efficiency. It is assumed that all system components operate under 
steady-state conditions without performance degradation over time. The 
efficiencies of photovoltaic panels, wind turbines, fuel cells, and elec
trolyzers are considered constant, neglecting potential variations due to 
aging or environmental factors. While employing a curve model for 
fitting purposes allows for a more precise representation of the turbine’s 
actual performance, especially in regions with frequent wind speed 
variations, the cubic power curve model is assumed to be used for wind 
turbine simulation in this study. Moreover, the wind speed impact on the 
outpower of the PV has been neglected. The system is modeled to 
function under actual weather and load conditions without unexpected 
failures or downtimes. Additionally, hydrogen storage losses are 
assumed to be negligible, ensuring that all produced hydrogen remains 
available for conversion. Economic parameters, such as the discount rate 
and inflation, are considered constant throughout the system’s lifetime, 
which may not reflect real-world financial fluctuations. Additionally, 
the study is specific to the Najran region, where climatic conditions 
favor high solar and wind potential. The results may not be directly 
applicable to other regions with different renewable resource avail
ability. Uncertainties in the model primarily stem from variability in 
solar radiation and wind speed, which directly affect energy production 
and system reliability. Additionally, the convergence behavior of the 
mantis search algorithm (MSA) depends on parameter tuning and 
initialization, potentially influencing optimization results. Economic 
uncertainties, including changes in equipment costs, maintenance ex
penses, and fuel cell efficiency over time, could alter the financial 
viability of the proposed system. These uncertainties highlight the need 
for sensitivity analysis to assess the robustness of the results under 
different conditions.

6. Conclusion

This paper investigates the optimal design and configuration of a 
hybrid power system that is dependent on the load demand in Najran, 
KSA. The proposed hybrid system integrates PV, wind farms, and fuel 
cell-generating systems. The optimization program is applied to two 
configurations of the hybrid system: one without wind power plants and 
the other with wind power plants. Employing the MSA optimization 
technique, the optimal sizing for both configurations is conducted with 
the aim of covering the load demand at the lowest COE, maintaining an 
acceptable reliability index, minimizing fluctuation in the energy sup
plied to the external grid, and maximizing the utilization of available 
renewable resources in the region. This study thoroughly analyzes the 
results obtained from three different configurations. The results indicate 
that the PV/Wind/FC configuration outperforms the PV/FC system in 
terms of both COE and LPSP, demonstrating more efficient energy 
production and greater reliability across all four cases. Specifically, for 
the PV/Wind/FC system, COE values range from 0.161154 US$/kWh 
(Case 2-Config 1) to 0.237477 US$/kWh (Case 1-Config 1), and LPSP 
ranges from 0.022517 % (Case 4-Config 1) to 0.057322 % (Case 2-Con
fig 1). In comparison, the PV/FC system exhibits higher COE values from 
0.380493 US$/kWh (Case 2-Config 2) to 0.500352 US$/kWh (Case 3- 
Config 2), and LPSP values ranging from 0.036985 % (Case 1-Config 
2) to 0.099117 % (Case 2-Config 2). These findings highlight the PV/ 
Wind/FC system as a more cost-effective and reliable solution, partic
ularly in scenarios where minimizing energy costs and ensuring high 
reliability are critical. The Break-Even Grid Extension Distance analysis 

indicates that the PV/Wind/FC system is more suitable for off-grid 
deployment in areas with shorter grid extension distances, while the 
PV/FC system becomes increasingly advantageous as the distance to the 
grid exceeds 376 km, highlighting its effectiveness for longer-distance 
scenarios.

Future work will extend the analysis using a full-year dataset to 
evaluate model robustness under seasonal variability. Additional di
rections include integrating hybrid storage systems, modeling uncer
tainty in renewable generation and load, and applying real-time control 
with demand-side management. System performance will be assessed in 
terms of cost, reliability, and environmental impact, including second
ary hydrogen storage optimization. Advanced optimization methods 
will be explored to improve scalability. The framework will be enhanced 
by incorporating recent machine learning algorithms for forecasting, 
control, and energy management. Long-term benefits of improved 
forecasting accuracy will be quantified by simulating its effect on 
dispatch, curtailment, and operational cost, requiring integration with 
real-time control systems.
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[40] C. A. Wankouo Ngouleu, Y. W. Koholé, F. C. V. Fohagui, and G. Tchuen, “Optimum 
design and scheduling strategy of an off-grid hybrid photovoltaic-wind-diesel 
system with an electrochemical, mechanical, chemical and thermal energy storage 
systems: A comparative scrutiny,” Appl Energy, vol. 377, p. 124646, Jan. 2025, doi: 
10.1016/j.apenergy.2024.124646.
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