
FPGA-Accelerated Fast Machine Learning for
Heterogeneous Edge Systems

Mohammed Mshragi
School of Engineering
Cardiff University, UK

MshragiM@cardiff.ac.uk

Ioan Petri
School of Engineering
Cardiff University, UK

petrii@cardiff.ac.uk

Omer Rana
School of Computer Science and Informatics

Cardiff University, UK
ranaof@cardiff.ac.uk

Abstract—The integration of Fast Machine Learning (FastML)
algorithms with edge devices for real-time building management
system (BMS) poses challenges due to resource constraints and
latency requirements. Addressing these challenges necessitates
not only the quantization and optimization of ML models to
achieve rapid inference but also their adaptation to fit within the
limited resources of edge devices, thereby reducing computational
overhead while maintaining predictive accuracy. These advance-
ments are critical for enabling key functionalities for applications
related to energy management, HVAC control, and fault detection
in BMS applications. This study proposes an end-to-end edge-
based framework utilizing **hls4ml** for the deployment of
machine learning models on FPGA platforms, designed to process
real-time building sensor data streams efficiently. By employing
dynamic quantization and pruning techniques, the framework
ensures the optimal use of FPGA resources, achieving low-latency
inference without compromising model performance. The results
underscore the potential of FPGA-accelerated ML systems in
meeting the demands of real-time BMS applications, offering
enhanced energy efficiency, operational reliability, and scalability.
This work provides valuable insights into the evolving landscape
of edge computing for smart building applications and highlights
the broader implications for FPGA-based ML deployments in
resource-constrained environments.

Index Terms—FPGA, FastML, machine learning, building
management systems, edge computing, acceleration, energy;

I. INTRODUCTION

The integration of Fast Machine Learning with Building
Management Systems (BMS) can accelerate decarbonisation
in the built environment and improve the demand response
strategies in buildings. The possibility of developing Edge
supported BMS capabilities using machine learning (ML)
and edge computing can facilitate the development of a
(near)real-time energy optimization capability for buildings
but deploying these technologies in practice using resource-
constrained environments remains a significant challenge [1].
Traditional building energy management systems (BEMS)
have relied heavily on rule-based control strategies, effective
for simpler structures but inadequate for the complexity of
modern buildings. Cloud-based solutions can process data
from smart meters and IoT sensors but introduce challenges
such as latency, data security concerns, high transfer costs, and
operational expenses [2], [3]. These limitations are particularly
problematic for real-time applications, where delays can hinder
critical decision-making during demand response scenarios.
Recent intelligent BMS solutions rely on ML models executed

on centralized CPUs or GPUs, which achieve high prediction
accuracy but can increase power consumption and introduce
latency that impedes rapid responses during critical demand
response (DR) scenarios.

Field Programmable Gate Arrays (FPGAs) offer a com-
pelling alternative, excelling in power efficiency and cost-
effectiveness compared to CPUs and GPUs for ML workloads.
Research indicates that FPGAs can deliver comparable or
superior performance while consuming less power [4]–[6].
However, deploying complex ML models on FPGAs typically
requires extensive manual coding in Hardware Description
Languages (HDLs).

Despite the potential of FPGA-based solutions, prior studies
have attempted to address key inefficiencies. For instance, [7]
implemented Model Predictive Control (MPC) using artificial
neural networks (ANNs) for heating control but faced several
obstacles, including high computational demands, difficulties
in achieving real-time performance, and reliance on rep-
resentative training datasets, which can compromise model
accuracy. The absence of adaptive learning mechanisms and
the challenges of deploying neural networks on FPGA hard-
ware further complicate real-world implementation, limiting
scalability.

Unlike prior hls4ml applications in physics or computer vi-
sion, this work pioneers the use of hls4ml for real-time energy
prediction in building management systems, achieving 0.0022
s inference latency and 4.54 × 105 inferences/s by integrating
quantized and pruned MLPs with edge-based preprocessing on
a Raspberry Pi + PYNQ platform.

To address these challenges, this research introduces an
FPGA-based FastML framework that leverages High-Level
Synthesis for Machine Learning (hls4ml) to streamline ML de-
ployment, achieving ultra-low-latency inference and efficient
resource utilization for real-time energy management in build-
ings. To our knowledge, no prior studies have utilized hls4ml
for BMS applications, despite the growing interest in FPGA-
based solutions. Our approach significantly reduces execution
time compared to traditional methods and outperforms CPU
and GPU-based solutions in terms of latency and through-
put. Analysis of FPGA-processed benchmark datasets demon-
strates reduced execution time, enabling real-time decision-
making and energy management in BMSs.

The contributions of this research are as follows:

1) Comprehensive FPGA-Based ML Framework: A prac-
tical pipeline for deploying ML algorithms on FPGA
devices tailored to the real-time needs of building energy
management.

2) Acceleration Using hls4ml: Utilization of the hls4ml
framework to transform ML models for efficient FPGA
deployment, ensuring accuracy and resource efficiency.

3) Comparative Hardware Analysis: Detailed comparisons
of ML performance across CPUs, GPUs, and FPGAs,
focusing on inference speed, resource utilization, and
prediction accuracy.

4) Real-World Validation: Implementation in a multi-
building facility demonstrating fast, accurate, and
energy-efficient predictions tailored for energy manage-
ment across various zones.

This research provides valuable insights into building au-
tomation and energy optimization, enabling real-time interven-
tions that enhance building performance management. Such
advancements in smart building technologies are vital for
scenarios requiring rapid decision-making to ensure timely
controlling and actuation in buildings.

The remainder of the paper is organized as follows: Section
2 presents the state-of-the-art in the field of study by reviewing
recent advancements in edge computing, machine learning
acceleration, and their applications in BMSs, particularly in
HVAC control and energy optimization. Section 3 introduces
the proposed FastML-BMS approach, detailing the method-
ology, model architecture, and optimization techniques for
FPGA deployment. Section 4 provides a comprehensive evalu-
ation of the approach, including predictive performance, com-
putational efficiency, and resource utilization across FPGA,
GPU, and CPU platforms. Section 5 discusses the implications
of the findings, trade-offs between accuracy and efficiency,
and potential applications in real-time energy management
in buildings. Finally, Section 6 concludes the paper by sum-
marizing the key contributions and outlining future research
directions.

II. RELATED WORK

Recent advancements in edge computing and Fast ML
have brought transformative changes to BMSs, especially in
HVAC control and energy optimization. These technologies
have redefined real-time building operations, addressing cru-
cial challenges in energy efficiency and system control with
remarkable precision and adaptability.

A. ML Applications in Building Management

Incorporating ML techniques into HVAC systems has
proven particularly effective. [9] developed a hybrid predictive
control system that combines the Single-Step Prediction Re-
sponse Coefficient (SPRC) method with Convolutional Neural
Networks (CNNs), achieving exceptional predictive accuracy
with a mean absolute error of 0.27°C and a root mean square
error of 0.24°C, while reducing HVAC runtime by approxi-
mately 19%. In a similar vein, [10] demonstrated how deep
learning models, such as CNNs and Long Short-Term Memory

(LSTM) networks, enhance energy management by delivering
precise predictions within modern BMS frameworks.

Reinforcement learning (RL) has also emerged as a key
enabler of HVAC optimization. The Phasic Policy Gradient
(PPG) algorithm, for example, achieves energy reductions
of 2–14% and accelerates convergence rates by 66% [11].
Further advancing RL applications, [12] introduced the MB2C
framework, a model-based RL method for multi-zone HVAC
control, delivering 8.23% greater energy savings while requir-
ing significantly less training data.

B. FPGA-Based Acceleration for ML
FPGA-based solutions have demonstrated remarkable po-

tential in enabling fast, energy-efficient operations for ML
inference. A recent comprehensive analysis by [13] of 287
FPGA conference studies revealed that 81% target inference
acceleration, predominantly focusing on CNNs, with increas-
ing attention to Graph Neural Networks (GNNs). Compared
to GPUs, FPGAs consistently demonstrate superior energy
efficiency in inference tasks [14].

Particularly noteworthy advances have been made in ac-
celerating Transformer architectures. [15] designed an FPGA-
based accelerator for Transformers’ Multi-Head Attention
(MHA) and Feed-Forward Network (FFN) layers, achieving
a 14.6× speedup over Nvidia V100 GPUs. Building on this,
[16] proposed the SSR architecture utilizing the VCK190
FPGA, achieving 36× faster performance and 21× better en-
ergy efficiency than GPUs while maintaining optimal latency-
throughput balance.

For large language models (LLMs), [17] introduced the
modular DFX architecture, demonstrating a 3.8× throughput
and 4× energy efficiency improvement using a multi-FPGA
setup. Similarly, [18] presented the NPE architecture for lan-
guage model acceleration, achieving 4× and 6× better energy
efficiency compared to CPUs and GPUs, respectively.

C. Edge Computing Integration
Edge computing further enhances these advancements

by enabling decentralized data processing for real-time
decision-making. [19] demonstrated an open-source IoT edge-
computing system that leverages existing infrastructure for
secure and efficient monitoring of energy metrics. [20] applied
Proximal Policy Optimization with Clipping (PPO-Clip) for
HVAC energy optimization, achieving significant reductions
in power consumption while maintaining occupant comfort.

While hardware innovations have boosted BMS efficiency
through various implementations, such as [21] hardware ac-
celeration in smart building access control and [22] FPGA-
based Big Bang-Big Crunch (BB-BC) algorithm, these ap-
proaches do not specifically address the Fast ML implemen-
tation required for BMS applications. Traditional ML models,
especially deep learning algorithms, struggle to process high-
frequency sensor data and control signals quickly enough for
effective building utility management [23]. While cloud-based
ML/AI services are computationally efficient, they introduce
substantial communication overhead, latency, and operational
costs—factors that are critical for real-time systems.

Fig. 1. End-to-end pipeline for real-time energy prediction, from smart meter data collection and preprocessing on a Raspberry Pi to MLP quantization, HLS
conversion with hls4ml, and deployment on PYNQ-Z1 FPGA for fast, low-latency inference. Arrows indicate data flow between components.

III. PROPOSED FASTML-BMS APPROACH

This research demonstrates the application of FastML and
hls4ml for building management systems in an energy man-
agement application. The proposed FastML-BMS approach
enhances operational efficiency and reduces energy consump-
tion through a structured workflow, organized into three key
stages: (1) model training and optimization on a local machine,
(2) real-time data processing on a Raspberry Pi, and (3)
energy forecasting model conversion and deployment on an
FPGA. Fig. 1 illustrates the architecture of the proposed
testbed, integrating smart meter data collection, preprocessing
on a Raspberry Pi, and FPGA-accelerated machine learning
predictions.

A. MLP Energy Prediction Model
The energy prediction system was developed using a com-

prehensive machine learning workflow implemented on a
local server environment. The prediction model uses histor-
ical energy meter reading dataset comprising 32,900 entries
collected over four years for an educational building (i.e.
Queens Building). This dataset was used to train a Multilayer
Perceptron (MLP) model for energy consumption forecasting.

After preprocessing, the dataset comprised 32,415 obser-
vations. For model input, we selected 13 features: three
temporal indicators (season, day, hour) and ten lagged energy
consumption values (nlag). The model leverages this data
across different zones within the Queen’s Building case study,
including key areas such as the Trevithick Building and

Central Building. By aggregating energy consumption from
these zones, we created a comprehensive dataset that enhances
prediction accuracy through the integration of temporal fea-
tures.

As illustrated in Figure 2, the MLP architecture employs a
sequential design implemented using the Keras deep learning
framework. The network begins with an input layer configured
to accept the 13 selected features. This is followed by a hidden
layer with 64 neurons and ReLU activation functions, along
with a dropout layer set at 20% to prevent overfitting. A sec-
ondary hidden layer contains 32 neurons, also utilizing ReLU
activation, followed by another dropout layer for consistent
regularization. The final layer is a single-neuron output layer,
optimized for regression tasks related to energy prediction.

The model was compiled using the Adam optimizer and
Mean Squared Error (MSE) as the loss function, both standard
choices for regression problems. The trained model was saved
for future optimization and potential deployment on FPGA
using hls4ml.

B. MLP Optimization

Following the creation of the MLP model, we incorporated
QKeras layers for quantization-aware training, ensuring com-
patibility with edge devices like FPGAs. After training, the
model was optimized and converted into FPGA-compatible
code using hls4ml, facilitating seamless deployment for real-
time energy forecasting applications. An educational building
facility with meter data and BMS capabilities has been used

Fig. 2. Flowchart illustrating the MLP architecture for energy prediction,
detailing input, processing, and output stages.

as a case study for which an energy forecasting model was
developed, converted, and deployed in an FPGA-RPi hybrid
computational environment.

Following the training and optimization of the MLP, we em-
ployed hls4ml to convert the model into a format suitable for
FPGA deployment, which involves three key stages: quantiza-
tion, code generation, and integration with FPGA tools. First,
the floating-point parameters of the neural network (weights
and biases) are quantized into fixed-point representations to
reduce memory requirements and enhance inference speed
on FPGA hardware. hls4ml then generates optimized C/C++
code that describes the neural network architecture, including
layer configurations and data flow, which is subsequently
synthesized into hardware description language (HDL) to
preserve the original model’s performance characteristics. This
process reduces model complexity while preserving accuracy,
enabling efficient FPGA deployment. The generated code is
compiled and synthesized using FPGA development tools such
as Vivado HLS; our implementation utilized the hls4ml Vivado
Accelerator backend, seamlessly integrating with the PYNQ
software stack to abstract programmable logic circuits into
hardware libraries (overlays) that are accessible through a
Python API, improving FPGA accessibility for machine learn-
ing applications. The hardware synthesis environment was
configured using Vivado HLS version 2020.1, targeting the
Xilinx Zynq®-7000 SoC FPGA, with key configuration details
including fixed-point representations for fully connected layers
and activation functions, biases configured as fixed<6,1>
and weights as fixed<16,6>, and a reuse factor set to 1 to
maximize resource efficiency while preserving performance.
Lastly, the hls4ml framework supports configuration through
the Python API or YAML configuration files; our implementa-
tion specifically used the Python API with parameters such as
target part xc7z020clg400-1, board pynq-z1, backend
VivadoAccelerator, interface axi_stream, and fixed-
point precision for input/output.

C. FPGA and Raspberry Pi testing

The final step involved deploying the quantized and opti-
mized MLP inference model onto the FPGA. Leveraging the
hls4ml backend, which offers multiple backend options in-
cluding Vivado and Vitis, we seamlessly integrated the model
into the FPGA hardware using the PYNQ framework. This
deployment requires three essential files: the bitfile, hardware
handoff, and Python driver for the FastMLP energy prediction
model.

This approach abstracts programmable logic circuits into
hardware libraries (overlays) that are accessible through a
Python API, enhancing FPGA accessibility for machine learn-
ing applications. The conversion process from the quantized
model to the HLS model using hls4ml and the Vivado Acceler-
ator backend enables efficient deployment of neural networks
on FPGA platforms. A comprehensive evaluation of the FPGA
-Raspberry Pi performance, including latency analysis and
preprocessing techniques is provided in the next section.

IV. EVALUATION AND RESULTS

This section evaluates the FastML approach, focusing on
the optimization and performance of the Multilayer Perceptron
(MLP) model on FPGA hardware. Predictive accuracy is
assessed using key metrics such as R2, MSE, root mean
squared error (RMSE), and mean absolute error (MAE).
Computational efficiency is compared across FPGA, GPU, and
CPU platforms, emphasizing inference speed and latency.

A. Model Development and Optimization

The MLP model was designed to manage energy consump-
tion across multiple zones, incorporating temporal features
like seasonal indicators and lagged variables for enhanced
prediction accuracy. Fig. 3 illustrates the model’s performance,
comparing observed past values, true future values, and pre-
dictions, demonstrating effective generalization to unseen data.

Following the baseline evaluation, we optimized the MLP
for hls4ml and FPGA deployment. The architecture consists of
three fully connected layers, with initial optimization involving
6-bit quantization of weights and biases. The first two hidden
layers use 6-bit precision, while the output layer is quantized
for regression tasks, reducing computational complexity while
maintaining accuracy.

Further optimization included pruning 75% of less signif-
icant weights, increasing model sparsity, and applying strip
pruning to eliminate redundant connections. This resulted in
a compact model, significantly reducing inference and disk
sizes, suitable for resource-constrained edge devices. Fig. 4
shows the weight distributions before and after quantization,
illustrating the effectiveness of this approach. Additionally,
Fig. 5 compares the inference size and disk size for the
baseline and quantized models, highlighting the improvements
achieved through optimization.

The predictive accuracy of the FPGA-accelerated model was
evaluated against the baseline using key metrics. As shown
in Table I, the FPGA model achieves a R2 score of 92.76%,
slightly lower than the baseline’s 97%. Despite a mean squared

Fig. 3. Comparison of the first 200 samples of observed past values (blue), true future values (orange), and MLP model predictions (green). The vertical
dashed line indicates the start of the prediction period.

Fig. 4. Weight distributions before and after quantization.

Fig. 5. Comparison of inference size and model disk size for baseline and
quantized models.

error (MSE) of 305.8 compared to the baseline’s 87.94, the
FPGA model remains practically useful, with RMSE and MAE
values of 17.48 and 13.4, respectively.

Fig. 6 compares the first 100 predictions from the FPGA,
HLS, and quantized models against true values. Both the
FPGA and HLS models achieve an R2 score of 92.76%, while
the quantized model scores 94.26%. Although FPGA predic-

TABLE I
PERFORMANCE METRICS COMPARISON

Metric Baseline Model FPGA Model
R2 Score 0.97 0.92

MSE 87.94 305.8
RMSE 9.37 17.48
MAE 5.6 13.4

95% CI [101.39, 104.22] [105.67, 108.78]

tions show slightly larger deviations, they effectively capture
overall trends, confirming their suitability for deployment in
hardware-efficient scenarios.

B. Inference Speed, latency and timing

The FPGA implementation significantly outperforms GPU
and CPU platforms in latency and throughput Fig. 7. Pro-
cessing 6,481 samples in 0.01427 seconds (454k infer-
ences/second), the FPGA achieves 42× faster throughput than
the CPU (10.5k inferences/second) and 27× faster than the
GPU (16.7k inferences/second).

Table II highlights the FPGA’s superior consistency, with a
standard deviation of 0.68 ms versus 26.73 ms (CPU) and 4.22
ms (GPU). This reliability stems from hardware parallelism
and fixed-pipeline execution.

TABLE II
LATENCY STATISTICS FOR PYNQ, CPU, AND GPU INFERENCE

Metric FPGA CPU GPU
Entries 6481 6481 6481

Mean (ms) 8.36 64.42 22.98
StdDev (ms) 0.68 26.73 4.22

The FPGA design achieved a 4.367 ns clock period (229
MHz), surpassing the 5 ns target (200 MHz) Table III. This
corresponds to a 12.66% timing improvement, ensuring ro-
bustness against voltage and temperature variations.

Fig. 6. Comparison of true values and predictions for the first 100 samples: blue for actual values, black for FPGA predictions, green for HLS predictions,
and orange for the quantized model.

Fig. 7. Performance comparison across FPGA, GPU, and CPU platforms. The
left plot presents inference latency (seconds), while the right plot illustrates
inference throughput (inferences per second), demonstrating the FPGA’s
superior performance.

The target clock period of 5 ns was set considering FPGA
capabilities and model complexity. However, post-synthesis
analysis showed an achieved 4.367 ns clock period, exceeding
the target due to hls4ml optimizations, such as pipelining,
dataflow, and parallelization. These techniques minimized the
critical path delay, allowing faster execution while maintaining
timing constraints. The 0.633 ns margin ensures stability under
variations.

The timing improvement is calculated as:

Improvement (%) =
Ttarget − Tachieved

Ttarget
× 100, (1)

where Ttarget = 5.00 ns and Tachieved = 4.367 ns. Substituting
these values yields a 12.66% improvement, further enhancing
resilience against voltage and temperature variations.

TABLE III
CLOCK TIMING CHARACTERISTICS

Parameter Clock Target Achieved Uncertainty
Timing ap_clk 5.00 ns 4.367 ns 0.62 ns

Three key optimization strategies contributed to this im-
provement:

• Dataflow: Overlapping tasks to reduce latency and en-
hance resource utilization.

• Pipelining: Partitioning tasks into sequential stages, im-
proving throughput.

• Parallelization: Executing multiple iterations concur-
rently, reducing loop trip counts but increasing resource
usage.

These optimizations resulted in a well-structured design
with a 4.367 ns clock period, ensuring high performance for
real-time applications.

C. Real-Time Processing via Raspberry Pi

To evaluate the system’s real-time capabilities, we inte-
grated the Raspberry Pi for data collection, preprocessing, and
transfer to the FPGA, ensuring efficient handling of real-time
energy meter data with low-latency communication.

The Raspberry Pi collects real-time energy meter readings
and preprocesses the data for inference. Preprocessing tech-
niques include imputation for missing values, outlier detection
filtering values beyond three standard deviations, and smooth-
ing using the Exponential Moving Average (EMA):

St = αXt + (1− α)St−1, α =
2

n+ 1
, (2)

where St is the smoothed value, Xt is the raw value, and α
is the smoothing factor. Normalization scales input features,
and temporal aggregation computes hourly and seasonal aver-
ages to identify patterns in energy consumption.

The processed data is transmitted to the FPGA via Universal
Asynchronous Receiver/Transmitter (UART) over USB, with
batch processing optimizing transfer efficiency. The average
latency is 304.96 ms, stabilizing beyond 8000 samples, suit-
able for real-time applications like dynamic HVAC control.
Fig. 8 illustrates this latency during data transfer.

Fig. 8. Latency in milliseconds during real-time data transfer from the Raspberry Pi to the PYNQ Z1 via USB.

D. FPGA Resource Optimization via Quantization and Prun-
ing

Quantization reduced DSP usage by 58% and LUTs by 41%
compared to the baseline Fig. 9. This enables deployment on
low-cost FPGAs (e.g., Zynq-7020) while maintaining 92% of
the baseline accuracy.

Fig. 9. Comparison of FPGA resource utilization (DSP, FF, LUT) between
Quantized and Baseline Models.

We also evaluated the MLP model using the qkeras
library with 4-bit, 6-bit, and 8-bit quantization, combined with
structured weight pruning (75% sparsity), and deployed the
resulting models on FPGA using hls4ml. We report the
R2 score and the corresponding FPGA resource utilization,
including LUTs, DSPs, and FFs.

As shown in Table IV, increasing the quantization bit-width
improves model accuracy but also raises resource consump-
tion. The 8-bit model achieves the highest R2 score (0.9611)
at the cost of increased LUT (80%) and DSP (55%) usage.
The 6-bit model offers a good balance between accuracy
(0.9276) and efficiency. The 4-bit model consumes the least
hardware resources but with lower prediction accuracy (R2 =
0.8127). These results highlight the trade-off between model
accuracy and hardware footprint under combined quantization
and pruning constraints.

TABLE IV
SENSITIVITY ANALYSIS OF QUANTIZATION AND PRUNING

Quantization R2 Score LUTs (%) DSPs (%) FFs (%)
4-bit 0.8127 53 0 15
6-bit 0.9276 65 12 22
8-bit 0.9611 80 55 32

V. DISCUSSION

This study investigates the implementation of the FastML
solutions for Building Management Systems (BMS) within
a case study application at Queen’s Building, integrating
data collection, preprocessing, hls4ml conversion, and FPGA-
accelerated inference. The architecture demonstrates the syn-
ergy between software-based model development and FPGA-
accelerated hardware deployment, enhancing computational
performance and energy efficiency in real-time applications.

Transitioning from a locally trained machine learning model
to an FPGA-accelerated implementation via hls4ml achieved
two critical objectives: (1) preservation of predictive perfor-
mance, with a 92% R2 score, and (2) significant computa-
tional efficiency gains, delivering 4.54 × 105 inferences per
second—a 42.7× speedup over CPU and 27.2× over GPU
architectures. This throughput-power balance addresses edge-
computing constraints in BMSs, where low-latency inference
is essential for dynamic HVAC control and fault detection.

A key insight from this study is the trade-off between accu-
racy and efficiency of the machine learning models. Although
the FPGA model’s R2 score is 5.4% lower than the baseline
Table I, this decrease can be attributed to quantization effects.
While quantization increases the MSE by 3.5×, it results in a
significant 42.7× improvement in inference speed. This speed
gain justifies the trade-off for latency-critical applications,
particularly in scenarios requiring sub-20 ms response times.
The FPGA’s high throughput enables real-time performance,
which is crucial for effective energy management in smart
buildings, making the trade-off acceptable in this context.

The findings emphasize several advancements for BMSs.
First, the FPGA implementation outperforms CPU and GPU
counterparts in high-speed inference, positioning FPGAs as
frontrunners for real-time applications. Second, low power
consumption aligns with sustainability goals, ensuring effi-
cient computation without excessive energy use. Third, hls4ml
facilitates FPGA-compatible code conversion for localized
decision-making. Finally, FPGA systems are inherently recon-
figurable, enhancing their long-term viability. Moreover, While
this study did not measure direct HVAC energy savings, the
FPGA’s 1.87 W power consumption and 0.0022 s prediction
latency enable frequent, low-latency energy predictions, laying
the groundwork for adaptive BMS control to reduce energy use
in future deployments. The framework’s hls4ml-based pipeline
is also adaptable to domains like autonomous vehicles, where
[27] achieved 4.9 ms latency for semantic segmentation on a
Xilinx ZCU102 FPGA, demonstrating versatility for latency-
critical applications.

Future research will explore advanced quantization tech-
niques, such as weight pruning and fixed-point optimization,
to minimize accuracy degradation. The FPGA-based approach
can be extended to HVAC control, occupancy monitoring, and
renewable energy integration, with a focus on adaptive models
that dynamically adjust to real-time conditions.

VI. CONCLUSION

This paper presents an edge-based FastML model for BMS
applications, utilizing FPGA acceleration and hls4ml for en-
ergy management in buildings. The successful deployment of
a deep learning model on FPGA demonstrates the feasibility
of real-time, low-latency predictions, offering significant ad-
vantages in speed and computational efficiency compared to
traditional CPU-based systems.

The FPGA achieves a throughput of 4.54 × 105 infer-
ences per second, which is 42.7× faster than the CPU and
27.2× faster than the GPU. These results highlight the po-
tential of FPGA-accelerated machine learning—enabled by
hls4ml—to enhance BMS operations by improving energy
efficiency, operational responsiveness, and adaptability. It is
worth noting that the hls4ml framework supports a limited
range of architectures (e.g., MLPs, CNNs, and RNNs), which
precludes the introduction of entirely new algorithms. Instead,
our methodological contributions focus on model compression,
edge preprocessing, and platform-specific deployment strate-
gies tailored for real-time BMS energy prediction.

Looking ahead, the integration of AI-augmented BMS rep-
resents a significant advancement in smart building technolo-
gies. Future work will explore extending fast machine learning
models to optimize HVAC systems and other infrastructure
components, incorporating algorithmic innovations using HLS
and Vivado for hardware-aware tuning. This could lead to
adaptive and predictive control strategies that dynamically
adjust to real-time environmental conditions and occupant
needs—ultimately improving building sustainability, reducing
operational costs, and enhancing urban resilience.

REFERENCES

[1] S. A. Nabavi, A. Aslani, M. A. Zaidan, M. Zandi, S. Mohammadi, and N.
Hossein Motlagh, ”Machine learning modeling for energy consumption
of residential and commercial sectors,” Energies, vol. 13, no. 19, pp.
5171, 2020.

[2] S. I. Khan, C. Kaur, M. S. Al Ansari, I. Muda, R. F. C. Borda,
and B. K. Bala, ”Implementation of cloud-based IoT technology in
manufacturing industry for smart control of manufacturing process,”
International Journal on Interactive Design and Manufacturing (IJIDeM),
pp. 1–13, 2023.

[3] A. A. Laghari, K. Wu, R. A. Laghari, M. Ali, and A. A. Khan, ”A review
and state of art of Internet of Things (IoT),” Archives of Computational
Methods in Engineering, pp. 1–19, 2021.

[4] C. Murphy and Y. Fu, ”Xilinx all programmable devices: A superior
platform for compute-intensive systems,” in Xilinx White Paper, 2017.

[5] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee
Hock, and G. Boudoukh, ”Can FPGAs beat GPUs in accelerating
next-generation deep neural networks?,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2017, pp. 5-14.

[6] C. N. Hesse, ”Analysis and comparison of performance and power
consumption of neural networks on CPU, GPU, TPU and FPGA,”
Master’s thesis, University of Hildesheim, 2021

[7] A. Agouzoul, E. Simeu, and M. Tabaa, ”Synthesis of model predictive
control based on neural network for energy consumption enhancement
in building,” in AEU-International Journal of Electronics and Commu-
nications, vol. 173, Elsevier, 2024, p. 155021.

[8] FastML Team, ”fastmachinelearning/hls4ml,” 2024. [Online]. Available:
https://github.com/fastmachinelearning/hls4ml. [Accessed: Date]. doi:
10.5281/zenodo.1201549.

[9] G. Liu, J. Gao, Z. Han, and Y. Yuan, ”Hybrid model-based predictive
HVAC control through fast prediction of transient indoor temperature
fields,” in Building and Environment, vol. 267, 2025, p. 112253.

[10] A. Kristian, T. S. Goh, A. Ramadan, A. Erica, and S. V. Sihotang,
”Application of AI in optimizing energy and resource management:
Effectiveness of deep learning models,” in International Transactions
on Artificial Intelligence, vol. 2, no. 2, 2024, pp. 99–105.

[11] A. T. Nguyen, D. H. Pham, B. L. Oo, M. Santamouris, Y. Ahn, and
B. T. Lim, ”Modeling building HVAC control strategies using a deep
reinforcement learning approach,” in Energy and Buildings, vol. 310,
2024, p. 114065.

[12] X. Ding, A. Cerpa, and W. Du, ”Multi-zone HVAC control with
model-based deep reinforcement learning,” in IEEE Transactions on
Automation Science and Engineering, 2024.

[13] F. Yan, A. Koch, and O. Sinnen, ”Accelerating machine learning
algorithms using FPGA-based hardware accelerators: A comprehensive
survey of 287 papers,” in Proceedings of Top FPGA Conferences, 2022.

[14] A. Boutros, E. Nurvitadhi, R. Ma, S. Gribok, Z. Zhao, J. C. Hoe, V. Betz,
and M. Langhammer, ”Beyond peak performance: Comparing the real
performance of AI-optimized FPGAs and GPUs,” in 2020 International
Conference on Field-Programmable Technology (ICFPT), IEEE, 2020,
pp. 10–19.

[15] S. Lu, M. Wang, S. Liang, J. Lin, and Z. Wang, ”Hardware accelerator
for multi-head attention and position-wise feed-forward in the trans-
former,” in 2020 IEEE 33rd International System-on-Chip Conference
(SOCC), 2020, pp. 84–89.

[16] J. Zhuang, Z. Yang, S. Ji, H. Huang, A. K. Jones, J. Hu, Y. Shi,
and P. Zhou, ”SSR: Spatial sequential hybrid architecture for latency-
throughput tradeoff in transformer acceleration,” in Proceedings of the
2024 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ACM, 2024.

[17] S. Hong, S. Moon, J. Kim, S. Lee, M. Kim, D. Lee, and J.-Y.
Kim, ”DFX: A low-latency multi-FPGA appliance for accelerating
transformer-based text generation,” in Proceedings of IEEE International
Conference on FPGA Design, 2022.

[18] H. Khan, A. Khan, Z. Khan, L. B. Huang, K. Wang, and L. He, ”NPE:
An FPGA-based overlay processor for natural language processing,”
in Proceedings of the 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ACM, 2021, pp. 227.

[19] D. A. V. Romero, E. V. Laureano, R. O. J. Betancourt, and E. N. Álvarez,
”An open-source IoT edge-computing system for monitoring energy
consumption in buildings,” in Results in Engineering, vol. 21, 2024,
p. 101875.

[20] A. Bereketeab, L. Yuan, X. Zhou, and Y. Wang, ”HVAC energy
optimization using Proximal Policy Optimization with Clipping (PPO-
Clip),” in IEEE Transactions on Automation Science and Engineering,
2024.

[21] T. Sakthi Ram, L. Yogesh, S. Vetriashwath, G. Nishanth, and O. G.
Swathika, ”FPGA-based smart building access control,” in Smart Grids
as Cyber Physical Systems: Artificial Intelligence, Cybersecurity, and
Clean Energy for Next Generation Smart Grids, vol. 1, 2024, pp.
137–144.

[22] A. Almabrok, M. Psarakis, and A. Dounis, ”Fast tuning of the PID
controller in an HVAC system using the big bang–big crunch algorithm
and FPGA technology,” in Algorithms, vol. 11, no. 10, 2018, p. 146.

[23] Petri, Ioan, Ioan Chirila, Heitor Murilo Gomes, Albert Bifet, and Omer
F. Rana. ”Resource-aware edge-based stream analytics.” IEEE Internet
Computing 26, no. 4 (2022): 79-88.

[24] R. Chen, T. Cheng, N. Lin, T. Liang, and V. Dinavahi, ”Hardware-in-
the-loop real-time transient emulation of large-scale renewable energy
installations based on hybrid machine learning modeling,” in IEEE
Journal of Emerging and Selected Topics in Industrial Electronics, 2024.

[25] A. Pötsch and F. Hammer, ”Towards End-to-End Latency of LoRaWAN:
Experimental Analysis and IIoT Applicability,” in 2019 15th IEEE
International Workshop on Factory Communication Systems (WFCS),
Sundsvall, Sweden, 2019, pp. 1-4, doi: 10.1109/WFCS.2019.8758033.

[26] F. Fahim, B. Hawks, C. Herwig, J. Hirschauer, S. Jindariani, N.
Tran, and Z. Wu, ”hls4ml: An open-source codesign workflow to em-
power scientific low-power machine learning devices,” in arXiv preprint
arXiv:2103.05579, 2021.

[27] N. Ghielmetti, V. Loncar, M. Pierini, M. Roed, S. Summers, T. Aar-
restad, C. Petersson, H. Linander, J. Ngadiuba, K. Lin, and others,
”Real-time semantic segmentation on FPGAs for autonomous vehicles
with hls4ml,” Machine Learning: Science and Technology, vol. 3, no. 4,
pp. 045011, 2022.

