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Abstract— As the demand for intelligent systems grows, 

leveraging edge learning and autonomic self-management offers 

significant benefits for supporting real-time data analysis and 

resource management in edge environments. We describe and 
evaluate four distinct task allocation scenarios to demonstrate 

the autonomics for edge resources management: random 

execution, autonomic broker-based scheduling, priority-driven 
execution, and energy-aware allocation. Our experiments reveal 

that while prioritization-based scheduling minimizes execution 

times by aligning with task criticality, the energy-aware 
approach presents a sustainable alternative. This method 

dynamically adapts task execution based on renewable energy 

availability, promoting environmentally conscious energy 

management without compromising operational efficiency. By 
harnessing renewable energy signals, our findings highlight the 

potential of edge autonomics to achieve a balance between 

performance, resource optimization and sustainability. This 
work demonstrates how intelligent edge-cloud integration can 

foster resilient smart building infrastructures that meet the 

challenges of modern computing paradigms.  
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I. INTRODUCTION 

Increase in the number of edge devices and their decreased 
production costs are now a compelling incentive for industry 
applications looking to cut costs by switching from a fully 
cloud-based resource-dependent model to a less expensive 
hybrid model that incorporates edge devices. Similarly, 
machine learning (ML) has assumed a pivotal role across 
various industries and applications, fundamentally 
transforming decision-making processes, automating tasks 
and unearthing valuable insights from extensive datasets [1]. 
For instance, use of ML in a building energy management 
system to facilitate real-time data analysis and generate 
predictive insights enables autonomous regulation of energy 
consumption [2]. The effective integration of autonomics in 
governing and fine-tuning machine learning models has 
become indispensable for addressing the challenges 
associated with varying computational environments and 
workload demands [3]. By dynamically managing 
computational resources and enabling real-time adjustments, 
an autonomic system ensures efficient utilization and 
enhances the adaptability of ML models across different 
deployment platforms [4].   

Edge devices can be part of computing frameworks closer 
to an end user and can expose more control and administration 
in data gathering and generation. In recent years, there has 
been a rise in the number of applications that can be run 
directly on edge devices, particularly those that require in situ 

analysis and event processing along with a transfer to cloud-
based execution.  

We assess the efficacy of ML algorithms operating on 
different edge resource configurations, within building energy 
optimization. We perform "what-if" analyses of ML tasks 
executed on edge environments to enable insights into 
performance, optimization of such ML tasks and adaptation to 
different applications. We evaluate actuation and sensing to 
support ML orchestration and execution on edge systems. We 
investigate how an autonomously controlled energy system 
can reduce building energy consumption while ensuring 
optimized use of the computing infrastructure.  A comparative 
analysis is carried out on the use of multiple ML models and 
their behavior when deployed across different platforms, 
considering the influence of the integrated autonomic system 
on their adaptability and real-time performance. The 
subsequent sections of this paper are structured as follows: 
Section 2 provides an extensive review of relevant literature 
on machine learning models and previous comparative 
studies. Section 3 delineates the methodology, encompassing 
data preparation and model implementation. Section 4 
presents the findings of the models along with a 
comprehensive discussion. Finally, Section 5 concludes the 
paper, summarizing key findings and suggesting potential 
avenues for future research.  

II. RELATED WORK 

With the development of edge computing and the growth 
of Internet of Things (IoT) infrastructures, users have the 
ability to customize applications and improve the overall 
performance of their workflows. Edge computing has become 
necessary to reduce the load on cloud systems infrastructure 
and enables processing data in the vicinity of a data source. 
This capability also supports security/ data privacy, 
performance, and reduces communication latency and delays. 
Several studies [5] report that using autonomic techniques 
alongside edge-based deployment can enhance the 
effectiveness of interactions between devices and applications 
whilst accelerating and cutting processing costs. The 
functional requirements of an edge infrastructure include:  

(1) Self-configuration, which refers to automatic device 
initialization during operation.  

(2) Self-optimization referring to the system's ability to 
continuously raise the value of non-functional resources in 
response to a given set of incoming application needs or 
corporate goals.  

(3) Self-restoration, which refers to the system's ability to 
identify and fix issues on its own while in use.  



(4) Self-protection, measuring the system's ability to 
respond to and stop harmful attempts or intrusions by putting 
various trust and protection techniques in place.  

A novel perspective on the advancement of Internet of 
Things (IoT) technologies and intelligent mobile edge 
computing (MEC) has been explored by several related 
studies demonstrating that moving computer tasks and 
complex analysis from cloud to the edge can improve the 
performance and the accuracy of the workflows leading to fast 
data processing, low latency, and advanced intelligence [7].  

Artificial Neural Networks (ANNs) have gained 
widespread attention in energy applications due to their ability 
to model complex relationships in data. ANNs consist of 
interconnected nodes that simulate the functioning of neurons 
[6] and are applied for image and speech recognition, natural 
language processing, and financial forecasting [7]. Recent 
innovations in machine learning have led to the development 
of deep neural networks, such as Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), 
which have achieved remarkable results in tasks like image 
classification and sequence prediction [8]. However, ANNs 
require large datasets and substantial computational resources 
for training and can be prone to overfitting [9]. 

Support Vector Machines (SVMs), on the other hand, are 
powerful supervised learning models known for their ability 
to handle classification and regression tasks [10]. SVMs help 
to maximize the margin between different classes, making 
them effective for both linearly separable and non-linearly 
separable data [11].  SVMs have been successfully applied in 
various domains, including text classification, image 
recognition, and bioinformatics [12]. They offer robust 
generalization performance and are less susceptible to 
overfitting, but they can be sensitive to the choice of kernel 
function and parameter tuning [13]. Random Forest is an 
ensemble learning technique that combines multiple decision 
trees to improve predictive accuracy and reduce overfitting 
[14]. It has gained popularity for its versatility and 
effectiveness in classification and regression tasks [15]. 
Random Forest models are less prone to overfitting compared 
to individual decision trees and can handle both categorical 
and numerical data [16]. They have been applied in diverse 
fields, such as remote sensing, bioinformatics, and finance 
[17]. The model's ability to capture complex relationships in 
data while providing insights into feature importance makes it 
a popular choice in machine learning [18]. 

In relation to the performance of different machine 
learning models, specifically SVM, ANN, and Random 
Forest, across various applications, several authors [21] 
havefound that ANN achieved comparable or superior results 
to SVM in document-level sentiment analysis, particularly 
outperforming SVM in the context of unbalanced data. On the 
other hand, other authors [20]demonstrate that SVM generally 
outperformed Random Forest in microarray-based cancer 
classification. A similar study [21] has compared Random 
Forest with SVM in remote sensing classification and found 
that both models performed equally well in terms of 
classification accuracy and execution time, with Random 
Forest requiring fewer user-defined parameters.  Lastly, other 
authors [24] have proposed a method to improve the speed of 
SVM classification in sentiment analysis tasks, showing that 
it outperformed the standard SVM method in terms of 
execution time. 

Recent research has focused on energy-aware scheduling 
for edge computing and IoT environments to optimize 
resource allocation and minimize carbon footprint while 
maintaining quality of analysis. Studies have explored various 
approaches, including priority-based task scheduling for edge 
devices [23], energy-aware job scheduling for vehicular edge 
networks [24], and zone-oriented algorithms for serverless 
edge computing [25]. These methods aim to maximize the use 
of renewable energy sources while considering the dynamic 
nature of task demands and energy availability. Additionally, 
real-time scheduling for smart grid integration with renewable 
energy has been investigated, addressing challenges such as 
power system stability, frequency regulation, and voltage 
management [26]. The integration of advanced forecasting 
methods, energy storage systems, and optimization techniques 
such as Linear Programming and Dynamic Programming has 
shown promise in enhancing scheduling efficiency and grid 
resilience[29], [30]. 

Building on these findings, the present study investigates 
and compares four task allocation strategies—random 
execution, autonomic broker scheduling, priority-based 
allocation, and energy-aware orchestration—to 
comprehensively evaluate the impact of machine learning 
energy workflows on performance, resource utilization, and 
energy efficiency in hybrid computing environments. 

III. EDGE AUTONOMICS FOR ENERGY MANAGEMENT 

The proliferation of data and the advancement of 
information technology, including artificial intelligence (AI) 
and the Internet of Things, have enabled the rise energy 
management and automation in buildings and industries. In 
the engineering and industrial sectors, various assets at the 
building or city level can benefit from the recent advantages 
in machine learning and edge computing. Energy models for 
buildings are developed using sensor data where a digital 
simulation/twin of the asset can be enabled to gather 
information and analyse the energy performance of the 
building. 

Energy applications are striving to reach a higher order of 
intelligence through the integration of various surrogate 
machine learning models and their subsequent execution 
required for real-time energy analysis and performance 
projections. This kind of intelligence can be put into practise 
by means of various controllers and actuators that enhance the 
physical asset's administration and operation by utilising the 
control signals or set-points derived from the energy 
simulation. Energy optimisation scenarios, for instance, can 
be used in buildings to optimise ventilation and heating by 
using various set-points that result from machine learning 
analysis. By using actuators to adjust the air ventilation 
temperature, these set-points improve the building facility's 
energy efficiency. Using the right machine learning models to 
generate the necessary level of intelligence around the 
physical asset is a crucial step in achieving energy 
optimisation in buildings.  

These machine learning algorithms frequently possess a 
certain level of complexity and necessitate diverse 
computational resources that are contingent upon quality-of-
service requirements and application-specific time 
constraints. Further research is required to determine how 
such machine learning tasks can be hosted closer to the energy 
data capture points within the built asset, to create an 
environment that can span across multiple computational 



layers from edge to cloud resources. Hosting energy 
optimisation services and operations at the edge requires the 
use of autonomics to address a number of significant 
challenges related to the orchestration of models and their 
subsequent execution on the edge (Fig. 1).  

 

FIGURE 1: EDGE COMPUTING LAYERS 

Cloud platforms like Azure Microsoft offer scalable and 
accessible environments for deploying machine learning 
models with benefits such as scalability and ease of 
deployment [27]. Existing models expose a serverless 
computing infrastructure for deploying machine learning 
applications in the edge layer, addressing challenges like 
latency and data privacy [32], accuracy ofpredictions [29] and 
qualitative data analysis [30].  

Deploying machine learning models on resource-
constrained edge devices (i.e., Raspberry Pi) presents 
challenges that can be addressed through ML model 
optimization techniques. Several solutions exist that propose 
a hardware-friendly pruning technique to create user-specific 
machine learning models directly on mobile platforms, 
resulting in speedups for specific models on edge CPUs [31]. 
A runtime adaptive convolutional neural network (CNN) 
acceleration framework, for example, optimized for 
heterogeneous IoT environments can be used to dynamically 
select the optimal degree of parallelism based on available 
computational resources and network conditions, leading to 
improved inference speed and reduced communication costs 
on Raspberry Pi devices [32]. Local deployments such as 
regular computers (i.e., laptops or desktop computers) can 
offer a comparison basis with advantages in terms of data 
privacy and reduced latency. Several studies highlight the 
need for standardized architecture to integrate and manage 
machine-learned components in industrial settings [33]. Such 
deployment brings challenges and opportunities in hardware 
design for machine learning applications, particularly in local 
embedded processing near the sensor such as energy 
consumption, cost, throughput, accuracy, and flexibility 
requirements [34]. 

Autonomic systems play a pivotal role in automating and 
optimizing the management of machine learning operations, 
ensuring adaptive and efficient performance in varying 
computing environments [35]. The models around autonomic 
computing aim to increase reliability and performance 
through self-protecting, self-healing, self-configuring, and 
self-optimizing mechanisms. Several authors emphasize the 
importance of autonomic systems in automating and 
optimizing machine learning operations for adaptive and 
efficient performance [36], [37]. 

Related studies highlight the potential of autonomic 
systems in mitigating performance bottlenecks and ensuring 
consistent model behavior under fluctuating workloads, with 
a multi-objective optimization solution to find trade-offs 
between model accuracy and resource consumption to enable 
the deployment of machine learning models in resource-
constrained smart environment [38], [39]. Other studies 
introduce methods to find a combination of multiple models 
that are optimal in terms of energy efficiency and model 
performance [40], [41]. These studies emphasize the need for 
autonomous power management strategies to minimize 
energy consumption without compromising model 
performance, thus extending the operational lifetime of 
resource-constrained devices. 

This paper shows how edge autonomics can be used to 
coordinate the execution of different machine learning 
algorithms necessary for delivering energy management in 
buildings and to enable autonomy and timely control response 
to signals received from sensor data within the building assets. 

IV. METHODOLOGY 

We conduct the analysis on a real case study example such 
as Cardiff University's Queen's building (Fig. 2), an 
educational building facility aiming to reduce and optimise 
energy consumption. The building is instrumented with 
sensors measuring temperature, humidity, air quality and 
carbon concentration and is used to demonstrate the benefits 
of edge autonomics for energy optimization. Based on sensor 
readings, a machine learning model is developed to inform 
energy analysis and optimization of the facility. 

 

FIGURE 2: QUEEN’S BUILDING MODEL 

We conducted a comparative analysis of three prominent 
forecasting machine learning models developed using 
historical energy consumption data from Queen’s Building: 
Artificial Neural Network (ANN), Support Vector Machine 
(SVM), and Random Forest (RF), applied to the Forum (an 
open space in Queen’s buildings as illustrated in Figure 1). For 
demonstrating edge autonomics for energy optimization, we 
have constructed a Node-Red model [43] to gather data from 
sensors and test an autonomic broker used to coordinate 
machine learning models on three different computational 
environments namely (i) cloud computing, (ii) edge 
computing and (iii) traditional computing environments using 
an MQTT Broker [44]. The MQTT Broker automates task 
execution based on the readings received from sensors. This 
implies that if the incoming sensor data is sensitive and 
requires immediate action, the Broker will, based on 
predefined autonomics rules, direct it to a specific computing 
environment, among the three, for immediate execution (Fig. 
3). 



 

FIGURE 3: THE EXPERIMENTAL FRAMEWORK AND DATA 

CHANNELS 

The machine learning training phase utilizes a carefully 
curated dataset of historical energy consumption and indoor 
parameters sourced from the Queen's Building – Forum 
Room, with a total size of 5.61 MB. This dataset was selected 
based on its appropriateness for training and evaluating 
machine learning models. To evaluate the generalization 
performance of the models, a separate testing dataset was 
created by randomly dividing the original dataset. This 
approach ensured that the models were assessed on unseen 
data to provide unbiased performance metrics. Prior to 
training, the dataset underwent data cleaning procedures to 
handle missing values, outliers, and any data inconsistencies. 
This step was crucial in ensuring the quality of the data used 
for model training. Feature engineering involves selecting 
relevant features from the dataset and potentially creating new 
ones to enhance model performance. Feature selection 
methods such as Principal Component Analysis (PCA), 
Recursive Feature Elimination (RFE), and Mutual 
Information were employed to identify the most informative 
attributes for each machine learning model. To ensure that all 
model features were on a consistent scale, data normalization 
or scaling was performed. This step was essential for models 
such as Support Vector Machines, which are sensitive to 
feature scales. Categorical variables were encoded using 
techniques such as one-hot encoding to convert them into a 
numerical format that machine learning models can process. 
The dataset was divided into training, validation, and testing 
sets. The training set was used to train the machine learning 
models, the validation set was used for hyperparameter tuning, 
and the testing set was reserved for the final evaluation of 
model performance. The splitting ratio was 70-30% to ensure 
an adequate amount of data for each phase. 

V. EVALUATION 

In the context of the experiment, the use of Jupyter 
Notebook facilitated the uniform execution of machine 
learning models across the different environments, ensuring 
the consistency of performance and execution time 
assessments. The implementation process encompassed 
various standardized steps for training and evaluating the 
Support Vector Machine (SVM), Artificial Neural Network 
(ANN) and Random Forest models with the following model 
properties: 

• MLPRegressor:`hidden_layer_sizes=(100,50)
`,`max_iter=1000`,  `random_state=42` 

• SVR: ̀ kernel='rbf'`, ̀ C=100`, ̀ gamma=0.1`, 

`epsilon=0.1`,  

• RandomForestRegressor:`n_estimators=100`,
`random_state=42` 

These steps included the initial loading of the dataset from 
the specified file, followed by data preprocessing to extract 
model features and the target variable, incorporating 
necessary data cleaning, transformation, and scaling 
procedures. Subsequently, the preprocessed data was split into 
training and testing sets, with an 80-20% division for training 
and testing, respectively.  The subsequent phases focused on 
individual model training, where each model underwent a 
specific set of actions, including training time measurements, 
prediction generation, and the computation of Mean Squared 
Error (MSE) and R-squared (R²) as performance metrics. The 
comparison and evaluation stage allowed for a comprehensive 
assessment of the models' performance metrics, providing 
insights into their respective computational efficiencies. 
These findings offer valuable guidance for making informed 
decisions regarding model selection, considering the balance 
between model performance and computational resources, all 
tailored to meet the specific requirements of the application or 
problem under examination. 

A. Node-RED environment 

Integrating the Node-RED experiment into the study proved 
to be instrumental in providing a comprehensive and 
accessible visualization of the machine learning model 
performance (Fig. 4). By leveraging the dynamic capabilities 
of the Node-RED platform, the experiment facilitated a user-
friendly and interactive representation of the complex 
performance metrics and execution times, allowing for a more 
engaging and informative analysis. 

 

FIGURE 4: NODE-RED EXPERIMENT FRAMEWORK  

Moreover, the Node-RED environment effectively portrayed 
the models' execution times, providing critical insights into 
their computational efficiency and responsiveness. By 
offering real-time updates and visual representations of the 
models' processing capabilities, Node-RED facilitated a 
nuanced understanding of the trade-offs between 
computational performance and predictive accuracy, thus 
enabling researchers to make informed decisions about model 
selection and deployment strategies. 

As such, the evaluation metrics utilized in the experiements 
include (i) Mean Squared Error (MSE) and (ii) R-squared (R²), 
along with the measurement of (iii) execution time. These 
metrics play a critical role in assessing the performance and 
computational efficiency of machine learning models across 
different environments. 

1. Mean Squared Error (MSE): 

   - Parameters: 

     - `Y_test`: Actual target values from the test set. 

     - `Y_pred`: Predicted target values from the model. 



𝑀𝑆𝐸 =
1

𝑛
∑(𝑌_𝑡𝑒𝑠𝑡 − 𝑌_𝑝𝑟𝑒𝑑)2

𝑛

𝑘=0

 

2. R² Score: 

   - Parameters: 

     - `Y_test`: Actual target values from the test set. 

     - `Y_pred`: Predicted target values from the model. 

 

R² = 1 −
∑ (𝑌_𝑡𝑒𝑠𝑡 − 𝑌_𝑝𝑟𝑒𝑑)2𝑛

𝑘=0

∑ (𝑌_𝑡𝑒𝑠𝑡 − 𝑚𝑒𝑎𝑛(𝑌_𝑝𝑟𝑒𝑑))2𝑛

𝑘=0

 

 

3. Execution Time: 

   - Parameters: 

    - `start_time`: The time when the model training or 
prediction starts. 

     - `end_time`: The time when the model training or 
prediction ends. 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 

MSE is a commonly used metric in regression analysis, 
quantifies the average squared differences between predicted 
values and actual values. In the context of this study, MSE is 
calculated for each model to evaluate the accuracy of 
predictions, providing insights into the models' ability to 
capture the variability within the data and make precise 
estimations. Lower MSE values indicate better predictive 
performance and a closer fit between the model's predictions 
and the actual data points. R-squared (R²) measures the 
proportion of the variance in the dependent variable that is 
predictable from the independent variables. It provides an 
assessment of how well the model fits the observed data, with 
higher R² values indicating a better fit and greater explanatory 
power. In this study, R² is utilized to gauge the predictive 
strength of the machine learning models and their 
effectiveness in capturing the variability in the data across 
different environments.  

Furthermore, the execution time is measured to evaluate 
the computational efficiency of the models in each 
environment. Execution time refers to the time taken for the 
machine learning models to process the input data, train the 
models, and generate predictions for the energy optimization 
scenarios. Longer execution times may signify higher 
computational demands and resource requirements, 
potentially highlighting challenges related to model scalability 
and real-time processing capabilities. Conversely, shorter 
execution times indicate more efficient processing and 
quicker response times, emphasizing the suitability of the 
models for deployment in time-sensitive applications or 
resource-constrained environments. These evaluation metrics 
have been meticulously measured and determined through the 
standardized implementation of the machine learning models 
in the respective environments, ensuring consistency and 
reliability in the assessment of the models' performance and 
computational efficiency. 

B. The Autonomic Broker 

The following structured algorithm outlines the autonomics 
process for efficient task allocation in a machine learning 
environment. The algorithm is designed to optimize the 
distribution of tasks based on specific parameters, ensuring 
effective utilization of resources. This represents a key 
advantage for the energy optimization problem that relies on 
data collected from sensors and sends actuation signals to 
various controlling devices within the building facility. 

# AUTONOMIC BROKER ALGORITHM  

1. ExecutionTimes = {}    Ø     // create 

empty dictionary 

2. Models = ['ANN', 'SVM', 'RF']    create 

list that contains the machine learning 

models 'ANN', 'SVM', and 'RF'. 

3. Environments = ['Azure Cloud', 

'Raspberry Pi', 'Personal Computer (PC)']   

create list that contains the available 

environments 'Azure Cloud', 'Raspberry Pi', 

and 'Personal Computer (PC)'. 

4. AutonomicsRules = { 

                          'ANN': 'Cloud 

(Azure Cloud)',   

                          'SVM': 'Edge 

(Raspberry Pi)',   

                           'RF': 

'Traditional (Personal Computer (PC))'  

                   }  // create empty 

dictionary (to specify the allocation rules 

for each machine learning model to different                

environments).  

5. FOR EACH Model IN Models DO    repeat   

// Execution of tasks for each model based 

on the rules specified in (AutonomicsRules). 

a.  AllocatedEnvironment = 

AutonomicsRules[Model]  autonomics rules 

b.  ExecutionTime = Random.Uniform(1, 10)  

 // generate a random execution time 

between (1, 10) seconds 

c.  IF Model NOT IN ExecutionTimes THEN    

condition statment // Store the execution 

time for the current model 

          ExecutionTimes[Model] = 

{} 

              END IF    // the end of 

the condition statement. 

d. ExecutionTimes[Model][AllocatedEnvironme

nt] = ExecutionTime 

e.   PRINT "Executing " + Model + " model 

in " + AllocatedEnvironment + " with an 

execution time of " + ExecutionTime + " 

seconds." 

END FOR    // the end of the loop. 

6. PRINT "\nPerformance Evaluation 

Results:" // display Performance evaluation 

results. 

7. FOR EACH Model IN ExecutionTimes DO   

repeat    

a. PRINT "Model: " + Model 

b.  FOR EACH Environment, Time IN 

ExecutionTimes[Model] DO    repeat    

i. PRINT "  Executed in " + Environment + " in 

" + Time + " seconds." 

      END FOR    // the end of the 

loop. 

END FOR    // the end of the loop. 



ALGORITHM 1: PHASES OF THE AUTONOMIC BROKER 

EXECUTION  

 

The phases involved in the execution of the edge autonomics 

broker from Algorithm 1 are:  

1. Initialization: The algorithm begins by initializing the 

necessary variables, including the tasks to be executed, the 

corresponding data sizes, and the anticipated execution times.  

2. Environment Setup: The predefined environments, namely 

(i) Cloud (Azure Cloud), (ii) Edge (Raspberry Pi), and 

(iii)Traditional (Personal Computer (PC)) are established to 

facilitate the allocation process.  

3. Task Allocation: For each task in the system, the algorithm 

follows a decision-making process based on specific 

conditions. If the data size is less than 40 and the expected 

execution time exceeds 5 units, the task is allocated to the 

Traditional computing environment (PC). Similarly, if the 

data size is less than 40 and the execution time is within or 

equal to 5 units, the task is assigned to the Edge Computing 

Environment (Raspberry Pi). Alternatively, if the data size 

surpasses 40 or the execution time remains indeterminate, the 

task is directed towards the Cloud computing environment 

(Azure Cloud) for processing.  

4. Task Execution: Upon the allocation of tasks to their 

designated environments, the algorithm proceeds to execute 

each task within the respective environment.  

5. Performance Measurement: To facilitate performance 

evaluation, the algorithm meticulously monitors and records 

the execution time for each task, providing essential data for 

subsequent analysis and optimization.  

Using the edge autonomics algorithm, the Autonomics Broker 

intelligently allocates tasks to diverse environments, ensuring 

an optimal balance between computational resources and task 

requirements. This systematic approach enhances the overall 

efficiency of task execution within machine learning 

environments, contributing to the seamless integration of edge 

resources with machine learning models for energy 

management and optimization in buildings. 

TABLE 1: MODELS RESULT COMPARISON  

VI. RESULTS 

This section describes the machine learning models' 
performance across different environments, including the (i) 

Cloud, (ii) Edge and (iii) Traditional computing (i.e. regular 
PC) settings. The primary aim of this section is to identify the 
implications of these diverse computational frameworks on 
the efficiency and adaptability of models, furthering the 
understanding of the interplay between computational 
resources and model performance. By exploring the varying 
impacts of these environments on the execution times and 
predictive accuracies of the models, this analysis aligns with 
the central focus of the paper, i.e. developing edge autonomics 
for energy interventions in buildings through the integration 
of AI/ML models. These findings can be used for optimizing 
energy usage and decision-making in real-world applications. 
By considering performance metrics, such as Mean Squared 
Error (MSE) and R-squared (R²), alongside execution times 
across different platforms, the discussion sheds light on the 
unique strengths and limitations of each environment in the 
context of the building energy management framework.  

A. Performance comparison 

Based on data in Table 1, model selection depends on 
application requirements and the resources available in each 
environment. While the ANN model performs relatively well 
across all environments, the choice of model may vary 
depending on the trade-offs between computational 
complexity, predictive accuracy and resource constraints. The 
selection of a model should also consider the potential for 
optimization and fine-tuning within each environment to 
achieve the best possible performance. Preliminary results 
highlight the importance of computing framework 
considerations in the context of model performance and 
execution time. The choice of a framework depends on the 
specific requirements of the application, including 
computational resources, scalability, and deployment 
constraints. The Azure environment stands out as a reliable 
and efficient option, particularly for applications requiring 
scalability and reduced execution times. The Raspberry Pi 
environment, despite its resource constraints, proves to be a 
viable choice for scenarios where low-power and compact 
computing solutions are essential. The PC environment 
remains a feasible option for local computational tasks, 
although it may not be the most efficient choice for resource-
intensive machine learning applications.  

B. Cloud based performance analysis 

The MSE measures the average of the squares of the errors 
or deviations, which represents the difference between the 
actual and predicted values. Lower values of MSE indicate 
better performance and a closer fit to the data. Based on the 
results, the ANN model has the lowest MSE of 9.295204, 
followed by the RF model with an MSE of 9.506779, and the 
SVM model with an MSE of 10.260298.The R²  score, also 
known as the coefficient of determination, represents the 
proportion of the variance in the dependent variable that is 
predictable from the independent variables. It provides an 
indication of the goodness of fit of the model. 

Higher values of R² indicate a better fit of the model to the 
data. The ANN model has the highest R² score of 0.723583, 
followed by the RF model with an R² score of 0.717291, and 
the SVM model with an R² score of 0.694883. In the given 
results, the SVM model has the lowest execution time of 
0.247475 seconds, followed by the RF model with an 
execution time of 0.998159 seconds, and the ANN model with 
the highest execution time of 3.425744 seconds.  Based on 

Environ

ment 

Model MSE R² Execution time 

(seconds) 

PC ANN 9.295204 0.723583 1.385199 

SVM 10.260298 0.694883 0.203290 

RF 9.506779 0.717291 0.638744 

Azure ANN 9.295204 0.723583 3.425744 

SVM 10.260298 0.694883 0.247475 

RF 9.506779 0.717291 0.998159 

Raspber
ry Pi 

 

 

ANN 9.295204 0.734867 6.491278 

SVM 10.260342 0.694882 0.222211 

RF 9.550808 0.715982 0.651005 



these results (Fig. 5), the preferred model environment would 
depend on the specific priorities of the application.  

 

FIGURE 5: MSE, R², EXECUTION TIME OF CLOUD (AZURE) 

RESULTS  

However, if a balance between accuracy and execution time is 
required, the RF model could be a good choice, as it provides 
competitive performance in terms of MSE and R² score, with 
moderate execution time.  

C. Traditional computing performance analysis 

For this experiment, we use a regular desktop computer to 
deploy the machine learning models and test their 
performance metrics. The MSE values for the models are as 
follows: ANN has an MSE of 9.295204, SVM has an MSE of 
10.260298, and RF has an MSE of 9.506779. The ANN model 
has the lowest MSE, followed by the RF model and then the 
SVM model (Fig 6). The R² scores for the models are as 
follows: ANN has an R² score of 0.723583, SVM has an R² 
score of 0.694883, and RF has an R² score of 0.717291. The 
ANN model has the highest R² score, followed by the RF 
model, and then the SVM model. The execution times for the 
models are as follows: ANN took 1.385199 seconds, SVM 
took 0.203290 seconds, and RF took 0.638744 seconds. The 
SVM model has the lowest execution time, followed by the 
RF model and then the ANN model which might not be ideal 
if speed is a critical factor. The SVM model has the lowest 
execution time, but it has the highest MSE and a slightly lower 
R² score compared to the ANN model. However, it might be 
the preferred choice if time-to-execute is a critical 
consideration. The RF model provides a balance between 
accuracy and execution time. 

 

FIGURE 6: MSE, R², EXECUTION TIME OF TRADITIONAL 

COMPUTING SYSTEM  

D. Edge computing performance analysis 

For this edge computing experiment, we use a Raspberry Pi 
system to deploy machine learning models and test the 
associated model performance. The MSE values for the 
models are as follows: ANN has an MSE of 9.295204, SVM 
has an MSE of 10.260342, and RF has an MSE of 9.550808. 
The ANN model has the lowest MSE, followed by the RF 
model, and then the SVM model (Fig. 7). The R² scores for 

the models are as follows: ANN has an R² score of 0.734867, 
SVM has an R² score of 0.694882, and RF has an R² score of 
0.715982. The ANN model has the highest R² score, followed 
by the RF model, and then the SVM model. The execution 
times for the models are as follows: ANN took 6.491278 
seconds, SVM took 0.222211 seconds, and RF took 0.651005 
seconds. The SVM model has the lowest execution time, 
followed by the RF model. Based on these results the ANN 
model has the best performance in terms of MSE and R² score, 
but it has the highest execution time, which might not be ideal 
if speed is a critical factor. The SVM model has the lowest 
execution time, but it has the highest MSE and a slightly lower 
R² score compared to the ANN model. However, it might be 
the preferred choice if speed is a critical consideration. The 
RF model provides a balance between accuracy and execution 
time. 

 

FIGURE 7: MSE, R², EXECUTION TIME OF EDGE (RPI) 

EXPERIMENT RESULTS  

The traditional computing environment (i.e., desktop PC) 
highlights relatively higher Mean Squared Error (MSE) and 
lower R-squared (R²) values for the Support Vector Machine 
(SVM) and Random Forest (RF) models, indicating decreased 
predictive accuracy compared to other settings. Notably, the 
Artificial Neural Network (ANN) model exhibits superior 
performance in this environment, showcasing adaptability 
despite the general computational limitations. Execution 
times, however, are notably longer across all models in the PC 
environment, with the ANN model demonstrating the 
lengthiest execution time among all environments. 

To provide a meaningful baseline for evaluating the 
proposed autonomic strategies, we also assessed the 
performance of the machine learning models when executed 
exclusively in a local computing environment (i.e., desktop 
PC) without any scheduling mechanism or cross-platform 
orchestration. This represents a naive scenario where tasks are 
statically assigned and not adapted based on system conditions 
or energy availability. 

Results showed that although the ANN model achieved 
the lowest Mean Squared Error (MSE = 9.29) and highest R² 
(0.72), execution times remained relatively high due to lack of 
resource coordination. More importantly, this baseline failed 
to exploit renewable energy production periods or task 
prioritization, which are key to sustainability and 
responsiveness. This comparison highlights the limitations of 
non-autonomic execution and validates the need for intelligent 
task scheduling, as introduced in our autonomic broker and 
energy-aware allocation strategies. 

Based on the data analysis, the cloud environment (i.e., 
The Azure) ranks highest due to its balanced performance and 
significantly reduced execution times, making it an optimal 
choice for deploying the examined machine learning models. 



The edge environment (i.e., Raspberry Pi) follows closely, 
demonstrating competitive performance and notable 
reductions in execution times despite its resource limitations.  

E. Edge autonomics 

In this section, the edge autonomics is used to demonstrate 
how different machine learning models can be coordinated to 
improve the performance of the energy optimization 
application and integration with the edge. To evidence the 
edge autonomics principles, we test three different scenarios: 

(a) Random execution where the machine learning models are 

executed randomly of the resources available in cloud, 

edge and traditional computers (Fig. 8); 

(b) Autonomic broker where the machine learning models are 

executed using edge autonomics mechanisms presented in 

Algorithm 1 (Fig. 9); 

(c) Prioritization execution where the machine learning 

models are executed based on the priorities of the tasks 

(Fig. 10); 

(d) Energy-aware allocation based on renewable production 

peaks (Fig. 11); 
 

A. Random execution - In this experiment, the execution of 
ANN, SVM, and RF models in different computational 
environments (cloud - Azure Cloud, Edge -Raspberry Pi, and 
Traditional – PC) is performed randomly. The execution of 
the machine learning models (ANN, SVM, and RF) in 
different environments is indicated in the results presented in 
Fig. 8. The execution time for the models vary, with the ANN 
model executing in the Azure Cloud environment for 
approximately 4.56 seconds, the SVM model executing in the 
same Azure Cloud environment for approximately 6.26 
seconds, and the RF model executing on a Raspberry Pi for 
approximately 7.60 seconds. These results are followed by the 
simulated performance evaluation, indicating the execution 
times for each model in the specific environments where they 
were executed (Fig. 8). 

 

FIGURE 8: RANDOM SCENARIO RESULTS  

 

B. Autonomic Broker – in this experiment the execution of 
tasks is using an autonomics broker (Fig. 9), whereby specific 
machine learning models ANN, SVM, and RF are assigned to 
environments (cloud - Azure Cloud, Edge -Raspberry Pi, and 
Traditional – PC) based on predefined autonomics rules (see 
Algorithm 1).  

Using an autonomics broker reflects the dynamic allocation of 
machine learning tasks, encompassing the ANN, SVM, and 

RF models across disparate computing environments, 
specifically the Azure Cloud, Raspberry Pi, and PC. The 
results demonstrate varying execution times for each model, 
with the ANN model executing in the Cloud (Azure Cloud) in 
5.56 seconds, the SVM model operating on the edge 
(Raspberry Pi) in 7.71 seconds, and the RF model processing 
on the Traditional computer (PC) in 9.84 seconds. These 
findings underscore the crucial role of autonomics in task 
distribution, effectively utilizing diverse computing resources 
to optimize task execution and enhance overall performance 
within a distributed computing paradigm (Fig. 9). 

 

FIGURE 9: AUTONOMIC BROKER SCENARIO RESULTS  

 

C. Prioritisation mechanisms - Employing prioritization 
mechanisms delineates the allocation of machine learning 
tasks, encompassing the ANN, SVM, and RF models across 
distinct computing environments, each with assigned 
performance rankings. The results presented in Figure 10 
showcase vary execution times for each model, with the ANN 
model operating in the Cloud in 1.58 seconds, followed by the 
SVM model also executing in the Cloud in 3.94 seconds. 
Furthermore, the RF model conducts its operations on the 
edge (Raspberry Pi), reflecting an execution time in 6.15 
seconds (Fig. 10).  

 

FIGURE 10: PRIORITIZATION SCENARIO RESULTS  

 

D. Energy aware execution - In this experiment, the 
orchestrator continuously monitors the available renewable 
energy, particularly solar energy, generated by the building. A 
renewable energy production peak is defined as a period when 
the available local solar generation exceeds 80% of the 
maximum rated production capacity. While there is no 
universally established threshold in the literature for defining 



renewable energy peaks, the 80% level was selected in this 
study as a practical and realistic operational benchmark. 
Defining such a threshold enables the broker to make 
deterministic scheduling decisions while aligning task 
execution with dynamic energy conditions. 

When energy production exceeds the 80% threshold, 
computationally intensive machine learning tasks are 
prioritized for immediate execution across available 
computing environments, such as Azure Cloud or local PCs. 
Conversely, during periods of low renewable production 
(below 80%), tasks are either deferred, rerouted to low-power 
edge devices such as Raspberry Pi systems, or scheduled using 
the autonomic broker to minimize reliance on non-renewable 
energy resources (Fig. 11). 

The 80% threshold was selected as a practical operational 
benchmark to capture peak solar energy periods while 
avoiding premature triggering during moderate generation. 
This value aligns with heuristics used in solar-aware 
scheduling in recent literature [24], [25] and balances 
execution performance with sustainability. 

The orchestration strategy implemented in this scenario is 
guided by three key considerations: (i) the real-time 
availability of local renewable energy, (ii) the energy state of 
any connected battery storage systems, and (iii) the criticality 
and resource demand of the scheduled tasks. By integrating 
real-time energy monitoring into scheduling decisions, the 
system maximizes the use of clean energy while ensuring 
operational efficiency. When solar energy production was at a 
peak, the ANN and RF models were immediately allocated to 
Azure Cloud and PC environments, achieving execution times 
of 5.10 seconds and 4.75 seconds, respectively. In contrast, 
during low energy production, the SVM model was deferred 
and executed on a Raspberry Pi, resulting in a longer 
execution time of 8.35 seconds due to the limited processing 
capabilities of the device (Fig. 11). 

While this study focuses on a single building, the proposed 
autonomic broker is designed to scale to larger facilities and 
multi-building campuses. Future work will explore 
deployment in heterogeneous environments with varying 
sensor densities, energy production variability, and network 
constraints. Techniques such as distributed learning and 
hierarchical scheduling will be investigated to maintain 
performance and sustainability at scale. 

 

FIGURE 11: EXECUTION TIME USING ENERGY-AWARE TASK 

EXECUTION 

 

These experiments collectively demonstrate the impact of 
various autonomic scheduling strategies on ML task execution 
efficiency and energy-conscious computing. The random 
execution scenario showed the limitations of uncoordinated 
scheduling, resulting in suboptimal execution times. The 
autonomic broker scenario introduced rule-based decision-
making, reflecting moderate adaptability to system conditions. 
Prioritization mechanisms achieved the most optimized 
performance by aligning task criticality with computational 
capabilities, significantly reducing execution times for high-
priority models. 

In contrast, the energy-aware allocation strategy 
prioritized environmental sustainability by adapting execution 
decisions based on real-time renewable energy availability, 
even if it occasionally incurred longer execution times. 
Together, these scenarios underscore the versatility of edge 
autonomics in balancing performance, resource utilization, 
and energy efficiency across diverse operating contexts within 
hybrid computing environments. 

VII. CONCLUSIONS 

The integration of machine learning models with edge 
computing technology facilitates real-time data analysis, 
predictive insights, and edge autonomics, ultimately 
contributing to a more sustainable and energy-efficient 
computing environment. In this study, four execution 
strategies were systematically analyzed to assess their impact 
on performance, resource utilization, and energy efficiency in 
edge-enabled computing environments. The random 
execution scenario revealed the inefficiencies associated with 
non-deterministic task scheduling. Autonomic broker-based 
scheduling improved task distribution through rule-based 
decision making, while prioritization mechanisms achieved 
the best performance outcomes by aligning execution order 
with task criticality. Additionally, the energy-aware allocation 
scenario introduced an important sustainability dimension by 
dynamically adapting scheduling decisions based on real-time 
renewable energy availability. Although this energy-aware 
approach occasionally resulted in longer execution times for 
certain tasks, it successfully minimized reliance on non-
renewable energy sources and highlighted the potential of 
edge autonomics to enable green computing practices. 
Overall, the findings validate the importance of multi-strategy 
autonomics frameworks to optimize computing performance 
and promote sustainability objectives in future computing 
infrastructures. 
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