
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Edge learning for energy-aware resource

management

Nasser Alkhatani, Ioan Petri

School of Engineering

Cardiff University
Cardiff, UK

{AlkhataniNM, petrii}@cardiff.ac.uk

 Omer Rana

School of Computer Science and

Informatics, Cardiff University
Cardiff. UK

ranaof@cardiff.ac.uk

Manish Parashar

School of Computing

University of Utah
Utah, US

parashar@sci.utah.edu

Abstract— As the demand for intelligent systems grows,

leveraging edge learning and autonomic self-management offers

significant benefits for supporting real-time data analysis and

resource management in edge environments. We describe and
evaluate four distinct task allocation scenarios to demonstrate

the autonomics for edge resources management: random

execution, autonomic broker-based scheduling, priority-driven
execution, and energy-aware allocation. Our experiments reveal

that while prioritization-based scheduling minimizes execution

times by aligning with task criticality, the energy-aware
approach presents a sustainable alternative. This method

dynamically adapts task execution based on renewable energy

availability, promoting environmentally conscious energy

management without compromising operational efficiency. By
harnessing renewable energy signals, our findings highlight the

potential of edge autonomics to achieve a balance between

performance, resource optimization and sustainability. This
work demonstrates how intelligent edge-cloud integration can

foster resilient smart building infrastructures that meet the

challenges of modern computing paradigms.

Keywords—edge learning, autonomics, energy aware

scheduling, buildings, sustainability

I. INTRODUCTION

Increase in the number of edge devices and their decreased
production costs are now a compelling incentive for industry
applications looking to cut costs by switching from a fully
cloud-based resource-dependent model to a less expensive
hybrid model that incorporates edge devices. Similarly,
machine learning (ML) has assumed a pivotal role across
various industries and applications, fundamentally
transforming decision-making processes, automating tasks
and unearthing valuable insights from extensive datasets [1].
For instance, use of ML in a building energy management
system to facilitate real-time data analysis and generate
predictive insights enables autonomous regulation of energy
consumption [2]. The effective integration of autonomics in
governing and fine-tuning machine learning models has
become indispensable for addressing the challenges
associated with varying computational environments and
workload demands [3]. By dynamically managing
computational resources and enabling real-time adjustments,
an autonomic system ensures efficient utilization and
enhances the adaptability of ML models across different
deployment platforms [4].

Edge devices can be part of computing frameworks closer
to an end user and can expose more control and administration
in data gathering and generation. In recent years, there has
been a rise in the number of applications that can be run
directly on edge devices, particularly those that require in situ

analysis and event processing along with a transfer to cloud-
based execution.

We assess the efficacy of ML algorithms operating on
different edge resource configurations, within building energy
optimization. We perform "what-if" analyses of ML tasks
executed on edge environments to enable insights into
performance, optimization of such ML tasks and adaptation to
different applications. We evaluate actuation and sensing to
support ML orchestration and execution on edge systems. We
investigate how an autonomously controlled energy system
can reduce building energy consumption while ensuring
optimized use of the computing infrastructure. A comparative
analysis is carried out on the use of multiple ML models and
their behavior when deployed across different platforms,
considering the influence of the integrated autonomic system
on their adaptability and real-time performance. The
subsequent sections of this paper are structured as follows:
Section 2 provides an extensive review of relevant literature
on machine learning models and previous comparative
studies. Section 3 delineates the methodology, encompassing
data preparation and model implementation. Section 4
presents the findings of the models along with a
comprehensive discussion. Finally, Section 5 concludes the
paper, summarizing key findings and suggesting potential
avenues for future research.

II. RELATED WORK

With the development of edge computing and the growth
of Internet of Things (IoT) infrastructures, users have the
ability to customize applications and improve the overall
performance of their workflows. Edge computing has become
necessary to reduce the load on cloud systems infrastructure
and enables processing data in the vicinity of a data source.
This capability also supports security/ data privacy,
performance, and reduces communication latency and delays.
Several studies [5] report that using autonomic techniques
alongside edge-based deployment can enhance the
effectiveness of interactions between devices and applications
whilst accelerating and cutting processing costs. The
functional requirements of an edge infrastructure include:

(1) Self-configuration, which refers to automatic device
initialization during operation.

(2) Self-optimization referring to the system's ability to
continuously raise the value of non-functional resources in
response to a given set of incoming application needs or
corporate goals.

(3) Self-restoration, which refers to the system's ability to
identify and fix issues on its own while in use.

(4) Self-protection, measuring the system's ability to
respond to and stop harmful attempts or intrusions by putting
various trust and protection techniques in place.

A novel perspective on the advancement of Internet of
Things (IoT) technologies and intelligent mobile edge
computing (MEC) has been explored by several related
studies demonstrating that moving computer tasks and
complex analysis from cloud to the edge can improve the
performance and the accuracy of the workflows leading to fast
data processing, low latency, and advanced intelligence [7].

Artificial Neural Networks (ANNs) have gained
widespread attention in energy applications due to their ability
to model complex relationships in data. ANNs consist of
interconnected nodes that simulate the functioning of neurons
[6] and are applied for image and speech recognition, natural
language processing, and financial forecasting [7]. Recent
innovations in machine learning have led to the development
of deep neural networks, such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs),
which have achieved remarkable results in tasks like image
classification and sequence prediction [8]. However, ANNs
require large datasets and substantial computational resources
for training and can be prone to overfitting [9].

Support Vector Machines (SVMs), on the other hand, are
powerful supervised learning models known for their ability
to handle classification and regression tasks [10]. SVMs help
to maximize the margin between different classes, making
them effective for both linearly separable and non-linearly
separable data [11]. SVMs have been successfully applied in
various domains, including text classification, image
recognition, and bioinformatics [12]. They offer robust
generalization performance and are less susceptible to
overfitting, but they can be sensitive to the choice of kernel
function and parameter tuning [13]. Random Forest is an
ensemble learning technique that combines multiple decision
trees to improve predictive accuracy and reduce overfitting
[14]. It has gained popularity for its versatility and
effectiveness in classification and regression tasks [15].
Random Forest models are less prone to overfitting compared
to individual decision trees and can handle both categorical
and numerical data [16]. They have been applied in diverse
fields, such as remote sensing, bioinformatics, and finance
[17]. The model's ability to capture complex relationships in
data while providing insights into feature importance makes it
a popular choice in machine learning [18].

In relation to the performance of different machine
learning models, specifically SVM, ANN, and Random
Forest, across various applications, several authors [21]
havefound that ANN achieved comparable or superior results
to SVM in document-level sentiment analysis, particularly
outperforming SVM in the context of unbalanced data. On the
other hand, other authors [20]demonstrate that SVM generally
outperformed Random Forest in microarray-based cancer
classification. A similar study [21] has compared Random
Forest with SVM in remote sensing classification and found
that both models performed equally well in terms of
classification accuracy and execution time, with Random
Forest requiring fewer user-defined parameters. Lastly, other
authors [24] have proposed a method to improve the speed of
SVM classification in sentiment analysis tasks, showing that
it outperformed the standard SVM method in terms of
execution time.

Recent research has focused on energy-aware scheduling
for edge computing and IoT environments to optimize
resource allocation and minimize carbon footprint while
maintaining quality of analysis. Studies have explored various
approaches, including priority-based task scheduling for edge
devices [23], energy-aware job scheduling for vehicular edge
networks [24], and zone-oriented algorithms for serverless
edge computing [25]. These methods aim to maximize the use
of renewable energy sources while considering the dynamic
nature of task demands and energy availability. Additionally,
real-time scheduling for smart grid integration with renewable
energy has been investigated, addressing challenges such as
power system stability, frequency regulation, and voltage
management [26]. The integration of advanced forecasting
methods, energy storage systems, and optimization techniques
such as Linear Programming and Dynamic Programming has
shown promise in enhancing scheduling efficiency and grid
resilience[29], [30].

Building on these findings, the present study investigates
and compares four task allocation strategies—random
execution, autonomic broker scheduling, priority-based
allocation, and energy-aware orchestration—to
comprehensively evaluate the impact of machine learning
energy workflows on performance, resource utilization, and
energy efficiency in hybrid computing environments.

III. EDGE AUTONOMICS FOR ENERGY MANAGEMENT

The proliferation of data and the advancement of
information technology, including artificial intelligence (AI)
and the Internet of Things, have enabled the rise energy
management and automation in buildings and industries. In
the engineering and industrial sectors, various assets at the
building or city level can benefit from the recent advantages
in machine learning and edge computing. Energy models for
buildings are developed using sensor data where a digital
simulation/twin of the asset can be enabled to gather
information and analyse the energy performance of the
building.

Energy applications are striving to reach a higher order of
intelligence through the integration of various surrogate
machine learning models and their subsequent execution
required for real-time energy analysis and performance
projections. This kind of intelligence can be put into practise
by means of various controllers and actuators that enhance the
physical asset's administration and operation by utilising the
control signals or set-points derived from the energy
simulation. Energy optimisation scenarios, for instance, can
be used in buildings to optimise ventilation and heating by
using various set-points that result from machine learning
analysis. By using actuators to adjust the air ventilation
temperature, these set-points improve the building facility's
energy efficiency. Using the right machine learning models to
generate the necessary level of intelligence around the
physical asset is a crucial step in achieving energy
optimisation in buildings.

These machine learning algorithms frequently possess a
certain level of complexity and necessitate diverse
computational resources that are contingent upon quality-of-
service requirements and application-specific time
constraints. Further research is required to determine how
such machine learning tasks can be hosted closer to the energy
data capture points within the built asset, to create an
environment that can span across multiple computational

layers from edge to cloud resources. Hosting energy
optimisation services and operations at the edge requires the
use of autonomics to address a number of significant
challenges related to the orchestration of models and their
subsequent execution on the edge (Fig. 1).

FIGURE 1: EDGE COMPUTING LAYERS

Cloud platforms like Azure Microsoft offer scalable and
accessible environments for deploying machine learning
models with benefits such as scalability and ease of
deployment [27]. Existing models expose a serverless
computing infrastructure for deploying machine learning
applications in the edge layer, addressing challenges like
latency and data privacy [32], accuracy ofpredictions [29] and
qualitative data analysis [30].

Deploying machine learning models on resource-
constrained edge devices (i.e., Raspberry Pi) presents
challenges that can be addressed through ML model
optimization techniques. Several solutions exist that propose
a hardware-friendly pruning technique to create user-specific
machine learning models directly on mobile platforms,
resulting in speedups for specific models on edge CPUs [31].
A runtime adaptive convolutional neural network (CNN)
acceleration framework, for example, optimized for
heterogeneous IoT environments can be used to dynamically
select the optimal degree of parallelism based on available
computational resources and network conditions, leading to
improved inference speed and reduced communication costs
on Raspberry Pi devices [32]. Local deployments such as
regular computers (i.e., laptops or desktop computers) can
offer a comparison basis with advantages in terms of data
privacy and reduced latency. Several studies highlight the
need for standardized architecture to integrate and manage
machine-learned components in industrial settings [33]. Such
deployment brings challenges and opportunities in hardware
design for machine learning applications, particularly in local
embedded processing near the sensor such as energy
consumption, cost, throughput, accuracy, and flexibility
requirements [34].

Autonomic systems play a pivotal role in automating and
optimizing the management of machine learning operations,
ensuring adaptive and efficient performance in varying
computing environments [35]. The models around autonomic
computing aim to increase reliability and performance
through self-protecting, self-healing, self-configuring, and
self-optimizing mechanisms. Several authors emphasize the
importance of autonomic systems in automating and
optimizing machine learning operations for adaptive and
efficient performance [36], [37].

Related studies highlight the potential of autonomic
systems in mitigating performance bottlenecks and ensuring
consistent model behavior under fluctuating workloads, with
a multi-objective optimization solution to find trade-offs
between model accuracy and resource consumption to enable
the deployment of machine learning models in resource-
constrained smart environment [38], [39]. Other studies
introduce methods to find a combination of multiple models
that are optimal in terms of energy efficiency and model
performance [40], [41]. These studies emphasize the need for
autonomous power management strategies to minimize
energy consumption without compromising model
performance, thus extending the operational lifetime of
resource-constrained devices.

This paper shows how edge autonomics can be used to
coordinate the execution of different machine learning
algorithms necessary for delivering energy management in
buildings and to enable autonomy and timely control response
to signals received from sensor data within the building assets.

IV. METHODOLOGY

We conduct the analysis on a real case study example such
as Cardiff University's Queen's building (Fig. 2), an
educational building facility aiming to reduce and optimise
energy consumption. The building is instrumented with
sensors measuring temperature, humidity, air quality and
carbon concentration and is used to demonstrate the benefits
of edge autonomics for energy optimization. Based on sensor
readings, a machine learning model is developed to inform
energy analysis and optimization of the facility.

FIGURE 2: QUEEN’S BUILDING MODEL

We conducted a comparative analysis of three prominent
forecasting machine learning models developed using
historical energy consumption data from Queen’s Building:
Artificial Neural Network (ANN), Support Vector Machine
(SVM), and Random Forest (RF), applied to the Forum (an
open space in Queen’s buildings as illustrated in Figure 1). For
demonstrating edge autonomics for energy optimization, we
have constructed a Node-Red model [43] to gather data from
sensors and test an autonomic broker used to coordinate
machine learning models on three different computational
environments namely (i) cloud computing, (ii) edge
computing and (iii) traditional computing environments using
an MQTT Broker [44]. The MQTT Broker automates task
execution based on the readings received from sensors. This
implies that if the incoming sensor data is sensitive and
requires immediate action, the Broker will, based on
predefined autonomics rules, direct it to a specific computing
environment, among the three, for immediate execution (Fig.
3).

FIGURE 3: THE EXPERIMENTAL FRAMEWORK AND DATA

CHANNELS

The machine learning training phase utilizes a carefully
curated dataset of historical energy consumption and indoor
parameters sourced from the Queen's Building – Forum
Room, with a total size of 5.61 MB. This dataset was selected
based on its appropriateness for training and evaluating
machine learning models. To evaluate the generalization
performance of the models, a separate testing dataset was
created by randomly dividing the original dataset. This
approach ensured that the models were assessed on unseen
data to provide unbiased performance metrics. Prior to
training, the dataset underwent data cleaning procedures to
handle missing values, outliers, and any data inconsistencies.
This step was crucial in ensuring the quality of the data used
for model training. Feature engineering involves selecting
relevant features from the dataset and potentially creating new
ones to enhance model performance. Feature selection
methods such as Principal Component Analysis (PCA),
Recursive Feature Elimination (RFE), and Mutual
Information were employed to identify the most informative
attributes for each machine learning model. To ensure that all
model features were on a consistent scale, data normalization
or scaling was performed. This step was essential for models
such as Support Vector Machines, which are sensitive to
feature scales. Categorical variables were encoded using
techniques such as one-hot encoding to convert them into a
numerical format that machine learning models can process.
The dataset was divided into training, validation, and testing
sets. The training set was used to train the machine learning
models, the validation set was used for hyperparameter tuning,
and the testing set was reserved for the final evaluation of
model performance. The splitting ratio was 70-30% to ensure
an adequate amount of data for each phase.

V. EVALUATION

In the context of the experiment, the use of Jupyter
Notebook facilitated the uniform execution of machine
learning models across the different environments, ensuring
the consistency of performance and execution time
assessments. The implementation process encompassed
various standardized steps for training and evaluating the
Support Vector Machine (SVM), Artificial Neural Network
(ANN) and Random Forest models with the following model
properties:

• MLPRegressor:`hidden_layer_sizes=(100,50)
`,`max_iter=1000`, `random_state=42`

• SVR: ̀ kernel='rbf'`, ̀ C=100`, ̀ gamma=0.1`,

`epsilon=0.1`,

• RandomForestRegressor:`n_estimators=100`,
`random_state=42`

These steps included the initial loading of the dataset from
the specified file, followed by data preprocessing to extract
model features and the target variable, incorporating
necessary data cleaning, transformation, and scaling
procedures. Subsequently, the preprocessed data was split into
training and testing sets, with an 80-20% division for training
and testing, respectively. The subsequent phases focused on
individual model training, where each model underwent a
specific set of actions, including training time measurements,
prediction generation, and the computation of Mean Squared
Error (MSE) and R-squared (R²) as performance metrics. The
comparison and evaluation stage allowed for a comprehensive
assessment of the models' performance metrics, providing
insights into their respective computational efficiencies.
These findings offer valuable guidance for making informed
decisions regarding model selection, considering the balance
between model performance and computational resources, all
tailored to meet the specific requirements of the application or
problem under examination.

A. Node-RED environment

Integrating the Node-RED experiment into the study proved
to be instrumental in providing a comprehensive and
accessible visualization of the machine learning model
performance (Fig. 4). By leveraging the dynamic capabilities
of the Node-RED platform, the experiment facilitated a user-
friendly and interactive representation of the complex
performance metrics and execution times, allowing for a more
engaging and informative analysis.

FIGURE 4: NODE-RED EXPERIMENT FRAMEWORK

Moreover, the Node-RED environment effectively portrayed
the models' execution times, providing critical insights into
their computational efficiency and responsiveness. By
offering real-time updates and visual representations of the
models' processing capabilities, Node-RED facilitated a
nuanced understanding of the trade-offs between
computational performance and predictive accuracy, thus
enabling researchers to make informed decisions about model
selection and deployment strategies.

As such, the evaluation metrics utilized in the experiements
include (i) Mean Squared Error (MSE) and (ii) R-squared (R²),
along with the measurement of (iii) execution time. These
metrics play a critical role in assessing the performance and
computational efficiency of machine learning models across
different environments.

1. Mean Squared Error (MSE):

 - Parameters:

 - `Y_test`: Actual target values from the test set.

 - `Y_pred`: Predicted target values from the model.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌_𝑡𝑒𝑠𝑡 − 𝑌_𝑝𝑟𝑒𝑑)2

𝑛

𝑘=0

2. R² Score:

 - Parameters:

 - `Y_test`: Actual target values from the test set.

 - `Y_pred`: Predicted target values from the model.

R² = 1 −
∑ (𝑌_𝑡𝑒𝑠𝑡 − 𝑌_𝑝𝑟𝑒𝑑)2𝑛

𝑘=0

∑ (𝑌_𝑡𝑒𝑠𝑡 − 𝑚𝑒𝑎𝑛(𝑌_𝑝𝑟𝑒𝑑))2𝑛

𝑘=0

3. Execution Time:

 - Parameters:

 - `start_time`: The time when the model training or
prediction starts.

 - `end_time`: The time when the model training or
prediction ends.

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒

MSE is a commonly used metric in regression analysis,
quantifies the average squared differences between predicted
values and actual values. In the context of this study, MSE is
calculated for each model to evaluate the accuracy of
predictions, providing insights into the models' ability to
capture the variability within the data and make precise
estimations. Lower MSE values indicate better predictive
performance and a closer fit between the model's predictions
and the actual data points. R-squared (R²) measures the
proportion of the variance in the dependent variable that is
predictable from the independent variables. It provides an
assessment of how well the model fits the observed data, with
higher R² values indicating a better fit and greater explanatory
power. In this study, R² is utilized to gauge the predictive
strength of the machine learning models and their
effectiveness in capturing the variability in the data across
different environments.

Furthermore, the execution time is measured to evaluate
the computational efficiency of the models in each
environment. Execution time refers to the time taken for the
machine learning models to process the input data, train the
models, and generate predictions for the energy optimization
scenarios. Longer execution times may signify higher
computational demands and resource requirements,
potentially highlighting challenges related to model scalability
and real-time processing capabilities. Conversely, shorter
execution times indicate more efficient processing and
quicker response times, emphasizing the suitability of the
models for deployment in time-sensitive applications or
resource-constrained environments. These evaluation metrics
have been meticulously measured and determined through the
standardized implementation of the machine learning models
in the respective environments, ensuring consistency and
reliability in the assessment of the models' performance and
computational efficiency.

B. The Autonomic Broker

The following structured algorithm outlines the autonomics
process for efficient task allocation in a machine learning
environment. The algorithm is designed to optimize the
distribution of tasks based on specific parameters, ensuring
effective utilization of resources. This represents a key
advantage for the energy optimization problem that relies on
data collected from sensors and sends actuation signals to
various controlling devices within the building facility.

AUTONOMIC BROKER ALGORITHM

1. ExecutionTimes = {}  Ø // create

empty dictionary

2. Models = ['ANN', 'SVM', 'RF']  create

list that contains the machine learning

models 'ANN', 'SVM', and 'RF'.

3. Environments = ['Azure Cloud',

'Raspberry Pi', 'Personal Computer (PC)'] 

create list that contains the available

environments 'Azure Cloud', 'Raspberry Pi',

and 'Personal Computer (PC)'.

4. AutonomicsRules = {

 'ANN': 'Cloud

(Azure Cloud)',

 'SVM': 'Edge

(Raspberry Pi)',

 'RF':

'Traditional (Personal Computer (PC))'

 }  // create empty

dictionary (to specify the allocation rules

for each machine learning model to different

environments).

5. FOR EACH Model IN Models DO  repeat

// Execution of tasks for each model based

on the rules specified in (AutonomicsRules).

a. AllocatedEnvironment =

AutonomicsRules[Model] autonomics rules

b. ExecutionTime = Random.Uniform(1, 10)

 // generate a random execution time

between (1, 10) seconds

c. IF Model NOT IN ExecutionTimes THEN 

condition statment // Store the execution

time for the current model

 ExecutionTimes[Model] =

{}

 END IF  // the end of

the condition statement.

d. ExecutionTimes[Model][AllocatedEnvironme

nt] = ExecutionTime

e. PRINT "Executing " + Model + " model

in " + AllocatedEnvironment + " with an

execution time of " + ExecutionTime + "

seconds."

END FOR  // the end of the loop.

6. PRINT "\nPerformance Evaluation

Results:" // display Performance evaluation

results.

7. FOR EACH Model IN ExecutionTimes DO 

repeat

a. PRINT "Model: " + Model

b. FOR EACH Environment, Time IN

ExecutionTimes[Model] DO  repeat

i. PRINT " Executed in " + Environment + " in

" + Time + " seconds."

 END FOR  // the end of the

loop.

END FOR  // the end of the loop.

ALGORITHM 1: PHASES OF THE AUTONOMIC BROKER

EXECUTION

The phases involved in the execution of the edge autonomics

broker from Algorithm 1 are:

1. Initialization: The algorithm begins by initializing the

necessary variables, including the tasks to be executed, the

corresponding data sizes, and the anticipated execution times.

2. Environment Setup: The predefined environments, namely

(i) Cloud (Azure Cloud), (ii) Edge (Raspberry Pi), and

(iii)Traditional (Personal Computer (PC)) are established to

facilitate the allocation process.

3. Task Allocation: For each task in the system, the algorithm

follows a decision-making process based on specific

conditions. If the data size is less than 40 and the expected

execution time exceeds 5 units, the task is allocated to the

Traditional computing environment (PC). Similarly, if the

data size is less than 40 and the execution time is within or

equal to 5 units, the task is assigned to the Edge Computing

Environment (Raspberry Pi). Alternatively, if the data size

surpasses 40 or the execution time remains indeterminate, the

task is directed towards the Cloud computing environment

(Azure Cloud) for processing.

4. Task Execution: Upon the allocation of tasks to their

designated environments, the algorithm proceeds to execute

each task within the respective environment.

5. Performance Measurement: To facilitate performance

evaluation, the algorithm meticulously monitors and records

the execution time for each task, providing essential data for

subsequent analysis and optimization.

Using the edge autonomics algorithm, the Autonomics Broker

intelligently allocates tasks to diverse environments, ensuring

an optimal balance between computational resources and task

requirements. This systematic approach enhances the overall

efficiency of task execution within machine learning

environments, contributing to the seamless integration of edge

resources with machine learning models for energy

management and optimization in buildings.

TABLE 1: MODELS RESULT COMPARISON

VI. RESULTS

This section describes the machine learning models'
performance across different environments, including the (i)

Cloud, (ii) Edge and (iii) Traditional computing (i.e. regular
PC) settings. The primary aim of this section is to identify the
implications of these diverse computational frameworks on
the efficiency and adaptability of models, furthering the
understanding of the interplay between computational
resources and model performance. By exploring the varying
impacts of these environments on the execution times and
predictive accuracies of the models, this analysis aligns with
the central focus of the paper, i.e. developing edge autonomics
for energy interventions in buildings through the integration
of AI/ML models. These findings can be used for optimizing
energy usage and decision-making in real-world applications.
By considering performance metrics, such as Mean Squared
Error (MSE) and R-squared (R²), alongside execution times
across different platforms, the discussion sheds light on the
unique strengths and limitations of each environment in the
context of the building energy management framework.

A. Performance comparison

Based on data in Table 1, model selection depends on
application requirements and the resources available in each
environment. While the ANN model performs relatively well
across all environments, the choice of model may vary
depending on the trade-offs between computational
complexity, predictive accuracy and resource constraints. The
selection of a model should also consider the potential for
optimization and fine-tuning within each environment to
achieve the best possible performance. Preliminary results
highlight the importance of computing framework
considerations in the context of model performance and
execution time. The choice of a framework depends on the
specific requirements of the application, including
computational resources, scalability, and deployment
constraints. The Azure environment stands out as a reliable
and efficient option, particularly for applications requiring
scalability and reduced execution times. The Raspberry Pi
environment, despite its resource constraints, proves to be a
viable choice for scenarios where low-power and compact
computing solutions are essential. The PC environment
remains a feasible option for local computational tasks,
although it may not be the most efficient choice for resource-
intensive machine learning applications.

B. Cloud based performance analysis

The MSE measures the average of the squares of the errors
or deviations, which represents the difference between the
actual and predicted values. Lower values of MSE indicate
better performance and a closer fit to the data. Based on the
results, the ANN model has the lowest MSE of 9.295204,
followed by the RF model with an MSE of 9.506779, and the
SVM model with an MSE of 10.260298.The R² score, also
known as the coefficient of determination, represents the
proportion of the variance in the dependent variable that is
predictable from the independent variables. It provides an
indication of the goodness of fit of the model.

Higher values of R² indicate a better fit of the model to the
data. The ANN model has the highest R² score of 0.723583,
followed by the RF model with an R² score of 0.717291, and
the SVM model with an R² score of 0.694883. In the given
results, the SVM model has the lowest execution time of
0.247475 seconds, followed by the RF model with an
execution time of 0.998159 seconds, and the ANN model with
the highest execution time of 3.425744 seconds. Based on

Environ

ment

Model MSE R² Execution time

(seconds)

PC ANN 9.295204 0.723583 1.385199

SVM 10.260298 0.694883 0.203290

RF 9.506779 0.717291 0.638744

Azure ANN 9.295204 0.723583 3.425744

SVM 10.260298 0.694883 0.247475

RF 9.506779 0.717291 0.998159

Raspber
ry Pi

ANN 9.295204 0.734867 6.491278

SVM 10.260342 0.694882 0.222211

RF 9.550808 0.715982 0.651005

these results (Fig. 5), the preferred model environment would
depend on the specific priorities of the application.

FIGURE 5: MSE, R², EXECUTION TIME OF CLOUD (AZURE)

RESULTS

However, if a balance between accuracy and execution time is
required, the RF model could be a good choice, as it provides
competitive performance in terms of MSE and R² score, with
moderate execution time.

C. Traditional computing performance analysis

For this experiment, we use a regular desktop computer to
deploy the machine learning models and test their
performance metrics. The MSE values for the models are as
follows: ANN has an MSE of 9.295204, SVM has an MSE of
10.260298, and RF has an MSE of 9.506779. The ANN model
has the lowest MSE, followed by the RF model and then the
SVM model (Fig 6). The R² scores for the models are as
follows: ANN has an R² score of 0.723583, SVM has an R²
score of 0.694883, and RF has an R² score of 0.717291. The
ANN model has the highest R² score, followed by the RF
model, and then the SVM model. The execution times for the
models are as follows: ANN took 1.385199 seconds, SVM
took 0.203290 seconds, and RF took 0.638744 seconds. The
SVM model has the lowest execution time, followed by the
RF model and then the ANN model which might not be ideal
if speed is a critical factor. The SVM model has the lowest
execution time, but it has the highest MSE and a slightly lower
R² score compared to the ANN model. However, it might be
the preferred choice if time-to-execute is a critical
consideration. The RF model provides a balance between
accuracy and execution time.

FIGURE 6: MSE, R², EXECUTION TIME OF TRADITIONAL

COMPUTING SYSTEM

D. Edge computing performance analysis

For this edge computing experiment, we use a Raspberry Pi
system to deploy machine learning models and test the
associated model performance. The MSE values for the
models are as follows: ANN has an MSE of 9.295204, SVM
has an MSE of 10.260342, and RF has an MSE of 9.550808.
The ANN model has the lowest MSE, followed by the RF
model, and then the SVM model (Fig. 7). The R² scores for

the models are as follows: ANN has an R² score of 0.734867,
SVM has an R² score of 0.694882, and RF has an R² score of
0.715982. The ANN model has the highest R² score, followed
by the RF model, and then the SVM model. The execution
times for the models are as follows: ANN took 6.491278
seconds, SVM took 0.222211 seconds, and RF took 0.651005
seconds. The SVM model has the lowest execution time,
followed by the RF model. Based on these results the ANN
model has the best performance in terms of MSE and R² score,
but it has the highest execution time, which might not be ideal
if speed is a critical factor. The SVM model has the lowest
execution time, but it has the highest MSE and a slightly lower
R² score compared to the ANN model. However, it might be
the preferred choice if speed is a critical consideration. The
RF model provides a balance between accuracy and execution
time.

FIGURE 7: MSE, R², EXECUTION TIME OF EDGE (RPI)

EXPERIMENT RESULTS

The traditional computing environment (i.e., desktop PC)
highlights relatively higher Mean Squared Error (MSE) and
lower R-squared (R²) values for the Support Vector Machine
(SVM) and Random Forest (RF) models, indicating decreased
predictive accuracy compared to other settings. Notably, the
Artificial Neural Network (ANN) model exhibits superior
performance in this environment, showcasing adaptability
despite the general computational limitations. Execution
times, however, are notably longer across all models in the PC
environment, with the ANN model demonstrating the
lengthiest execution time among all environments.

To provide a meaningful baseline for evaluating the
proposed autonomic strategies, we also assessed the
performance of the machine learning models when executed
exclusively in a local computing environment (i.e., desktop
PC) without any scheduling mechanism or cross-platform
orchestration. This represents a naive scenario where tasks are
statically assigned and not adapted based on system conditions
or energy availability.

Results showed that although the ANN model achieved
the lowest Mean Squared Error (MSE = 9.29) and highest R²
(0.72), execution times remained relatively high due to lack of
resource coordination. More importantly, this baseline failed
to exploit renewable energy production periods or task
prioritization, which are key to sustainability and
responsiveness. This comparison highlights the limitations of
non-autonomic execution and validates the need for intelligent
task scheduling, as introduced in our autonomic broker and
energy-aware allocation strategies.

Based on the data analysis, the cloud environment (i.e.,
The Azure) ranks highest due to its balanced performance and
significantly reduced execution times, making it an optimal
choice for deploying the examined machine learning models.

The edge environment (i.e., Raspberry Pi) follows closely,
demonstrating competitive performance and notable
reductions in execution times despite its resource limitations.

E. Edge autonomics

In this section, the edge autonomics is used to demonstrate
how different machine learning models can be coordinated to
improve the performance of the energy optimization
application and integration with the edge. To evidence the
edge autonomics principles, we test three different scenarios:

(a) Random execution where the machine learning models are

executed randomly of the resources available in cloud,

edge and traditional computers (Fig. 8);

(b) Autonomic broker where the machine learning models are

executed using edge autonomics mechanisms presented in

Algorithm 1 (Fig. 9);

(c) Prioritization execution where the machine learning

models are executed based on the priorities of the tasks

(Fig. 10);

(d) Energy-aware allocation based on renewable production

peaks (Fig. 11);

A. Random execution - In this experiment, the execution of
ANN, SVM, and RF models in different computational
environments (cloud - Azure Cloud, Edge -Raspberry Pi, and
Traditional – PC) is performed randomly. The execution of
the machine learning models (ANN, SVM, and RF) in
different environments is indicated in the results presented in
Fig. 8. The execution time for the models vary, with the ANN
model executing in the Azure Cloud environment for
approximately 4.56 seconds, the SVM model executing in the
same Azure Cloud environment for approximately 6.26
seconds, and the RF model executing on a Raspberry Pi for
approximately 7.60 seconds. These results are followed by the
simulated performance evaluation, indicating the execution
times for each model in the specific environments where they
were executed (Fig. 8).

FIGURE 8: RANDOM SCENARIO RESULTS

B. Autonomic Broker – in this experiment the execution of
tasks is using an autonomics broker (Fig. 9), whereby specific
machine learning models ANN, SVM, and RF are assigned to
environments (cloud - Azure Cloud, Edge -Raspberry Pi, and
Traditional – PC) based on predefined autonomics rules (see
Algorithm 1).

Using an autonomics broker reflects the dynamic allocation of
machine learning tasks, encompassing the ANN, SVM, and

RF models across disparate computing environments,
specifically the Azure Cloud, Raspberry Pi, and PC. The
results demonstrate varying execution times for each model,
with the ANN model executing in the Cloud (Azure Cloud) in
5.56 seconds, the SVM model operating on the edge
(Raspberry Pi) in 7.71 seconds, and the RF model processing
on the Traditional computer (PC) in 9.84 seconds. These
findings underscore the crucial role of autonomics in task
distribution, effectively utilizing diverse computing resources
to optimize task execution and enhance overall performance
within a distributed computing paradigm (Fig. 9).

FIGURE 9: AUTONOMIC BROKER SCENARIO RESULTS

C. Prioritisation mechanisms - Employing prioritization
mechanisms delineates the allocation of machine learning
tasks, encompassing the ANN, SVM, and RF models across
distinct computing environments, each with assigned
performance rankings. The results presented in Figure 10
showcase vary execution times for each model, with the ANN
model operating in the Cloud in 1.58 seconds, followed by the
SVM model also executing in the Cloud in 3.94 seconds.
Furthermore, the RF model conducts its operations on the
edge (Raspberry Pi), reflecting an execution time in 6.15
seconds (Fig. 10).

FIGURE 10: PRIORITIZATION SCENARIO RESULTS

D. Energy aware execution - In this experiment, the
orchestrator continuously monitors the available renewable
energy, particularly solar energy, generated by the building. A
renewable energy production peak is defined as a period when
the available local solar generation exceeds 80% of the
maximum rated production capacity. While there is no
universally established threshold in the literature for defining

renewable energy peaks, the 80% level was selected in this
study as a practical and realistic operational benchmark.
Defining such a threshold enables the broker to make
deterministic scheduling decisions while aligning task
execution with dynamic energy conditions.

When energy production exceeds the 80% threshold,
computationally intensive machine learning tasks are
prioritized for immediate execution across available
computing environments, such as Azure Cloud or local PCs.
Conversely, during periods of low renewable production
(below 80%), tasks are either deferred, rerouted to low-power
edge devices such as Raspberry Pi systems, or scheduled using
the autonomic broker to minimize reliance on non-renewable
energy resources (Fig. 11).

The 80% threshold was selected as a practical operational
benchmark to capture peak solar energy periods while
avoiding premature triggering during moderate generation.
This value aligns with heuristics used in solar-aware
scheduling in recent literature [24], [25] and balances
execution performance with sustainability.

The orchestration strategy implemented in this scenario is
guided by three key considerations: (i) the real-time
availability of local renewable energy, (ii) the energy state of
any connected battery storage systems, and (iii) the criticality
and resource demand of the scheduled tasks. By integrating
real-time energy monitoring into scheduling decisions, the
system maximizes the use of clean energy while ensuring
operational efficiency. When solar energy production was at a
peak, the ANN and RF models were immediately allocated to
Azure Cloud and PC environments, achieving execution times
of 5.10 seconds and 4.75 seconds, respectively. In contrast,
during low energy production, the SVM model was deferred
and executed on a Raspberry Pi, resulting in a longer
execution time of 8.35 seconds due to the limited processing
capabilities of the device (Fig. 11).

While this study focuses on a single building, the proposed
autonomic broker is designed to scale to larger facilities and
multi-building campuses. Future work will explore
deployment in heterogeneous environments with varying
sensor densities, energy production variability, and network
constraints. Techniques such as distributed learning and
hierarchical scheduling will be investigated to maintain
performance and sustainability at scale.

FIGURE 11: EXECUTION TIME USING ENERGY-AWARE TASK

EXECUTION

These experiments collectively demonstrate the impact of
various autonomic scheduling strategies on ML task execution
efficiency and energy-conscious computing. The random
execution scenario showed the limitations of uncoordinated
scheduling, resulting in suboptimal execution times. The
autonomic broker scenario introduced rule-based decision-
making, reflecting moderate adaptability to system conditions.
Prioritization mechanisms achieved the most optimized
performance by aligning task criticality with computational
capabilities, significantly reducing execution times for high-
priority models.

In contrast, the energy-aware allocation strategy
prioritized environmental sustainability by adapting execution
decisions based on real-time renewable energy availability,
even if it occasionally incurred longer execution times.
Together, these scenarios underscore the versatility of edge
autonomics in balancing performance, resource utilization,
and energy efficiency across diverse operating contexts within
hybrid computing environments.

VII. CONCLUSIONS

The integration of machine learning models with edge
computing technology facilitates real-time data analysis,
predictive insights, and edge autonomics, ultimately
contributing to a more sustainable and energy-efficient
computing environment. In this study, four execution
strategies were systematically analyzed to assess their impact
on performance, resource utilization, and energy efficiency in
edge-enabled computing environments. The random
execution scenario revealed the inefficiencies associated with
non-deterministic task scheduling. Autonomic broker-based
scheduling improved task distribution through rule-based
decision making, while prioritization mechanisms achieved
the best performance outcomes by aligning execution order
with task criticality. Additionally, the energy-aware allocation
scenario introduced an important sustainability dimension by
dynamically adapting scheduling decisions based on real-time
renewable energy availability. Although this energy-aware
approach occasionally resulted in longer execution times for
certain tasks, it successfully minimized reliance on non-
renewable energy sources and highlighted the potential of
edge autonomics to enable green computing practices.
Overall, the findings validate the importance of multi-strategy
autonomics frameworks to optimize computing performance
and promote sustainability objectives in future computing
infrastructures.

REFERENCES

[1] M. Bertolini, D. Mezzogori, M. Neroni, and F.

Zammori, “Machine Learning for industrial

applications: A comprehensive literature review,”

Aug. 01, 2021, Elsevier Ltd. doi:

10.1016/j.eswa.2021.114820.
[2] K. Alanne and S. Sierla, “An overview of machine

learning applications for smart buildings,” Jan. 01,

2022, Elsevier Ltd. doi: 10.1016/j.scs.2021.103445.

[3] M. Parashar and S. Hariri, “Autonomic computing:

An overview,” in Lecture Notes in Computer

Science, Springer Verlag, 2005, pp. 257–269. doi:

10.1007/11527800_20.

[4] R. International Conference on Technical Informatics

(9th : 2010 : Timișoara, ICCC-CONTI 2010 : IEEE

International Joint Conferences on Computational

Cybernetics and Technical Informatics : IEEE 8th

International Conference on Computational

Cybernetics and 9th International Conference on

Technical Informatics : Timișoara, Romania, May

27-29, 2010 : proceedings. IEEE, 2010.

[5] Z. Lv, D. Chen, R. Lou, and Q. Wang, “Intelligent

edge computing based on machine learning for smart

city,” Future Generation Computer Systems, vol.

115, pp. 90–99, 2021, doi:

10.1016/j.future.2020.08.037.

[6] “Artificial Neural Networks 12.1 Introduction.”

[7] J. Kufel et al., “What Is Machine Learning, Artificial

Neural Networks and Deep Learning?—Examples of

Practical Applications in Medicine,” Aug. 01, 2023,

Multidisciplinary Digital Publishing Institute

(MDPI). doi: 10.3390/diagnostics13152582.

[8] “Era of Deep Neural Networks: A review Poonam

Sharma Akansha Singh.”

[9] S. S. K. Kwok, R. K. K. Yuen, and E. W. M. Lee,

“An intelligent approach to assessing the effect of

building occupancy on building cooling load

prediction,” Build Environ, vol. 46, no. 8, pp. 1681–

1690, 2011, doi: 10.1016/j.buildenv.2011.02.008.

[10] A. Roy and S. Chakraborty, “Support vector machine

in structural reliability analysis: A review,” Reliab

Eng Syst Saf, vol. 233, p. 109126, May 2023, doi:

10.1016/j.ress.2023.109126.

[11] P. De Boves Harrington, “Support Vector Machine

Classification Trees,” Anal Chem, vol. 87, no. 21, pp.

11065–11071, Nov. 2015, doi:

10.1021/acs.analchem.5b03113.

[12] “Comparative study of hyperspectral imagery

classification with SVM and ensemble machine

learning methods”.

[13] M. Farsi, A. Daneshkhah, A. Hosseinian-Far, and H.

Jahankhani, “Internet of Things Digital Twin

Technologies and Smart Cities.” [Online]. Available:

http://www.springer.com/series/11636

[14] S. B. Aboul, E. Hassanien, D. Gupta, and A. Khanna,

“Lecture Notes in Networks and Systems 56.”

[Online]. Available:

http://www.springer.com/series/15179

[15] S. Consul and S. Williamson, “Differentially Private

Random Forests for Regression and Classification.”

[Online]. Available: www.aaai.org

[16] B. Sethuraman and S. Niveditha, “Cerebrovascular

Accident Prognosis using Supervised Machine

Learning Algorithms,” in 2023 World Conference on

Communication & Computing (WCONF), IEEE, Jul.

2023, pp. 1–8. doi:

10.1109/WCONF58270.2023.10235122.

[17] N. Dudeni-Tlhone, O. Mutanga, P. Debba, and M. A.

Cho, “Distinguishing Tree Species from In Situ

Hyperspectral and Temporal Measurements through

Ensemble Statistical Learning,” Remote Sens (Basel),

vol. 15, no. 17, Sep. 2023, doi: 10.3390/rs15174117.

[18] Y. Qi, “Random Forest for Bioinformatics.”

[19] R. Moraes, J. F. Valiati, and W. P. Gavião Neto,

“Document-level sentiment classification: An

empirical comparison between SVM and ANN,”

Expert Syst Appl, vol. 40, no. 2, pp. 621–633, Feb.

2013, doi: 10.1016/j.eswa.2012.07.059.

[20] A. Statnikov, L. Wang, and C. F. Aliferis, “A

comprehensive comparison of random forests and

support vector machines for microarray-based cancer

classification,” BMC Bioinformatics, vol. 9, Jul.

2008, doi: 10.1186/1471-2105-9-319.

[21] “Random forest classifier for remote sensing

classification”.

[22] B. A. Hamed, O. A. S. Ibrahim, and T. Abd El-

Hafeez, “Optimizing classification efficiency with

machine learning techniques for pattern matching,” J

Big Data, vol. 10, no. 1, Dec. 2023, doi:

10.1186/s40537-023-00804-6.

[23] V. N. Pawar and S. Mini, “Energy-Aware Priority-

Based Task Scheduling for Edge Devices in Internet

of Things,” in INDISCON 2024 - 5th IEEE India

Council International Subsections Conference:

Science, Technology and Society, Institute of

Electrical and Electronics Engineers Inc., 2024. doi:

10.1109/INDISCON62179.2024.10744294.

[24] G. Perin, F. Meneghello, R. Carli, L. Schenato, and

M. Rossi, “EASE: Energy-Aware Job Scheduling for

Vehicular Edge Networks With Renewable Energy

Resources,” IEEE Transactions on Green

Communications and Networking, vol. 7, no. 1, pp.

339–353, Mar. 2023, doi:

10.1109/TGCN.2022.3199171.

[25] M. S. Aslanpour, A. N. Toosi, M. A. Cheema, and R.

Gaire, “Energy-Aware Resource Scheduling for

Serverless Edge Computing,” in Proceedings - 22nd

IEEE/ACM International Symposium on Cluster,

Cloud and Internet Computing, CCGrid 2022,

Institute of Electrical and Electronics Engineers Inc.,

2022, pp. 190–199. doi:

10.1109/CCGrid54584.2022.00028.

[26] N. Valizadeh et al., “Edge Energy Orchestration.”

[27] M. R. Mufid, A. Basofi, M. U. H. Al Rasyid, I. F.

Rochimansyah, and A. Rokhim, “Design an MVC

Model using Python for Flask Framework

Development,” in IES 2019 - International

Electronics Symposium: The Role of Techno-

Intelligence in Creating an Open Energy System

Towards Energy Democracy, Proceedings, Institute

of Electrical and Electronics Engineers Inc., Sep.

2019, pp. 214–219. doi:

10.1109/ELECSYM.2019.8901656.

[28] T. P. Bac, M. N. Tran, and Y. Kim, “Serverless

Computing Approach for Deploying Machine

Learning Applications in Edge Layer,” in

International Conference on Information

Networking, IEEE Computer Society, 2022, pp. 396–

401. doi: 10.1109/ICOIN53446.2022.9687209.

[29] International Conference on Advances in

Information Mining and Management 6. 2016

Valencia et al., IMMM 2016 the Sixth International

Conference on Advances in Information Mining and

Management : DATASETS 2016 : the International

Symposium on Designing, Validating, and Using

Datasets : May 22-26, 2016, Valencia, Spain.

[30] D. Pop, “Machine Learning and Cloud Computing:

Survey of Distributed and SaaS Solutions,” Mar.

2016, [Online]. Available:

http://arxiv.org/abs/1603.08767

[31] V. Goyal, R. Das, and V. Bertacco, “Hardware-

friendly User-specific Machine Learning for Edge

Devices,” ACM Transactions on Embedded

Computing Systems, vol. 21, no. 5, Oct. 2022, doi:

10.1145/3524125.

[32] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar,

and R. Teodorescu, “Adaptive parallel execution of

deep neural networks on heterogeneous edge

devices,” in Proceedings of the 4th ACM/IEEE

Symposium on Edge Computing, SEC 2019,

Association for Computing Machinery, Inc, Nov.

2019, pp. 195–208. doi: 10.1145/3318216.3363312.

[33] J. Beyerer, A. Maier, and O. Niggemann, “Machine

Learning for Cyber Physical Systems Technologien

für die intelligente Automation Technologies for

Intelligent Automation.” [Online]. Available:

http://www.springer.com/series/13886

[34] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z.

Zhang, “Hardware for Machine Learning: Challenges

and Opportunities,” Dec. 2016, doi:

10.1109/CICC.2017.7993626.

[35] R. Sterritt and D. Bustard, “Towards an autonomic

computing environment,” in Proceedings -

International Workshop on Database and Expert

Systems Applications, DEXA, Institute of Electrical

and Electronics Engineers Inc., 2003, pp. 694–698.

doi: 10.1109/DEXA.2003.1232103.

[36] R. Van Renesse and K. P. Birman, “Autonomic

Computing-A System-Wide Perspective *.”

[37] P. Mittal, S.-125 Noida, A. Singhal, and A. Bansal,

“A Study on Architecture of Autonomic Computing-

Self Managed Systems,” 2014. [Online]. Available:

http://www.research.ibm.c

[38] D. Preuveneers, I. Tsingenopoulos, and W. Joosen,

“Resource usage and performance trade-offs for

machine learning models in smart environments,”

Sensors (Switzerland), vol. 20, no. 4, Feb. 2020, doi:

10.3390/s20041176.

[39] by Josep Lluís Berral García Advisors and J. Torres

Viñals Ricard Gavaldà Mestre, “Improved Self-

management of DataCenter Systems Applying

Machine Learning.”

[40] A. Fanariotis, T. Orphanoudakis, K. Kotrotsios, V.

Fotopoulos, G. Keramidas, and P. Karkazis, “Power

Efficient Machine Learning Models Deployment on

Edge IoT Devices,” Sensors, vol. 23, no. 3, Feb.

2023, doi: 10.3390/s23031595.

[41] S. Iman Mirzadeh and H. Ghasemzadeh, “Optimal

Policy for Deployment of Machine Learning Models

on Energy-Bounded Systems.”

