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Hybrid tri-level optimal sizing of hydrogen storage 

for addressing long-term seasonal fluctuation of RES 
Qianwen Hu, Gengfeng Li, Bingkai Huang, Qiming Yang, Siyuan Sun,  

Zhaohong Bie, Jianzhong Wu, Yue Zhou, Yiheng Bian 
 

 Abstract—Time-varying renewable energy sources (RES), 

influenced by climate conditions, create seasonal power 

mismatches. Allocation of hydrogen energy storage (HES) can 

mitigate long-duration seasonal power mismatch caused by load 

variation, climate variability and seasonal meteorological 

conditions. However, one single uncertainty set cannot well 

consider the characteristics of RES uncertainty in different 

seasons impacted by long-term climate conditions. To address the 

above challenges and optimally size and allocate HES in power 

systems, this paper proposes a hybrid tri-level planning 

framework that integrates RES interannual long-term and 

seasonal fluctuation, using a combination of distributionally 

robust optimization (DRO) and adaptive robust optimization 

(ARO). Specifically, a RES probability distribution ambiguity set 

under typical climate conditions is constructed using norm 

constraints, and data-driven DRO is introduced to address RES 

long-term uncertainty. RES seasonal uncertainty is then 

adaptively modelled using multiple uncertainty sets based on the 

seasonal meteorological characteristics of RES, and ARO is 

proposed to reformulate the lower-level problem for the worst-

case scenarios. The proposed framework is solved using the 

improved column and constraint generation algorithm (C&CG) 

with duality-free decomposition. Simulations on IEEE 39-bus 

system and IEEE 118-bus system confirm the effectiveness of the 

proposed planning framework and solution algorithm. 

 

Index Terms—hydrogen energy storage (HES); power systems; 

long-term seasonal uncertainty; optimization planning; robust 

optimization; climate adaptability. 

NOMENCLATURE 

Abbreviations 

HES Hydrogen energy storage. 

HT Hydrogen tank. 

P2H Electrolyzer for hydrogen generation. 

FC Fuel cell for power generation. 

LU Long-term uncertainty of RES. 

SU Seasonal uncertainty of RES. 

Sets and Indices 

( , )i j  Set of line indices ( , )i j . 

 i  Set of node indices i . 
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/ /  Set of nodes with HES/RES/TG. 

 t  Set of time indices t . 
 d  Set of natural day indices  d . 

 s  Set of typical day scenario indices s . 

 n  Set of representative long-term RES 

scenario n . 

Parameters 

EC  Unit investment cost of HT ($/kg H2). 

P2H FC
P P/C C  Unit investment cost of P2H/FC ($/MW). 

/w ic c  Penalty ($/MWh) of RES/Load curtailment. 

su sd/ /g g gc c c  
Generation cost ($/MWh)/start-up ($)/shut-

down cost ($) of TG unit  g . 
W Load/w iP P  Output power (MW) of RES unit w /Load 

demand (MW) of node i . 

max/l lx P  
Reactance/maximum capacity (MW) of line 

l . 

max min/i i  Maximum/minimum phase angle of node i . 

max min/g gP P  
Maximum/minimum output power (MW) of 

TG unit  g . 

/U D
g gR R  

Upward/downward ramping limit (MW) of 

TG unit  g .  

/SU SD
g gR R  

Maximum output power (MW) of TG unit  g  

at start-up/shut-down state. 

0
np  

Original probability of representative RES 

scenario n . 

Variables 

np  
Probability of representative RES scenario 

n . 

, , ,i t s n  Uncertainty power of node i  at time t  
under typical day s  of representative RES 

scenario n . 

iS  HES planning capacity (MW) at node i . 

W
, , ,w t s nP  

Power curtailment (MW) of RES unit w  at 

time t  under typical day s  of 

representative RES scenario n . 

Load
, , ,i t s nP  Load curtailment (MW) of node i . 

G
, , ,g t s nP  Output power (MW) of TG unit  g . 

G,r
, , ,g t s nP  

Adjustable variable representing reserve 

capacity (MW) of TG unit  g . 

P2H,Cha
, , ,i t s nP  

Charge power (MW) of HES unit i  at 

time t  under typical day s . 
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FC,Dis
, , ,i t s nP  

Discharge power (MW) of HES unit i  at 

time t  under typical day s . 

FC,r
, , ,i t s nP  

Adjustable variable representing reserve 

capacity (MW) of FC unit i . 
FC G
, , , , , ,/i t s n i t s n  

Non-negative continuous variables to 

indicate participation factor of node i . 

, , ,i t d nSOC  
Hydrogen (kg H2) stored in the tank of HES 
i  at time t  under natural day  d . 

inter
, , ,i t d nSOC  Inter-day component of SOC. 

intra
, , ,i t s nSOC  Intra-day component of SOC 

, , ,l t s nP  Power flow (MW) of line l . 

, , ,i t s n  Phase angle of node i . 

ix  
Binary variable indicating whether HES is 

allocated at node i  (1) or not (0). 

, , ,g t s nI  
Binary variable indicating online state (1) 

or offline state (0) of TG unit  g . 

, , , , , ,/g t s n g t s nU D  Binary variable indicating start-up state or 

shut-down state of TG unit  g . 

I. INTRODUCTION 

limatic conditions greatly affect the power 

generation of renewable energy sources (RES) across 

all timescales, with long-term and seasonal effect 

included. Long-term climate uncertainty causes interannual 

variability of photovoltaic power generation (PV) ranges from 

6% to 17%, and that of wind power generation ranges between 

3% and 9% [1]. Besides the impact of long-term climate 

uncertainty, RES also follow the seasonal meteorological 

characteristics, wind speed exhibits greater fluctuation in 

winter, while solar irradiance varies most in summer [2]. With 

the increase of RES in power systems to promote low-carbon 

goals, these climate-driven and time-varying energies raise a 

huge concern on long-duration seasonal “energy droughts”. 

RES seasonal fluctuation results in power shortage risk during 

summer and winter, while a large share of RES curtailment 

occurs in spring and autumn, nearly 70% in China [3]. In 

addition, long-duration extreme power shortage events, such 

as extreme high temperature in Sichuan of China 2022 and the 

dark doldrum event of three days in Germany 2023, also show 

an uptrend under long-term climate change [4]. Addressing the 

fluctuation of climate-driven RES means that flexibility 

resources will be needed to varying extents throughout the 

year, even on a week-to-week or month-to-month basis. For 

power system designing with high proportion RES, long-

duration seasonal storage of excess RES to realize seasonal 

regulation will be essential to enhance climate adaptability [5]. 

It is estimated that 8 TW long duration energy storage is 

needed for global power systems by 2040 with a market 

potential of $4 trillion [6]. Hydrogen energy storage (HES), as 

a long duration energy storage, has outstanding advantages in 

energy and time dimensions [7]. The storage scale is large (1 

million kilowatts level) and the duration time is long (cross-

season). Excess RES can be used for hydrogen production and 

storage. While power supply is insufficient, hydrogen can be 

converted into electricity by fuel cells, hydrogen fired power 

plants or other means. HES will play an important role and 

show an exponential growth in renewable-dominated power 

systems to address RES seasonal fluctuations [8]. Therefore, 

reasonable planning of HES in power systems, considering the 

compounding effects of climate variability and seasonal 

meteorological conditions on RES uncertainty over time, is of 

great significance to mitigate long-duration seasonal supply-

demand mismatch risks. 

Currently, many studies focus on HES planning methods to 

address seasonal power mismatch in power systems. Different 

from short-duration energy storage planning, which is based 

on typical days with only daily cycle of state of charge (SOC) 

modelled, HES has long-duration cross-season regulation role, 

so that a whole yearly SOC cycle needs to be considered. For 

HES optimization planning in power systems, the difficulty is: 

1) the HES operation requires considering energy coupling 

relationship between different days and long-duration storage 

cycle of a whole year, posing a challenge to the modelling and 

solving of the optimization problem. 2) HES needs to realize 

cross-season regulation, characterizing long-term seasonal 

fluctuation of RES, which is also challenging. 

Some studies [9]-[13] describe RES seasonal fluctuation by 

typical days, and the HES model based on typical days is 

formulated, with the SOC operation relationship between 

different typical days considered. Specifically, ref. [9] 

proposes a HES model based on two typical days (RES 

abundant and poor day), and a stochastic optimization (SO) 

method is used to address RES uncertainty. Ref. [10] proposes 

a scenario generation and cluster method based on eigenvalues 

to select typical days for considering uncertainty. Ref. [11] 

proposes a cross-regional HES planning model considering 

uncertainty by a distributionally robust optimization (DRO) 

method. Moreover, a two-layer HES model is proposed to 

describe long-duration operation relationship in [12], [13]. The 

inter-day layer describes SOC relationship between different 

typical days. To address the uncertainty of RES, robust 

optimization (RO) and SO are proposed in [12], [13]. 

The HES models in above studies describe the SOC 

coupling relationship between different typical days, which 

ensure SOC continuity among the selected typical days. 

However, it is difficult for HES models based on typical days 

to simulate long-duration dynamics of hydrogen storage in a 

whole yearly cycle, and it is difficult for using typical days to 

describe the interannual long-term uncertainty. Therefore, ref. 

[14] proposes a HES model based on an 8760-hour time series 

in power systems planning. The inventory change of HES 

between different days and months in a year is modeled. 

Nevertheless, considering the operation of 8760 hours causes 

the model to be too large and time-consuming in solution. To 

reduce the computational burden, ref. [15] proposes a convex 

relaxation-based planning model using 8760-hour yearly data 

for hydrogen-based microgrids. Ref. [16] proposes a HES 

model using the uniform hierarchical time discretization 

method. Ref. [17] proposes a least-square-based scenario 

approximation method to reformulate scenarios based on 

multiple timescales’ fluctuation characteristics decomposed 

from the 8760h data, and a HES planning model in microgrids 

C 
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is formulated based on the approximation scenarios. Ref. [3] 

and [18] propose to decouple the 8760-hour SOC into inter-

day and intra-day components for HES optimization planning 

to reduce the computational burden. In [14]-[18], the whole 

yearly continuity of SOC is ensured. In addition, ref. [3] and 

[16] further consider the long-term uncertainty of RES by the 

SO method. 

In summary, most of the existing studies focus on the 

difficulty in HES modelling caused by multi-timescale 

planning in microgrids or power distribution systems level. 

For RES uncertainty, the existing methods use RO [12], SO 

[3] [9] [13] [16] or DRO [11] methods, by formulating a 

single uncertainty set to describe RES uncertainty. However, 

RES uncertainty usually exhibits different characteristics in 

different seasons due to seasonal meteorological conditions, a 

single uncertainty set cannot precisely characterize the 

seasonal fluctuation degrees of RES [19]. Therefore, seasonal 

uncertainty needs to be further modelled, seasonal uncertainty 

in this paper refers to the difference in the fluctuation degrees 

of RES in different seasons of a year due to seasonal 

meteorological conditions. Besides seasonal uncertainty, RES 

supply is also strongly impacted by long-term climate 

conditions, the research of CMIP6 show that long-term 

climate uncertainty causes huge interannual variability of RES 

[20]. Long-term climate uncertainty in this paper refers to the 

interannual variability of RES output power from year to year 

due to climate variability. Ref. [21]-[22] analyze power 

mismatch risks under climate change and underline the 

importance of considering long-term climate variability in 

power systems planning. Ref. [23]-[24] model long-term 

extreme events and long-term temperature uncertainty 

influenced by climate variability in transmission defense 

planning and zero energy buildings planning. For HES, it can 

achieve seasonal storage, providing a flexible and resilient 

solution to address long-term seasonal fluctuations of RES, 

thus enhance the climate adaptability of power systems. 

Therefore, in HES planning, long-term seasonal uncertainty of 

RES impacted by the compounding effects of long-term 

climate variability and seasonal meteorological conditions 

over time must be further considered. 

Motivated by the above challenges and considering the 

correlations between long-term and seasonal uncertainty of 

RES, the main idea of this paper is to combine long-term 

seasonal uncertainty in HES planning by a hybrid DRO-ARO 

(adaptive robust optimization) method. DRO is used to deal 

with long-term uncertainty of RES and find the worst 

distribution of long-term uncertainty. Then, RES seasonal 

uncertainty is adaptively modelled as multiple uncertainty sets 

according to seasonal characteristics. ARO is used to 

transform seasonal uncertainty problem as a deterministic 

model for the worst-case reformulation to deal with seasonal 

uncertainty. Because long-term climate variability is difficult 

to characterize, the proposed hybrid DRO-ARO method 

makes robust planning decisions for HES under the worst-case 

scenarios of long-term seasonal uncertainties, enhancing the 

adaptability to long-term climate variability and seasonal 

meteorology. The main contributions of this paper are as below: 

1) To address long-term seasonal uncertainty of RES, a 

tri-level optimization planning framework for HES in 

power systems is proposed, where a hybrid DRO-

ARO method is introduced to manage long-term 

seasonal fluctuation of RES caused by climate 

variability and seasonal meteorological conditions. 

2) A novel uncertainty set is established based on the 

multi-year datasets to capture and model long-term 

seasonal uncertainty of RES. Firstly, the ambiguity 

set for long-term RES uncertainty is constructed from 

interannual historical datasets using norm constraints. 

Then, based on the realization of long-term 

uncertainty, seasonal uncertainty sets are adaptively 

modelled according to the seasonal characteristics of 

RES prediction error distributions. 

3) Considering the integration of long-term seasonal 

uncertainty increases the complexity in model-

solving. An improved C&CG algorithm, by 

leveraging adaptive robust reformulation alongside 

parallel computation of duality-free decomposition, is 

applied to solve the proposed tri-level planning 

model, which mitigates the computational burden and 

enables an efficient solution process. 

The remainder of this paper is organized as follows. Section 

II illustrates the conceptual planning framework and long-term 

seasonal uncertainty modelling methods. Section III provides 

the mathematical formulation of the hybrid tri-level DRO-

ARO planning model. Section IV introduces the solution 

algorithm. Section V presents numerical experiments on the 

test systems. Finally, Section VI concludes the full paper. 

II. CONCEPTUAL FRAMEWORK 

In this section, the conceptual framework of the proposed 

hybrid tri-level DRO-ARO planning model is introduced. Then, 

RES long-term seasonal uncertainty sets are modelled. 

 
Fig. 1. The structure of power systems with HES. 

The main problem we focus on in this paper is how to 

reasonably allocate HES in powers systems to address long-

term seasonal fluctuations of RES. The structure of power 

systems where HESs are applied is shown in Fig. 1. In power 

sources of power systems with high proportion of RES, RES 

influenced by climate conditions are gradually replacing 

traditional synchronous generators, which will lead to seasonal 

mismatch between supply and demand. The allocation of HES 

can realize seasonal regulation by balancing RES output with 

load demand. The structure of HES which consists of 
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electrolyzers (P2H) for power-to-hydrogen production, 

hydrogen tanks (HT) for hydrogen storage and fuel cells (FC) 

for power generation using hydrogen. During off-peak periods 

with excess RES output, surplus energy is utilized for 

hydrogen production and storage. Then, the stored hydrogen is 

converted into electricity to achieve cross-season regulation 

when RES supply is insufficient during peak demand periods. 

A. Hybrid Tri-level HES Planning Framework 

Firstly, the seasonal-trend decomposition using loess (STL) 

algorithm is used to capture seasonal fluctuation 

characteristics of RES according to [17]. STL is a common 

algorithm for decomposing a time series into trend, seasonal 

and irregular components [25], as given by:  

 
IrregularTrend Seasonal

W W W WT T T T  (1) 

For time series such as RES output power WT  with random 

noise, trend and seasonal component describing seasonal trend 

can be extracted. In this way, the seasonal fluctuations can be 

preserved for reliable HES planning. 

 
Fig. 2. Tri-level HES planning framework. 

Based on the trend and seasonal component of RES, the 

framework of tri-level planning model for HES is shown in 

Fig. 2. ARO is to address seasonal uncertainty and reformulate 

the lower-level seasonal uncertainty problem as a 

deterministic model for the worst case. The data-driven DRO 

method is used to address long-term uncertainty in the middle 

level and the ambiguity set of RES long-term uncertainty is 

constructed using norm constraints. Specifically, the three 

levels as shown in Fig. 2 are described as below: 

1) Upper Level: the upper level makes “here and now” 

planning decisions for HES allocation and capacity with the 

objective function to minimize HES annual investment. 

2) Middle Level: the middle level constructs the ambiguity 

sets of RES long-term uncertainty and try to find the worst 

distribution using DRO method, with the aim to ensure HES 

planning results adapt to long-term climate variability. 

3) Lower Level: the lower level makes “wait and see” 

robust operation decisions using ARO method, with the 

objective function of minimizing power system annual 

operation costs under the worst case of RES seasonal 

uncertainty to ensure HES planning results adapt to the impact 

of seasonal meteorological conditions. 

The upper-level HES planning decisions are made based on 

the operation simulation of the middle and the lower level. 

The middle level accepts interannual historical information of 

RES and deals with RES long-term uncertainty using DRO 

method. In the lower level, based on the worst realization of 

long-term uncertainty determined in the middle level, seasonal 

uncertainty sets are then overlaid to make robust operation 

decisions using ARO method. Then, the operation strategy of 

the lower-level feed back to the upper-level and the middle 

level for iteratively solution. 

B. RES Long-term Uncertainty Set Modelling 

 
Fig. 3. Illustration of long-term seasonal uncertainty set. 

As shown in Fig. 3, RES long-term uncertainty set is 

modelled and considered in the middle level. RES long-term 

uncertainty refers to RES variations occurring over multiple 

years caused by climate variations. To make HES planning 

results adapt to climate variability, RES interannual long-term 

historic datasets N0 are used and reduced to representative 

scenarios N by scenarios reduction technology to represent 

RES scenarios of yearly output power under typical climate 

conditions. A realization of representative RES scenario n is 

utilized to simulate the impact of RES long-term uncertainty 

(LU) induced by climate variations. Specifically, in this paper, 

5 representative scenarios of 8760-hour RES series obtained 

from interannual long-term historic datasets are used to model 

RES long-term uncertainty. The scenario reduction techniques 

used in our research are k-means clustering algorithm and 

simultaneous backward reduction (SBR) algorithm in our 

previous work [26]. And the elbow method is used to 

determine the optimal number of representative scenarios N, 

while statistical validation further ensures the 

representativeness of the selected scenarios, thereby 

guaranteeing the effectiveness of uncertainty modeling. Then, 

considering the uncertainty and variability of long-term 

climate conditions, the first max in the middle level is treated 

as an uncertain variable of the probability distribution of 

representative RES scenarios to address RES long-term 

uncertainty caused by climate variability using a data-driven 

DRO method. The ambiguity set of the probability 

distribution of RES representative scenarios is constructed by 

1  norm and  norm constraints in the middle level. Norm 

constraints allow uncertain probability distribution to fluctuate 

within a pre-defined confidence set. That is, at a given 

confidence level, the obtained HES planning results can 

guarantee to cover all possible probability distributions. 

 [0,1] 1n

n

p p  (2) 

 0
1[0,1] n n

n

p p p  (3) 

 0[0,1] max ,n np p p n  (4) 

Upper Level: Planning decisions
Lower Level: Seasonal uncertainty

(ARO)
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Scheme

Min: Total investment and operation costs Max: Worst-case seasonal uncertainty realization

Decision variables: HES allocation and capacity Decision variables: Seasonal uncertainty 
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S2

S3

Min: Typical day operation costs
Decision variables: Operation 
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Middle Level: Long-term uncertainty
(DRO)
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dispatch
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Uncertainty None

Scenario Probability
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…
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Single uncertainty set 
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Representative RES scenario n
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o
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r
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 1 0
1

2
ln

12

N N

N
 (5) 

 
0

2
ln

12

N N

N
 (6) 

Constraint (2) states the sum of the probability of RES 

scenarios is equal to 1. 1  norm constraint (3) and  norm 

constraint (4) limits the total and maximum fluctuation degree 

of the probability distribution of representative RES scenarios, 

respectively. By parameter 1  and , the uncertainty 

degree can be further optimized, specifically, as the 

parameters 1  and increase, the uncertainty become 

higher, thereby enhancing the robustness of the planning 

results. The value of 1  and  is obtained in (5)-(6) 

according to [27], where 1  and  are pre-given 

confidence level parameters. 

C. RES Seasonal Uncertainty Set Modelling 

RES seasonal uncertainty set is modelled and considered in 

the lower level based on a realization of RES long-term 

uncertainty. RES seasonal uncertainty refers to RES variations 

occurring within a single year, associated with natural 

seasonal cycles (winter, spring, summer, fall). In this paper, 

the average prediction error distribution of RES in different 

seasons is used to model RES seasonal uncertainty. 

Specifically, RES seasonal uncertainty is modeled adaptively 

as multiple uncertainty sets according to RES seasonal 

characteristics, and then are overlaid on the representative 

RES scenarios of long-term uncertainty. Compared with using 

a single uncertainty set (the area between red and green 

dashed lines in Fig. 3) to describe the possible fluctuation 

degrees of RES in different seasons, the seasonal uncertainty 

set in this paper can avoid conservative planning results in 

some seasons or inadequate adaptation of planning results to 

RES uncertainty in other seasons. For seasonal uncertainty set 

modelling, each representative RES scenario has 8760-hour 

data of output power and the typical day scenarios S1, S2, S3…, 

SS0 can be obtained using the scenarios reduction technology 

[26]. For different typical days S1, S2, S3…, SS0, RES seasonal 

uncertainty set is modelled according to the seasonal 

characteristics of RES prediction error distribution. According 

to the affine relationship, the original S0 typical day scenarios 

under a typical RES long-term uncertainty scenario LUn 

become S=4S0 (SU1, SU2, SU3…, SUS) after considering RES 

seasonal uncertainty. The proposed seasonal uncertainty set  

is shown in (7)-(8), where j  represents the average 

prediction error in different season j according to [28]. Hence, 

the uncertainty set {LU1-SU1, LU1-SU2, LU1-SU3…, LU1-SUS} 

can represent a realization of RES seasonal uncertainty under 

a typical climate condition. Different realization of LUn-SUs 

simulates RES long-term seasonal uncertainty impacted by 

climate variability and seasonal meteorological conditions. 

 0 0 0 0

W W W W W
, ,, , , , , , , ,W

, ,

,

, ,

w w
j w t s jw t s w t s w t s w t s

w t s

P P P P P
P

w t s
(7) 

 0 0 0 0

Load L Load Load Load L Load
, ,Load , , , , , , , ,

, ,

,

, ,
j i t s ji t s i t s i t s i t s

i t s

P P P P P
P

i t s
(8) 

 
W Load

, , , , , ,
, ,

,

, ,
i t s w t s i t s

i t s

P P

i t s
 (9) 

 0 0

max W L Load
, , , , , ,max

, ,

       ,

, , ,

w
i t s j jw t s i t s

i t s

P P

w i t s
(10) 

 0 0

min W L Load
, , , , , ,min

, ,

       ,

, , ,

w
i t s j jw t s i t s

i t s

P P

w i t s
(11) 

Constraints (7)-(8) represent the uncertainty output power 

of RES W
, ,w t sP  and the uncertainty load demand L

, ,i t sP . 

Constraint (9) represents the total uncertainty degree of 

different nodes, which includes both the uncertainty of RES at 

node i and the uncertainty of load demand at node i. The 

maximum /minimum uncertainty value of node i is obtained in 

(10)-(11), where max
, ,i t s  and max

, ,i t s represent the maximum and 

minimum uncertainty degree of node i. 

Then, the second max in the lower level uses the ARO 

method to address the seasonal uncertainty of RES. ARO 

introduces adjustable variables in operation decision stage, 

aiming to find the optimal safe operation solution to avoid the 

possible constraints violation under the worst case of seasonal 

uncertainty set. The adjustable variables represent “wait-and-

see” decisions which can adjust themselves to actual RES 

output power in different seasons. The specific modeling 

process of ARO is described in Section IV. 

III. TRI-LEVEL PLANNING MODEL FORMULATION 

A. Objective function of the proposed tri-level model 

The objective function (12) of the proposed tri-level model 

is to minimize the sum of annual HES investment costs and 

operation costs under the worst-case of long-term and seasonal 

uncertainty sets, which are shown in (13)-(20). 

 inv opemin max{ [max min ( )]}
n

n s
p

n s

C p p C s
x y

(12) 

 
E P

inv inv invC C C  (13) 

 E
inv E

l i
i

i

H S
C CRF C x

LHV
 (14) 

 P FC P2H
inv P Pi i i i

i i

C CRF C x S CRF C x S (15) 

 
(1 )

(1 ) 1

x

x

T

T

r r
CRF

r
 (16) 

 ope w g u( ) ( ) ( ) ( )C s C s C s C s  (17) 

 
W Load

w , , , , , ,( ) w w t s n i i t s n
t t iw

C s c P c P  (18) 

 
G

g , , ,( ) g g t s n
t g

C s c P  (19) 
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su sd

u , , , , , ,( ) ( )g g t s n g g t s n
t g

C s c U c D (20) 

The investment costs include storage devices and power 

devices cost, which is shown as (13). Equation (14) calculates 

the investment cost of HT. Equation (15) calculates 

investment costs of P2H and FC. Equation (16) is the capital 

recovery factor to calculate annual investment cost based on 

the device lifetime xT . The operation costs of typical day s 

under typical long-term RES scenario n consist of RES and 

load curtailment penalty cost, thermal generation fuel cost and 

thermal generation start-up/shut-down cost, which are 

calculated in (18)-(20), respectively.  is the conversion 

coefficient of equivalent annual cost and sp  is the probability 

of typical day scenario s under representative RES scenario n. 

B. Constraints of the proposed tri-level model 

1) HES planning and investment constraints: HES planning 

and investment constraints limit HES number and capacity. 

Specifically, constraint (21) limits the number of HESs 

allowed to be installed, where HESN  is the maximum 

planning numbers for HES. Constraints (22) limits the P2H 

and FC capacity installed at node i. 

 HESi
i

x N  (21) 

 
min max

i i i i ix Cap S x Cap  (22) 

2) HES operation constraints: HES storage operation 

constraints are modelled as (23)-(31) according to [3], [18]. 

The SOC of HES is decomposed into inter-day and intra-day 

component in (23). Intra-day constraint in (24) describes SOC 

relationship during the typical intraday period to reduce 

computational burden where  is the efficiency of 

charging/discharging, while inter-day constraints in (25) 

describe SOC relationship between adjacent natural days to 

keep SOC continuity in a whole yearly cycle. Equation (26) 

limits the initial value of intra-day SOC should be equal to 0. 

Equation (27) is the energy balance constraint of HES in a 

yearly cycle, which limits the SOC of initial and final state 

should be equal. Equation (28) limits the charge power of P2H 

cannot exceed the planning capacity. To address RES seasonal 

uncertainty, HES needs to provide a certain reserve capacity. 

Equations (29)-(30) limit that the discharge power and reserve 

capacity of HES cannot exceed the planning capacity. 

Equation (31) limits the lower and upper hydrogen stored in 

HES, minsoc  and maxsoc  are set as 0.05 and 0.95 similar to 

battery storage for safety purpose. lH  is the duration time of 

HES (720 hours in this paper) [3] and LHV is the low heating 

value of hydrogen (kWh/kg H2). 

 
inter intra

, , , , , , , ( ),i t d n i d n i t s d nSOC SOC SOC (23) 

 

intra intra
, 1, ( ), , , ( ),

P2H,Cha FC,Dis FC,rCha
, , ( ), , , ( ), , , ( ),

Dis
{ ( )}

i t s d n i t s d n

i t s d n i t s d n i t s d n

SOC SOC

P P P

LHV LHV

(24) 

 
inter inter intra
, 1, , , ,T, ( ),i d n i d n i s d nSOC SOC SOC  (25) 

 
intra
,1, ( ), 0i s d nSOC  (26) 

 inter inter
,1, ,D,i n i nSOC SOC  (27) 

 
P2H,Cha
, , ( ),0 ii t s d nP S  (28) 

 
FC,Dis FC,r
, , ( ), , , ( ), ii t s d n i t s d nP P S  (29) 

 
FC,Dis FC,r
, , ( ), , , ( ), 0i t s d n i t s d nP P  (30) 

 min , , , maxsoc socl i i t d n l iH S LHV SOC H S (31) 

HES has cross-season regulation, so the consideration of a 

whole yearly SOC cycle is essential. As Fig. 4 shows, based 

on the representative RES scenarios with 8760-hour output 

power series and the affine relationship, the intra-day hourly 

operation is considered within typical days, which are 

obtained by scenarios reduction technology [26]. The inter-

day daily operation is considered in the natural days, and the 

intra-day hourly operation constraints of different natural days 

can be described by the typical days, where  describes the 

affine relationship function of natural day d to typical day s. 

For example, if Day 2 and Day 4 are classified into the cluster 

of typical day scenario S1, and then HES operation constraints 

are decomposed into inter-day component inter
,2,i nSOC , 

inter
,4,i nSOC and intra-day component intra

, ,1,i t nSOC , which reduce 

the computational burden and simulate the continuity dynamic 

behaviour of hydrogen storage in a whole yearly cycle. 

 
Fig. 4. The SOC of HES modelling illustration. 

3) Thermal power unit commitment constraints: Thermal 

power units should also provide reserve capacity to address 

RES seasonal uncertainty. Thermal power unit commitment 

should meet ramping limit, maximum/minimum power output 

limit, and on/off limit. Equations (32)-(33) limit the lower and 

upper output of thermal power unit g. Equations (34)-(35) are 

ramping constraints of thermal power unit g. Equations (36)-

(37) formulate up and down state constraints of thermal power 

unit g. Equations (38)-(39) limit the minimum on/off time 

, ,/on g off gT T  of thermal power unit g, respectively. 
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G,rG max

, , , , , ,, , ,g t s n g t s n gg t s nP P I P  (32) 

 G,rG min
, , , , , ,, , ,g t s n g t s n gg t s nP P I P  (33) 

 G G U SU
, 1, , , , , , , , , , ,g t s n g t s n g g t s n g g t s nP P R I R U  (34) 

 G G D SD
, , , , 1, , , 1, , , , ,g t s n g t s n g g t s n g g t s nP P R I R D  (35) 

 , , , , , , 1g t s n g t s nU D  (36) 

 , , , , , , , 1, , , , ,g t s n g t s n g t s n g t s nU D I I  (37) 

 
on,

, , , on, , , ,
1

gt T

g s n g g t s n
t

I T U  (38) 

 
off ,

, , , off, , , ,
1

(1 )
gt T

g s n g g t s n
t

I T D  (39) 

4) Power system operational constraints: The power system 

operation should meet power flow and power balance 

constraints. Equation (40) formulates the power balance of 

node i at time t under typical day s. Equation (41) calculates 

the power flow of transmission line l at time t under typical 

day s based on the DC power flow. Equations (42)-(43) limit 

the lower/upper power flow of line l and angle of node i, 

respectively. 

 

FC,Dis P2H,ChaW W G
, , , , , , , , ,, , , , , ,

Load Load
, , , , , , , , , , , ,

( ) ( )

LE LS
i i

w t s n w t s n g t s ni t s n i t s n

l t s n l t s n i t s n i t s n

l l

P P P P P

P P P P (40) 

 , , , , , , , , ,( )/
LS LE
l l

l t s n i t s n j t s n l

i j

P x  (41) 

 
max max

, , ,l l t s n lP P P  (42) 

 
min max

, , ,i i t s n i  (43) 

5) Carbon emission limit constraints: To meet the needs of 

low-carbon development, thermal power units need to meet 

carbon emission limit [29]. Specifically, constraint (44) limits 

the total carbon emission of thermal power unit should not 

exceed the total carbon emission rights CER , where g  is the 

emission coefficient of thermal power unit g. 

 
G,rG

, , , , , ,( )g g t s n g t s n
tg

P P CER  (44) 

6) Robust constraints: to address the seasonal uncertainty of 

RES, thermal power unit and HES provide a certain amount of 

reserve capacity. The participation factor method [30] is used 

to optimize reserve capacity. Equation (45) formulates the sum 

of participation factors of node i should be equal to 1. 

Constraint (46) limits the range of participation factor belong 

to [0,1]. Equations (47)-(48) suggest thermal power unit and 

HES must provide a certain amount of reserve capacity to meet 

the seasonal uncertainty ( min max
, , , , , , , , ,[ , ]i t s n i t s n i t s n ). 

g
iA  is the 

element of thermal generation unit-node incidence matrix. 

 FC G
, , , , , , 1i t s n i t s n

i i

 (45) 

 
FC G
, , , , , ,0 , 1i t s n i t s n  (46) 

 G,r G,rG
, , , , , ,, , , , , ,

g g
i t s n i t s ng t s n g t s ni i

ig g

A P A P (47) 

 
FC,r FC,rFC

, , , , , ,, , , , , ,i t s n i t s ni t s n i t s n
i

P P  (48) 

IV. SOLUTION PROCEDURE AND ALGORITHM 

In this section, the solution procedure of the proposed 

hybrid tri-level DRO-ARO model by using the improved 

C&CG algorithm by leveraging adaptive robust reformulation 

alongside parallel computation of duality-free decomposition 

method is presented. C&CG algorithm terminates in a finite 

number of iterations, which has been proved in [31]. The final 

model is a MILP problem, which can be expressed in a 

compact form as bellows: 

 inv opemin max{ [max min ( )]}
n

n s
p

n s

C p p C s
x y

(49) 

 Ax b. . s t  (50) 

 p D  (51) 

 Ex Fy g  (52) 

 Hx Iy Ju q  (53) 

where equation (50) represents HES planning constraints 

including (21)-(22); Equation (51) represents RES long-term 

uncertainty constraints including (2)-(6); Equation (52) 

represents the operation constraints including (23)-(44). 

Equation (53) represents robust constraints (7)-(11), (45)-(48) 

to address the seasonal uncertainty of RES. 

A. ARO Reformulation 

The hybrid tri-level structure is one of the reasons making 

the proposed model difficult to be solved. Therefore, firstly, 

the ARO method is used to reformulate the lower-level 

uncertain problem caused by RES seasonal uncertainty as a 

deterministic model. Robust constraints seek to optimize 

adjustable variables to minimize operation cost and ensure the 

corresponding constraints can always be satisfied for any 

realization of uncertainties [32]. In this paper, adjustable 

variables include reserve capacity of thermal power unit 
G,r
, , ,g t s nP  

and HES 
FC,r
, , ,i t s nP . The reformulation steps of robust constraints 

can be summarized as two steps [30]: a) Identify the “worst-

case” where uncertainties are most likely to invalidate the 

robust constraints; b) Substitute the original constraints with 

constraints where the uncertainties are fixed as these “worst-

case” values. In this paper, the robust constraints to address 

RES seasonal uncertainty include (47)-(48). Detailed 

reformulation process for (47)-(48) is shown as bellow: 

1) For constraint (47) 

Robust constraint (47) means that for any realization of 

uncertainties 
min max

, , , , , , , , ,[ , ]i t s n i t s n i t s n , there always exists an 

adjustable variable
G,r
, , ,g t s nP  for which (47) is satisfied. 

Therefore, the constraint (47) can be reformulated as follows: 
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G,r G min max
, , , , , , , , , , , , , , , , , ,

G,r G min max
, , , , , , , , , , , , , , , , , ,

0, [ , ]

0, [ , ]

g
i g t s n i t s n i t s n i t s n i t s n i t s n

ig
g
i g t s n i t s n i t s n i t s n i t s n i t s n

ig

A P

A P
 (54) 

 

G,r G min
, , , , , , , , ,

G,r G max
, , , , , , , , ,

0

0

g
i g t s n i t s n i t s n

ig
g
i g t s n i t s n i t s n

ig

A P

A P
 (55) 

In constraint (55), uncertainty variables , , ,i t s n are fixed as 

the “worst-case” values to ensure robust constraint can be 

satisfied under the worst case by adjustable variable
G,r
, , ,g t s nP . 

2) For constraint (48) 

Similarly, the reformulation of (48) by the ARO method can 

be written as (56). 

 

FC,r FC min
, , , , , , , , ,

FC,r FC max
, , , , , , , , ,

0

0

i t s n i t s n i t s n

i

i t s n i t s n i t s n

i

P

P
 (56) 

After ARO reformulation, the lower-level seasonal 

uncertainty problem is transferred into a deterministic model. 

Finally, the proposed tri-level model (49) is reformulated by 

ARO as (57)-(61), where the robust constraint (61) includes 

(7)-(11), (47)-(48) are replaced as (55)-(56). 

 inv opemin max{ [min ( )]}
n

n s
p

n s

C p p C s
x y

(57) 

 Ax b. . s t  (58) 

 p D  (59) 

 Ex Fy g  (60) 

 max minHx Iy Ku Lu q  (61) 

B. C&CG Algorithm 

For solving the reformulation model (57)-(61), C&CG 

algorithm can decompose the primal problem into the upper 

main problem and the lower subproblem [31]. The upper main 

problem is to optimize HES planning decisions by minimizing 

the investment costs under the known scenario’s probability. 

With a dummy auxiliary variable , the main problem can be 

expressed as (62). The main problem is a relaxation problem 

of the primal problem, providing the lower bound LB for the 

primal problem. Mathematically, it is a standard MILP model 

and can be easily solved by the commercial solvers. 

 

inv

max min

e
1

op
1

 min

,

s.t. ,

[ ( )],

l

l

N S
l l
n s

n s

MP C

l m

l m

p p C s l m

x

Ax b

Ex Fy g

Hx Iy Ku Lu q

：

(62) 

After solving the upper main problem, HES planning 

results are obtained. Under a given planning scheme, the lower 

subproblem is to find the worst probability distribution and 

optimize operation strategy to minimize system operation cost. 

Different from the traditional lower subproblem with “max-

min” bi-level structure that needs the dual transformation of 

inner level “min” problem to realize solution [31], the 

proposed model does not need to dualize the inner model 

when solving the bi-level subproblem, which is referred to 

duality-free decomposition method [33]. Specifically, the 

uncertain probability distribution of RES scenarios and system 

operation variables are independent with each other. Therefore, 

the lower level subproblem can be further decoupled into 

subproblem SP1 (63) and subproblem SP2 (64). 

 
ope

1

SP1: min ( ) ( )

     s.t. (23)-(46),(55)-(56)

S

s
s

f n p C s
y  (63) 

 
2

1

SP : max ( )

       s.t. (2) (6)
n

N

np
n

p f n
 (64) 

Since representative RES scenarios under different climate 

conditions are independent with each other, subproblem 1 can 

be solved in parallel and then transmits operation costs to 

subproblem 2 to calculate the worst probability distribution of 

RES scenarios with the largest operation costs. After 

completing the solution of lower subproblem by solving SP1 

and SP2, a set of representative scenarios’ probability 

distribution will be generated, which returns to the upper main 

problem to update HES planning scheme in the next iteration, 

so subproblem provides an upper bound UB for solution. 

The complete solution procedure for the proposed hybrid 

tri-level DRO-ARO model is described as Algorithm1. 

Algorithm1 Improved duality-free decomposition C&CG algorithm 

Step 1 Initialization: 

Set 0, ,m LB UB  

Step 2 ARO reformulation: 

Identify the “worst-case” for (47)-(48), 
min max

, , , , , , , , ,[ , ]i t s n i t s n i t s n  

Fix , , ,i t s n  as the “worst-case” values, substitute (47)-(48) with (55)-

(56). 

Step 3 Solve the upper master problem (62) and update LB: 

invLB C  

Obtain x  

Step 4 Solve the lower subproblem SP1 (63) and SP2 (64) by duality-free 
decomposition solving method, update UB: 

inv ope
11

min{ , [ ( )]}
N S

n s
n s

UB UB C p p C s  

Step 5 Termination:  

If 
1 ( ) / gapm UB LB LB : Stop and return x  

Else update m=m+1 and go to Step 3, add the cuts: 

p
1

o e
1

[ ( )],
N S

l l
n s

n s

p p C s l m  

VI. CASE STUDIES 

The proposed tri-level HES planning model and solution 

approach are validated on modified IEEE 39-bus and IEEE 

118-bus test systems. All simulations are conducted using 

MATLAB 2020b and YALMIP on a PC equipped with an 

Intel Octa-Core processor (3.0 GHz) and 16 GB of RAM. The 

MILP problems are solved using Gurobi 11.0 under an 

academic license with default solver settings. 
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TABLE I 

BASIC PARAMETERS SETTING 

Parameter Value 

gc  40 $/MWh 

/w ic c  300 $/MWh / 600 $/MWh 

P2H FC/P PC C  320000 $/MW 

EC  30 $/kg H2 

HESN  12 

The basic parameters are shown in Table I. The min/max 

capacity min
iCap / max

iCap of P2H and FC for installation are 

10/200 MW. Discount ratio of investment r is set as 10%. 

Investment payback years of HT, P2H and FC are 25 years, 10 

years and 10 years. The seasonal fluctuation parameters of 

wind power are set as ±8% for spring and winter and ±5% for 

summer and autumn. The seasonal fluctuation parameters of 

PV power are set as ±8% for spring and summer and ±5% for 

autumn and winter. 

 
Fig. 5. Five representative RES scenarios after reduction. 

Five representative RES scenarios after reduction are 

shown in Fig. 5, which are obtained based on the data 

characteristics of 100 RES scenarios generated according to 

the RES historical dataset from 2014-2023. The seasonal and 

trend component is captured using STL algorithm for HES 

planning. Seasonal and trend component of representative 

RES scenario n1 is shown in Fig. 6. RES output power is 

smoother than the original curve after capturing the seasonal 

fluctuation characteristics by the STL algorithm. The pink area 

of Fig. 6 is the seasonal uncertainty range of representative 

RES scenario n1 throughout the year. Then, the obtained 

seasonal and trend component is clustered into 16 typical day 

scenarios over four seasons [28]. 

 
Fig. 6. Seasonal and trend component of RES scenario n1. 

A. IEEE 39-bus test system 

 
Fig. 7. IEEE 39-bus test system. 

1) Numerical Description: the modified IEEE 39-bus test 

system is shown in Fig. 7, including ten thermal power units, 

two RES units (one wind unit and one PV unit). The total 

capacity of thermal power units is 6000MW and the total 

capacity of RES is 800MW. More details about IEEE 39-bus 

test system and start-up/shut-down costs of the thermal 

generators can be found in [34]. 

TABLE II 

HES PLANNING RESULTS. 

Node P2H/FC (MW) HT (t H2) 

17 39.41 945.81 

19 88.15 2115.57 

30 100.20 2404.89 

Total 227.76 5466.27 

2) Simulation Results: The planning results of HES on 

IEEE 39-bus test system are presented in Table II. P2H/FC 

units are deployed at three nodes, with a total installed 

capacity of 227.76 MW. The total HT capacity reaches 

5466.27t H₂. In addition, a whole yearly SOC curve of HT 

under the representative RES scenario n1 is shown in Fig. 8. 

SOC curve shows that hydrogen storage behavior and HES 

charge/discharge strategy is influenced by RES seasonal 

fluctuations. HES operates in shorter cycles in spring (min 

2384t and max 5058t H2 from 0 to 2190 h) and summer (min 

3037t and max 5068t H2 from 2190 to 4380h). Due to the rich 

output of RES in summer, SOC shows an overall upward trend 
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with 2031t H2 increased. In addition, HES charges/discharges 

slightly and frequently due to RES fluctuations, especially in 

summer. In autumn (4380-6570h) and winter (6570-8760h), 

HES operates in long cycles, ranging from min 275t to max 

5192t H2. In autumn, HES discharges deeply and continuously 

due to the low output of RES. To keep yearly SOC balance, 

HES charges continuously and SOC shows an upward trend in 

winter, from 275t to 5192t H2. Moreover, HES is also helpful 

to some extreme cases. For example, RES is in extreme low 

output (less than 1%) from 3708 to 3740h, which is shown in 

red mark circle in Fig. 8, HES keeps a long continuous release 

state to address imbalance between supply and demand. 

 
Fig. 8. The whole year SOC curve of HT in IEEE 39-bus 

test system for representative RES scenario n1. 

3) Impact of long-term seasonal uncertainty: In this paper, 

DRO is utilized to address RES long-term uncertainty 

impacted by climate variability. Specifically, the probability 

distribution ambiguity set of RES scenarios is constructed 

using norm constraints. The ambiguity set can guarantee to 

cover all possible probability distributions under a given 

confidence level γ. The influence of γ on the HES planning 

results is shown in Fig. 9. The total costs increase from 

1.6806*109$ to 1.6820*109$ with the confidence level γ 

increases from 0.6 to 0.99. When γ is from 0.6 to 0.8, the 

total costs increase 0.4*106$. While the total costs increase 

1.0*106$ with γ from 0.8 to 0.99. This is because a large 

value of γ means that the RES uncertainty is higher, hence a 

higher capacity of HES is needed to address RES long-term 

uncertainty. Therefore, a reasonable value of γ is essential to 

ensure HES planning results adapt to the long-term 

uncertainty of RES. 
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Fig. 9. Total costs under different confidence level. 

Moreover, to analyze the impact of seasonal uncertainty on 

operation strategy, the hourly output power of different units 

in four typical days across different seasons is shown in Fig. 

10. In this paper, ARO is utilized to address RES seasonal 

uncertainty. The uncertainty set of RES seasonal uncertainty is 

constructed according to RES prediction error distributions in 

different seasons. It can be found that the reserve capacity (red 

coding is reserve from thermal generation and cyan coding is 

reserve from HES) is higher in spring due to the high 

uncertainty of RES, and the reserve capacity in summer is 

low. Moreover, RES output power is poor in autumn, so the 

discharging power of HES is higher while the charging power 

(blue coding in Fig. 10) is lower. Notably, the charging power 

of HES 
P2H,ChaP  is plotted as a negative value to visually 

represent the charging behavior (electricity consumption for 

hydrogen production by P2H). While in the model formulation 

P2H,ChaP  is defined as a non-negative variable to represent 

the magnitude of HES charging power, it is displayed as 

negative in the Fig. 10 purely for visualization purposes. 

During winter and summer, the charging power of HES is 

higher due to the abundant output of RES. So, seasonal 

regulation of RES can be realized by reasonable planning of 

HES in power systems. 

 
Fig. 10. Hourly power output of units in four typical days 

across different seasons. 

B. IEEE 118-bus test system 

1) Numerical Description: to further validate the 

effectiveness of the proposed method on large-scale systems, 

we also test the proposed method on the modified IEEE 118-

bus test system. Fig. 11 shows the topology of the modified 

IEEE 118-bus test system [35] which consists of 54 thermal 

power units, 6 RES units (3 wind units and 3 PV units). The 

total capacity of thermal power units is 9960MW and the total 

capacity of RES is 4200MW. The five representative RES 

scenarios of 8760 hours used for planning are as the same as 

per-unit output profiles shown in Fig. 5. 

2) Simulation Results: The HES planning results on the 

modified IEEE 118-bus test system are summarized in Table 

III, which shows the total deployment of P2H/FC at 11 nodes. 
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The total installed capacity of P2H and FC reaches 2082.6 

MW, with the total HT capacity of 49982.4t H2. 

 
Fig. 11. IEEE 118-bus test system. 

TABLE III 

HES PLANNING RESULTS. 

Node P2H/FC (MW) HT (t H2) 

3 200.0 4800.0 

10 82.6 1982.4 

11 200.0 4800.0 

23 200.0 4800.0 

34 200.0 4800.0 

46 200.0 4800.0 

65 200.0 4800.0 

73 200.0 4800.0 

75 200.0 4800.0 

89 200.0 4800.0 

94 200.0 4800.0 

Total 2082.6 49982.4 

AS shown in Fig. 12, the SOC curve of HT in IEEE 118-

bus system for five representative RES scenarios further 

clearly reflect the operation strategy of HES system is strongly 

influenced by the seasonal fluctuations of RES and 

demonstrate the seasonal energy-shifting capability of HES in 

response to RES seasonal fluctuations. Across the five 

representative RES scenarios, significant seasonal change in 

RES output is particularly observed in scenario n1 and n5, 

lower availability of RES is during autumn. Correspondingly, 

the SOC trajectories show continuous decline during these 

periods, indicating sustained discharge via FC to support 

system demand. In contrast, during high-output seasons such 

as summer and winter, excess RES is utilized for hydrogen 

production via P2H units, leading to a gradual increase in SOC. 

This pattern demonstrates the seasonal energy-shifting 

capability of the HES system, where hydrogen serves as a 

long-term storage medium that bridges the temporal mismatch 

between RES supply and load demand. Such seasonal 

balancing not only enhances supply adequacy during critical 

periods but also reduces the reliance on conventional backup 

generation. Additionally, in scenarios n2, n3 and n4 (especially 

during autumn and winter), the RES output shows more 

frequent fluctuations. In response, the HES system displays 

more dynamic and frequent charge/discharge cycles, reflecting 

its flexible operational strategy in coping with RES 

fluctuations. 

 
Fig. 12. The whole year SOC curve of HT in IEEE 118-bus 

test system for five representative RES scenarios. 

In addition to its function in seasonal regulation and 

addressing RES fluctuations, HES also plays a critical role in 

handling extreme climate scenarios characterized by 

prolonged renewable scarcity, such as long periods with low 

wind and solar irradiance. For example, from 1009 h to 1082 h 

of representative RES scenario n2, the RES output drops to an 

extremely low level, representing a typical climate case of 

long-duration “no-wind-and-little-sunshine” conditions. As 

shown in Fig.  13, HES enters a continuous discharge state 

throughout this period, delivering sustained and reliable power 

to bridge the severe supply-demand gap. This demonstrates 

the function of HES in enhancing system resilience, enabling 

it to stably support the grid through extreme renewable 

droughts where short-duration storage or flexible generation 

alone would be insufficient under high-RES penetrations. 

 
Fig. 13. Hourly power balance from 1009h to 1082h of 

representative RES scenario n2. 

3) Impact of RES penetration and HES investment cost: in 

this section, the impact of different factors including RES 

penetration and unit HES investment cost on the planning 
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decisions are analyzed and the corresponding results are 

illustrated in Fig.  14. 

As illustrated in Fig. 14, the optimal rated power of HES 

increases significantly with higher RES penetration, rising 

from 2603 MW at 30% penetration to 5727 MW at 70% 

penetration under a low investment cost scenario, indicating a 

greater need for storage capacity to address RES fluctuations 

and ensure supply-demand balance under high-RES scenarios. 

Conversely, as the investment cost rises, the optimal storage 

capacity decreases, reflecting the influence of economic 

considerations on planning decisions. For instance, at 30% 

RES penetration, Prated drops from 2603 MW (low cost) to 

1874 MW (high cost). Moreover, the contour lines further 

reveal that in regions with high-RES penetration and low 

investment cost, the optimal rated power of HES is more 

sensitive to parameter variations. This figure highlights the 

relationship between RES integration and energy storage 

investment, offering quantitative insights for optimal planning. 

 
Fig. 14. HES planning results of IEEE 118-bus test system 

under different factors. 

C. Comparative Analysis 

1) Comparison results: to analyze RES long-term seasonal 

uncertainties on HES planning results, four cases including the 

existing methods and the proposed method are compared in 

this section, and the planning results on IEEE 39-bus test 

system are shown in Table IV, specifically: 

Case1: only consider long-term uncertainty. 

Case2: only consider seasonal uncertainty. 

Case3: consider both long-term and seasonal uncertainty, but 

seasonal uncertainty is modeled as one single uncertainty set. 

Case4: consider both long-term and seasonal uncertainty, and 

RES seasonal uncertainty are modelled according to seasonal 

characteristics distribution. 

It can be found that the planning cost and annual operation 

cost of case 3 and case 4 is higher than case 1 and case 2, that 

is, long-term seasonal uncertainty of RES considered in HES 

planning framework will result in a larger HES planning result. 

But considering long-term seasonal uncertainty is necessary, 

because a high proportion of time-varying RES will result in 

power balance more influenced by climate conditions. The 

HES planning results considering long-term seasonal 

uncertainty of RES are helpful for enhancing the adaptability 

of power systems to climate variability. Moreover, comparing 

case 3 and case 4, it can be found that the planning result and 

operation cost of case 4 is more economical than case 3. In the 

proposed HES planning framework, the economy of planning 

results can be further improved by adaptively modelling 

seasonal uncertainty according to the seasonal characteristics. 

If RES seasonal uncertainty is not considered according to the 

seasonal characteristics, power systems need more HES and 

annual reserve capacity to address RES uncertainty, which 

will lead to a higher cost. 

TABLE IV 

PLANNING RESULTS UNDER DIFFERENT CASES 

Case 
invC  

107($) 

opeC  

109($) 

P2H/FC 

(MW) 

SHT 

(t H2) 

Reserve 

(MW) 

1 2.6174 1.5745 197.3 4735.2 0 

2 2.1601 1.5769 162.8 3907.2 2.71*106 

3 4.5396 1.7324 342.2 8212.8 4.55*106 

4 3.0218 1.6508 227.8 5466.3 2.69*106 

2) Computational efficiency: to verify the computational 

efficiency of the proposed hybrid tri-level DRO-ARO model 

for HES planning in this paper, the computational 

performance is tested on IEEE 39-bus test system and IEEE 

118-bus test system. 

TABLE V 

THE RESULTS OF COMPUTATIONAL EFFICIENCY 

Item IEEE 39-bus system IEEE 118-bus system 

Number of scenarios N 5 5 

CPU time 14419.5 s 21084.98 s 

Iteration 3 3 

As shown in Table V, the iterations number for both IEEE 

39-bus test system and IEEE 118-bus test system are three. 

The total solution time is 14419.5s on IEEE 39-bus test system 

and 21084.98s on IEEE 118-bus test system to get the final 

HES planning results. The computational time does not 

increase significantly for the larger IEEE 118-bus test system. 

These results demonstrate the feasibility of the proposed 

framework on large-scale systems, showing that it can 

effectively handle complex networks with numerous 

generation units and RES integration. 

Additionally, although the overall CPU time for both IEEE 

39-bus test system and IEEE 118-bus test system exceeds four 

hours to obtain the final HES planning results, the time 

consumption is acceptable for planning problems. It is worth 

noting that the longer CPU time is primarily due to the model 

formulation phase, where the construction of large-scale 

variables and constraints by Yalmip significantly increases the 

preprocessing time. While the solving phase using Gurobi 

remains computationally efficient, highlighting the scalability 

and practicality of the proposed method. 

V. CONCLUSION 

In conclusion, this paper proposes a HES planning 

framework for addressing the long-term seasonal fluctuations 

of RES. The problem is formulated as a hybrid tri-level DRO-

ARO model. Based on the multi-year RES historical datasets, 

an ambiguity set of probability distributions is constructed for 
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representative yearly output scenarios under typical climate 

conditions, and seasonal uncertainty sets are adaptively 

modeled to capture seasonal variation patterns. Numerical 

experiments conducted on the modified IEEE 39-bus and 

IEEE 118-bus test system demonstrate that considering the 

long-term seasonal uncertainty of RES leads to a more robust 

planning strategy. In contrast, adopting a single uncertainty set 

to characterize RES uncertainty may result in underestimated 

planning decisions for HES. Moreover, compared with 

considering seasonal fluctuations using a single unified set, the 

proposed framework which captures seasonal characteristics 

achieves a robust planning result at a lower cost. As a key 

flexible resource in power systems, HES can realize the 

seasonal regulation and complementation between RES supply 

and load demand. Additional case studies on IEEE 39-bus and 

IEEE 118-bus test systems further verify the effectiveness and 

scalability of the improved C&CG algorithm with duality-free 

decomposition and adaptive robust reformulation for solving 

the proposed hybrid tri-level DRO-ARO model for HES 

planning. 

Currently, the proposed model employs representative RES 

scenarios derived from historical data to characterize RES 

long-term uncertainty. However, these representative RES 

scenarios may not adequately capture extreme climate events. 

To this end, our future research will further focus on extreme 

climate scenarios in HES planning while AI-based methods 

will be further explored for more adaptive scenarios 

generation. 
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