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Abstract
The rapid advancement of Large Language Models (LLMs) has created unprecedented opportunities for industrial
automation, process optimization, and decision support systems. As industries seek to leverage LLMs for industrial
tasks, understanding their architecture, deployment strategies, and fine-tuning methods becomes critical. In this
review, we aim to summarize the challenges, key technologies, current status, and future directions of LLM in
Prognostics and Health Management(PHM). First, this review introduces deep learning for PHM. We begin by
analyzing the architectural considerations and deployment strategies for industrial environments, including
acceleration techniques and quantization methods that enable efficient operation on resource-constrained
industrial hardware. Second, we investigate Parameter Efficient Fine-Tuning (PEFT) techniques that allow
industry-specific adaptation without prohibitive computational costs. Multi-modal capabilities extending LLMs
beyond text to process sensor data, images, and time-series information are also discussed. Finally, we explore
emerging PHM including anomaly detection systems that identify equipment malfunctions, fault diagnosis
frameworks that determine root causes, and specialized question-answering systems that empower workers with
instant domain expertise. We conclude by identifying key challenges and future research directions for LLM
deployment in PHM. This review provides a timely resource for researchers, engineers, and decision-makers
navigating the transformative potential of language models in industry 4.0 environments.
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1 Introduction
In recent years, machine learning, particularly deep learn-
ing, has revolutionized Prognostics and Health Manage-
ment (PHM) data analysis, establishing itself as a main-
stream approach. This transformation primarily involves
two key components: feature engineering [1] and machine
learning [2]. Feature engineering leverages statistical and
signal analysis techniques to extract meaningful insights
from PHM monitoring data, while machine learning mod-
els, such as Support Vector Machines (SVM) [3, 4] and K-
Nearest Neighbors (KNN) [5, 6], facilitate predictive ana-
lytics and intelligent decision-making. Despite delivering
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promising results and enabling a degree of automation,
traditional machine learning still relies heavily on manual
feature engineering. This dependency not only limits its
scalability in handling large volumes of industrial data but
also hinders its ability to generalize across diverse applica-
tions.

Deep learning [7], which employs multi-layer artifi-
cial neural networks for data processing, has become a
cornerstone of PHM data analysis due to its ability to
automatically handle large volumes of high-dimensional
data with strong generalization capabilities. Various deep
learning models cater to different PHM tasks, includ-
ing autoencoders (AE) [8], convolutional neural networks
(CNNs) [9], and recurrent neural networks (RNNs) [10].
AE facilitate unsupervised representation learning through
data reconstruction, making them highly effective for
tasks such as noise reduction, dimension reduction, and
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anomaly detection. CNNs, leveraging convolution theory,
excel in extracting hierarchical features from data, mak-
ing them particularly suitable for industrial image anal-
ysis and periodic time-series processing [9]. Meanwhile,
RNNs are designed to capture long-term dependencies
in sequential data, making them ideal for analyzing and
processing extended time-series signals [11]. By enabling
end-to-end learning, deep learning minimizes the need for
manual intervention in PHM. However, these models still
face challenges related to multitasking, generalization, and
cognitive reasoning, particularly in the context of human-
computer interaction.

The emergence of ChatGPT [12] marks a new era in
AI technology, driven by LLMs that overcome the lim-
itations of traditional AI. These models offer significant
advancements in understanding, reasoning, and reuse ef-
ficiency, laying a strong foundation for AI applications
across various fields. Generalization and reusability are the
core strengths of LLMs, enabling their widespread appli-
cation in natural language processing, computer vision,
speech recognition, and beyond. By serving as a common
infrastructure for diverse applications, these models allow
developers to leverage fine-tuning, zero-shot learning, and
other techniques to adapt them for different industries and
scenarios.

Despite their potential, the application of LLMs in PHM
domains remains in an exploratory phase. There is still no
definitive approach to integrating them into PHM tasks
or mapping these tasks to areas where LLMs excel. Fur-
thermore, a systematic literature review on the method-
ologies and techniques for applying LLMs in PHM set-
tings is lacking. Our review is therefore structured as
follows. Section 2 examines architectural considerations
and deployment strategies for LLMs in industrial envi-
ronments, including acceleration techniques and various
quantization methods that enable efficient operation on
industrial hardware. Section 3 examines fine-tuning ap-
proaches, with a special focus on Parameter Efficient Fine-
Tuning (PEFT) techniques such as adapter tuning, prompt
tuning, prefix tuning, and low-rank adaptation (LORA),
which enable domain-specific adaptation within industrial
constraints. Section 4 explores multi-modal capabilities
that extend LLMs beyond text to handle diverse indus-
trial data types. Section 5 examines practical applications,
including anomaly detection systems for equipment mon-
itoring, fault diagnosis frameworks for root cause analy-
sis, and specialized question-answering systems that im-
prove worker productivity and decision making. Finally,
we summarize current advances, identify persistent chal-
lenges, and outline promising future research directions
for LLMs in PHM.

2 Architecture and deployment
A Large Language Model (LLM) typically refers to a lan-
guage model with over ten billion parameters, trained on

massive textual datasets. Expanding the model size, data
volume, and computational complexity significantly en-
hances its modeling capabilities, as demonstrated by nu-
merous studies [13, 14]. KM Scaling Law [15] and Chin-
chilla Scaling Law [16] provide a framework for predicting
LLM performance during training. However, some abil-
ities cannot be anticipated solely based on these scaling
laws.

One of the most distinguishing features of LLMs is their
emergent abilities [17], which do not appear in smaller
models but emerge as the model size surpasses a certain
threshold, leading to significant performance improve-
ments.

In-Context Learning (ICL): First demonstrated by
GPT-3 [13], ICL allows a language model to generate the
expected output for a given task by processing a natural
language instruction along with a few task demonstrations,
without requiring additional training or gradient updates.

Instruction Following: Fine-tuning on datasets con-
taining task descriptions enables LLMs to generalize bet-
ter across unseen tasks. With instruction fine-tuning, an
LLM can follow new instructions without needing explicit
examples, improving adaptability and performance.

Step-by-Step Reasoning: Small language models often
struggle with complex tasks requiring multiple reasoning
steps, such as solving mathematical problems. However,
Chain-of-Thought (CoT) prompting enhances LLM per-
formance by guiding it to generate intermediate reasoning
steps before arriving at the final answer. This structured
reasoning process significantly improves problem-solving
capabilities.

To better understand and use LLM, this section intro-
duces the common structure of large models and common
ways to reduce costs in industrial deployments. Table 1 or-
ganizes the architecture and deployment methods

2.1 Architecture
In 2017, Google introduced the Transformer [47], which
quickly set a new benchmark for performance across vari-
ous natural language processing (NLP) tasks. The Trans-
former architecture has since become the foundational
framework for developing a wide range of LLMs, enabling
them to scale to tens or even hundreds of billions of pa-
rameters.

Based on Transformer, OpenAI proposed Generative
Pre-Training (GPT) [48] based on causal decoder that em-
ploys a unidirectional attention mask to ensure that each
token can only attend to itself and preceding tokens. This
design enables autoregressive generation, where input and
output tokens follow the same processing pipeline within
the decoder. A prime example of this architecture is GPT-
3 [13], which demonstrated not only the effectiveness of
causal decoders but also the remarkable ICL capabilities
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Table 1 Summary of architectures and deployment methods

Architecture Mamba [18, 19]
Retnet [20]
Mixture of Experts (MoE) Switch Transformer [21]

Mixtral [22]
Accelerate Sparsity StreamingLLM [23]

LM-Infinite [24]
H2O [25]
LESS [26]

Allocation PagedAttention [27]
Sharing MQA [28]

GQA [29]
YOCO [30]
CLA [31]

FlashAttention [32–34]
Quantization Quantization-aware training (QAT) LLM-QAT [35]

PEQA [36]
QLoRA [37]

Post-training quantization (PTQ) GPTQ [38]
LLM.int8() [39]
SmoothQuant [40]
SpQR [41]
AWQ [42]
ZeroQuant [43–46]

of LLMs. Today, the causal decoder remains the domi-
nant architecture for many state-of-the-art LLMs, includ-
ing GPT-4, LLaMA 3, and DeepSeek V3, among others.
In addition to causal decoders, GLM [49] proposes prefix
decoder that allows bidirectional attention over the pre-
fix portion of a sequence while maintaining unidirectional
attention for the generated portion. This hybrid approach
enables the model to encode the prefix sequence bidirec-
tionally while autoregressively predicting output tokens,
with shared parameters for both encoding and decoding.

To achieve efficient training and inference for large-scale
models, several solutions have emerged. One approach is
to directly modify the model architecture. For instance,
architectures like Mamba, based on state space models
(SSMs) [18, 19], and RetNet [20] offer structural innova-
tions to improve efficiency. Another widely adopted strat-
egy is the Mixture of Experts (MoE), where only a subset
of the neural networks weights is activated during train-
ing and inference, reducing computational overhead. Ex-
amples include Switch Transformer [21], Mixtral [22], and
many state-of-the-art models. Research has also demon-
strated that increasing the number of experts or the total
parameter size can lead to notable performance improve-
ments while maintaining efficiency [50].

2.2 Acceleration
Beyond architectural modifications, inference speed can
be significantly improved by optimizing GPU memory ac-
cess strategies. When computing attention, the key-value
(KV) pairs for all tokens—except the last one—have al-
ready been processed in previous iterations. To leverage
this, we can pre-cache these computed KV values for the

next step, reducing redundant computations. However, as
sequence length increases, the KV cache consumes a sub-
stantial amount of GPU memory, making efficient mem-
ory management a critical challenge. Given the limited
GPU memory available, KV caching plays a crucial role
in extending the models context window while minimiz-
ing GPU memory consumption. Consequently, KV cache
optimization becomes essential in practical applications.
Broadly, KV cache optimization can be categorized into
three approaches: sparsity, allocation, and sharing.

Sparsity: Sparsity-based methods leverage the observa-
tion that only a small subset of tokens receives signifi-
cant attention during computation. StreamingLLM [23]
and LM-Infinite [24] found that initial tokens in a se-
quence tend to receive disproportionate attention. To ex-
ploit this, StreamingLLM retains only the KV pairs of the
most recent sliding window, while LM-Infinite truncates
KV sequences beyond the pre-training length. Another ap-
proach, Heavy Hitter Oracle (H2O) [25], dynamically bal-
ances between retaining recent tokens and preserving im-
portant historical tokens using a greedy algorithm. A more
advanced method, LESS (Low-rank Embedding Sidekick
with Sparse policy) [26], improves on sparsity-based KV
caching by learning residuals between the original atten-
tion output and the sparsified attention output. This al-
lows the model to recover omitted regions in the attention
graph, ensuring that critical information is not lost despite
aggressive KV compression.

Allocation: Inspired by paging mechanisms in operat-
ing systems, PagedAttention [27] optimizes KV caching
by organizing KV pairs into fixed-size blocks. Each block
contains the keys and values for a specific number of to-
kens. When computing attention, PagedAttention treats
these blocks like virtual memory pages, mapping contigu-
ous logical blocks to non-contiguous physical blocks via a
block table. This on-demand allocation of KV blocks al-
lows for more flexible memory management, significantly
improving inference efficiency.

Sharing: KV cache sharing is an optimization technique
in multi-head attention where different attention heads
share a common set of KV pairs, significantly reducing
GPU memory consumption. This approach can be cat-
egorized into intra-layer sharing and inter-layer sharing.
Intra-layer sharing primarily includes Multi-Query Atten-
tion (MQA) [28] and Group-Query Attention (GQA) [29],
where MQA maintains a single KV cache for all attention
heads, while GQA groups attention heads, with each group
sharing a dedicated KV cache. Inter-layer sharing methods
such as YOCO [30] and Cross-Layer Attention (CLA) [31]
further optimize KV cache usage. YOCO divides the de-
coder into a self-decoder, responsible for generating the
KV cache, and a cross-decoder, which implements cross-
attention without generating additional KV cache, thereby
reducing redundancy. CLA, unlike YOCO, does not limit
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KV cache generation to the top L/2 layers but instead alter-
nates KV cache generation across different layers, ensuring
efficient reuse of KV pairs between similar layers and opti-
mizing both memory usage and computational efficiency.

FlashAttention: In addition to KV cache optimization,
another important speedup direction is based on GPU
memory architecture optimization. FlashAttention [32–
34] optimizes computation and reduces GPU memory
consumption by restructuring the attention computation
process. By reordering the attention computation and
leveraging tiling and recomputation techniques, it effec-
tively minimizes data movement to and from High Band-
width Memory (HBM). Unlike traditional methods that
store large intermediate attention matrices in memory,
FlashAttention avoids these costly writes, leading to sub-
stantial efficiency gains. This strategic reduction in mem-
ory reads and writes not only lowers the computational
overhead but also achieves an impressive 2-4x speedup,
transforming the scalability of attention-based models,
particularly in large-scale applications.

Techniques like KV caching and FlashAttention comple-
ment each other to enhance the efficiency of large language
models (LLMs). KV caching reduces redundant compu-
tations by storing key and value pairs from previous to-
kens, while FlashAttention optimizes memory usage and
speeds up attention computation. Together, these methods
enable LLMs to scale effectively while maintaining feasi-
bility for deployment in complex industrial applications.
By improving both computational speed and memory ef-
ficiency, they help ensure that large-scale models can op-
erate smoothly in real-world scenarios without excessive
resource demands.

2.3 Quantization
Scaling laws [15, 16] indicate that increasing the num-
ber of parameters significantly enhances the performance
of large language models (LLMs). However, in practi-
cal applications, fully leveraging this scaling potential
is constrained by factors such as hardware limitations,
memory bandwidth, and computational costs. Deploy-
ing LLMs efficiently requires optimization techniques to
mitigate these challenges, with quantization being one of
the most widely adopted approaches. Quantization re-
duces the storage and computational complexity of mod-
els by compressing their parameters, making deployment
on resource-constrained hardware more feasible. The
most common quantization technique involves converting
floating-point parameters into lower-precision floating-
point or integer representations. This transformation not
only reduces the GPU memory requirement of the model
but also accelerates model loading times, making infer-
ence more efficient. Moreover, since integer arithmetic is
significantly faster than floating-point operations on mod-
ern GPUs and specialized AI accelerators, quantization

can substantially improve inference speed while maintain-
ing comparable model performance. For large-scale mod-
els, 8-bit quantization (FP8/INT8) and 4-bit quantization
(FP4/NF4/INT4) are among the most commonly used pre-
cision levels. Research suggests that larger models exhibit
greater resilience to precision reduction, with 4-bit quan-
tization preserving performance when the model size ex-
ceeds 70 billion parameters. Consequently, for these mas-
sive models, 4-bit quantization offers an optimal trade-
off between efficiency and performance. Conversely, for
smaller models, 8-bit quantization often strikes a better
balance, as they tend to suffer more from aggressive preci-
sion reductions.

Quantization techniques can be broadly classified into
two categories: quantization-aware training (QAT) and
post-training quantization (PTQ), based on when the
quantization process is applied. QAT integrates quanti-
zation into the training process, allowing the model to
adapt to lower precision during learning, thereby minimiz-
ing accuracy degradation. As LLM deployment continues
to expand across various industries, quantization remains
a crucial tool for balancing computational efficiency and
model accuracy.

2.3.1 QAT
Quantization-aware training (QAT) [51] incorporates a
weight transformation process directly into the training
phase. While this approach typically preserves model per-
formance more effectively than post-training quantiza-
tion, it comes at the cost of significantly higher computa-
tional demands. QAT introduces quantization error dur-
ing fine-tuning by first quantizing and then dequantizing
the weights and activations. This allows the model to adapt
to the effects of quantization during training, thereby re-
ducing quantization-induced errors.

Despite its advantages in maintaining accuracy, QAT
imposes substantial computational overhead, particularly
for ultra-large-scale LLMs. To address this challenge,
LLM-QAT [35] extends the quantization process beyond
weights and activations to include KV caches. By applying
quantization to both weights and KV caches, this method
enables distillation of the LLM into a highly efficient 4-bit
model, demonstrating the feasibility of low-bit quantiza-
tion for large-scale language models.

Another approach, PEQA (Progressive Extreme Quanti-
zation and Adaptation) [36], divides the quantization and
training process into two distinct phases. In the first phase,
it quantizes the fully connected layer weights, significantly
reducing model size. In the second phase, it fine-tunes the
model for specific downstream tasks, ensuring adaptation
to various applications. This two-stage strategy achieves
both rapid fine-tuning and flexible task switching.

To further optimize quantization efficiency, QLoRA
(Quantized LoRA) [37] introduces several key innova-
tions, including the NF4 (Normalized Float 4) data type,
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double quantization, and a paging optimizer. These en-
hancements help mitigate performance loss while signif-
icantly reducing GPU Memory usage. NF4, in particu-
lar, enables better representation of weight distributions,
while double quantization compresses the quantization
metadata itself, further reducing the GPU memory usage.

2.3.2 PTQ
Unlike QAT, post-training quantization (PTQ) does not
require additional training. Instead, it directly converts the
weights of a pre-trained model to a lower precision, mak-
ing it a simpler and more practical approach for deploying
LLMs efficiently. However, PTQ may introduce slight per-
formance degradation due to the loss of precision in weight
values.

In PTQ, weight quantization is relatively straightforward
since quantization coefficients can be precomputed before
inference. Activation quantization, however, is more com-
plex because activation values depend on the specific input
during inference. Based on when activations are quantized,
PTQ can be categorized into dynamic and static quanti-
zation. Dynamic quantization calculates the quantization
coefficients for activations in real time during inference,
allowing for adaptive precision adjustments. In contrast,
static quantization precomputes the activation quantiza-
tion coefficients before inference, applying them directly
during model execution.

Since weights are easier to quantize than activations,
GPTQ [38] adopts a weight-only quantization W4A16
based on OBQ [52]. In this approach, weights are quan-
tized to int4, while activations remain in float16. During
inference, the model dynamically dequantizes the weights
back to float16, ensuring that actual computations main-
tain numerical stability and precision. LLM.int8() [39] em-
ploys mixed-precision decomposition, where the majority
of weights and activations are quantized to 8-bit preci-
sion, while a small subset of outlier features is retained
at 16-bit precision. This selective higher-precision reten-
tion helps mitigate accuracy loss by preserving critical out-
lier information. SmoothQuant [40] introduces an innova-
tive approach to activation quantization by incorporating
a smoothing factor s. This factor helps to smooth activa-
tion outliers, effectively shifting the quantization from ac-
tivations to weights through a mathematically equivalent
transformation.

These quantization techniques aim to identify optimal
quantized parameters that minimize the discrepancy be-
tween the model’s outputs before and after quantization.
However, a key challenge in quantizing LLMs is the pres-
ence of significant outlier features in both input activa-
tions and output representations. SpQR (Sparse Quanti-
zation with Reconstruction) [41], employs hybrid sparse
quantization, which selectively identifies and isolates out-
lier weights, storing them at higher precision. Meanwhile,

the remaining weights are aggressively compressed to 3-4
bits, enabling efficient quantization with less than 1% pre-
cision loss. This method strikes a balance between com-
pression and model fidelity. AWQ (Activation-Weighted
Quantization) [42] enhances quantization performance by
prioritizing weights based on activation magnitudes. By
retaining only 0.1% to 1% of the weights corresponding to
larger activations, AWQ significantly improves quantized
model accuracy, achieving performance levels comparable
to reconstruction-based GPTQ. This selective preserva-
tion of critical weights mitigates the impact of quantiza-
tion on model performance.

The aforementioned quantization methods mainly fo-
cus on weight quantization, while activation quantization
remains a more challenging problem. Activation outliers
can be up to 100 times larger than most activation val-
ues, and directly quantizing them can lead to significant
information loss. Therefore, ZeroQuant [43–46] explores
various approaches to achieve effective activation quanti-
zation, improving the practicality and efficiency of W8A8
quantization.

3 Fine-tuning
Despite the impressive performance of LLMs and their
success in NLP tasks, several challenges persist in real-
world applications, particularly in adapting these models
to downstream tasks. A growing body of research sug-
gests that while LLMs exhibit strong general capabilities,
their effectiveness in specific applications often requires
further adaptation to align with particular objectives. One
widely adopted approach to address this challenge is in-
struction tuning [53], a fine-tuning technique that en-
hances the capabilities of pre-trained LLMs by training
them on a curated set of task-specific examples formatted
in natural language. Instruction tuning has been shown
to significantly improve LLM’s ability to generalize to pre-
viously unseen tasks, even in multilingual contexts [54].
Many state-of-the-art LLMs, such as InstructGPT [12]
and GPT-4, leverage instruction tuning extensively to bet-
ter align their outputs with user requirements. Achieving
effective instruction-based fine-tuning typically involves
transitioning the model’s outputs from a general-purpose
source domain to a more specialized target domain. This
can be accomplished through full fine-tuning, where all
model parameters are updated. However, this approach
is computationally expensive and memory-intensive due
to the vast number of parameters in LLMs. Additionally,
many downstream tasks have limited datasets, making
it difficult to fully optimize all parameters without over-
fitting or requiring prohibitively large computational re-
sources. To address these issues, the industry has increas-
ingly adopted Parameter Efficient Fine-Tuning (PEFT),
which enable LLM adaptation with reduced computa-
tional overhead. Beyond fine-tuning challenges, founda-
tional LLMs are primarily trained on large-scale textual
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data from the internet. Extending their capabilities to
multi-modal tasks—such as processing and generating im-
ages, audio, and video—necessitates a much higher com-
putational cost compared to text-based models. Conse-
quently, researchers are striving to develop multi-modal
LLMs that integrate diverse data modalities, thereby ex-
panding the applicability of LLMs beyond text-based tasks
and unlocking new possibilities across various industrial
domains.

3.1 PEFT
Parameter Efficient Fine-Tuning (PEFT) [55] is a tech-
nique designed to reduce the number of trainable pa-
rameters by fine-tuning only a subset of a model’s pa-
rameters, thereby achieving performance comparable to
full fine-tuning while significantly lowering computational
costs. This approach is particularly beneficial for large-
scale models, such as large language models (LLMs), where
full fine-tuning would be expensive due to the sheer num-
ber of parameters. Rather than simply freezing certain pa-
rameters, this section explore various PEFT methods us-
ing the Transformer architecture as an example. includ-
ing adapter tuning, prefix tuning, prompt tuning, and low-
rank adaptation (LoRA) [56].

3.1.1 Adapter tuning
Adapter tuning [57] introduces lightweight neural network
modules, known as adapters, into the transformer archi-
tecture. These modules are integrated into each trans-
former block, typically inserted serially after the attention
and feedforward layers. Alternatively, parallel adapters can
be employed [58], where two adapter modules are placed
alongside the attention and feedforward layers rather than
in sequence. The flexibility of adapter tuning allows differ-
ent adapter architectures to be tailored to various down-
stream tasks.

The adapter module operates by first compressing the
original feature vector into a lower-dimensional represen-
tation, followed by a non-linear transformation, and then
expanding it back to the original dimension. During fine-
tuning, only the parameters within the adapter module
are updated, while the core parameters of the pre-trained
LLM remain frozen. This selective tuning approach sig-
nificantly reduces computational demands while allowing
the model to adapt effectively to specific tasks. By isolating
task-specific modifications within the adapter modules,
adapter tuning not only improves efficiency but also en-
hances the modularity and reusability of fine-tuned mod-
els across different domains.

3.1.2 Prompt tuning
The discovery of in-context learning (ICL) has sparked
significant interest in prompt-based techniques, leading
to the development of prompt tuning [59, 60]—a method

that enhances model adaptability by incorporating train-
able prompt vectors. Unlike traditional fine-tuning, which
modifies a large number of model parameters, prompt tun-
ing focuses on optimizing only a small set of task-specific
prompt embeddings, making it a highly efficient approach
for adapting large language models (LLMs) to new tasks.

In discrete prompt tuning [61, 62], manually designed
textual prompts are appended to the input text, guiding the
model toward the desired task behavior. In contrast, soft
prompt tuning introduces trainable prompt vectors into
the input layer, allowing the model to learn optimal prompt
representations dynamically. These trainable prompt em-
beddings are combined with input text embeddings and
fed into the language model, enabling it to effectively solve
specific downstream tasks. P-tuning [59] proposes a free-
form combination of context, prompts, and target tokens,
making it well-suited for both natural language under-
standing and generation tasks. Prompt tuning can be im-
plemented in various ways, such as learning soft prompt
token representations via bi-directional LSTM (Bi-LSTM)
or prepending trainable prefix prompts directly to the
input sequence [60]. Crucially, during training, only the
prompt embeddings are optimized, while the model’s core
parameters remain unchanged. This makes prompt tun-
ing an efficient and scalable technique for adapting LLMs
to diverse applications with minimal computational over-
head.

3.1.3 Prefix tuning
Unlike prompt tuning, which modifies only the input em-
beddings, prefix tuning [63] introduces a set of train-
able prefix vectors at the input of each transformer block.
These prefix vectors act as virtual token embeddings that
are task-specific and help steer the model toward the de-
sired task behavior without modifying its core parameters.
By injecting these learnable prefix embeddings at multiple
layers of the model, prefix tuning allows for deeper inter-
action with the model’s internal representations, making it
a more expressive fine-tuning approach compared to stan-
dard prompt tuning.

To optimize the prefix vectors efficiently, reparameter-
ization techniques can be applied. For instance, Prefix-
tuning [63] proposes learning a multi-layer perception
(MLP) function that maps smaller matrices onto the pre-
fix parameter matrices, rather than directly optimizing the
prefixes. This reparameterization strategy has been shown
to enhance training stability. Once optimization is com-
plete, the mapping function is discarded, and only the final
prefix vectors are retained, ensuring task-specific perfor-
mance improvements without additional computational
overhead during inference. P-Tuning v2 [64] removes the
heavily parameterized encoder used in earlier versions
and instead adopts variable-length prompts for different
tasks. Additionally, it incorporates multi-task learning to
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jointly optimize shared prompts, thereby improving effi-
ciency and enhancing model performance across different
parameter scales in natural language understanding tasks.

3.1.4 LoRA
Low-Rank Adaptation (LoRA) [65] leverages the low in-
trinsic rank of large models to efficiently fine-tune them for
downstream tasks. Instead of updating all model parame-
ters, LoRA approximates the parameter update matrices
at each layer using low-rank constrained bypass matri-
ces, significantly reducing the number of trainable param-
eters while maintaining model performance. One of the
key advantages of LoRA is its ability to drastically reduce
GPU memory consumption, making fine-tuning large lan-
guage models (LLMs) more computationally efficient. Ad-
ditionally, LoRA enables parameter sharing across multi-
ple tasks—a single large pre-trained model can be main-
tained, while multiple task-specific low-rank decomposi-
tion matrices can be stored separately. This allows for rapid
adaptation to different downstream tasks without requir-
ing multiple copies of the full model, thereby improving
both efficiency and flexibility. Building upon LoRA, re-
searchers have explored rank-setting strategies to further
optimize its effectiveness. AdaLoRA [66] automatically as-
signs a budget of fine-tunable parameters to each param-
eter based on its importance. DyLoRA [67] can dynami-
cally adjust the rank during inference without retraining.
LoRA+ [68] sets different learning rates for the fitness ma-
trix and chooses a fixed rate. QLoRA [37] combines LoRA
with quantization to further reduce GPU memory require-
ments.

3.2 Multimodal
A common approach to multimodal modeling is encod-
ing each modality separately and optimizing the encoder
using a dedicated objective function [69–71]. Building
on this foundation, the encoded representations of mul-
tiple modalities can be fused and subsequently decoded
by an additional fusion decoder to accomplish the tar-
get task [72–75]. With the rapid advancement of tex-
tual modality performance, an alternative strategy has
emerged—directly feeding both the encoded outputs of
other modalities and raw textual inputs into a language
model [76–78]. This approach enables the multi-modal ex-
tension of textual models, leveraging the strengths of nat-
ural language processing to integrate diverse data sources
seamlessly. However, training multi-modal models from
scratch presents a significant computational challenge, as
the scale of both models and datasets continues to ex-
pand. To mitigate these computational costs, LLMs have
been leveraged to enhance the efficiency of multimodal
pretraining, giving rise to a new research direction: Multi-
modal Large Language Models (MM-LLMs). These mod-
els incorporate encoders that translate different modalities

into representations compatible with LLMs, allowing the
powerful reasoning and generation capabilities of LLMs
to be extended across multiple modalities. The key chal-
lenge in developing MM-LLMs lies in effectively bridging
the gap between LLMs and modality-specific models to
enable seamless collaborative reasoning.

Recent breakthroughs, such as GPT-4o and Gemini,
have demonstrated impressive multi-modal understand-
ing and generation capabilities, sparking a surge of re-
search interest in MM-LLMs. Initial investigations pri-
marily focused on multi-modal content understanding and
text generation, leading to the development of models such
as BLIP-2 [79], LLaVA [80], and MiniGPT-4 [81] for image-
text understanding; LLaMA-VID [82] for video-text com-
prehension; and QwenAudio [83] for audio-text interac-
tions. As the field evolved, MM-LLMs were extended to
support modality-specific outputs, broadening their ap-
plication scope. Notable advancements include GILL [84],
Emu [85], and MiniGPT-5 [86] for image-text generation,
as well as SpeechGPT [87] for speech-to-text and audio-
text transformations.

The general architecture of MM-LLMs is composed of
three key components: modal encoding and fusion, the
LLM backbone, and decoding generation. During training,
the parameters of both the multi-modal encoders and the
LLM itself are typically frozen, with optimization primar-
ily focused on refining modal fusion and generation tech-
niques. Since the number of trainable parameters in the
modal fusion stage is relatively small, the proportion of pa-
rameters requiring optimization in an MM-LLM is signif-
icantly lower than the total model size—typically around
2%. The overall number of parameters in an MM-LLM is
largely determined by the size of the core LLM used. This
design enables efficient training for various multi-modal
tasks, allowing MM-LLMs to adapt flexibly to different ap-
plications without excessive computational costs.

A wide range of modality-specific encoders exists to pro-
cess different types of input data. For image encoding,
commonly used architectures include MAE [88], ViT [89],
CLIP [69], and Swin. In the case of video processing, a
standard approach involves uniformly sampling a small
number of frames (e.g., five frames) and applying the
same preprocessing techniques as images. Audio and time-
series data are typically encoded using models such as
HuBERT [90], BEATs [91], Whisper [92], and CLAP [93].
Given the challenge of managing multiple heterogeneous
encoders, some MM-LLMs adopt ImageBind [94], a uni-
fied encoder capable of handling six diverse modalities:
image/video, text, audio, heatmap, acceleration, and depth.

Modal fusion plays a crucial role in integrating infor-
mation across different modalities. A simple approach in-
volves using a feed-forward network or an MLP to merge
multi-modal representations. However, more advanced
fusion techniques have been developed to enhance inte-
gration, such as cross-attention [95], where trainable query



Yu et al. Autonomous Intelligent Systems            (2025) 5:18 Page 8 of 14

vectors compress the feature sequence into a fixed-length
representation. This compressed multi-modal represen-
tation can either be directly fed into the LLM or further
refined through additional cross-attention fusion layers,
enabling more effective cross-modal reasoning and seam-
less multi-modal interactions.

Recent research advancements have increasingly fo-
cused on achieving flexible transformations between arbi-
trary modalities, and [96] gives a more detailed summary.
HuggingGPT [97] and AudioGPT [98] integrate LLMs
with external tools to facilitate near-arbitrary modality
understanding and generation, enabling the dynamic pro-
cessing of diverse multi-modal inputs. However, to mini-
mize propagation errors inherent in cascaded systems, re-
searchers have developed end-to-end MM-LLMs capable
of directly handling arbitrary modalities, including NExT-
GPT [99], CoDi-2 [100], ModaVerse [101], and GPT-4o,
which push toward generalized multi-modal intelligence.

4 Application
The emergence of Industry 4.0 has significantly acceler-
ated the evolution of Prognostics and Health Manage-
ment (PHM). At the forefront of this revolution is LLMs,
a cutting-edge technology that seamlessly integrates with
and enhances the capabilities of PHM. As LLMs continue
to evolve, they foster mutual development with various in-
dustrial systems, enabling new breakthroughs. This chap-
ter delves into the diverse applications of LLMs in the
PHM, providing an in-depth analysis of their current im-
pact and future prospects. Specifically, it examines how
LLMs are being applied in three key areas: anomaly de-
tection, fault analysis, and question answering. These do-
mains reflect the pivotal directions of image processing,
time-series data analysis, and human-computer interac-
tion in PHM, offering a comprehensive view of the vast
potential of LLMs in shaping the future of PHM.

4.1 Anomaly detection
Anomaly detection refers to the identification of data
points that significantly deviate from the norm, signaling
potential irregularities or critical insights within a dataset.
This field integrates a diverse array of research methodolo-
gies, including data mining, machine learning, computer
vision, and statistical learning, making it a cornerstone of
numerous industries such as finance, healthcare, cyberse-
curity, and manufacturing. In recent years, deep learning
has excelled in learning expressive representations from
complex, multimodal data. The ability of deep neural net-
works to automatically extract meaningful features and as-
sign anomaly scores has led to significant improvements
over traditional detection methods, offering enhanced ac-
curacy, adaptability, and robustness across various real-
world applications.

Deep anomaly detection is generally divided into two key
stages: feature extraction and anomaly classification. The

feature extraction phase leverages deep learning networks
to transform the original data space into latent representa-
tion, capturing richer semantic information and complex
non-linear relationships between features. In the domain
of image anomaly detection, features of normal samples
can be directly extracted using general pre-trained deep
learning models such as VGG [102] and ResNet [103].
Alternatively, a more tailored approach involves map-
ping pre-trained feature spaces to domain-specific repre-
sentations, optimizing the extraction process for specific
anomaly detection tasks [104].

Once the data features have been successfully extracted,
anomaly classification can be performed using unsuper-
vised machine learning techniques such as clustering,
which can identify deviations in the feature space. Alter-
natively, a deep learning model can be trained to directly
learn feature representations tailored to anomaly detec-
tion. For time-series anomaly detection, which is com-
monly applied to vibration signals, video streams, and sen-
sor data, anomalies often manifest as deviations in sequen-
tial patterns. In such cases, recursive time-point predic-
tion can be employed, where a model predicts the next
value in the sequence based on historical data. Anomalies
are then identified by calculating the error between the
predicted and actual values.

Since anomalous data is typically sparse and difficult to
annotate, anomaly detection often relies on semi-super-
vised learning approaches, particularly reconstruction-
based methods. These methods involve training a model
on a large of normal data, learning its underlying distri-
bution, and then measuring reconstruction errors at infer-
ence time. If a given instance deviates significantly from
its reconstructed counterpart, it is flagged as an anomaly.
Common deep learning architectures for reconstruction-
based anomaly detection include autoencoder (AE), gen-
erative adversarial network (GAN) [105], diffusion model
[106] and their variants [107]. The choice of reconstruc-
tion method depends on the specific task and the nature
of the dataset. A detailed discussion of these techniques,
along with representative research findings, can be found
in [108].

As LLMs continue to advance in performance and ca-
pability, researchers have begun integrating them with
anomaly detection to enhance accuracy and efficiency. In
the image domain, AnomalyGPT [109] leverages LLMs
by generating synthetic training data, simulating anoma-
lous images, and producing corresponding textual descrip-
tions. To further refine the model’s understanding, an im-
age decoder is employed to provide fine-grained seman-
tic information, while a prompt learner fine-tunes the
large vision-language model (LVLM) using prompt em-
beddings. [110] introduces an innovative approach where
a vision-language model (VLM) generates textual descrip-
tions for each frame of a test video. These textual scene de-
scriptions are then utilized to design a cueing mechanism
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that activates the LLM’s anomaly detection capabilities,
effectively transforming it into a powerful video anomaly
detector.

Similarly, in log based anomaly detection, LLMs demon-
strate remarkable proficiency in understanding and inter-
preting the contextual nuances of log entries. This enables
a more detailed and efficient anomaly detection process,
significantly reducing the time and resources traditionally
required for manual log reviews [111]. Furthermore, in IoT
anomaly detection, [112] highlights that the command in-
formation in attack traffic is human-readable. By treating
IoT-generated data as a “special language”, the study uti-
lizes LLM embeddings to extract traffic load characteris-
tics, facilitating more effective and scalable anomaly detec-
tion in IoT environments.

4.2 Fault diagnosis
A critical step following anomaly detection is fault diagno-
sis, which involves identifying the root causes of anoma-
lies based on observed abnormal phenomena. In PHM,
fault analysis is typically conducted by examining pro-
cess data recorded from production systems or equip-
ment. As a result, time-series data analysis plays a cru-
cial role in fault diagnosis. Similar to anomaly detection,
fault diagnosis methods begin by extracting fault-related
features from data and subsequently classifying these fea-
tures to determine the underlying issue. Commonly used
feature extraction networks include AE [113], CNN [114],
RNN [115] and their variants. One-dimensional CNNs are
particularly effective for analyzing time-series data, while
two-dimensional CNNs are well-suited for handling multi-
dimensional data with spatial and temporal correlations.
RNNs, on the other hand, are designed to process sequen-
tial inputs using feedback loops, enabling them to retain
past states—an essential capability for analyzing the tem-
poral characteristics of mechanical signals such as vibra-
tion and temperature variations. Unlike anomaly detec-
tion, which often relies on unsupervised learning, fault di-
agnosis can be approached using both supervised tech-
niques, such as transfer learning, and unsupervised meth-
ods, such as reinforcement learning [116].

Beyond time-series analysis, Artificial Intelligence for
IT Operations (AIOps) is gaining significant traction in
industrial applications. AI-driven techniques are increas-
ingly used to automate various stages of the event lifecy-
cle, including event prioritization, identifying recurring is-
sues, and accelerating resolution times. Similar to its role
in anomaly detection, Large Language Models (LLMs) ex-
cel in natural language processing, making them valuable
for predicting and analyzing fault categories based on log
data. [117] has shown that general-purpose LLMs, such
as BERT [118], struggle with processing log data effec-
tively. This is primarily due to differences in vocabulary,
structure, and semantic patterns between log data and

natural language. To address this, the authors pre-trained
BERTOps using both public and proprietary log datasets,
developing representations specifically optimized for log
analysis tasks. The model was evaluated across three
key downstream tasks: log format detection, golden sig-
nal classification, and fault category prediction. Results
demonstrated that domain-specific LLMs, fine-tuned on
log data, exhibited a deeper understanding of specialized
terminology and log structures, ultimately leading to more
accurate and reliable fault diagnosis. [119] highlights the
potential of GPT-3.5 in cloud computing incident man-
agement, demonstrating its superiority over traditional
methods in root cause analysis and mitigation recommen-
dations. Since machine-detected incidents often follow
recognizable patterns, LLMs are particularly effective in
identifying their root causes and suggesting appropriate
mitigation strategies. In some cases, LLMs can even out-
perform human analysts in fault diagnosing due to their
ability to recognize recurring patterns at scale. Similarly,
[120] emphasizes the challenges of accurately pinpointing
the root cause of incidents using a single data source. The
study suggests that integrating multiple diagnostic data
sources such as logs, metrics, and trace data significantly
improves the accuracy and quality of root cause analysis.
Additionally, past incidents with similar causes tend to
recur within short time frames, meaning that leveraging
historical data can accelerate the troubleshooting process.
While human operators may struggle with analyzing pre-
viously unseen issues, LLM combined with CoT can en-
hance understanding and facilitate more effective problem
resolution.

4.3 Question answering (QA)
The need for fast and accurate access to information is
the main reason for the rise of research into question and
answer systems (QA) as the first step in the application
of LLM in various sectors, particularly industry. The pri-
mary driver behind its rise is the growing demand for
fast and accurate information retrieval. Before the emer-
gence of LLMs, research efforts primarily focused on im-
proving the interaction layer, leading to notable advance-
ments. Among these, BERT demonstrated the potential of
the Transformer architecture, significantly enhancing QA
performance. However, with the advent and outstanding
capabilities of LLMs, QA as a downstream task has gained
even greater attention.

Despite their impressive performance, LLMs still strug-
gle with answering questions correctly due to several lim-
itations. The reasons for these inaccuracies can be catego-
rized into five key factors [121]:

Domain knowledge deficit: LLMs may lack deep exper-
tise in specialized fields that were not well represented in
their training data.

Outdated Information: The knowledge of an LLM is
restricted to the information available in its pre-training
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dataset, making it unable to answer questions about events
or developments that occurred afterward.

Immemorization: Some knowledge, particularly low-
frequency information, may not be fully retained by the
model, leading to gaps in its responses [122].

Forgetting: Fine-tuning can lead to catastrophic forget-
ting, where previously learned knowledge is lost or over-
written [123].

Reasoning Failure: Even when an LLM has learned rel-
evant knowledge, it may struggle to apply it correctly in
complex reasoning tasks, particularly in multi-step rea-
soning processes [124].

To address these challenges, ICL enables a shift in
question answering (QA) systems from traditional ap-
proaches to prompt engineering. [125] compares the ef-
fectiveness of fine-tuning and retrieval-augmented gener-
ation (RAG) [126] for injecting new knowledge into lan-
guage models. The results indicate that RAG significantly
outperforms fine-tuning in adapting to new information,
making it a more effective approach for knowledge en-
hancement.

Retrieval-Augmented Generation (RAG) is a technique
in which a language model dynamically retrieves exter-
nal information during the generation process to enhance
its natural language generation. Instead of relying solely
on pre-trained knowledge, RAG actively retrieves relevant
information and integrates it into the model’s prompts, al-
lowing it to generate more accurate and contextually ap-
propriate responses. The core components of RAG are
retrieval and generation: Retrieval leverages the efficient
storage and search capabilities of vector databases to lo-
cate relevant knowledge. Generation utilizes the LLM
and prompt engineering to effectively incorporate the re-
trieved information, ensuring a more precise and informed
response. The detailed technical roadmap of RAG and re-
cent advancements in the field are explored [127, 128],
providing insights into the latest research on improving
retrieval efficiency and integrating external knowledge
sources into LLMs.

5 Conclusion and future
This review has examined the integration of Large Lan-
guage Models (LLMs) in PHM, highlighting their trans-
formative potential across various domains of image pro-
cessing, time-series data analysis, and human-computer
interaction. Throughout our analysis, we have demon-
strated how architectural considerations, optimization
techniques, and fine-tuning approaches collectively en-
able the practical deployment of these powerful models
in resource-constrained industrial environments.

The evolution of LLM architecture and deployment
strategies (Sect. 2) has been critical in overcoming com-
putational barriers. Acceleration methods and quantiza-
tion techniques—particularly FlashAttention (Sect. 2.2)

and PTQ (Sect. 2.3.2)—have made it possible to run so-
phisticated language models on edge devices and indus-
trial controllers without sacrificing essential performance
characteristics. Parameter-efficient fine-tuning (Sect. 3.1),
especially LORA (Sect. 3.1.4), has democratized the adap-
tation of foundation models to specialized industrial tasks
while minimizing computational overhead.

The expansion into multi-modal capabilities (Sect. 3.2)
represents a particularly significant advancement for
PHM, as it enables LLMs to process and reason across di-
verse data types including time-series data, images, and
textual documentation. This cross-modal integration al-
lows for more robust anomaly detection (Sect. 4.1), com-
prehensive fault diagnosis (Sect. 4.2), and contextually
aware question-answering systems (Sect. 4.3) that can in-
terpret multiple input formats simultaneously.

However, several critical challenges and research gaps
remain:

• Reliability and Safety: The deployment of LLMs in
mission-critical settings demands rigorous validation
to ensure deterministic and safe behavior, especially
when model outputs influence physical processes.

• Interpretability: Many LLMs function as black
boxes, hindering trust and adoption in industrial
settings. Research into more transparent and
explainable model behavior is urgently needed.

• Data Privacy and Security: With access to sensitive
operational data, LLMs must be designed with robust
privacy-preserving mechanisms, including federated
learning and differential privacy.

• Continual and Lifelong Learning: Industrial
environments are dynamic. LLMs must be capable of
continuous learning without catastrophic forgetting,
which remains an open challenge.

• Energy Efficiency and Sustainability: Despite
progress through quantization, the high energy
demands of LLMs still pose challenges for sustainable
deployment, particularly on edge devices.

To accelerate the safe and effective integration of LLMs
into PHM, the following research avenues are proposed:

• Development of Lightweight, Interpretable
Models: Focus on hybrid architectures that combine
symbolic reasoning with LLMs to improve
transparency and reduce computational load.

• Federated and Edge Learning Frameworks:
Advance privacy-preserving strategies that enable
model training and inference directly at the edge,
reducing data transfer and latency.

• Task-Specific Multi-modal Pretraining: Create
domain-adapted multi-modal foundation models
tailored for PHM tasks, incorporating structured
sensor data, images, and technical documents.

• Robust Benchmarking and Simulation
Environments: Establish standardized benchmarks
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and high-fidelity simulators for evaluating LLM
performance in industrial PHM scenarios.

• Energy-Aware Model Optimization: Explore
adaptive inference strategies and hardware-software
co-design to minimize energy consumption without
compromising accuracy.

In conclusion, LLMs have emerged as powerful tools for
PHM, capable of transforming how knowledge is accessed,
processes are monitored, and decisions are made. While
technical and practical challenges persist, the rapid pace
of innovation in this field suggests that language models
will become increasingly integral components of indus-
trial systems, contributing to enhanced efficiency, reduced
downtime, and improved decision-making across manu-
facturing sectors. As research continues to address cur-
rent limitations, LLMs stand poised to become fundamen-
tal building blocks of the intelligent industrial systems of
tomorrow.
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