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Abstract—The management of battery energy storage 

systems (BESS) faces significant challenges due to the 

limitations of traditional maintenance approaches, which 

often make it hard to capture real-time health states and 

lead to inefficiencies and unexpected failures. While 

digital twin (DT) offers a promising solution for real-time 

monitoring and predictive maintenance. This gap 

hinders the development of comprehensive decision 

support systems that can optimise maintenance schedules, 

ultimately affecting the reliability and cost-effectiveness 

of BESS operations. Here, we propose a novel integration 

of DT with an advanced strategy: an RUL-based 

maintenance approach that combines remaining useful 

life (RUL) prediction with battery availability to optimise 

maintenance scheduling and spare parts management. 

The results illustrate that this approach improves 

operational decision support. By addressing the specific 

gap in integrating advanced data-driven strategies within 

a DT framework, the research enhances system 

reliability and reduces maintenance costs for BESS. This 

comprehensive solution advances the broader field by 

providing a robust framework for real-time decision 
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support in BESS management. 

Keywords—digital twin, decision support, battery 

energy storage system, deep learning, predictive 

maintenance 

I. INTRODUCTION 

Digital twin (DT) technology integrated with 
battery energy storage systems (BESS) is increasingly 
recognised as a way to improve operational decision 
support [1]. However, traditional maintenance 
strategies, either reactive or following predefined 
schedules, typically fail to capture the real-time health 
state of BESS components [2]. The use of these 
strategies may lead to suboptimal performance, higher 
costs and unexpected failures. Therefore, there is a 
need for advanced methods which use real-time data 
and sophisticated analytical models to enable 
continuous monitoring and predictive maintenance of 
BESS for improved system reliability and longevity. 
Digital Twins are a promising solution that provides a 
complete digital replica of physical systems, able to 
collect real-time data, monitor health status, and make 
operational decisions [3, 4]. 

Integrating DT technology into BESS is generally 
regarded as a very effective way to enhance 
operational decision support. Unlike DT-supported 
maintenance, reactive response or schedule-based 
approaches are unable to capture the real-time health 
status of BESS components [5]. Therefore, such 
approaches often lead to suboptimal performance, 
higher costs, and unexpected failures because they are 
based on fixed maintenance intervals and lack 
predictive ability [6]. 

To address these challenges, this paper presents a 
DT-supported decision support system that employs 
advanced methodologies for predictive maintenance 
and fault analysis. A remaining useful life (RUL)--
based maintenance approach integrates RUL 
prediction with equipment availability to optimise 
maintenance decisions dynamically [7].  

The RUL-based maintenance strategy significantly 
improves traditional approaches by integrating real-
time health status data with equipment availability 
metrics [8]. Unlike conventional methods that solely 
rely on RUL predictions, this approach incorporates 
both remaining lifespan and real-time equipment 
availability to determine optimal maintenance timing 
[9]. By balancing these two critical factors, the strategy 
minimises maintenance costs while maximising 
system availability and reliability. Additionally, 
integrating RUL with availability allows for more 
precise scheduling of maintenance activities and spare 
parts management, thereby reducing the risk of 
unexpected failures and stockouts [10]. 

With the development of sensor technology, the 
use of real-time battery health status information to 
predict the RUL and then use it for battery health 
management decisions has become the core content of 
fault prediction and health management [11-14]. Based 
on RUL, scholars have developed a joint optimisation 
of maintenance and spare parts ordering decisions, and 
the sequential joint optimisation strategy model 
proposed by Wang [15] firstly determines the optimal 
time for equipment replacement and then optimises the 
ordering point. Based on this study, Jiang [16] 
optimised both the equipment replacement time and 
the spare parts ordering time and compared them with 
the results of the sequential joint strategy optimisation, 
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which ultimately showed that the joint decision was 
more effective. However, none of them considered the 
costs associated with ordering spare parts [15, 16]. 
Wang [17] proposed a joint spare parts ordering and 
replacement strategy for unrepairable systems, under 
which historical state information is used to predict the 
remaining life at any monitoring moment, and various 
scenarios that may occur at the ordering point, the time 
of preventive replacement, and the time of the next 
monitoring moment are combined to construct an 
objective function that minimises the expected cost per 
unit of time while optimising the ordering point and the 
replacement time. The objective function is 
constructed to minimise the expected cost per unit of 
time by combining various scenarios that may occur at 
the ordering point, the preventive replacement moment, 
and the next monitoring moment, while optimising the 
ordering point and preventive replacement moment. 
Although the above studies consider the remaining life 
of the equipment, they are mainly used in maintenance 
decisions, where the ordering decision for spare parts 
is based on the degradation level or the moment of 
equipment replacement. However, the decision maker 
will judge whether to order or not by comparing the 
length of the remaining useful life of the equipment 
with the length of the lead time for spare parts [18]. 

These methodologies collectively establish a 
robust framework to enhance the operational decision-
support capabilities of BESS [19]. By integrating 
diverse data sources—including real-time sensor data, 
historical operational records, and expert insights—the 
DT-supported system dynamically assesses the health 
state of BESS components and offers actionable 
maintenance strategies [20]. The RUL-based 
optimisation addresses the limitations of conventional 
maintenance strategies while extending the lifespan of 
BESS components, reducing operational costs, and 
improving system reliability [21]. 

The remainder of this paper is organised as follows: 
Section 2 outlines the methodology for the DT-
supported operational decision support approach. 
Section 3 describes the experimental setup used to 
validate the proposed approach, while Section 4 
presents the results and their implications, followed by 
a conclusion in Section 5. 

II. METHODOLOGY 

The RUL of the estimation models used in the 
maintenance strategies is often based only on RUL 
prediction, causing a mismatch between the predicted 
and the actual service life [22]. This may increase 
maintenance costs and reduce system reliability due to 
inaccuracies of this kind [23]. 

However, operational availability is a broader 
indicator of how the battery can do its stated task. The 
fraction of time that the battery is available for use (less 
downtime for maintenance or failures) is available [24]. 
RUL and availability are integrated to allow 
maintenance decisions to be made based on the health 
status of the component and the operational readiness 
of the system [25]. RUL predictions and availability 

metrics are combined to form a maintenance index 
used to assess the urgency and timing of maintenance 
activities [26]. 

This section introduces a predictive maintenance 
strategy that takes into consideration RUL and 
availability in optimising the maintenance decisions. 
The method we propose in this work combines both of 
these two indicators into a unified model to measure 
maintenance needs, ranking actions that reduce 
maintenance costs and increase battery life. 

A. Data Acquisition and Pre-processing 

Effective data gathering and early data processing 
are critical to the reliable performance of the DT-
supported operational decision support system. The 
dataset is real-time sensor data of key parameters such 
as voltage, current and temperature [27]. These 
measurements provide detailed information on the 
operational conditions and performance of BESS 
components [28]. Monitoring systems data is used not 
only to determine the current physical asset health 
status but also to predict its RUL [29]. The DT 
analyses the RUL prediction and battery availability to 
determine the optimal maintenance scheduling and the 
need for spare parts ordering at certain monitoring 
points. Taking predictive operations such as this 
minimises failure and downtime, ensuring that 
replacement parts are available in time. 

Several steps are involved in the data pre-
processing. For the first case, data cleaning is 
performed to remove errors and treat missing values 
that might jeopardise model performance. In this, we 
are required to detect and reject outliers, impute 
missing values with statistical methods and finally 
normalise sensor readings to a common scale [30]. 
Then, we apply data transformation techniques on the 
data, like data feature engineering and dimensionality 
reduction [31], to make the data more relevant and 
high-quality. This results in a dataset optimised for 
real-time health state estimation, RUL prediction and 
spare parts management as multiple data sources are 
combined and rigorous preprocessing techniques are 
applied. The DT-supported system covers the dynamic 
behaviour of BESS components comprehensively and 
allows for effective decision support and maintenance 
strategy optimisation. 

B. Integration of Digital Twin to Decision Support 

System  

Decision support systems are integrated with DT to 
enhance the monitoring, diagnosis and prediction of 
BESS's health status of its components [32]. Using 
real-time operational data and historical maintenance 
data, the DT framework can perform precise fault 
diagnosis and decision-making. This integration 
supports this integrated maintenance optimisation and 
system reliability approach. The overall framework is 
shown in Figure 1. This work focuses on the decision 
support end of the overall framework. 
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Figure 1. The overall framework of battery digital twin 

The battery digital twin framework is structured 
across five interconnected ends. The physical end 
constitutes the real entity equipped with sensors that 
capture operational parameters such as current, voltage, 
and temperature. The cloud end processes and 
standardises the data, applying noise reduction and 
normalisation to ensure data quality and coherence. 
The digital end hosts hierarchical models that simulate 
the battery’s electrochemical, thermal, and degradation 
behaviours, employing advanced algorithms to 
estimate the state of charge (SOC), state of health 
(SOH), and RUL. The output end delivers diagnostic 
and prognostic outputs, including updating SOC, SOH, 
and RUL, thus supporting situational awareness. The 
decision support end synthesises these outputs into 
practical recommendations, interacts with the DT, and 
receives guidance for operational and maintenance 
decisions. 

Insights generated from the DT-supported system 
are beneficial to the decision–support framework [33]. 
This integration allows any maintenance decision 
including best scheduling and part management to be 
made with a sound and complete knowledge of the 
current and future health of the system. The DT links 
predictive maintenance strategy and decision support 
with dynamic adaptation to changing operational 
conditions. For the application of advanced 
maintenance strategies, such as RUL and battery 
availability-based optimization, it is necessary to be 
able to determine the state of health of a battery in a 
way meaningful to the operator. 

C. RUL and Availability-based Decision Support  

Currently, most maintenance strategies only rely 
on the RUL prediction, so any inaccuracy in RUL 
prediction will cause the actual service life to be 
different from the planned service life [34]. 
Nevertheless, these errors will raise maintenance costs 
and lower system reliability. 

Operational availability is information about the 
battery’s ability to fulfil its prescribed functions [35]. 
Availability is the time the battery is available for use, 
less time down for maintenance, etc. Given the RUL 

and availability, this work integrates the two quantities 
to make a maintenance decision based on the 
component's health and the system's operational 
readiness. 

A maintenance index is calculated to determine 
when and how urgently maintenance activities need to 
be performed by combining RUL predictions with 
availability metrics. Because the batteries have lower 
index values, maintenance of these batteries is 
preferred first since they are more likely to fail soon 
and have a greater impact on system performance [36]. 
Maintenance has to be done at the right time, not too 
late and prevent unnecessary replacement or too early 
and prevent unplanned downtime. 

Furthermore, the strategy also includes a proactive 
spare part ordering policy based on the prediction of 
RUL. Whenever each part fails, it can be ordered spare 
parts ahead of time. By taking this forward-thinking 
approach, not only do out-of-stock situations disrupt 
less, but the way inventory is managed is reduced, 
which in turn reduces total operational expenses. 

Through the integration of battery RUL predictions 
and availability, battery performance and maintenance 
strategy can be optimised. This method improves 
reliability and BESS efficiency and provides rational, 
data-driven decision-making. 

III. EXPERIMENTAL SETUP 

This section describes the experimental setup of the 
proposed DT-supported decision support system for 
BESS. The experiments concentrate on evaluating the 
performance of predictive maintenance strategies that 
use RUL predictions as well as battery availability. 

To validate the feasibility of the proposed method, 
experiments are conducted to demonstrate its 
capabilities in supporting maintenance decision 
optimisation, including reducing downtime and 
maintenance costs. Operational data combined with 
domain-specific textual information is utilised to 
substantiate the system’s effectiveness. This section 
presents the data sources and experimental setup. 
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A. Data Integration and Digital Twin Configuration 

Integration of diverse data sources is required to 
configure the DT effectively to represent the health 
status and dynamic behaviour of BESS [37]. Through 
this integration, we combine updated sensor 
measurements, historical maintenance logs and 
technical documentation into a single dataset that 
provides a holistic view of system performance and 
operational conditions. 

The battery operating state can be continuously 
monitored by updated sensor data such as voltage, 
current, and temperature. To this data, historical 
maintenance records are also added, capturing 
degradation trends and failure patterns across 
individual components.  

After merging the datasets, they receive 
preprocessing actions like normalisation and feature 
engineering to guarantee a fit with the DT’s analysis 
tools. Sensor information undergoes normalisation to 
correct discrepancies and align measurement metrics; 
at the same time, critical attributes are pulled out to 
accentuate the influencing factors on system health. By 
tokenising and vectorising textual data we create 
numerical forms that can be analysed. The DT receives 
superior input from these preprocessing actions that 
allow for exact fault detection and the estimation of 
RUL. 

The final configuration of the DT involves defining 
relationships between physical components and their 
digital replica and setting parameters for real-time 
monitoring and state estimation. Leveraging this 
configuration, the DT continuously assesses the health 
status of the battery system, detects anomalies, and 
generates actionable insights to support predictive 
maintenance and decision-making. 

B. Predictive Maintenance Strategy Optimisation 

Based on RUL Prediction and Availability 

The battery’s health state is continuously 
monitored to predict its RUL and to inform spare parts 
ordering decisions. An average repair or preventive 
maintenance time, denoted as 𝑞, is introduced as the 
threshold for decision-making, representing the 
permissible difference between the RUL and the lead 
time 𝐿 . The strategy dynamically adjusts based on 
updated RUL predictions and whether spare parts have 
already arrived. The value of 𝑞 is determined through 
the joint optimisation model and acts as a critical 
decision variable, balancing the timing of orders 
against the degradation rate of the battery and supply 
lead times. 

1) Battery Availability  
In practical use, the steady-state availability can be 

divided into inherent availability 𝐴𝑖, achieved 
availability 𝐴𝑎, and operational availability 𝐴0. At the 
battery usage stage, operational availability is the most 
effective indicator of actual battery utilisation and 
maintenance support conditions [7]. It represents the 
proportion of time the battery or system is capable of 
performing its intended function, indicating the 
relationship between reliability and maintainability. 

The size of operational availability is primarily 
influenced by three factors: Mean Time Between 
Maintenance (MTBM), Mean Corrective Maintenance 
Time (MCMT), and Mean Logistic Delay Time 
(MLDT). The magnitude of MLDT is determined by 
the system's support capability. Spare parts supply 
capability is critical for supportability, as it 
significantly impacts the frequency of maintenance 
cycles and overall system operational availability. 

In spare parts management, operational availability 
is calculated as shown in Equation (1): 

𝐴0 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀+𝑀𝐶𝑀𝑇+𝑀𝑃𝑀𝑇+𝑀𝑆𝐷
             (1) 

Spare parts availability: 

𝐴𝑎 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀+𝑀𝐶𝑀𝑇+𝑀𝑃𝑀𝑇
               (2) 

Supply availability: 

𝐴𝑠 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀+𝑀𝑆𝐷
                       (3) 

Therefore, the operational availability can be 
derived as: 

𝐴0 =
1

1/𝐴𝑎+1/𝐴𝑠

                          (4) 

This model calculates availability by dividing it 
into two parts: achievable availability and spare parts 
supply availability. Compared with the updated 
Markov renewal theory for calculating system 
availability, this method simplifies the calculation by 
making certain assumptions. However, when there is a 
constraint on spare parts supply, the model has 
limitations. Thus, many studies on inventory issues 
have been conducted to expand the model’s 
applicability [7]. 

The method proposed in this text optimises the 
spare parts supply strategy by integrating operational 
availability with spare parts availability. The 
optimisation equation is given as: 

𝐴 =
𝑇

𝑇+𝑞
                               (5) 

Where 𝑇  refers to the mean maintenance time 
interval and 𝑞  average repair or preventive 
maintenance time, including corrective or preventive 
maintenance intervals. 

The RUL of the battery is 𝑅𝑈𝐿𝑘 and the spare parts 
lead time is 𝐿 , where 𝑞  satisfies: 𝑅𝑈𝐿𝑘 = 𝐿 + 𝑞 , 
thereby combining availability with the spare parts 
supply process to achieve joint strategy optimisation. 

2) Joint Maintenance Strategy Optimisation Modelling 

Each time, the cost 𝐶𝑖 is used to monitor the system 
status. If 𝑙𝑝 ≤ 𝑅𝑈𝐿(𝑡𝑘) ≤ 𝐿𝑐 , the cost 𝐶𝑅 will initiate 

preventive maintenance; otherwise, if 𝑋(𝑡𝑘) ≥ 𝐿𝑐, the 
cost 𝐶𝑅 will initiate corrective maintenance, which 
will result in losses 𝐶𝐹. The system availability and 
spare parts supply are comprehensively analysed to 
establish a joint strategy considering six potential 
updating events which are shown in Table I.  

Typically, the cost of placing an emergency order, 
𝐶𝑒𝑜, is higher than the cost of placing a normal order, 
𝐶0. If the ordered spare part does not arrive, it incurs a 
shortage cost; if the spare part arrives and is not 
immediately replaced, it goes into storage and incurs a 
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holding cost; where the shortage cost per unit of time 
is 𝐶𝑠; and the holding cost per unit of time is 𝐶ℎ. 

Based on the expected cost and length of each 
update event, the update payoff theory is used to 
establish the objective function of minimising the 
expected cost per unit of time, and the optimal decision 
variables are obtained: the ordering threshold 𝑞∗ and 
the preventive maintenance threshold 𝐿𝑝

∗ . The specific 

formulas are as follows: 

min 𝐸 (𝐶(𝐿𝑝, 𝑞)) =
∑ 𝐸(𝐶𝑠(𝐿𝑝,𝑞))6

𝑠=1

∑ 𝐸(𝐿𝑠(𝐿𝑝,𝑞))6
𝑠=1

    

        𝑠. 𝑡.      𝑙𝑘 − 𝐿 ≤ 𝑞; 𝐿𝑝 < 𝐿𝑐             (6) 

where 𝐸(𝐶𝑖(𝐿𝑝, 𝑞))  and 𝐸(𝐿𝑖(𝐿𝑝, 𝑞))  correspond to 

the expected cost and expected length.  

The steps of the experiment are as follows: 

Step 1: Set initial cost parameters 
𝐶𝑖 ,  𝐶𝑜,  𝐶𝑒𝑜 ,  𝐶𝑅 ,  𝐶𝐹 ,  𝐶𝑠,  𝐶ℎ  and maximum number of 

calculations 𝑁𝑚𝑎𝑥 , 𝐿𝑝 = 0, 𝐴 =
𝑇

𝑇+𝑞
, 𝑞 =

𝑇

𝐴
− 𝑇; 

Step 2: Setting preventive maintenance thresholds 
𝐿𝑝 = 𝐿𝑝 + 1, 𝑞 = 0; 

Step 3: Average repair/preventive maintenance 
time 𝑞 = 𝑞 + 1; 

Step 4: Set total expected cost 𝑇𝐶 = 0 ; total 
expected duration 𝑇𝐿 = 0 and number of runs 𝑖 = 0; 

Step 5: With 𝐿𝑝 and 𝐴 fixed, 𝑖 = 𝑖 + 1; 

Step 6: Updated the 𝑅𝑈𝐿(𝑡) of the system every 𝑇 
period, at time 𝑡, if 𝑙𝑘 − 𝐿 ≤ 𝑞, then if 𝑡0 ≥ 0, whether 
it has been ordered or not, if not then order spare parts, 
otherwise go to step 7; 

Step 7: If the RUL at time 𝑡, if 𝑅𝑈𝐿(𝑡) ≤ 𝐿𝑝, then 

return to step 5. If 𝐿𝑝 ≤ 𝑅𝑈𝐿(𝑡) ≤ 𝐿𝑐 , then perform 

preventive maintenance; and make the following 
decisions: when 𝑡0 = 0 , spare parts have not been 
ordered, E1 occurs; when 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝐿, spare parts 
have been ordered but not arrived, E2 occurs; when 
𝑡0 + 𝐿 ≤ 𝑡 , spare parts have arrived, E3 occurs. If 

𝑅𝑈𝐿(𝑡) ≥ 𝐿𝑐 , then perform fault maintenance, 
similarly, according to the various states of spare parts, 
E4, 5, and 6 may occur. 

Step 8: If the number of operations under the 
current 𝑞, 𝐿𝑝  has reached the maximum number 𝑖 =
𝑁𝑚𝑎𝑥 , if satisfied, calculate and record 𝐶(𝐴, 𝑙𝑝) , 

otherwise return to step 5. 

Step 9: If 𝐶(𝐴, 𝐿𝑝) > 𝐶(𝐴 − 1, 𝐿𝑝) , find the 

minimum objective function value and availability 
under fixed 𝐿𝑝 , record it as 𝐶(𝐴∗, 𝐿𝑝), and return to 

step 2; otherwise, return to step 3. 

Step 10: If 𝐶(𝐴∗, 𝐿𝑝) > 𝐶(𝐴∗, 𝐿𝑝 − 1) , it means 

find the minimum objective function value, 
𝑚𝑖𝑛𝐶(𝐴∗, 𝐿𝑝

∗) , the optimal preventive replacement 

threshold 𝐿𝑝
∗ and availability 𝐴∗; otherwise, return to 

step 2. 

IV. RESULTS 

The experiment leverages data from the National 
Aeronautics and Space Administration's (NASA) 
dataset on lithium-ion battery charge and discharge 
experiments to predict RUL. Historical maintenance 
records were conducted from two primary technical 
resources: the ‘GB/T 40090-2021 national standard’ 
and the ‘PowerTitan Operation and Maintenance 
Guide’. These documents contain detailed information 
regarding the standard operating procedures, fault 
diagnostics, and maintenance strategies for energy 
storage systems. The dataset includes information on 
fault categories, troubleshooting methods, component-
level repair instructions, and decision-making 
strategies for optimal maintenance planning. The RUL 
is updated every T charge and discharge cycle, the fault 
threshold 𝐿𝑐 = 0, and the cost parameters are shown in 
Table II. 

TABLE II.  COST PARAMETERS 

𝐶𝑖 𝐶𝑜 𝐶𝑒𝑜 𝐶𝑅 𝐶𝐹 𝐶𝑠 𝐶ℎ 

500 100 4000 12000 50000 25 5 

TABLE I.  ALL POSSIBLE RENEWAL SCENARIOS OF THE JOINT POLICY MODELLING 

Events Status Spare parts status Decision 

E1 

𝑙𝑝 ≤ 𝑅𝑈𝐿(𝑡𝑘) ≤ 𝑙𝑐 

Preventive Maintenance 

Not Ordered Urgent order and immediate maintenance 

E2 
Ordered but not 

arrived 
Wait for spare parts to arrive for 

maintenance 

E3 Arrived Immediate maintenance 

E4 

𝑅𝑈𝐿(𝑡𝑘) ≥ 𝑙𝑐 

Fault maintenance 

Not Ordered Urgent order and immediate maintenance 

E5 
Ordered but not 

arrived 

Wait for spare parts to arrive for 

maintenance 

E6 Arrived Immediate maintenance 
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Based on the above parameters, Python is used to 
program the discrete event simulation algorithm, and 
the minimum objective function value is 

𝐸𝐶(𝐴∗, 𝐿𝑝
∗) =  5.35 , where the optimal availability 

𝐴∗ =  0.11and the preventive maintenance threshold 
𝐿𝑝

∗ = 16 . Figure 2 (a)-(c) shows the trend of the 

expected cost (𝐸𝐶)  per unit time with the ordering 
threshold and the availability (𝐴)  under different 
period T. When 𝐿𝑝 is fixed, the expected cost per unit 

time shows a trend of first decreasing and then 
increasing with the increase of availability. Because if 
𝐴 is too small, ordering spare parts will easily lead to 
no spare parts available when the system fails, 
increasing downtime losses and costs; but a larger 𝐴 
will increase the holding cost of spare parts. Similarly, 
when 𝐴 is fixed, the expected cost per unit time first 
decreases and then increases with the increase of 𝐿𝑝. 

This is because an excessively large 𝐿𝑝 increases the 

possibility of preventive replacement and reduces the 
expected length, resulting in a higher expected cost per 
unit time; a small 𝐿𝑝 is prone to failures, and failure to 

prevent them increases the expected cost per unit time. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. The expected cost per unit time in terms of the preventive 

maintenance threshold 𝑳𝒑 and the availability 𝑨 with different 

period T (T=100, 200, 300) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. The expected cost per unit time with different leading 

time L (=100, 300, 500 and 1000) 

Figure 3 (a)-(d) shows the impact of order lead time 
on the optimal decision, and Table III shows that the 

expected cost per unit time 𝐸𝐶(𝐴∗, 𝐿𝑝
∗)  gradually 

increases with the increase of 𝐿 . The reason is the 
system degradation process does not change. As  𝐿 
increases, it is necessary to start ordering when the 
remaining life is longer, that is, 𝐴∗ gradually increases; 
and once the system needs preventive replacement or 
fault replacement if the spare parts have been ordered 
but have not arrived, the out-of-stock loss caused by 
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the long wait for spare parts will increase, which 
increases the expected cost per unit time, so 
𝐿𝑝decreases, making the preventive maintenance time 

closer to the arrival point. 

TABLE III.  THE INFLUENCE OF THE ORDER LEAD TIME L ON 

THE OPTIMAL DECISIONS 

𝐿 𝐴∗ 𝐿𝑝
∗  𝐸𝐶(𝐴∗, 𝐿𝑝

∗) 

100 0.14 15 6.03 

300 0.16 10 6.28 

500 0.19 10 6.49 

1000 0.17 9 7.14 

A joint maintenance and spare parts ordering 
strategy based on RUL is proposed for single-
component systems. The maintenance strategy adopts 
a control limit strategy to determine the system 
degradation at each monitoring point to determine 
whether to perform preventive replacement or fault 
maintenance; at the same time, the predicted RUL is 
used to compare the difference between the remaining 
service life and the lead time of the monitoring point 
with the size of the availability to determine whether 
to order spare parts, thereby integrating the spare parts 
ordering strategy with the real-time health status of the 
system. A model for minimising the expected cost per 
unit time is constructed, and a discrete event 
simulation algorithm is designed to optimise the 
preventive replacement threshold and the availability 
threshold. The optimal solution is given through case 
analysis, and the influence of the monitoring cycle and 
the ordering lead time on the optimal decision is 
analysed. 

V. CONCLUSION 

The experiment aimed to optimise predictive 
maintenance strategies, including integrated RUL 
prediction and battery availability. The results show 
that considering both RUL and availability improves 
maintenance decision-making results in a more 
efficient allocation of resources and reduces 
unnecessary actions. With RUL, predicted by battery 
DT, as a primary indicator, the model determined the 
optimal time for preventive maintenance, avoiding 
both early replacement and excessive downtime. 
Furthermore, considering battery availability the 
strategy also incorporated external factors such as 
component supply and system availability, which are 
important in realistic cases. The maintenance method 
adopts a control limit method to evaluate system 
degradation at each monitoring point, thereby 
determining whether to perform preventive or 
corrective replacements. Concurrently, the predicted 
RUL is assessed by comparing the difference between 
the remaining service life and the lead time at each 
monitoring point against a predefined ordering 
threshold, which governs the initiation of spare parts 
procurement. This dual approach facilitates the 
integration of spare parts ordering strategies with the 
system’s real-time health status. The RUL-based 
predictive maintenance model demonstrates particular 
efficacy in optimising both the timing and frequency 

of maintenance activities, utilising quantitative metrics 
to enhance operational efficiency and resource 
utilisation. 

Overall, this paper presents a review of how 
advanced data-driven methods can be integrated into 
DT to improve maintenance decision support for BESS. 
Results from experiments show that a spare parts 
ordering strategy combining RUL prediction and 
availability can help improve maintenance planning, 
fault detection, and operational decisions. This paper 
points out the complementary strengths of these 
models and proposes that combining them into a DT 
framework will give a more complete and adaptive 
BESS management enhance system reliability and 
reduce maintenance costs. 

MATCH & CONTRIBUTION 

This contribution aligns closely with the theme of 
the ICE IEEE 2025 conference on “AI-driven 
Industrial Transformation: Digital Leadership in 
Technology, Engineering, Innovation & 
Entrepreneurship.” The paper introduces a digital twin 
(DT)-supported framework for Battery Energy Storage 
System (BESS) management, combining predictive 
maintenance strategies based on Remaining Useful 
Life (RUL) with real-time operational insights. By 
integrating RUL estimation with availability-driven 
decision-making, the study advances the role of 
intelligent maintenance in energy systems. The 
research underscores the transformative potential of 
digital technologies in enhancing operational 
resilience and reducing lifecycle costs in industrial 
energy applications. Through its focus on real-world 
data validation and actionable decision support, this 
work contributes meaningfully to the conference’s 
emphasis on data-driven engineering and the 
application of AI in industrial innovation. 
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