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Abstract—The rise of synthetic and manipulated audio
content, especially partial fake speech, presents significant
challenges for verifying audio authenticity. Partial fake
speech refers to segments of audio in which only certain
parts have been altered or synthesized, making it more
difficult to detect compared to fully synthetic speech.
This paper introduces a novel detection model specifically
designed to identify partial fake speech. Our approach
incorporates Wav2Vec 2.0 as a feature extractor, along with
max pooling, conformer blocks, attention-based pooling,
and fully connected layers. Experimental results on two
datasets demonstrate the model’s effectiveness in detecting
partial fake speech. Our models outperforms existing
methods in terms of Equal Error Rate (EER), achieving
0% on the RFP dataset and 2.99% on the ASVSpoof 2019
LA dataset.

Index Terms—Biometric security, deepfake audio, neural
networks, partial fake audio, speech synthesis.

I. INTRODUCTION

The rapid advancement of speech synthesis and manip-
ulation technologies, including deep learning-based text-to-
speech (TTS) [1]-[4] and voice conversion (VC) [5]-[7]
systems, has enabled the creation of highly realistic synthetic
speech. While these technologies offer beneficial applications,
they also pose significant risks, particularly with the rise of
partial fake speech attacks [8]. In these attacks, only specific
segments of an audio recording are manipulated or replaced
with synthetic content, while the rest of the audio remains
real. This selective alteration makes partial fake speech more
deceptive and harder to detect than fully synthetic speech, as
the modified segments are often seamlessly integrated into the
original recording.

Partial fake speech attacks pose significant risks across mul-
tiple domains, including misinformation campaigns, identity
theft, fraud, and the deterioration of trust in digital media. For
example, attackers can alter phrases within a speech to change

its meaning, create fake evidence, or impersonate individuals
for harmful purposes [8]-[10]. Consequently, there is an urgent
need for effective detection mechanisms that can identify these
sophisticated manipulations.

Several techniques were proposed for detecting partial fake
speech [10]-[12]. However, these techniques were only eval-
uated on the ADD 2023 challenge [13] dataset, which is not
publicly available.

Detecting partial fake speech is inherently more complex
than identifying fully synthetic audio. Recent research has
focused on utilizing deep learning models to analyze entire
audio files and localize the fake segments [9], [11].

II. MOTIVATION

The existing tools for detecting fakes and partial fakes (PF)
are often optimized for performance on specific datasets. How-
ever, their effectiveness may significantly decrease when they
are applied to different datasets, such as the RFP dataset [14].
For example, in previous research [8] we conducted partial
fake attack experiments against three state-of-the-art (SOTA)
detection methods, and we found that the Equal Error Rate
(EER) for these experiments ranged from 3.70% to 50.16%. In
contrast, the EER for the original datasets, containing entirely
fake audio, was much lower, ranging from 1.34% to 4.9%.

Our objective in this paper is to answer the following
question:

Can we create a PF detection tool that performs
effectively regardless of the dataset used for training
and testing?

ITI. PARTIAL FAKE SPEECH DETECTION MODEL

To investigate the above-proposed question for PF detection,
we used the RFP dataset [14] and ASVSpoof 2019 LA dataset
[15]. Next, we develop our detection model, which consists of
five main components, as illustrated in Figure 1.

Our model, named Partial Fake Detection Model (PFDM),
is designed to classify partially faked audio data into fake
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Fig. 1. Our proposed detection model

and real. We begin by integrating several ML components
into the model and assessing their detection performance until
we identify the optimal combination. This involves removing
components that negatively impact the detection results. Our
neural network model uses Wav2Vec 2.0 [16] as a feature
extractor, and it is the first model that integrates this specific
combination of several components, explained below. These
components include Max Pooling, a Conformer block, Self-
Weighted Pooling, and a fully connected refinement block
for classification. This architecture is specifically designed to
handle audio-based spoofing detection effectively. It extracts
features from the raw audio signal and utilizes advanced deep
learning components for precise classification.

A. Wav2Vec 2.0 (Feature Extractor)

The model utilizes Wav2Vec 2.0 [16] as the initial com-
ponent in the pipeline, functioning as a feature extractor.
Wav2Vec 2.0 is a pre-trained neural network that learns to
represent raw audio data. It transforms the raw waveform
input into high-level feature vectors that capture the essential
acoustic characteristics of the audio. These feature vectors then
serve as input for the subsequent layers of the model. This
pre-trained feature extractor significantly minimizes the need
for manual feature engineering while providing high-quality,
context-aware representations of speech signals.

Input: The Wav2Vec components receive two inputs: the
batch size and the time steps. The batch size refers to the
number of data samples processed together in one training
and testing iteration in machine learning. Time steps indicate
the individual units of time in an audio signal during which
features are extracted and analyzed. The raw waveform is
processed across these time steps, and the model typically
makes predictions based on how these features change over
time.

Output: The output of wav2vec includes the batch size,
time resolution, and feature dimension. The time resolution is
determined by wav2vec and specifies the smallest time unit
used to extract features from the audio signal. A higher time
resolution allows the model to analyze more detailed segments
of the audio over time, while a lower time resolution results in

analysis over larger, more averaged time periods. This compo-
nent is capable of handling audio files of various lengths. We
used the base model, which has a feature dimension of 768
[16].

B. Max Pooling

Max pooling is a downsampling technique widely used
in Convolutional Neural Networks (CNNs) and other deep
learning models. It operates by sliding a fixed-size window
over the input data and selecting the maximum value within
each region. This process reduces the spatial dimensions
(height and width) of the input while preserving the most
important features. As a result, it decreases the computational
load and memory requirements for processing.

Additionally, max pooling introduces a level of invariance
to small translations in the input data, which can enhance the
model’s robustness. It enables the model to concentrate on
more significant patterns and makes it less sensitive to minor
changes or noise in the data.

In this model, max pooling is applied after feature extraction
to reduce the sequence length, thereby reducing computational
complexity and increasing efficiency. The pooling operation
is governed by a hyperparameter known as the *max pooling
factor’, which defines the size of the pooling window and
the stride, or step size, of the window. By utilizing max
pooling, the model decreases the feature dimensions, allowing
for more efficient data processing without sacrificing critical
information. This pooling factor ensures that the model’s
representation becomes more compact, capturing the most
relevant features.

Overall, max pooling enables the model to focus on essential
features while reducing the input size. This approach leads
to fewer parameters, lower memory consumption, and faster
computations. It also contributes to the model’s ability to gen-
eralize better by making it more invariant to small translations
in the input data.

Output: The 768 feature dimensions obtained from the
wav2vec block are reduced in the max pooling block to 256.
The output of the max pooling layer contains the batch size,
time resolution, and feature dimensions with a size of 256.



C. Conformer Block

After the audio is processed by wav2vec 2.0 and max pool-
ing, the resulting feature vectors are sent through a Conformer
block. The Conformer block, which stands for Convolution-
augmented Transformer, is highly effective for PF detection. It
successfully combines the strengths of both convolutional neu-
ral networks (CNNs) and transformers, making it especially
suitable for audio data. This type of data is sequential and
often contains both local (short-term) and global (long-term)
dependencies.

Here are the reasons why the Conformer block is particu-
larly effective in PF audio detection:

A. Capturing Local and Global Features:

o Convolutional Layers: The convolutional component of
the Conformer block is responsible for identifying local
features in the audio signal. These features represent
short-term localized patterns in the waveform, such as
transitions between phonemes. In the context of speech,
this involves capturing details about how sounds or words
evolve over time.

o Transformer Layers: The transformer component, which
utilizes a self-attention mechanism, allows the model to
capture long range dependencies across time. This is
crucial for PF detection tasks, where understanding the
global context, like sentence structure or emotional tone,
is important. For example, recognizing how a segment of
a sentence connects to the overall structure can enhance
the accuracy of speech classification.

B. Handling Sequential Data:

« Audio signals are sequential, meaning that each part of
the signal depends heavily on the previous one, such as
phonemes in speech or notes in music.

o The self-attention mechanism of the Conformer block
enables the model to process sequential dependencies by
considering all time steps at once. This capability helps it
capture long-term patterns that may cover significant por-
tions of the audio. For instance, the relationship between
distant syllables in a spoken sentence can be crucial,
and the transformer’s attention mechanism effectively
captures these connections.

Output: The output of the conformer block consists of
batch size, time resolution and feature dimension 256.

D. Attention Based Pooling

To reduce the dimensionality of the sequence while preserv-
ing key feature representations, we apply Self-Weighted Pool-
ing. This global pooling layer reduces the sequence length,
while the self-weighting mechanism allows the model to focus
on the most informative parts of the sequence. The SAP
pooling layer employs a mean pooling strategy that calculates
the mean of features across different time resolutions. This
ensures a compact feature representation highlighting the
critical aspects of the audio necessary for PF detection.

Output: The output of the attention-based pooling block
consists of batch size and feature dimension 256.

E. Fully Connected Layers

The feature vector is processed through a fully connected
refinement block, which further refines the features before
detection. This refinement block consists of the following:

o A linear layer followed by a GELU activation and layer
normalization.

o A dropout layer is used for regularization, which helps
prevent overfitting in the training data.

Output: The final output layer consists of a linear layer
that generates the ultimate detection score. This score is then
processed through a sigmoid activation function to yield a
value between 0 and 1, indicating whether the input audio
is real or fake.

F. Hyperparameters Tuning Techniques

- Dropout Scheduler. Dropout is a regularization technique
used in neural networks to prevent overfitting. The core idea
is to randomly ’drop’ (set to zero) a fraction of the input units
(neurons) during training. This process compels the network to
learn redundant representations and prevents it from becoming
overly reliant on any specific feature. The dropout rate - the
fraction of units to drop - is a hyperparameter that typically
remains fixed throughout training.

In our model, the dropout probability is dynamically ad-
justed using a cosine annealing scheduler. Initially, the dropout
probability is set to its maximum value and gradually de-
creases as the number of epochs increases. This method allows
the model to start with strong regularization (high dropout)
and then to progressively reduce the dropout rate as training
progresses. This approach can enhance the model’s ability to
learn better representations in the later stages of training. The
adjustment formula for the dropout probability is based on the
cosine function, ensuring a smooth transition from the maxi-
mum to the minimum value over the course of training. This
helps prevent overfitting early on, while allowing the model to
refine its representations without excessive regularization later.

The following is the cosine-based formula for dropout
probability p over training epochs:

1+ x
Pt = Pmax * M

Where:

o p; is the dropout probability at epoch ¢.

e DPmax 1S the maximum dropout probability (usually set at
the start of training).

o T is the total number of training epochs.

e COS (%w) smoothly decreases from 1 to -1 as ¢ increases.

This scheduling strikes a balance between exploration and
exploitation. In the early phase, a higher dropout rate en-
courages the model to explore more diverse features, whereas
reduced dropout later in training permits the model to better
exploit the features it has learned. This dynamic adjustment
enhances generalization without compromising performance.

- Learning Rate Scheduler. The learning rate is a critical
hyperparameter that determines the size of the steps taken



during each iteration when updating model weights. In deep
learning, it is common to adjust the learning rate throughout
training to ensure efficient convergence. If the learning rate is
set too high, the model may overshoot the optimal weights.
Conversely, if it is too low, the training process may become
excessively slow and could get stuck in suboptimal solutions.

In our model, we adjust the learning rate dynamically using
the ReduceLROnPlateau scheduler from PyTorch. This sched-
uler reduces the learning rate when a specified performance
metric, such as validation loss, stops improving. It is designed
to monitor the model’s performance during training and lower
the learning rate when progress stagnates, helping the model
to converge more accurately in the later training stages.

The scheduler has several parameters that control when and
how the learning rate is adjusted:

o Factor: This refers to the rate at which the learning rate is
decreased when the model stops showing improvement.
For example, a factor of 4/5 indicates that the learning
rate is reduced by 20% each time the model’s perfor-
mance plateaus.

o Patience: This is the number of epochs without any
improvement before the learning rate is reduced. It helps
prevent unnecessary adjustments if the model is still
experiencing gradual progress. We used 5 epochs in our
model.

o Threshold: This represents the minimum change in the
monitored metric that is considered an improvement. If
the change is smaller than the threshold, the learning rate
will be decreased.

e Min LR: This is the minimum learning rate that the
scheduler can reach, ensuring that the learning rate does
not become so small that it loses its effectiveness.

Impact on Training. The learning rate scheduler assists the
model in avoiding overshooting or stagnation during training.
By decreasing the learning rate when needed, the model is
more likely to converge on an optimal solution. This adaptive
learning rate enables more precise updates, especially in the
later stages of training when the model is close to convergence.

Model Parameters: Our model consists of only 647,617
parameters, making it significantly more parameter-efficient
than alternative models like gMLP [17], which has 23,496,283
parameters. The compact design of PFDM enables faster
training and inference, making it a practical choice for real-
time spoofing detection without sacrificing performance.

IV. EXPERIMENTS

To assess the effectiveness of our proposed model, we
conduct two experiments: The first experiment (Section IV-B)
evaluates the effectiveness of the model when detecting partial
fake (PF) speech using the RFP dataset. Additionally, we
tested the model’s ability to detect entirely fake audio using
the ASVspoof 2019 dataset. These two datasets vary in audio
length, and our model can handle all of them effectively, as
discussed earlier in the wav2vec component Section III. The
second experiment (Section IV-C) examines how the length of
fake segments affects the detection process.

A. Metrics

The Equal Error Rate (EER) is a commonly used metric for
assessing the performance of fake speech detection models. It
represents the point at which the False Acceptance Rate (FAR)
and False Rejection Rate (FRR) are equal. Here is how we
calculate EER for audio classification:

For each audio sample, the system produces a score that
indicates the likelihood of the sample belonging to the target
class (e.g., a specific speaker). A threshold (t) must then be
defined, which serves as a decision boundary used to classify
audio samples.

A lower threshold may accept more fake samples, thereby
increasing the FAR, while a higher threshold may reject more
real samples, which increases the FRR. The threshold deter-
mines how the scores generated by the model are converted
into class labels. When a model predicts the probability of
an instance belonging to a specific class, the classification
threshold specifies the point at which this probability is
considered sufficient to assign the instance to that class.

Next, we calculate the False Acceptance Rate (FAR), which
is the percentage of fake (negative) samples incorrectly clas-
sified as real (positive), and the False Rejection Rate (FRR),
which is the percentage of real (positive) samples incorrectly
classified as fake (negative). The EER value is the threshold
value at which FAR equals FRR.

_ False Acceptances (FA)
~ Total Fake Samples (TN + FA)

FAR(7)

_ False Rejections (FR)
~ Total Real Samples (TP + FR)

FRR(7)

EER = FAR(7) = FRR(7)

B. Experiment 1: Partial Fake and Entirely Fake detection
performance

In this experiment, we study the performance of our model
when detecting partial fake audio and when detecting entirely
fake audio.

Datasets The RFP dataset [14] contains Real, Fake, and
Partial Fake speech data. In this experiment, we only use the
Partial Fake subset of RFP. This subset has 58742 audio files in
total, which we split into Training, Validation, and Evaluation
datasets in a ratio of approximately 70:20:10. We also use the
ASVSpoof2019 LA dataset [15], which contains 98299 audio
files in total, all of which are entirely fake audio. This dataset is
already split into Training, Validation, and Evaluation datasets
in a ratio of approximately 21:20:59. Table I shows the exact
number of files in the split for each of the two datasets. No
other processing was done on the datasets.

Results We use the RFP dataset to compare the EER
performance of our detection method with three publicly
available SOTA methods: PartialSpoof [9], M2S-ADD [18],
and SSL_Anti-spoofing [19]. Note that in this case we are
detecting partial fake audio.



TABLE I
NUMBER OF FILES FOR TRAINING, VALIDATION, AND EVALUATION FOR
THE TWO DATASETS IN EXPERIMENT 1

Subset PF subset of RFP ASVSpoof2019 LA

Training (# Files) 40,938 25,380

Validation (# Files) 11,662 986

Evaluation (# Files) 6,142 71,933

Total (# Files) 58742 98299
TABLE II

PARTIAL FAKE AUDIO DETECTION: EER PERFORMANCE IN THE RFP

DATASET

Detection Method Evaluation EER

Ours 0%

PartialSpoof [9] 3.70%
M2S-ADD [18] 18.69%
SSL_Anti-spoofing [19]  50.16%

The results in Table II show that our model outperforms
all three SOTA models in detecting PF utterances in the RFP
dataset.

We also evaluated our model when detecting entirely fake
audio, using the ASVspoof 2019 LA dataset. Our model
achieved a 2.99% EER, outperforming the ASVspoof 2019
challenge baselines as well as many models that were specifi-
cally designed to detect entirely fake audio. Table III illustrates
a comparison between the results of our model and other
detection models.

C. Experiment 2: Varying the Length of the Fake Segments

In this experiment, we study how varying lengths of fake
segments impact our detection model.

Datasets We created 10-second PF files organized into 18
groups, each with different fake segment lengths. The files
in Group 10£90r begin with 1 second of a fake segment
(f) followed by 9 seconds of a real segment (r). The files
in each subsequent group 20£80r to 90£f10r begin with
a longer fake segment followed by a correspondingly shorter
real segment, so the total length is always 10 seconds. Then,
groups 10r90f to 90r10f begin with a real segment (1
second to 9 seconds long), followed by the fake segment (9

TABLE III
ENTIRELY FAKE AUDIO DETECTION: EER PERFORMANCE IN THE
ASVSPOOF 2019 LA DATASET

S Evaluation
Method Validation EER
Ours 1.23 2.99
LCNN+CE [20] 0.86 3.13
Resnet18-AM-Softmax [21] 0.43 3.26
GMM [22] - 3.50
LCNN-4CBAM [23] - 3.67
ResNet [24] 1.52 3.72
End-to-End Inc-TSSDNet [25] 1.09 4.04
8 Features+MLP [26] 0.00 4.13
ResNet18-GAT-S [27] - 4.48
PC_DARTS [28] 0.00 4.96
ASVspoof2019 baseline LFCC+GMM [29] 0.43 9.57
ASVspoof2019 baseline CQCC+GMM [29] 2.71 8.09
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Fig. 2. The EER using 10s PF files starting with real segment against our
proposed model

EER

1.2

1

0.8

0.6

0.4

bbb

0 -

10f90r 20f80r 30f70r 40f60r 50f50r 60f40r 70f30r 80f20r 90f10r

mAzure TTSMale m DiffVC Female

Fig. 3. The EER using 10s PF files starting with fake segment against our
proposed model

seconds to 1 second long). The real and fake segments are
taken from the RFP dataset.

Results Figures 2 and 3 illustrate the results of Experiment
2. The detection performance for PF audios generated by VC
was superior to that of audios generated by TTS methods.
The best detection performance occurred when the audio
contained 8 seconds of fake segments followed by 2 seconds
of real segments, achieving an EER of 0.04%. In contrast,
the optimum detection result for TTS was observed when the
audio started with 6 real segments followed by 4 seconds of
fake segments, yielding an EER of 0.60%.

From our observations, we noted that as the percentage of
fake audio increases, detection becomes easier, particularly
with VC. However, this trend was less consistent with TTS.

V. DISCUSSION

In this paper, we demonstrate the need to create an efficient
model for detecting PF audio files. This model should be
capable of identifying PF audio regardless of the methods
used to generate fake segments, the length of those fake
segments, the overall length of the audio. Building on our
previous experiments [8], we developed a model and evaluated



it using the RFP dataset, which includes all the mentioned
audio types. Additionally, we expanded our experiments by
generating new PF fake files that are 10 seconds long, as
discussed in Experiment 2.

Our proposed model, which focuses solely on fake and
PF audio, achieves an EER of 0% outperforming all existing
detection models. We also tested our model using one of
the most recognized datasets, ASVspoof 2019 LA, where it
achieved a result of 2.99%. This result surpassed all ASVspoof
challenge baselines, as well as many other state-of-the-art
detection tools.

VI. CONCLUSION

We proposed a new detection model for PF speech audio.
The model was evaluated using three datasets and achieved
outstanding results compared to other existing detection tools.
We conducted two experiments to assess the model, both of
which demonstrated high detection performance. We believe
that this model will serve as a foundation for future work in
various tasks, such as PF speech localization, which involves
identifying the start and end of fake segments within the audio,
and PF speech diarization, the process of clustering spoofed
segments based on different spoofing methods.
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