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Abstract Due to their exposure to waves, volcanic island coasts typically retreat with cliff collapses and
other erosional processes. Understanding how retreat rates vary over time and in response to environmental and
other factors could be useful for geohazard assessment, coastal management and landform reconstruction.
Historical eruptions can create new coasts with volcanic materials that are friable. The retreat of such coastlines
can be fast and more easily observed than for many older rocky coasts. Here we assemble coastline retreat
distances and rates of 12 coasts formed by historical eruptions from literature sources and remote‐sensing data.
In the cases with observations at many time steps, post‐eruptive coastline retreat was initially rapid and declined
with time. We adapt an empirical equation found earlier to represent the coastline retreat of a Surtseyan cone,
finding that it represents the systematic variation in retreat distances with time well where coastal evolution is
known in more than 5 time steps. The slowing is interpreted to arise from (a) increasing wave attenuation with
abrasion platform widening, (b) exposure of progressively more resistant materials at cliffs, and (c) from
increasingly taller cliffs, which lead to increasingly large volumes of debris from cliff collapses, temporarily
protecting cliff bases. Coastline retreat rates also follow inverse power‐law relationships with varied time
intervals of measurement; hence, they are affected by erosion episodicity. Comparisons with wave height and
precipitation surprisingly reveal no strong co‐variation with the retreat rates. We hypothesize that varied
lithology, fracture density and other factors dominate retreat rates of young volcanic coastlines.

Plain Language Summary When volcanic eruptions create new land, they form new coasts exposed
to waves that can collapse abruptly. These coasts often consist of friable material, making them easily eroded by
waves. We studied coastline changes at 12 coasts formed by historical volcanic eruptions. In the cases with
observations at multiple stages, the coast retreated rapidly shortly after the eruptions, but then retreated more
gradually. How they retreated with time can be well represented by an equation found earlier for a coastal
volcano in the Azores, Portugal. We attribute the slowing of erosion primarily to wave energy loss on widened
submarine platforms. Slowing is also potentially due to erosion, removing friable material and exposing harder,
more resistant rocks. Furthermore, volcanic coasts often have steep, rising terrain landward, so when cliffs
collapse, they generate larger piles of debris that further protect the cliffs. Surprisingly, erosion rates did not
vary with the size of local waves or rainfall. Instead, local rock type and fracture density may dominate how
quickly these young volcanic coasts erode.

1. Introduction
Volcanic eruptions can create new land (Lasky, 2012; Simkin et al., 2000) by emplacing lava deltas (Lipman &
Moore, 1996; Rodriguez‐Gonzalez et al., 2022). Surtseyan‐style eruptions in shallow marine locations can also
form new land by building submarine pyroclastic mounds crowned by emergent tuff cones (Machado et al., 1962;
Romagnoli & Jakobsson, 2015; Xu et al., 2015). For example, the Surtseyan cone at Capelinhos comprises the
following five facies (Cole et al., 2001). At its base, Facies I contains evenly thick tephra fallout beds. It is
overlain in sequence upwards with: Facies II, undulating beds of pyroclastic surge deposits; Facies III, evenly
thick bed of simultaneous tephra fallout and pyroclastic surge deposits; Facies IV, alternating beds of coarse
aggregates and fine ash; and Facies V, thin scoria lapilli deposits from Hawaiian‐style explosions. The facies
sequence is generally similar in other Surtseyan cones (Sorrentino et al., 2011). Subaerial lava flows were also
emplaced at later eruption stages at Capelinhos and Surtsey, when the vents of these volcanoes were isolated from
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sea water and the eruption‐style transitioned from hydromagmatic (Surtseyan and/or Taalian) to magmatic
(Hawaiian and/or Strombolian) (Jakobsson, 1972; Machado et al., 1959).

Once eruptions cease, coasts are eroded by waves, wind and precipitation, eventually involving cliff failure
(Ramalho et al., 2013). Consequently, coastlines can change rapidly (Ferrer‐Valero et al., 2019; Norrman, 1985;
Romagnoli et al., 2006). For example, the Capelinhos coasts retreated ∼164 m on average in the first six months
after the eruption (Zhao et al., 2019). Many volcanic island coasts are densely populated and newly formed land is
often adopted for agriculture and other purposes. For instance, the 2021 La Palma lava flows crossed a coastal
plain of older lava that had been adopted for agriculture (Román et al., 2022). Better prediction of future coastal
changes would be useful for planning coastal infrastructure, assessing risks and making insurance decisions. In
addition, these coasts are also potentially useful for geological education (Németh & Gravis, 2022; Németh &
Moufti, 2023), and some have been listed as World Heritage sites (e.g., Surtsey) and Global Geopark (e.g.,
Capelinhos) by UNESCO (Ávila et al., 2023; Németh et al., 2006; Roman, 2023). Furthermore, erosion rates
provide key insights into the risks associated with cliff failures (Ávila et al., 2023; Jakob & Lambert, 2009).

In general, rocky coasts retreat slowly so changes are difficult to monitor, and the evidence of past erosion events
(e.g., cliff failures and their associated debris) is rapidly removed by wave action (Hall et al., 2008). Moreover,
erosion of rocky coastlines is typically threshold‐driven and progresses intermittently rather than at constant rates.
Changes occur when wave force exceeds the strength threshold of cliff rocks and when gravitational instability
leads to mechanical failure (Naylor & Stephenson, 2010; Phillips, 2006; Ramalho et al., 2013; Sunamura, 1977).
Consequently, our ability to predict their erosion is limited (Moses & Robinson, 2011; Prémaillon et al., 2018).

In contrast, the coastlines of newly formed and young volcanic islands commonly comprise friable pyroclastic
materials or their immediately reworked equivalents. Consequently, they are more vulnerable to wave erosion and
coastline changes can be fast and more easily recorded in historical surveys or, for recent events, in remote‐
sensing data. In this early stage, rates tend to decrease over time (Mogi et al., 1980; Richards, 1961; Romag-
noli et al., 2006; Xu et al., 2015; Zhao et al., 2019). This slowing of rates aligns with some numerical simulations
of widening of platforms by rock cliff retreat, which tend to be rapid initially but more slowly later as a result of
wave attenuation (Trenhaile, 2000). Wave type also influences the wave assailing force on cliffs (Matsumoto
et al., 2024; Sunamura, 1995). Waves will have less force if they break before reaching the cliffs than if they break
at cliff bases. Hence, as waves lose energy while traveling across platforms, erosion rates may not have a simple
or direct relationship with platform width.

In this study, coastline changes of 12 widely distributed coasts formed by volcanic eruptions were compiled,
allowing us to investigate how they vary with the elapsed time since eruption. Environmental factors such as wave
power (proportional to the square of wave height) and precipitation are also suspected to affect retreat rates
(Huppert et al., 2020; Jones et al., 2015; Trenhaile, 2014, 2019; Young et al., 2009, 2021). Using modern wave
and precipitation data from the fifth generation European Center for Medium rangeWeather Forecasts (ECMWF)
reanalysis (ERA5), we assess whether long‐term coastal retreat rates vary systematically with these parameters.
We further discuss the implications of the results for coastal management, hazard evaluation and morphological
evolution.

2. Background
2.1. Description of Volcanic Eruptions and Environment

The 12 volcanic coasts in this study are distributed widely (Figure 1a): four in the Atlantic Ocean (Heimaey,
Surtsey, Capelinhos and La Palma), four in the Pacific Ocean (Kasatochi, Nishinoshima Shinto, Barcena and
Hunga Tonga Hunga Ha'apai), two in the southern Red Sea (Sholan and Jadid), one between the Pacific and
Indian oceans (Anak Krakatau) and one near Antarctica (Deception). They were formed from 1952 to 2021
(Table 1) by eruptions that lasted from a single day (Kasatochi and Deception) to over four years (Surtsey). In this
study, coasts were lithologically classified simply into lava flow, tephra, or mixed coasts based on visual
interpretation of published resources (Table 2). Most coasts (6/12) consist of tephra, while one‐fourth are
composed of lava flows. The three coasts comprise both lava flows and tephra (termed “mixed” here).
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2.1.1. Barcena, 1952–53 (19.31°N, 110.80°W)

Volcano Barcena (Figure 1b) is a tuff cone at the southern end of Isla San Benedicto, Mexico,∼350 km off the SE
coast of the Baja California peninsula (Richards, 1965). The Barcena eruption started on 1 August 1952 and
formed a tuff cone by the next day (Richards & Brattstrom, 1959). A lava delta was extruded on the SE side of the
cone from 8 December 1952 to 27 February 1953, advancing the earlier coastline ∼800 m seaward

Figure 1. (a) Locations of volcanic coasts formed by historical eruptions studied here. Background colors represent tidal ranges from the Finite Element Solution 2014
tidal model. (b–m) Google Earth™ Images (freely available for non‐commercial/academic use under the terms and conditions of the Google Earth/Maps Terms of
Service). Pink circles and w1–w13 locate where wave and precipitation data were extracted from ERA5 outputs.
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(Brattstrom, 2015). A volume of ∼3,200 m2 of new lava flows and unconsolidated tephra was estimated when the
eruption stopped in February 1953 (Richards, 1966). Richards (1965) reported a retreat rate of 1.7 m/day for
tephra cliffs in the fall of 1952 based on time‐lapse aerial photos. Nearly 0.71 × 106 m3 of unconsolidated tephra
were eroded by waves within just 40 days of their emplacement (Richards, 1965). Six months of observations in
1953 revealed a retreat rate of 0.12 m/day for a lava deltas (Richards, 1961). Prevailing waves and swells affecting
Isla San Benedicto are from the north, with occasional storm waves from the SE during hurricane seasons (July–
October) (Richards, 1965). The annual precipitation is less than∼150 mm at the island, which has a warm and arid
climate (Putnam et al., 1960; Richards, 1961).

2.1.2. Capelinhos, 1957–58 (38.60°N, 28.83°W)

Capelinhos volcano (Figure 1c) sits on the western‐most tip of Faial Island in the Azores Archipelago (Madeira
et al., 2015). The eruption started underwater on 27 September 1957 and ceased in November 1958. During its

Table 2
Summary of the Highest Average Coastline Retreat Rates (HACR) Reported at Each Locality of Volcanic Coasts Along With Properties From ERA5

Sites and
coast ID

Coastline type and sections
classified in this study

HACR
(m/yr)

Time
interval
(days)

Mean elapsed time since
last eruption (days)

Maximum wave height when
erosion was the fastest (m)

Maximum monthly
precipitation (m/month)a

Barcena 1 Lava 122.28 34 65 2.64 0.03

Barcena 2 Tephra 620.50 121 69.5 3.85 6.08

Capelinhos 1 Tephra, north 56.00 178 92 3.12 0.00

Capelinhos 2 Tephra, south 188.00 181 92 3.12 0.00

Capelinhos 3 Mixed, north 326.00 181 92 3.12 0.00

Capelinhos 4 Mixed, south 62.00 181 92 3.12 0.00

Capelinhos 5 Lava, north 150.00 181 92 3.12 0.00

Capelinhos 6 Lava, south 199.00 181 92 3.12 0.00

Capelinhos 7 Mixed, all sectors 164.00 181 92 3.12 0.00

Surtsey 1 Tephra 30.00 1,064 799 11.97 3.75

Surtsey 2 Lava 107.50 366 1,514 9.54 3.01

Deception Tephra 6.50 11,719 5,969.5 7.60 2.54

Heimaey Lava 1.29 6,271 3,135.5 14.49 4.56

Nishinoshima
Shinto

Lava 49.14 87 268.5 8.20 4.50

Kasatochi 1 Tephra, NW 328.50 40 20 2.99 3.62

Kasatochi 2 Tephra, NE 321.20 40 20 2.99 3.62

Kasatochi 3 Tephra, SE 448.95 40 20 2.99 3.62

Kasatochi 4 Tephra, SW 324.85 40 20 2.99 3.62

Kasatochi 5 Tephra, average 355.88 40 20 2.99 3.62

Sholan Tephra 15.00 2023 1,013.5 3.42 5.82

Jadid Tephra 26.00 85 42.5 2.98 0.83

Hunga Tonga
Hunga
Ha'apai

Tephra 94.57 33 16.5 2.31 3.21

Anak Krakatau Tephra 129.61 10 491 1.71 0.06

La Palma 1 Lava, north rock promontories 711.75 1 38.5 2.04 0.00

La Palma 2 Lava, north whole 584.79 1 37.5 2.05 0.00

La Palma 3 Lava, south rock promontories 434.35 1 221.5 1.58 0.00

La Palma 4 Lava, south whole 155.40 10 168 2.39 0.09
a0.00 indicates that actual values of ERA5 are less than 0.005 m/month.
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duration, the eruption first created a tuff cone through Surtseyan and briefly Taalian activity, subsequently
transitioning to a Strombolian‐style when the vent was fully isolated from sea water. A cinder cone was formed
inside the tuff cone, allowing for the extrusion of a small lava shield/delta from the base of the cone (Machado
et al., 1962). New land of ∼2.5 km2 area and ∼0.15 km3 volume was created, which consisted of lava flows (56%
by volume) and unconsolidated tephra (44%) (Machado et al., 1962; Madeira, 2007). This area decreased to
∼0.67 km2 by 2007 (Forjaz, 2007) and to ∼0.42 km2 by 2014 (Zhao et al., 2019). Erosion rates of its coasts
averaged ∼164 m/yr in May 1959, declining to ∼1–3 m/yr by October 2014 and varying strongly between a lava
flow and tephra cliffs (Zhao et al., 2019). The preceding swells mainly originate from NW (29%) and W (24%).
Capelinhos is exposed to waves generated during violent hurricanes, which occur every 7 years on average
(Andrade et al., 2008) with significant wave heights exceeding 16 m (Carvalho, 2003). The Azores oceanic
temperate climate is controlled by seasonal anticyclones, which contribute 75% of the islands' total annual
precipitation of ∼600 mm/yr at sea level (Forjaz, 2004).

2.1.3. Surtsey, 1963–67 (63.30°N, 20.60°W)

Surtsey (Figure 1d) lies ∼30 km off the south coast of Iceland (Claudino‐Sales, 2019). The eruption commenced
underwater on 8 November 1963 and lasted ∼4 years until the last observed lava flows on 5 June 1967
(Romagnoli & Jakobsson, 2015; Thorarinsson & Eysteinsson, 1967). Like Capelinhos, the eruption first created a
tuff cone through Surtseyan activity, subsequently transitioning to a Strombolian style. The eruption produced
a km3 volume of tephra (70%) and lava flows (30%) (Thorarinsson, 1969). Its total land area in June 1967 was
∼2.65 km2 and reduced to ∼1.31 km2 by July 2012 (Romagnoli & Jakobsson, 2015). Rates of cliff retreat of the
south and southwest a lava flow coasts were 20–35 m/yr between 1969 and 1970 (Norrman, 1972), and decreased
to∼11–12 m/yr over the subsequent 45 years (Norrman, 1978; Romagnoli & Jakobsson, 2015). The tephra coasts
retreated by ∼30 m/yr during the eruption (1964–1967) but progressively declined to ∼0.2–0.3 m/yr by 2006
(Jakobsson et al., 2000; Norrman, 1985; Romagnoli & Jakobsson, 2015). Erosion of the Surtsey coasts left a
nearly horizontal submarine platform (Sunamura, 2021). Surtsey is exposed to frequent and powerful storms in
the North Atlantic Ocean (Etienne & Paris, 2010), with significant wave heights reaching 16 m (Viggósson &
Grétarsson, 2010). Prevailing waves (∼52% of time) are mainly fromW and SW (Norrman & Erlingsson, 1992).
Surtsey has a mild but windy subpolar oceanic climate with a maximum annual precipitation of 1071.8 mm
(Petersen & Jónsson, 2020).

2.1.4. Deception, 1970 (62.96°S, 60.62°W)

Deception Island (Figure 1e) hosting a caldera volcano is located in the South Shetland Islands within the
Bransfield Strait,∼120 km north of the Antarctic Peninsula (Geyer et al., 2021). Deception has erupted more than
20 times in the past two centuries, with the most recent one between 12 August 1970 and 13 August 1970 (Smellie
et al., 2002). The 1970 eruption, which occurred at Telefon Bay on the northern shore of the flooded caldera (Port
Foster), involved over 13 vents both onshore and offshore (but nearshore), all of which were characterized by
phreatomagmatic activity, dominantly Taalian in‐style (Pedrazzi et al., 2014). The eruption produced ∼0.10 km3

of unconsolidated tephra (Torrecillas et al., 2012). The land area reduced in 1970–2003 by 0.007 km2/yr and
decreased more slowly in 2003–2020 by 0.002 km2/yr (Torrecillas et al., 2024). Waves affect the island mainly
from the NW and NE. It is also influenced by energetic waves (wave heights >10 m) propagating from the Drake
Strait into the Bransfield Strait (Lonin et al., 2022). However, the tephra coast is mainly within the northern shore
of Port Foster and is sheltered from the most energetic waves by the narrow Neptunes Bellows (Angulo‐Preckler
et al., 2021). Deception has a polar maritime climate and annual precipitation (snow and rain) of∼500 mm (Smith
et al., 2003).

2.1.5. Heimaey, 1973 (63.44°N, 20.23°W)

Heimaey (Figure 1f) lies ∼7 km off the south coast of Iceland (Mattsson & Höskuldsson, 2003). In January 1973,
the Eldfell eruption started on the east side of the island. It was Strombolian/Hawaiian and led to the extrusion of
an a lava flow field (Morgan, 2000). The eruption ceased in early July 1973 (Williams & Moore, 1983) after
forming a ∼2.2 km2 ʻaʻā lava delta on the SE end of the island (Eiríksson, 1990). Coastal positions in 1973 and
1990 have been reported (Eiríksson, 1990). The island faces frequent waves fromW and SWwith heights of 16 m
(Viðarsdóttir, 2019). Heimaey has a windy subpolar oceanic climate with its maximum annual precipitation
exceeding 1,000 mm (Hansom et al., 2014; Morgan, 2000).
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2.1.6. Nishinoshima Shinto, 1973–74 (27.25°N, 140.88°E)

The Nishinoshima Shinto (NS) Island (Figure 1g) is part of the Ogasawara island arc, ∼1,000 km south of Tokyo,
Japan (Baba et al., 2020). The island is the subaerial tip of a much larger submarine volcano. In early April 1973, a
Surtseyan eruption formed the island, eventually transitioning to Strombolian and leading to the formation of a
lava shield/delta, with ∼0.017 km3 of lava flows (pahoehoe), which completely covered the deposits of the
Surtseyan phase. Approximately 0.316 km2 of land had formed when the eruption finished in summer 1974 (Kudo
& Hoshizumi, 2006). Two stages of rapid coastline change were observed between 1974 and 1976. Coastlines
retreated more than 120 m between August and October 1974, and 50 m from November 1975 to August 1976
(Mogi et al., 1980). No independent characterization of wave climate and precipitation appears available for NS,
but waves are mainly from E and SE in the NW Pacific Ocean (Li et al., 2023). The region has a subtropical
climate with a mean annual precipitation of 1,277 mm (1971–2000) (Claudino‐Sales, 2019).

2.1.7. Kasatochi, 2008 (52.17°N, 175.51°W)

Kasatochi Island (Figure 1h) is a strato‐volcano located within the west‐central Aleutian Islands of Alaska, USA
(Scott et al., 2010). An explosion on 7 August 2008 marked the beginning of the eruption, which lasted 24 hr in
five phases and ceased on 8 August 2008 (Waythomas, Scott, & Nye, 2010). Nearly 0.15–0.28 km3 of uncon-
solidated tephra were produced by the eruption, extending the previous coastline by ∼400 m in places, mostly
where pyroclastic fan deltas were formed from pyroclastic density currents (Waythomas, Scott, Prejean,
et al., 2010). Coastline erosion rates were estimated to be 0.22–0.39 m/day from 8 August 2008 to 13 September
2009 (Waythomas, Scott, & Nye, 2010). Kasatochi Island is influenced by storm‐generated waves traveling from
west to east, especially during winter (Rodionov et al., 2005). Kasatochi has a windy and wet maritime climate,
with a maximum hourly rainfall of 5.1 mm (Waythomas, Scott, & Nye, 2010).

2.1.8. Sholan, 2011–12 (15.14°N, 42.09°E) and Jadid, 2013 (15.10°N, 42.13°E)

Sholan (Figure 1i) and Jadid (Figure 1j) are volcanic islands in the southern Red Sea, lying∼50 km off the coast of
Yemen (Jónsson & Xu, 2015). Sholan initially formed from a submarine (Surtseyan) eruption on 13 December
2011 with a single vent. The eruption lasted 25 days and produced an unconsolidated tephra cone of ∼0.25 km2 at
the end of the eruption. It then lost 0.01 km2 in the following 2 months and 30% after 2 years (Xu et al., 2015).
Jadid also started forming underwater, emerging on 28 September 2013 and further south, through Surtseyan
activity. The eruption continued for∼54 days and built an unconsolidated tephra island (tuff cone) with an area of
∼0.68 km2 (Jónsson & Xu, 2015). During the early stages after the eruption, the erosion of Jadid was less severe
than that of Sholan. Its area had decreased only modestly to 0.67 km2 by late February 2014 (Xu et al., 2015).
Waves in Zubair vary in direction because of the seasonal reversal of monsoon winds from NE (summer) to SW
(winter) (Sofianos & Johns, 2003). The climate is tropical to subtropical humid, with an average annual pre-
cipitation of only 60 mm (Hasanean & Almazroui, 2015).

2.1.9. Hunga Tonga Hunga Ha'apai, 2014–15 (20.55°S, 175.39°W)

Hunga Tonga Hunga Haʻapai (HTHH, Figure 1k) was the southwestern‐most member of the Ha'apai volcano
group in the South Pacific Ocean, ∼65 km off the northern shore of the Tongan capital, Nukuʻalofa (Vaughan &
Webley, 2010). HTHH was formed when a Surtseyan eruption, which started on the 19 December 2014, created a
tuff cone that joined the islands of Hunga Tonga and Hunga Ha'apai, all located on the caldera rim of the larger
submarine Hunga volcano (Brenna et al., 2022; Vaughan & Webley, 2010). By the end of the eruption in late
January 2015, new land of ∼1.74 km2 consisting of unconsolidated tephra had formed (Garvin et al., 2018), that
is, a tuff cone. The volumetric erosion rate of HTHH was 0.0026 km3/yr over a 36‐month period, suspected
primarily by waves (Garvin et al., 2018). HTHH was subsequently destroyed by the hydromagmatic explosion of
15 January 2022, with only two small islets left remaining from the original island (Clare et al., 2023; Omira,
Ramalho, et al., 2022; Seabrook et al., 2023; Terry et al., 2022). HTHH was affected by waves originating from
the dominant SE trade winds and swell generated by storms in the Southern Ocean (Aguirre et al., 2017). The
HTHH climate is tropical, with abundant rainfall and average annual precipitation exceeding 1,600 mm
(Terry, 2007).
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2.1.10. Anak Krakatau, 2018–19 (6.10°S, 105.42°E)

Anak Krakatau (AK, Figure 1l) is a volcanic island located between the islands of Java and Sumatra in Sunda
Strait, ∼155 km west of Jakarta (Williams, Rowley, & Garthwaite, 2019). Eruptive activity has continued
periodically at AK, including a tsunami following the collapse of the cone toward the end of the eruption in 2018
(Abdurrachman et al., 2018). The 2018 eruption began on 21 June 2018 and added ∼3.03 km2 of unconsolidated
tephra, largely through Surtseyan and occasionally Taalian activity. A collapse occurred later (22 December
2018), which reduced its volume by 0.102 km3 (Walter et al., 2019). Coastline retreat was greatest on the
southwest coast, starting in April 2019 (Novellino et al., 2020). AK is subjected to long‐period waves (swell)
originating from the Indian Ocean, which propagate SW into the Sunda Strait (Deplus et al., 1995). AK has a
tropical climate, with an annual precipitation of 2,500–3,000 mm (Fiantis et al., 2021).

2.1.11. La Palma, 2021 (28.61°N, 17.93°W)

La Palma (LP) Island (Figure 1m) lies in the NW end of the Canary Islands (Carracedo et al., 2022). A
Strombolian eruption started on 19 September 2021 on the western slope of Cumbre Vieja volcano, lasting
85 days until 13 December 2021 (Del Fresno et al., 2023; González, 2022). Nearly 0.15 km3 of mainly a lava
flows were produced, forming two deltas of ∼0.47 km2 total area (Ferrer et al., 2023; Romero et al., 2022).
Beaches of volcanic particles formed in just a few weeks after the eruption, reflecting the rapid initial erosion
(Alonso et al., 2023; Hutton, 2023). Waves in the Canaries originate fromN and NNE (Gonçalves et al., 2020). LP
has a subtropical‐Mediterranean climate with an average annual precipitation of ∼650 mm (Pérez et al., 2020).

3. Materials and Methods
3.1. A Model for Accumulative Coastline Change Distance (ACD) Variation With Elapsed Time

Accumulative coastline change distance (ACD), or otherwise w here, is the total distance of change of a coastline
measured perpendicular to the coastline since the eruption or shortly thereafter. A previous study of coastlines at
Capelinhos (Zhao et al., 2019) found that the rate of change with time t, dw/dt, followed an inverse power‐law
relationship with total coastline change distance w (i.e., ACD):

dw
dt
= E0w− α (1)

where E0 is the rate coefficient (day
− 1) and α is a dimensionless constant decay coefficient.

This equation can be recast in terms of w as a function of time. Rearranging Equation 1 produces:

dw
w− α

= E0dt (2)

wαdw = E0dt (3)

Equation 3 can be integrated:

∫

w1

w0
wαdw =∫

t1

t0
E0dt (4)

⃒
⃒
⃒
⃒
1

α + 1
wα+1

⃒
⃒
⃒
⃒

w1

w0
= |E0t + C|t1t0 (5)

When the elapsed time t is 0, t0 = 0, w0 = 0. Letting w1 be simply w and t1 be t (time elapsed since eruption), the
evaluation leads to:

1
α + 1

wα+1 = E0t (6)
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wα+1 = (α + 1)E0t (7)

Thus, if a coast follows Equation 1, w should follow:

w = [(α + 1)E0t]
1
/α+1 (8)

Therefore, this study aims to determine whether Equation 8 represents the varying coastline positions w of the 12
sites. Recent studies of coastal cliff evolution (e.g., Arróspide et al. (2023)), suggested that α is likely to have a
constant value of 1 (equation derived in Supporting Information S1 of this article, Text S1 in Supporting In-
formation S1). Thus, we conducted two tests when attempting to fit Equation 8 to the data. In Test 1, both α and E0

were allowed to vary, while in Test 2 only E0 was varied (α = 1).

3.2. Coastline Change

Average coastline retreat rates (ACRs) of eight sites were taken from published values. They were originally
measured from historical maps, aerial photos and/or satellite images, which have varied resolutions of 0.3–10 m
(Table S1 in Supporting Information S1). The accuracy of coastline positions is affected by positional and
measurement uncertainties (Fletcher et al., 2012), including errors from image resolution, rectification and
shoreline digitization. Orthorectification errors are usually not straightforward to justify due to the lack of control
points; therefore, they were only reported for Barcena, Capelinhos, Sholan, Hunga Tonga Hunga Ha'apai and La
Palma. Digitizing error arises from difficulties in human interpretation of coastlines, limiting the best accuracy of
pixel resolution (Romine et al., 2009). These errors can have significant impacts when retreats and measuring
intervals are small (e.g., La Palma). Estimation of the least total positional errors is shown in Table S1 in Sup-
porting Information S1. For Heimaey, Nishinoshima Shinto, Hunga Tonga Hunga Ha'apai (Figure S1 in Sup-
porting Information S1) and Anak Krakatau (Figure S2 in Supporting Information S1), we digitized coastline
positions from figures in the publications using ArcGIS 10.8. We then used the Digital Shoreline Analysis System
(DSAS V5) module (https://www.usgs.gov/centers/whcmsc/science/digital‐shoreline‐analysis‐system‐dsas) to
generate transects perpendicular to the coastline every 10 m along‐coast, along which historical coastline posi-
tions were recorded. Cliff heights at Hunga Tonga Hunga Ha'apai were digitized from time‐lapsed digital
elevation models (from the supporting information of Garvin et al., 2018), along these transects using the
“Samples” tool in ArcGIS. Changes in coastlines along those transects consequently represent the coastline
change distance (CCD, with the mean shown in Figure 2). ACRs for each observation period and site were derived
by dividing the CCD by the time interval between maps or satellite images. Both CCD and ACR are signed, with
positive values denoting coastlines moving landward (erosion) and negative values indicating accretion. The
ACR values averaged for each site are given in Table S2 in Supporting Information S1. We further obtained the
ACD of each site by summing the distance increments i:

ACD =∑
n

i=1
ACRi ∗ ti =∑

n

i=1
CCDi (9)

Equation 8 was fitted in a least‐squares sense to the variations in ACD with time, that is, equating ACD with w.

3.3. Environmental Conditions

Hourly significant wave height and total precipitation were extracted from ERA5 (https://www.ecmwf.int/en/
research/climate‐reanalysis) for sea positions adjacent to the sites marked in Figure 1b. Previous assessments of
ERA reanalysis wave heights and precipitation have demonstrated the model's general accuracy, with a mean R2

value of 0.8 when compared to wave height data from buoys and rain gauge observations (Bandhauer et al., 2022;
Jiang et al., 2021; Rusu & Rusu, 2021). Our comparison of annual total precipitation derived from ERA5 with
field rain gauge data from a site near Capelinhos (Coutinho, 2000) suggests an average underestimation of ∼40%
there (Figure S3 in Supporting Information S1).

At each site, we recorded maximumwave height (MWH) from the significant wave heights of waves propagating
coastwards during each time interval between coastline observations. Similarly, maximum monthly total pre-
cipitation (MTP) was recorded from the precipitation values. Prevailing precipitation is mainly rainfall, except for
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Deception Island where snowfall is prevalent (no attempt was made to separate rain and snow contributions).
Tidal ranges (Figure 1a) were obtained from the FES2014 tidal model (https://www.aviso.altimetry.fr/en/data/
products/auxiliary‐products/global‐tide‐fes/description‐fes2014.html). These environmental parameters were
obtained from the ERA5 and tidal models at all 12 sites for consistency.

4. Results
4.1. Variations in ACR

ACR values vary significantly among the sites (Table S2 in Supporting Information S1), ranging from − 376 m/yr
(accreting) to +712 m/yr (eroding). The fastest retreat occurred at the north lava delta of La Palma, while its
southern lava delta coast experienced the fastest accretion. ACR reached 100 m/yr on the coasts of Barcena,
Capelinhos, Surtsey, Kasatochi and Anak Krakatau. In four cases, both erosion and accretion were witnessed after
the eruption finished (Nishinoshima Shinto, Hunga Tonga Hunga Ha'apai, Anak Krakatau and La Palma).

ACR declined in magnitude generally with elapsed time (Mogi et al., 1980; Richards, 1965; Romagnoli &
Jakobsson, 2015; Zhao et al., 2019), as illustrated by the two examples in Figure 3, though tephra coasts in
Barcena and Anak Krakatau behaved differently (Table S2 in Supporting Information S1). At some sites, ACR
modestly co‐varies withMWH visually (Nishinoshima Shinto, La Palma north and south; Figure S4 in Supporting

Figure 2. Coastline change distances for (a) Heimaey, (b–g) Nishinoshima Shinto, (h–u) Hunga Tonga Hunga Ha'apai and (v–ac) Anak Krakatau.
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Information S1). However, correlation coefficients (R2) between ACR and MWH are generally modest (where
more than two values were available) range from 0 to 0.60 with median 0.27 (Figure S4 in Supporting Infor-
mation S1). In most cases, R2 is smaller than 0.40, except at Surtsey, where R2 was 0.60. Similarly, R2 coefficients
for variations with maximumMTP vary between 0 and 0.65, with a median value of 0.04 (Figure S5 in Supporting
Information S1). At the rest of the sites, R2 are<0.10, except at Capelinhos, Anak Krakatau and Surtsey, where R2

is 0.65, 0.58 and 0.42, respectively. However, these seemingly reasonable correlations are actually negative,
contradicting previous field observations (Young et al., 2009) and global relational database analyses (Prémaillon
et al., 2018). Wave height and precipitation are hourly properties derived from ERA5 outputs; thus, they are
reasonably useful for detecting extreme wave and rainfall events. Therefore, neither wave heights nor precipi-
tation appear to control ACR strongly within this data set.

The highest ACR (HACR) value found at each site is shown in Table 2. The highest rates occurred soon after the
eruptions, typically within 3 months. As episodicity of geomorphologic processes can affect erosion rate mea-
surements (Gardner et al., 1987), we investigated the dependency of HACR on the time interval of each mea-
surement. HACR values indeed decline with time interval (R2 = 0.62, Figure 4a). The graph power‐law slope
resembles the trend for erosion of outcropping horizontal and sub‐horizontal bedrock surfaces of Ginger-
ich (2021), derived from 10Be exposure dating (Portenga & Bierman, 2011). Therefore, episodicity of erosion has
affected these values and likely also those in Figures S4 and S5 in Supporting Information S1. We also compared
the HACR values with wave and rainfall parameters, finding little co‐variation (R2 = 0.20 and 0.00, Figures 4b
and 4c). For a multivariate regression (Figure 4d), the R2 value was slightly larger (0.24), suggesting some
multivariate dependence of ACR. Nevertheless, the dependence is still weak.

4.2. Variations in ACD With Elapsed Time

We show model curve fits in Figure 5 even where few data exist as constraints as this allows us to estimate model
parameters consistently for all sites for subsequent analysis. However, focusing first on the sites with more
observations, where coastal evolution is known in more than 5 time steps (Figures 5b, 5e, 5f, 5h, 5k, 5n, and 5o)
and in some cases less (Figures 5a, 5i and 5j), ACD values increased rapidly initially, then more slowly after
typically ∼10,000–20,000 days. The ACDs are well represented by Equation 8 for some individual sites with
observations at multiple time steps (Figure 5; average R2 = 0.89). This is also the case for grouped coasts
(Figure 6; R2: 0.91 to 1.00).

When fitting Equation 8 with varied α (Test 1), the α value found was mostly 0.5–3, with α= 3 reached in Surtsey,
Jadid and Tonga. The coefficient E0 varies strongly between the sites (0.06–5.63 × 10

10 day− 1). Between the
different lithologies (Figure 6), E0 and α vary within one order of magnitude. Mixed coasts are the exception, with
E0 of ∼5,300 (day

− 1).

Figure 3. Examples of along‐coast‐averaged coastline change rates (ACR) of the volcanic coasts (blue lines) versus time
since eruption. Negative values represent accretion. Also shown are (a) the maximum wave heights (MWH, red) and (b) the
maximum monthly total precipitation (MTP, green) extracted from ERA5 (determined over the same time intervals as the
ACR values). R2 values were calculated between ACR and MWH (a) and between ACR and MTP (b). Similar graphs for
other sites are shown in Figures S4 and S5 in Supporting Information S1.
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When fitting Equation 8 with α set to 1.0 (Test 2), E0 varied less strongly (0.16–79.66 days
− 1). When grouped by

lithology, E0 only varies between 2.64 and 4.85 days
− 1. Compared with the results with varied α (Test 1), letting

α = 1.0 appears to produce curves that have smaller ACD in the early stages and larger ACD in later stages
(Figure 5). Correlation coefficients suggest a modestly better fitting of Equation 8 with varied α (Test 1) than
fixed α (Test 2) in 90% of cases.

5. Discussion
The rates of coastline retreat tended to slow systematically (Figures 5 and 6). Here, we attempt to explain the
variability of retreat rates and explore broader implications.

5.1. The Lack of Co‐Variation of Waves and Precipitation Data With These Erosion Rates

Although wave height data were expected to co‐vary with volcanic coastal retreat rates based on earlier obser-
vations (Menard, 1986; Quartau et al., 2010; Ramalho et al., 2013), Figure 4b reveals no such relationship. A lack
of co‐variation might arise from retreat rates varying with both measuring time intervals and elapsed times (i.e., a
multiple dependency). To reduce the effect of temporal variability, we used the curve fitted to each ACD series to
predict ACD (PACD; Table S3 in Supporting Information S1). The models with varied α were used (Test 1).
However, PACDs computed for 100, 1,000 and 10,000 days also do not vary with wave heights (Figures 7a–7c).

Figure 4. Highest average coastline retreat rates (HACR) for all coast types. (a) HACR versus measurement time interval
plotted logarithmically. For comparison, green and red lines are inverse power law regressions of rates of change in rivers
and horizontal bedrock erosion from Gingerich (2021). (b) HACR against the maximum wave height (MWH). (c) HACR
against the local maximum monthly total precipitation (MTP). (d) Multi‐variate regression of HACR on MWH and MTP.
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Precipitation can weaken sea cliffs through weathering (Duperret et al., 2005; Lim et al., 2010; Trenhaile, 2015)
and elevated pore pressures can reduce effective stress on fractures, leading to cliff failures (Jakob &
Lambert, 2009; Trenhaile, 2019). Therefore, retreat distances were expected to co‐vary with precipitation
(Young, 2018; Young et al., 2021). However, Figures 4c and 7d–7f show no relationship. In addition, exclusion of
the Capelinhos data set did not improve correlations between Predicted accumulative coastline change distance
and either wave height or precipitation, indicating that the absence of relationships is not due to the substantial
Capelinhos dataset (Figures 7a–7f).

Perhaps the lack of co‐variation arises from a dependence of erosion rates on multiple factors? For multivariate
regressions (Figures 7g–7i), R2 values are somewhat improved. However, the smallest HACR was observed for
Heimaey despite experiencing strong waves and rainfall (Table 2). We calculated deviations of retreat distances
from the predicted distances (using the fitted Equation 8 to remove the temporal systematic variation). The results
in Figure S6 in Supporting Information S1 show only a modest R2 when tested against wave and precipitation
data.

A few effects may explain why the expected tendency was not found. First, the time lag of events may be
important. for example, some coastlines of Hunga Tonga Hunga Ha'apai advanced during an interval of tall waves
at 370 days (Figure 3), perhaps an effect of redistribution of sediment released by wave erosion. A similar effect
was observed at Surtsey (Norrman & Erlingsson, 1992; Romagnoli & Jakobsson, 2015; Sayyadi et al., 2024).
Furthermore, debris from cliff failures can advance coastlines before it is removed by waves. Second, precipi-
tation on volcanic islands is strongly influenced by topographic effects (orography) (Ramalho et al., 2013) and
taller islands have rain shadows. The lack of covariation could be due to the reliability and resolution of pre-
cipitation data derived from ERA5 outputs (Figure S3 in Supporting Information S1). However, the largest global
cliff erosion database to date similarly revealed no covariation with climatic (temperature variation, frost fre-
quency and precipitation) and marine (tidal range, wave energy flux and storm frequency) data (Prémaillon
et al., 2018) data.

Figure 5. Accumulative coastline change distance (ACD) against elapsed time. Red and blue curves represent the least‐squares best fits of Equation 8 to ACD with
varied α (Test 1) and with α set to 1.0 (Test 2). Unfilled circles are estimated ACD values at t equal to 100, 1,000 and 10,000 days. Error bars indicate the estimated least
total positional error in Table S1 in Supporting Information S1.

Journal of Geophysical Research: Earth Surface 10.1029/2024JF008058

ZHAO ET AL. 14 of 23



5.2. Other Factors Varying Coastal Erosion Rates

Tidal changes in water level also allow wave impacts to vary in position and magnitude through each tidal cycle
(Bossis et al., 2025); however, no covariation was found between HACR and tidal range (Figure S7 in Supporting
Information S1). Vertical tectonic movements may also vary coastal erosion rates (Quartau et al., 2018; Ramalho
et al., 2013; Regard et al., 2010, 2021). Subsidence from compaction may accelerate erosion rates (Romagnoli &
Jakobsson, 2015), while uplift during earthquakes may reduce them (Omidiji et al., 2022; Stephenson
et al., 2017). Vertical motion data are available only for four of the 12 sites. These rates (all subsidence) are
1 cm/yr for Capelinhos (Catalão et al., 2006), 4 cm/yr for Surtsey (Romagnoli & Jakobsson, 2015), 1 cm/yr for
Deception (Rosado et al., 2019), and 5 cm/yr for Anak Krakatau (Iqbal et al., 2023). These few rates also do not
correlate with HACRs.

Figure 6. Accumulative coastline change distance (ACD) of all coastal types (a), lava flow (b), tephra (c) andmixed coasts (d).
Unfilled red circles are ACD values averaged every ∼1,000 days. Red and blue curves represent the least‐squares best fit of
Equation 8 to those averaged data with varied α (Test 1) and fixed α (Test 2). Notably, the red and blue curves overlap in panel
(a). R2 values represent the correlation coefficients when fitting observed data to the equation ACD = [(a + 1)*E0*t]

1/(a + 1).
The enlargement in (d) shows the changes in the early stages.
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A lava flows typically have interiors with low joint density, whereas pahoehoe flows have high joint densities
(Smellie et al., 2013). Cavities and tube networks in pahoehoe lava flows allow water to enter cliffs during wave
impacts (Macdonald, 1953), producing air compression effects (Andriani & Walsh, 2007; Zhao et al., 2020) and
generating blow holes (Németh & Gravis, 2022). Hence, wave erosion should occur more rapidly at pahoehoe
coasts than at a coasts. However, only one coast analyzed here comprises pahoehoe (Nishinoshima Shinto) and it
did not erode more rapidly than most a lava flow coasts (Figure 5).

Prémaillon et al. (2018) suggested that variations in rock mass strength may primarily explain variations in
erosion rates. Schmidt hammer measurements at Capelinhos showed unconfined compressive strengths (UCSs)
of 51.6MPa for lava flows, 22.4 MPa for mixed cliffs and 12.0 MPa for tephra cliffs (Zhao et al., 2019). These are

Figure 7. Predicted accumulative coastline change distance obtained by fitting Equation 8 with varied α to the ACD data. These are compared with (a–c) maximumwave
height and (d–f) monthly total precipitation at elapsed time 100 days, 1,000 days and 10,000 days. Panels (g)–(i) show the results of multivariate regression. R2 values in
brackets are for analyses excluding the Capelinhos measurements.
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similar to UCSs of 52.75 and 23 MPa for volcanic and volcaniclastic rocks from a global rock strength database
(https://doi.org/10.5281/zenodo.12687444). However, retreat rates do not follow a logical strength order, as
mixed and lava flow coasts retreated more rapidly than weak tephra coasts (Figure 6).

Other properties may therefore be more important, such as fracture density (Kereszturi & Németh, 2012;
Trenhaile, 2019). Such assessments are needed at these sites to further evaluate the effect of fracture density.

5.3. What Causes Erosion Rates to Decline Systematically With Measured Time Interval?

Uncertainties in long‐term cliff retreat rates increase substantially with declining observation periods (Mushkin
et al., 2019). Rapid alternating between coastal accretion and erosion can also affect time‐averaged erosion rates
depending on the averaging time interval (Castelle et al., 2018; Toimil et al., 2020). The covariation with time
interval (Figure 4a) aligns with the results of Williams, Rosser, et al. (2019), who found that emplaced rockfall
volume rates were higher for shorter intervals. Their power‐law gradient ranged from − 1.382 for 1‐hr intervals to
− 0.995 for 1‐month intervals, comparable to the − 0.448 gradient in Figure 4a. Field measurements suggest that
the reoccurrence period of cliff landslide episodes significantly influences rocky coastline change rates (Bloom
et al., 2023; Mushkin et al., 2019).

Episodic and/or stochastic geomorphological processes are well‐known to affect rates in general (Gardner
et al., 1987; Rohmer & Dewez, 2013; Sadler & Jerolmack, 2015) and in individual volcanic coasts (Romagnoli &
Jakobsson, 2015). The power‐law slope of 0.448 is broadly comparable to those of denuding landscapes (0.815)
(Gardner et al., 1987) and bedrock surface erosion (0.551) (Gingerich, 2021).

5.4. What Causes Erosion Rates to Decline Systematically With Elapsed Time?

We interpret the systematic slowing of retreat rates in Figure 6 as likely due to the combined effects of wave
attenuation, protection by increasingly large debris bodies from cliff failures, and/or changes in exposed lithology
(Zhao et al., 2019). Wave heights are reduced by attenuation crossing shore platforms in front of the cliffs
(Sunamura, 1992; Trenhaile, 2000). As platforms widen with progressive coastal erosion (Matsumoto et al., 2016;
Quartau et al., 2010, 2018; Ramalho et al., 2013), the heights of waves approaching cliffs should progressively
decrease. Furthermore, volcanic islands, lava deltas and Surtseyan cones have conical shapes or part conical
shapes (Francis, 1993; Macdonald et al., 2021). As coastlines retreat, these shapes lead to cliffs becoming pro-
gressively taller, resulting in larger debris fields from individual cliff failures. These debris fields can protect the
cliff before they are removed by waves, thus slowing erosion (Zhao et al., 2019). Cliff heights are not known for
the majority of the coasts analyzed here, but we were able to measure them from the digital elevation models
(DEMs) of HTHH. In the results (Figure S8 in Supporting Information S1), coastline erosion rates decreased with
increasing cliff height in seven of the 14 measurement periods, though with only modest R2 values (0.06–0.45).
This suggests that the blocking effect is less pronounced for tephra coasts.

Erosion may also progressively excavate more compacted or lithified material, which is more resistant to erosion
(Ramalho et al., 2020; Zhao et al., 2019). For example, glass in deeper tuff at Surtsey was transformed into
palagonite (Jakobsson et al., 2000). While palagonitization is unlikely to occur in rocks of common depths and
therefore affect erosion rates in a common way, it and compaction may contribute to slowing at individual sites.

5.5. Potential for Geomorphologic Modeling

Over millions of years, abrasion shelf width can vary linearly with volcano age, suggesting that the width of a
shelf may provide an estimate of the age of (reefless) coasts and the width of a guyot summit may suggest the
longevity of the island that preceded it (Menard, 1984). Speciations among islands also depend on how long
islands existed (Ávila et al., 2019; Geist et al., 2014;Whittaker &Hanski, 1999). Assuming linear changes in shelf
widths over time would be inappropriate for the Pleistocene due to sea‐level variations (Ramalho et al., 2013;
Ricchi et al., 2018; Trenhaile, 2000). Retreat distances in our results also vary over short intervals (Figure 5). As
we have not found a systematic variation with wave, precipitation and other data, we cannot correct for those
factors. Hence, morphological dating does not appear promising over short timescales. However, other re-
searchers have identified a strong relationship between shelf width and wave exposure (Bossis et al., 2023;
Quartau et al., 2010, 2014, 2016; Romagnoli et al., 2018), suggesting that there is some systematic effect yet to be
determined.
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5.6. Implications for Coastal Management and Cliff Failure Hazards

New land produced by eruptions is appealing for touristic and agricultural development, although such devel-
opment is discouraged (Poland & Orr, 2014). Predicting coastline retreat would be useful to place limits on
development areas, as well as for assessing risks to geoheritage sites (Németh & Moufti, 2023). The systematic
trends in Figures 5 and 6 may be useful for these purposes, that is, if those trends can be extrapolated into the
future to predict how the coasts will change. Such extrapolations should not be viewed as deterministic, since the
mechanisms causing coastal retreat rates to decrease are unclear and may change over time. Given also the
variability of measurements, estimating future erosional risks solely through simple extrapolation would be
problematic if only the initial rapid rates were considered. Only long‐term rates in coasts approaching steady‐state
equilibria are likely to be accurate.

Cliff failure hazards is also need to be assessed in oceanic islands, which are typically remote from continental
assistance (Shultz et al., 2016). The initially rapid retreats of their coasts can pose risks from cliff collapse (Mattox
et al., 1993). Collapses are probably not so important volumetrically in young coasts because their cliffs are
usually low. In contrast, failure of tall cliffs can initiate tsunamis that produce wider impacts (Omira, Baptista,
et al., 2022; Rosser et al., 2013). Failures should become less frequent but more impactful as coasts retreat over
time and cliffs become taller.

6. Conclusions
A data set has been compiled of post‐eruptive coastal retreat rates for coasts formed by historical eruptions. It
reveals a general tendency for rates to slow over time in the coasts recorded at multiple times. This slowing also
results in accumulative coastline change distances (ACD) approaching equilibrium. The inverse power law
variation between ACD and time is predictable from an earlier‐found inverse power‐law equation between retreat
rate and retreat distance. Surprisingly, the anticipated influences of wave climate and precipitation have little
correlation with these retreat rates. Covariations were also not observed with tidal range, subsidence rate, lava
flow type, or rock strength. Differences in lithology and fracture density may dominate. The observed rates
decrease with measurement time intervals, indicating that episodicity of erosion is important. The decline of rates
with time elapsed since volcanic emplacement has been explained by (a) wave energy loss over widening shore
platforms, (b) increasing resistance of more deeply buried materials becoming exposed at cliffs and (c) increasing
volumes of debris generated by cliff collapses, given that volcanic land typically declines toward coasts. As a
general tendency has been found in this study, the wave attenuation mechanism is likely the most important factor,
as (b) and (c) likely produce less systematic effects. The general slowing tendency may be useful for managing
newly formed volcanic coasts and for hazard assessment.

Data Availability Statement
Most of the coastline change distances were sourced from published studies (Hutton, 2023; Richards, 1965;
Romagnoli et al., 2006; Torrecillas et al., 2024; Waythomas, Scott, Prejean, et al., 2010; Xu et al., 2015; Zhao
et al., 2019). Historical coastline distances for Heimaey and Nishinoshima Shinto were obtained from published
resources (Eiríksson, 1990; Mogi et al., 1980). Satellite images of Hunga Tonga Hunga Ha'apai are available in
the supporting information of Garvin et al. (2018). Sentinel‐2 satellite images for Anak Krakatau can be accessed
from Novellino et al. (2020) and Google Earth Engine (Gorelick et al., 2017). Hourly significant wave height and
total precipitation values can be extracted from the ERA5 database (Hersbach et al., 2023). Tidal range data can be
obtained from the FES2014 tidal model (Lyard et al., 2021). Most figures were made with GMT software (Wessel
et al., 2019, their version 6).
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