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 A B S T R A C T

This study introduces RicEns-Net, a novel deep ensemble model for rice yield prediction in the 
Mekong Delta region of Vietnam, integrating diverse data sources through multi-modal data 
fusion. The model leverages synthetic aperture radar (SAR), optical remote sensing (Sentinel-
1/2/3) and meteorological measurements (surface temperature, rainfall) to improve prediction 
precision. A comprehensive feature selection reduced over 100 potential predictors to 15 key 
features across 5 data modalities, mitigating the ‘‘curse of dimensionality ’’ where the initial 
field data were acquired through Ernst & Young’s (EY) Open Science Challenge 2023. RicEns-
Net outperforms previous state-of-the-art models (including winners of the EY Open Science 
Challenge), achieving a mean absolute error (MAE) of 336 kg/Ha, roughly 5%–6% of the 
lowest regional yield, and a high 𝑅2, indicating robust predictive capability. These results 
underscore the benefit of deep ensembles in precision agriculture and demonstrate the potential 
of multi-modal data integration for more accurate crop yield forecasting.

1. Introduction

This paper is grounded in the purpose and drive behind one of the Sustainable Development Goals (SDG) outlined by the United 
Nations; a comprehensive set of 17 objectives to be achieved by 2030 (United Nations, 2023b). These goals collectively embody 
humanity’s pursuit of a sustainable future for both the planet and its inhabitants. Serving as a global framework, the 17 SDGs guide 
international endeavours to address the challenges posed by climate change while harmonising human ambitions for prosperity and 
improved quality of life. Central to this vision is ensuring food security (United Nations, 2023a). This is particularly important for a 
significant portion of the global population living in environmentally vulnerable areas affected by climate and weather fluctuations.

Rice is one of the most important staple foods globally, feeding more than half of the world’s population. It is cultivated 
on over 160 million hectares, producing around 500 million metric tons annually, with the majority of production concentrated 
in Asia. The region accounts for nearly 90% of global rice output, with countries such as China, India, and Indonesia leading 
in production. Besides being a dietary staple, rice also supports the livelihoods of millions of farmers, playing a vital role in 
rural economies. However, rice cultivation is highly resource-intensive, requiring significant amounts of water and labour, and 
is particularly vulnerable to climate change. Rising temperatures, changing precipitation patterns, and the increasing frequency of 
extreme weather events threaten rice yields globally, posing challenges to food security in many regions.

This study underscores the critical importance of rice crops and Vietnam, focusing on their global and regional significance. 
Rice, often referred to as a ‘‘Gift of God’’ for its nutritional value, is a cornerstone of food security and public health worldwide. 
Despite its critical role, less than 8% of global rice production enters international trade (Food and Agriculture Organization (FAO), 
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2022). This highlights its largely localised consumption patterns, as reported by the Food and Agriculture Organisation Corporate 
Statistical Database (FAOSTAT). However, Vietnam stands as an exception, being one of the world’s leading rice exporters. The 
Mekong Delta, in particular, is central to the nation’s status as a global rice powerhouse, with its fertile paddy fields supporting 
diverse rice varieties.

In Vietnam, rice holds unparallelled cultural, economic, and ecological importance. It serves as a dietary staple, forming the 
foundation of traditional cuisine, while also being integral to the livelihoods of millions of rural farmers. The sector is a driver 
of economic development, supported by government initiatives aimed at boosting productivity and sustainability. However, the 
ecological and climatic demands of rice cultivation present significant challenges. As a water-intensive crop, rice is highly sensitive 
to temperature fluctuations, requiring an optimal range of 25–35 ◦C. Brief exposure to extreme heat or untimely rainfall during 
the reproductive stage can result in sterility or yield loss. This vulnerability, coupled with the long growing periods, makes rice 
cultivation particularly susceptible to climate change, underscoring the urgency of sustainable practices in Vietnam and globally.

This paper introduces RicEns-Net, a novel ensemble learning model designed for accurate crop yield prediction. By integrating five 
diverse remote sensing data sources, Sentinel-1, Sentinel-2, Sentinel-3, NASA’s Goddard Earth Sciences (GES) Data and Information 
Services Centre (DISC) and field measurements, the proposed framework leverages sophisticated data engineering techniques to 
improve predictive performance. The model effectively combines synthetic aperture radar (SAR), multispectral imaging (MSI), 
meteorological parameters, and ground-truth observations, ensuring a robust and comprehensive approach to crop yield estimation. 
The inclusion of multi-modal data sources helps mitigate uncertainties associated with individual datasets, improving both spatial 
and temporal resolution in predictions.

Main contributions

This study makes the following key contributions:

1. We develop a comprehensive multi-modal data fusion strategy by integrating synthetic aperture radar (SAR), optical remote 
sensing, and meteorological measurements, significantly enhancing the accuracy of crop yield prediction.

2. We propose RicEns-Net, a novel deep ensemble model that combines multiple machine learning algorithms, outperforming 
individual models and standard ensemble techniques in yield forecasting tasks.

3. We conduct an extensive comparative evaluation against various baseline and state-of-the-art models, demonstrating consis-
tent improvements across multiple performance metrics (MAE, RMSE, 𝑅2).

4. We analyse the generalisation capability of RicEns-Net by evaluating the train–test performance gap, confirming its robustness 
and reduced risk of overfitting compared to other models.

5. We validate the model on noisy, multi-source real-world data from the Mekong Delta, Vietnam, highlighting its practical 
utility and operational potential for precision agriculture applications.

The remainder of this paper is organised as follows: Section 2 reviews related work, analysing previous findings and establishing 
the foundation for the study’s objectives and contributions. Section 3 details the materials and methods, including descriptions of 
data sources, preprocessing techniques, and feature engineering approaches. Section 4 presents the experimental results derived 
from the proposed model, followed by Section 5, which interprets these findings and discusses their implications. Finally, Section 6 
summarises the study, outlines its limitations, and highlights potential directions for future research.

2. Related works

In parallel with rapid technological advancements over the past two decades, recent breakthroughs in machine learning (ML), 
artificial intelligence (AI), and remote sensing (RS) have dramatically expanded the capabilities and scope of research, particularly in 
environmental monitoring. These advancements have enabled groundbreaking achievements such as capturing the first-ever image 
of a black hole (Akiyama et al., 2019) and detecting floating marine plastic debris from space (Biermann et al., 2020; Booth et al., 
2023). In addition, these technological innovations have significantly improved various environmental applications, ranging from 
air pollution monitoring (Rowley and Karakuş, 2023) and precise road detection (Ma et al., 2024; Akhtarmanesh et al., 2023) to 
comprehensive land cover mapping (Ma et al., 2022) and many others (Roy et al., 2023; Marzvan et al., 2021; Esmaeili et al., 2023; 
Safari et al., 2024). Driven by these developments, this section first outlines the specific objectives in Section 2.1, and subsequently 
provides a detailed review of key academic studies in Section 2.2 that highlight recent advances from the perspectives of crop yield 
prediction and agricultural monitoring, emphasising the transformative impact of ML, AI, and multi-modal RS data on agricultural 
decision-making and management practices.

2.1. Objectives

The primary objectives of this research are as follows:

• To integrate diverse remote sensing (SAR, optical imagery) and meteorological data sources into a coherent multi-modal dataset 
to enhance the accuracy and robustness of crop yield prediction.

• To address feature complexity by applying advanced feature selection techniques, thereby reducing dimensionality while 
preserving essential predictive information.
2 



A.D. Yewle et al. Remote Sensing Applications: Society and Environment 38 (2025) 101613 
• To design a novel deep ensemble learning framework (RicEns-Net) capable of leveraging the strengths of multiple machine 
learning algorithms for improved yield forecasting.

• To extensively benchmark the proposed model against state-of-the-art machine learning techniques, demonstrating its superior 
performance using standard evaluation metrics (MAE, RMSE, 𝑅2).

• To validate the proposed methodology on noisy, real-world multi-source data from the Mekong Delta region and assess its 
practical utility for operational deployment in precision agriculture.

2.2. Literature review

Advancements have influenced the evolution of crop yield monitoring in sensor technology and data analysis methodologies. 
While early studies highlighted rainfall as the primary determinant of crop yield, a key shift occurred in 1968 with the recognition 
of soil moisture as a more reliable predictor by Baier and Robertson (1968). Their work leverages spectral data to estimate crop 
yield based on vegetation health indicators. Over time, numerous vegetation indices (VIs) have been developed to assess vegetative 
conditions and physiological characteristics of crops. These VIs, including the Normalised Difference Vegetation Index (NDVI), Leaf 
Area Index (LAI) (Bouman, 1995), and Transformed Soil Adjusted Vegetation Index (TSAVI) (Baret and Guyot, 1991), play a crucial 
role in crop prediction models. Advancements in hyperspectral imaging have enabled the capture of fine-grained spectral data, 
facilitating the development of biochemical indices for quantifying plant constituents.

Rice crop yield estimation relies on understanding the crop’s growth stages and environmental factors. Water level in paddy fields, 
rather than direct precipitation, is crucial for irrigated rice fields. Accumulating temperature is more important than temperature at 
certain times, as it affects the crop’s development stages. These factors are integrated into crop models to predict yield accurately.

In the early 2000s, research surged, leveraging imaging and machine learning technologies for crop yield prediction. Studies 
introduced novel methodologies, such as artificial neural networks (ANN) and SVR, to analyse remote sensing data and historical 
yield records. These approaches demonstrated more precise results compared to traditional models and prepared for more precise and 
scalable methods for estimating crop yields. Uno et al. (2005) analyse hyperspectral images of corn plots in Canada using statistical 
and ANN approaches, demonstrating the potential of ANNs in predicting yield with higher accuracy compared to conventional 
models. Li et al. (2007) introduce a methodology employing ANN models to predict corn and soybean yields in the United 
States ‘‘corn belt’’ region, achieving high prediction accuracy through historical yield data and NDVI time series. Bala and Islam 
(2009) estimate potato yields in Bangladesh using TERRA MODIS reflectance data and Vegetation Indices (VIs), demonstrating 
the effectiveness of VIs derived from remote sensing for early yield estimation. Li et al. (2009) employ SVR and multi-temporal 
Landsat TM NDVIs to predict winter wheat yield in China, showcasing the precision and effectiveness of SVR models in yield 
estimation. Stojanova et al. (2010) integrate LiDAR and Landsat satellite data using machine learning techniques to model vegetation 
characteristics in Slovenia. Their approach combines the precision of LiDAR data with the broad coverage of satellite data, facilitating 
effective forest management and monitoring processes.

Furthermore, Mosleh et al. (2015) evaluated the efficacy of remote sensing imagery in mapping rice areas and forecasting 
production, highlighting challenges such as spatial resolution limitations and issues with radar imagery. Johnson et al. (2016) 
developed crop yield forecasting models for the Canadian Prairies, revealing the effectiveness of satellite-derived vegetation indices, 
particularly NDVI, in predicting yield potential. Pantazi et al. (2016) proposed a model for winter wheat yield prediction, integrating 
soil spectroscopy and remote sensing data to visually depict yield-influencing factors. Ramos et al. (2020) introduced an optimised 
Random Forest algorithm for maize-crop yield prediction, emphasising the importance of vegetation indices like NDVI, NDRE, and 
GNDVI. Li et al. (2021) utilised extreme gradient boosting machine learning to accurately predict vegetation growth in China, 
achieving high predictive accuracy and demonstrating effectiveness under diverse conditions. Zhang et al. (2021) employed field-
surveyed data to predict smallholder maize yield, with novel insights into the performance of various vegetation indices and machine 
learning techniques.

Recent studies have demonstrated the effectiveness of using Sentinel-2 satellite imagery and machine learning techniques for 
predicting crop yields and mapping crop types. Son et al. (2022) employed Sentinel-2 image composites and various machine 
learning algorithms to forecast rice crop yields in Taiwan. Their results showed that Support Vector Machines (SVM) outperformed 
RF and ANN at the field level. This highlighted SVM’s potential for accurate yield predictions approximately one month prior to 
harvesting. Perich et al. (2023) utilised Sentinel-2 imagery to map crop yields at the pixel level in small-scale agriculture. Their 
machine learning models, based on spectral indices and raw reflectance data, proved effective despite challenges posed by cloudy 
satellite image time series. Khan et al. (2023) combined ground-based surveys, Sentinel-2 satellite imagery, and deep learning 
techniques to map crop types. They successfully achieved high accuracy in identifying staple crops such as rice, wheat, and sugarcane 
within the first four weeks after sowing.

Along with Sentinel 2, UAV and other sensor spectral information have also been used in the literature in the last couple 
of years. Shafi et al. (2023) propose XGBoost, LASSO, and RF regression models to be utilised via Drone-based multispectral 
imagery. Islam et al. (2023) combine remote sensing and meteorological data in stacking multiple regression models for rice crop 
yield prediction. Zhou et al. (2023) compare CNN and LSTM-based models for predicting annual rice yield in Hubei Province, 
China. By utilising ERA5 temperature data and MODIS vegetation indices, they demonstrate that the CNN-LSTM model with spatial 
heterogeneity outperforms models using only remote sensing data. Arshad et al. (2023) evaluate the performance of RF and SVR, 
in predicting wheat yield in southern Pakistan using a combination of remote sensing indices and climatic variables, where RF 
outperforms other methods. Asadollah et al. (2024) assess the effectiveness of using a novel Randomised Search cross-validation 
(RScv) optimisation algorithm with four machine learning models. With a target to predict annual yields of four crops (Barley, Oats, 
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Rye, and Wheat) across 20 European countries, they demonstrate improved prediction accuracy through satellite-based climate and 
soil data. 

Furthermore, Lu et al. (2024) present a state-of-the-art CNN-BiGRU model enhanced by GOA and a novel attention mechanism 
(GCBA) for accurate county-level soybean yield estimation in the U.S. They leverage multi-source remote sensing data and 
outperform existing models in yield prediction accuracy. Killeen et al. (2024) investigate UAV-based corn yield prediction using RF 
and linear regression models. Their findings show that spatial cross-validation reduces over-optimism in yield prediction compared 
to standard 10-fold cross-validation, with LR showing better spatial generalisability than RF. Dhaliwal and Williams II (Dhaliwal 
and Williams, 2024) use a 26-year dataset on US sweet corn production to evaluate machine learning models for yield prediction. 
The authors report that RF performs best, with year, location, and seed source identified as the most influential variables.

Recently, Gadupudi et al. (2024) demonstrated integrating ML strategies like RF and Decision Trees alongside DL models such 
as LSTM and RNN. To improve crop prediction accuracy, the authors incorporate soil attributes, climate data, and cost analyses to 
optimise results. Similarly, Rao et al. (2024) employed attention-based CNNs and bidirectional LSTMs with hyperparameter tuning to 
predict crop yields. They showcase significant improvements in detection performance through methods like the shuffling shepherd 
optimisation algorithm. Sharma et al. (2025) explored the fusion of AI algorithms, including logistic regression and IoT-enabled 
analytics, to tailor recommendations based on regional agricultural parameters, advancing productivity and diversification.

The diverse literature outcomes examined previously, along with numerous others, have highlighted the multidimensional 
potential of AI in transforming traditional agricultural practices into more data-driven, adaptive systems. They have employed 
a variety of data types from different sources and machine learning models. This diversity presents challenges in generalising 
techniques across different datasets, yet it also enhances performance for specific datasets. The adoption of multi-modal data usage, 
multi-modal AI techniques, and Ensemble methods has emerged as the current practice in this research field. Shahhosseini et al. 
(2021) explore the predictive performance of two novel CNN-DNN machine learning ensemble models for forecasting county-
level corn yields across the US Corn Belt. The study compares the effectiveness of homogeneous and heterogeneous ensemble 
creation methods by combining management, environmental, and historical yield data from 1980 to 2019. The authors report that 
homogeneous ensembles provide the most accurate yield predictions, offering the potential for the development of a reliable tool to 
aid agronomic decision-making. Gavahi et al. (2021) introduce DeepYield, a novel approach for crop yield forecasting that combines 
Convolutional Long Short-Term Memory (ConvLSTM) and 3-Dimensional CNN (3D-CNN). By integrating spatiotemporal features 
extracted from remote sensing data, including MODIS Land Surface Temperature (LST), Surface Reflectance (SR), and Land Cover 
(LC), DeepYield outperforms traditional methods and demonstrates more precise forecasting accuracy for soybean yields across the 
Contiguous United States (CONUS). Zare et al. (2024) investigate the impact of data assimilation techniques on improving crop 
yield predictions by assimilating LAI data into three single crop models and their multimode ensemble using a particle filtering 
algorithm. The results of their case study in southwestern Germany reveal that data assimilation significantly enhances the accuracy 
of the LAI simulation and the prediction of grain yield. Particularly for certain crop models, they highlight the potential for further 
improvements in data assimilation applications through regional model calibration and input uncertainty analysis.

Recent studies highlight the effectiveness of ensemble learning techniques in enhancing the accuracy and reliability of crop 
yield predictions. Gopi and Karthikeyan (2024) proposed the Red Fox Optimisation with Ensemble Recurrent Neural Network 
for Crop Recommendation and Yield Prediction (RFOERNN-CRYP) model. Their model leverages an ensemble of deep learning 
architectures, including LSTM, bidirectional LSTM (BiLSTM), and gated recurrent units (GRU), optimised through the Red Fox 
Optimisation algorithm. This approach demonstrated superior performance compared to individual classifiers, providing automated 
crop recommendations and accurate yield predictions to assist farmers in decision-making. Similarly, Boppudi et al. (2024) developed 
a deep ensemble model integrating Deep Max Out, Bi-GRU, and CNN architectures, along with advanced preprocessing and feature 
selection using the IBS-BOA algorithm. Their method effectively addressed variability in weather and environmental conditions, 
significantly reducing prediction error rates compared to existing approaches.

Additionally, stacking and weighted ensemble methods have been successfully employed in recent research. Umamaheswari and 
Madhumathi (2024) utilised a stacking ensemble comprising SVR, KNN, and RF as base learners, with LASSO regression as the 
meta-learner, achieving enhanced precision in crop yield predictions. Osibo et al. (2024) integrated weighted ensemble techniques 
with remote sensing data, outperforming state-of-the-art models while simplifying the data integration process. Furthermore, Zhang 
et al. (2024) introduced the StackReg framework, combining UAV-acquired multispectral data with ridge regression, SVM, Cubist, 
and XGBoost. Their ensemble consistently achieved better performance than individual base models, particularly in multi-stage 
prediction scenarios. Collectively, these studies underscore the critical role of ensemble learning in agricultural applications, offering 
robust, adaptable solutions across various agricultural contexts.

Furthermore, Mahdipour et al. (2024) proposed an ‘‘ultrafusion’’ framework that models inherent uncertainty in multiple high-
resolution panchromatic images using fuzzy number theory and fusion-based segmentation. Their approach effectively captures the 
randomness introduced during image formation and preprocessing, significantly improving segmentation metrics such as overall 
accuracy and F1-score. Meanwhile, Mirhoseini Nejad et al. (2024) introduced an integrated framework combining 3D Convolutional 
Neural Networks (3D-CNNs), ConvLSTM, and Vision Transformers (ViTs) for soybean yield prediction using multispectral remote 
sensing data. By leveraging spatial, temporal, and global contextual features simultaneously, their hybrid model substantially 
outperformed existing methods in yield prediction tasks, highlighting the importance of combining multiple learning architectures 
for complex agricultural datasets. Furthermore, Farmonov et al. (2024) developed HypsLiDNet, a deep learning model designed for 
hyperspectral imaging (HSI) and LiDAR data fusion in crop classification. By incorporating morphological operations and attention 
mechanisms, HypsLiDNet achieved notable improvements in classification accuracy compared to both traditional machine learning 
and contemporary deep learning techniques. These works collectively underline the emerging trend of integrating multi-modal 
4 
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Fig. 1. Map illustrating the geographical area under investigation, encompassing the An Giang province in Vietnam, including the specific study districts of 
Chau Thanh, Thoai Son, and Chau Phu. This region is significant for its rice production and diverse environmental conditions, making it an ideal case study for 
testing the generalisability of the RicEns-Net model.

remote sensing data and advanced ensemble learning techniques to tackle the challenges of agricultural monitoring and prediction 
with greater robustness and precision.

Building upon the ensemble learning advancements discussed above, it is evident that integrating diverse multi-modal data 
and advanced ensemble architectures significantly improves crop yield predictions. However, despite substantial progress, existing 
methods typically focus on a limited set of data sources and conventional deep learning architectures. To address these gaps, 
we introduce a novel framework for predicting crop yields, named ‘‘RicEns-Net ’’. This framework incorporates advanced data 
engineering processes involving five unique data sources, namely Sentinel 1/2/3, NASA’s Goddard Earth Sciences (GES) Data and 
Information Services Centre (DISC), and field measurements. The novelty of RicEns-Net lies in its sophisticated integration of these 
diverse and rich multi-modal datasets, comprising 15 carefully selected features from an initial pool exceeding 100. Additionally, 
RicEns-Net employs an advanced Deep Ensemble approach, combining widely-used architectures such as CNN and MLP with less 
frequently utilised DenseNet and Transformer structures, thus addressing gaps and expanding upon the current state-of-the-art.

3. Materials and methods

3.1. Study area & rice crop details

As stated earlier, this study begins by employing the dataset offered by EY for the 2023 iteration of their Open Science Data 
Challenge (EY, 2023). The dataset encompasses information from 557 farm sites situated in Chau Thanh, Thoai Son, and Chau Phu 
districts within the province of An Giang in Vietnam (see Fig.  1). The study province of An Giang relies significantly on agriculture 
as a cornerstone of its economy. Notably, An Giang province is situated in the Mekong River delta region, crucial for providing 
irrigation to support rice cultivation. The dataset, supplied by EY, contains fundamental details for each crop, including District 
Name, Latitude, Longitude, Crop Season, Crop Frequency, Harvest Date, Crop Area, and Yield as given in Table  1.

Every entry in the primary dataset represents an individual crop and is characterised by eight features, including three categorical 
variables (District name, Crop Season [WS = Winter Spring; SA = Summer Autumn], and Crop Frequency of the specified farm [D =
Twice; 𝑇 = Thrice]) and five numerical variables (Latitude, Longitude, Harvest Date, Area [Hectares], and Yield Rate [kg/Ha]). The 
5 
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Table 1
Study area details, including district names, geographic locations, population, area, and popula-
tion density for Chau Thanh, Thoai Son, and Chau Phu districts in An Giang province, Vietnam. 
This information provides context for the study region’s significance in rice production.
 District Province Data Geographic Population Area Population  
 count location density  
 Chau Thanh 218 130,101 571 km2 228/km2  
 Thoai Son An Giang 171 Mekong Delta 187,620 456 km2 411/km2  
 Chau Phu 168 Region 250,567 426 km2 588/km2  

Fig. 2. Rice growing stages and three potential crop cycles in Vietnam’s study region. Credit: (e-Extension, 2024).  (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

harvesting dates of the crops in question extend from March 18, 2022, to August 9, 2022, covering two significant crop seasons, 
namely Summer–Autumn and Winter–Spring.

While the overall duration of the crop cycle spans approximately 5–6 months, contingent on the season, the period from 
transplanting to harvesting typically ranges from 90 to 130 days. The growth trajectory can be categorised into three principal 
phases: Vegetative, Reproductive, and Ripening stages, illustrated in Fig.  2. During the Reproductive stage, rice plants attain their 
maximum greenness, marking the culmination of this phase. Subsequently, the crop transitions into the Ripening stage, characterised 
by the transformation of the plants from green to yellow, coinciding with the maturation of rice grains. In the context of Vietnam, 
rice cultivation occurs biannually or triannually within two seasons: Winter–Spring (Nov–Apr), Summer–Autumn (Apr–Aug), and 
Autumn–Winter (Jul–Dec).

The necessary geospatial information can be obtained from either Landsat or Sentinel satellites, taking into account the designated 
location and harvest time outlined in the dataset. After careful consideration of technical details such as Ground Spatial Resolution 
(GSD) and revisit frequency, the decision is made to opt for data sourced from Sentinel satellites. Additionally, there is anticipation 
in leveraging the complete spectrum of SAR, MSI, and Meteorological data. To gather remote sensing data for a specified area, it is 
essential to finalise two key parameters: the time window and the geographical bounding box or crop window.

We intend to gather data during the phase when the crop is nearing complete maturation. The progress of the crop’s growth 
is discerned through the intensity of the green hue in the data, with the period from transplantation to maturity spanning 60–100 
days, contingent on the prevailing season. Following full maturity, the crop progresses into the ripening stage, which typically lasts 
around 30 days. To determine the timeframe for data collection, we use the harvest date as a reference point. The initiation date is 
established as 60–90 days before the harvest date, while the conclusion date is set at 30 days before the harvest date (refer to Fig. 
2). This designated time window encapsulates the entire duration from the crop’s transplantation to the conclusion of the maturity 
stage, ensuring that the remote sensing data aligns with the various growth phases of the crop.

The primary input data exclusively provides information about the field’s area without specifying the precise bounding region 
for each field. This lack of detail hinders our ability to extract data for the exact boundaries of individual crop fields. To address 
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this limitation, we proceed by identifying the precise location of each field in the MSI data and cropping the image to obtain a set 
of pixels surrounding that specific location. Given that the visual bands of the MSI data have a spatial resolution of 10 m per pixel, 
a 3 × 3 pixel collection corresponds to an area of 900 square meters, equivalent to 0.222 acres or 0.09 ha. Notably, the SWIR16 
and SWIR22 bands of Sentinel 2’s MSI exhibit a spatial resolution of 20 m per pixel, meaning a 3 × 3 pixel bounding box represents 
an area of 3600 square meters, or 0.89 acres, or 0.36 ha.

3.2. Data/feature extraction

3.2.1. Sentinel-1
Sentinel-1 operates with four distinct acquisition modes: Stripmap (SM), Interferometric Wide Swath (IW), Extra Wide Swath 

(EW), and Wave (WV). During Synthetic Aperture Radar (SAR) acquisition, known as the ‘‘datatake’’ process, data from SM, IW, 
and EW modes is divided into smaller, manageable slices. These slices undergo processing to generate different product levels. 
Level-0 products contain raw sensor data, while Level-1 products provide calibrated imaging data such as Single Look Complex 
(SLC) and Ground Range Detected (GRD) formats, essential for interferometry and georeferenced analysis. Finally, Level-2 products 
include higher-level geophysical measurements, such as Ocean (OCN) products, which support oceanographic and environmental 
applications.

Sentinel 1 delivers SAR images featuring two polarisations, vertical (VV) and horizontal (VH), characterised by the difference 
in the polarisation of their transmitted and received signals. The polarisation of radar signals plays a crucial role in deciphering 
the structure and orientation of surface elements on the land. The radar signal experiences scattering and depolarisation due to the 
randomly oriented structure of plant leaves as it undergoes multiple bounces. By comparing the vertical (VV) and horizontal (VH) 
components, the degree of scattering by the land surface can be discerned. In our model, we incorporate this technique through the 
𝑉 𝑉 ∕𝑉 𝐻𝑟𝑎𝑡𝑖𝑜 feature. The data were collected by defining a geographical bounding box with a size of 0.001 degrees, resulting in an 
output array size of 3 × 3. However, some location data did not conform to this shape and required trimming to achieve a 3 × 3 
box size. Given Sentinel 1’s spatial resolution of 10 m, each box corresponds to an area of 30 m by 30 m. The subsequent features 
were derived from Sentinel 1 SAR data

• Set 1 (4 variables) → 𝑉 𝑉𝑚𝑒𝑎𝑛, 𝑉 𝐻𝑚𝑒𝑎𝑛, 𝑉 𝑉 ∕𝑉 𝐻𝑟𝑎𝑡𝑖𝑜,𝑚𝑒𝑎𝑛, 𝑅𝑉 𝐼𝑚𝑒𝑎𝑛

where the radar vegetation index (RVI) is given as 

𝑅𝑉 𝐼 = 𝑉 𝑉
𝑉 𝑉 + 𝑉 𝐻

. (1)

3.2.2. Sentinel-2
Sentinel-2 imagery is collected through a continuous acquisition process known as ‘datatake’, covering up to 15,000 km in length. 

The acquired data are structured into products at different processing levels. Sentinel-2 products are organised into tiles or granules, 
following a Universal Transverse Mercator (UTM) projection system to ensure global coverage.

At Level-1B, the data are provided in granules of 23 km × 25 km, containing radiometrically calibrated and geometrically refined 
imagery. Level-1C and Level-2A products are structured into 110 km × 110 km tiles, ensuring seamless coverage across designated 
UTM zones. Each tile overlaps with neighbouring ones to maintain spatial continuity and facilitate multi-temporal analysis. Level-
1C includes top-of-atmosphere (TOA) reflectance, while Level-2A applies atmospheric corrections to generate bottom-of-atmosphere 
(BOA) reflectance, making it suitable for land surface monitoring and vegetation analysis.

Sentinel 2 data furnish spectral intensities across 13 bands, encompassing Visual-NIR (VNIR) to Short-Wave Infra-Red (SWIR) 
regions. Notably, there are four spectral bands, namely Red, Green, Blue, and NIR (B04, B03, B02, and B08), offering a ground 
resolution of 10 m. Additionally, six bands exhibit a 20-m ground resolution, comprising four Red Edge bands (B05, B06, B07, and 
B08A) and two SWIR bands with distinct wavelengths (B11 and B12). The remaining three bands, with a 60-m ground resolution, 
serve specific purposes: B01 for aerosol detection (0.443 μm), B09 for water vapour observation (0.945 μm), and B10 for cirrus 
detection (1.374 μm). Notably, the Sentinel 2 mission boasts a revisit frequency of 5 days.

When acquiring MSI data, it is crucial to account for the potential impact of cloud cover in the targeted area. With a revisit 
frequency of 5 days, there are only 6–8 chances to capture images during the period when crops reach full growth before maturation. 
Given Vietnam’s tropical monsoon climate, these image opportunities are prone to cloudiness. The dataset at hand reveals median 
cloud coverage values of 16% and 21% during the Winter–Spring and Summer–Autumn seasons, respectively.

In order to prevent the occurrence of unclear or cloudy images, it is necessary to eliminate those with a high level of cloud 
coverage. Simultaneously, we aim to capture comprehensive crop data when the plants are at their full growth and exhibit maximum 
greenness. To achieve optimal outcomes, we conducted experiments with various values for maximum cloud coverage and time 
windows. Based on the findings detailed in Table  2, we concluded that setting the maximum cloud coverage to 60% and collecting 
Sentinel-2 MSI data during the 50 days preceding the crop maturation provides favourable results. The objective is to secure a 
minimum of 4–5 images for each specific location.

To ensure that the spectral intensity trends are captured, we identify the minimum, maximum, mean and variance of 9 MSI 
bands based on all the MSI images available for each location.

• Set 2 (36 variables) → is in a format of ‘‘𝐵𝑎𝑛𝑑𝑠𝑡𝑎𝑡𝑠’’ where 𝐵𝑎𝑛𝑑 = {𝐵02, 𝐵03, 𝐵04, 𝐵05, 𝐵06, 𝐵07, 𝐵08, 𝐵11, 𝐵12} and 
𝑠𝑡𝑎𝑡𝑠 = {𝑚𝑖𝑛, 𝑚𝑎𝑥, 𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟}.
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Table 2
Trials for identifying optimal value of cloud coverage threshold & time window for data collection.
 Trial Max. Window No. of crops Remarks 
 coverage (pre-Maturity) 0 1 2 3 4 5 >5  
 1 25% 30 119 298 138 0 2 0 0 Reject  
 2 30% 30 119 298 138 0 0 2 0 Reject  
 3 40% 30 13 348 83 109 2 0 2 Reject  
 4 25% 40 5 412 138 0 2 0 0 Reject  
 5 25% 45 5 380 170 0 2 0 0 Reject  
 6 25% 50 5 358 114 78 0 2 0 Reject  
 7 30% 50 5 252 204 94 0 0 2 Reject  
 8 40% 50 0 250 204 94 0 2 2 Reject  
 9 50% 50 0 0 57 193 0 15 287 Reject  
 10 60% 50 0 0 0 0 70 200 287 Accept  

MSI data has been used to create transformational features known as Vegetation Indices given in Table  A.5 like NDVI, SR, EVI, 
EVI2, SAVI, RGVI, DVI, MSR, NIRv, kNDVI, NDVIre, NDRE1, NDRE2 to indicate the volume of vegetation on the land surface.

• Set 3 (26 variables) → is in a format of ‘‘𝑉 𝐼𝑠𝑡𝑎𝑡𝑠2’’ where 𝑉 𝐼 = {𝑁𝐷𝑉 𝐼 , 𝑆𝑅, 𝐸𝑉 𝐼 , 𝐸𝑉 𝐼2, 𝑆𝐴𝑉 𝐼 , 𝑅𝐺𝑉 𝐼 , 𝐷𝑉 𝐼 , 𝑀𝑆𝑅, 𝑁𝐼𝑅𝑣, 
𝑘𝑁𝐷𝑉 𝐼 , 𝑁𝐷𝑉 𝐼𝑟𝑒, 𝑁𝐷𝑅𝐸1, 𝑁𝐷𝑅𝐸2} and 𝑠𝑡𝑎𝑡𝑠2 = {𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟}.

Utilising MSI data, various features, such as NDWI, BSI, and LSWI, as outlined in Table  A.5, have been generated to depict soil 
and water content. This application is particularly advantageous in the context of rice cultivation, where the crop is submerged in 
water.

• Set 4 (6 variables) → is in a format of ‘‘𝑉 𝐼2𝑠𝑡𝑎𝑡𝑠2’’ where 𝑉 𝐼2 = {𝑁𝐷𝑊 𝐼 , 𝐵𝑆𝐼 , 𝐿𝑆𝑊 𝐼} and 𝑠𝑡𝑎𝑡𝑠2 = {𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟}.

Additional features have been generated using MSI spectral data, incorporating information derived from the biochemical 
properties of the plants (refer to Table  A.5).

• Set 5 (4 variables) → is in a format of ‘‘𝑉 𝐼3𝑠𝑡𝑎𝑡𝑠2’’ where 𝑉 𝐼3 = {𝐶𝐶𝐼 , 𝐺𝐶𝐶} and 𝑠𝑡𝑎𝑡𝑠2 = {𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟}.

3.2.3. Sentinel-3
Sentinel-3 ensures the continuous availability of high-quality data for monitoring land, ocean, and atmospheric conditions, 

particularly in coastal areas where accuracy is critical. The mission provides comprehensive environmental observations globally, 
supporting a range of applications. Sentinel-3 plays a key role in fire detection, inland water surface height measurements, and land 
ice/snow surface temperature assessments. Its multi-instrument payload enables precise monitoring of ocean colour, sea surface 
temperature, and land surface dynamics, contributing to climate research, water resource management, and disaster response.

Sentinel 3 data were acquired to obtain meteorological information related to environmental variables such as ambient air 
temperature (METtemp), land surface temperature (LST), solar radiation (METsolrad), and specific humidity (METsh). These data sets 
have been integrated into the model as the following features:

• Set 6 (8 variables) → is in a format of ‘‘𝑆3𝑠𝑡𝑎𝑡𝑠2’’ where 𝑆3 = {𝑀𝐸𝑇𝑡𝑒𝑚𝑝, 𝐿𝑆𝑇 , 𝑀𝐸𝑇𝑠𝑜𝑙𝑟𝑎𝑑 , 𝑀𝐸𝑇𝑠ℎ} and 𝑠𝑡𝑎𝑡𝑠2 = {𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟}.

3.2.4. NASA GES DISC
Rainfall information was acquired from NASA’s Goddard Earth Sciences (GES) Data and Information Services Centre (DISC) 

through the utilisation of the Google Earth Engine API. The data retrieval involved the utilisation of the precipitationCal parameter, 
which denotes rainfall in mm per hour. We organise this data into two distinct features: Rainfall-Totalgrowth and Rainfall-Totalmaturity, 
encompassing three statistical measures—mean, maximum, and sum as

• Set 7 (6 variables) → is in a format of ‘‘𝑁𝐴𝑆𝐴𝐺𝐸𝑆𝑠𝑡𝑎𝑡𝑠3’’ where 𝑁𝐴𝑆𝐴𝐺𝐸𝑆 = {𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑔𝑟𝑜𝑤𝑡ℎ, 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦} and 𝑠𝑡𝑎𝑡𝑠3 =
{𝑚𝑒𝑎𝑛, 𝑚𝑎𝑥, 𝑠𝑢𝑚}.

3.3. Correlation analysis

After meticulously gathering all potentially valuable engineered features from multi-modal remote sensing data, we proceed 
to examine their statistical and predictive capabilities for subsequent feature selection. This phase, delineated in this sub-section, 
initiates with a correlation analysis.

Concerning the relationship between SAR features and 𝑌 𝑖𝑒𝑙𝑑𝑟𝑎𝑡𝑒, all four data features exhibit a strong correlation with 𝑌 𝑖𝑒𝑙𝑑𝑟𝑎𝑡𝑒. 
As anticipated, the 𝑉 𝐻𝑚𝑒𝑎𝑛 feature effectively captures the backscattering of the SAR signal by the rice plant leaves, resulting 
in a higher correlation (0.32) with 𝑌 𝑖𝑒𝑙𝑑𝑟𝑎𝑡𝑒 compared to 𝑉 𝑉𝑚𝑒𝑎𝑛 (0.25). The 𝑉 𝑉 ∕𝑉 𝐻𝑟𝑎𝑡𝑖𝑜 serves as a transformative feature, 
demonstrating an enhanced correlation (0.45) in comparison to both 𝑉 𝑉𝑚𝑒𝑎𝑛 and 𝑉 𝐻𝑚𝑒𝑎𝑛 individually. Notably, the Radar Vegetation 
Index (RVI) shows a similar positive correlation (0.41) with the Yield Rate.
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Table 3
Engineered and extracted features after selection stages.
 Variable Description Type Source  
 SeasonEnc Crop season indicator Categorical Field  
 DistChau Phu Crop location indicator Categorical Field  
 DistChau Thanh Crop location indicator Categorical Field  
 DistThoai Son Crop location indicator Categorical Field  
 𝑌 𝑖𝑒𝑙𝑑𝑘𝑔 Rice yield in kg at a specific point Numerical Field  
 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑔𝑟𝑜𝑤𝑡ℎ,𝑚𝑎𝑥 Max rainfall growth in mm per hour Numerical NASA GES DISC 
 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑔𝑟𝑜𝑤𝑡ℎ,𝑠𝑢𝑚 Sum rainfall growth in mm per hour Numerical NASA GES DISC 
 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦,𝑚𝑎𝑥 Max rainfall maturity in mm per hour Numerical NASA GES DISC 
 𝑉 𝑉𝑚𝑒𝑎𝑛 Mean SAR image intensity in VV polarisation Numerical Sentinel-1  
 𝐵08𝑚𝑎𝑥 Max NIR spectral band intensity Numerical Sentinel-2  
 𝑅𝐺𝑉 𝐼𝑚𝑒𝑎𝑛 Mean spectral index Numerical Sentinel-2  
 𝑘𝑁𝐷𝑉 𝐼𝑚𝑒𝑎𝑛 Mean spectral index Numerical Sentinel-2  
 𝐺𝐶𝐶𝑚𝑒𝑎𝑛 Mean spectral index Numerical Sentinel-2  
 𝐿𝑆𝑇𝑚𝑒𝑎𝑛 Mean land surface temperature Numerical Sentinel-3  
 𝑀𝐸𝑇𝑠𝑜𝑙𝑟𝑎𝑑,𝑚𝑒𝑎𝑛 Mean solar radiation Numerical Sentinel-3  
 𝑌 𝑖𝑒𝑙𝑑𝑟𝑎𝑡𝑒 Rice yield in kg per hectare (kg/ha) Target Field  

As previously indicated regarding Sentinel-2 data, we derive spectral statistics from 9 bands: B02 Blue, B03 Green, B04 Red, 
B05-B07 Red Edge, B08 NIR, and B11-B12 SWIR. These statistics, namely min, max, mean, and variance, are incorporated into the 
model. Upon analysing observations across all bands, it is noteworthy that variance features exhibit a relatively low correlation 
(<0.1) with the target variable, whereas other statistical measures demonstrate correlation coefficient values surpassing 0.3.

Spectral data are employed to generate transformative characteristics known as Vegetative Indices (VI). These indices serve as a 
more efficient measure for discerning and monitoring variations in plant phenology. In our approach, we utilise VIs such as NDVI, 
NDVIre, NDRE1, NDRE2, SR, DVI, MSR, EVI, EVI2, SAVI and RGVI, NIRv, and kNDVI. These features are integrated into the model 
in the form of their respective mean and variance features. However, the variance feature is omitted from the model due to its 
limited correlation with the target variable. Notably, kNDVI exhibits one of the highest correlations with Yield, while features like 
DVI, EVI, and NIRv demonstrate some of the lowest correlations.

Similar to the vegetation indices, we can employ optical data to compute additional indices that precisely quantify the 
environmental conditions of the crop’s cultivation. NDWI, LSWI16, and LSWI20 specifically indicate the water or moisture content 
in the soil, which is crucial for rice cultivation, requiring flooded fields. Conversely, BSI reflects the soil condition. We incorporate 
these attributes into the model as their respective Mean and Variance features. Similar to the approach with vegetation indices, we 
have excluded the variance feature from the models due to its limited correlation with Yield. Notably, all water indices exhibit high 
correlations with each other and share a similar correlation with Yield.

Lastly, concerning meteorological characteristics, the average ambient air temperature (refers to variable ‘‘𝑀𝐸𝑇𝑡𝑒𝑚𝑝,𝑚𝑒𝑎𝑛’’) and 
specific humidity (𝑀𝐸𝑇𝑠ℎ,𝑚𝑒𝑎𝑛) exhibit the strongest correlation with crop yield, and they also demonstrate a high-degree of 
correlation between themselves. Solar radiation (𝑀𝐸𝑇𝑠𝑜𝑙𝑟𝑎𝑑,𝑚𝑒𝑎𝑛) emerges as a significant predictor due to its notable correlation 
with yield and comparatively lower correlation with other meteorological features.

3.4. Feature selection

Up to this point, all the engineered features, totalling 94 in number, have undergone various stages of processing. These stages 
include (i) grouping, involving the arrangement of data types and condensation into categorical, numerical, and object types; (ii) 
scaling, which entails MinMax scaling; and (iii) splitting through a train–test split with a ratio of 3:1.

As outlined in the preceding sections, the subset of the 94 features exhibits significant correlation, and incorporating all these 
features in the models would lead to computationally intensive experiments. To mitigate this, during the final processing stage, we 
execute multiple rounds of feature selection, including Pairwise Feature Independence Check using the 𝜒2 test, statistical significance 
tests based on p-values, outlier removal, and thresholding for correlation and variance. Following these stages, the outcome is a 
refined set of 15 predictive (11 numerical & 4 categorical) features and 1 target feature all of which are shown in Table  3.

The whole data collection, processing and engineering stages are plotted in Fig.  3 whilst a detailed breakdown block diagram 
of the Data Engineering - 2 is also presented in Fig.  4.

3.5. The proposed model - RicEns-Net

After the extensive stages of data engineering, pre-processing, and preparation mentioned earlier, the 15 most informative and 
significant data features from 5 different data modalities will be employed to predict rice yield for the specified locations. This section 
provides a comprehensive introduction to the proposed deep ensemble model, RicEns-Net. As mentioned in the earlier stages, deep 
learning models have currently been dominating yield prediction studies. This paper stands parallel with these advances in the 
literature but tries to explore complementary advantages of different deep learning regression techniques under a deep ensemble 
architecture named RicEns-Net. The details of the RicEns-Net model architectures are presented in Fig.  5.
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Fig. 3. Data collection, processing and engineering stages (Please see Figs.  4 and 5 for the details of the Data Engineering-2 block and RicEns-Net model, 
respectively.).

Fig. 4. A breakdown of the Data Engineering - 2 block.

RicEns-Net utilises two foundational deep learning architectures, CNN and MLP. Although various adaptations of these models 
have been proposed in the literature, no universally optimal architecture has emerged for crop yield prediction, prompting us to 
tailor our own implementations for this specific task. In addition to CNN and MLP, RicEns-Net incorporates four other powerful 
architectures: DenseNet, AutoEncoder (AE), U-Net, and TabTransformer. While these models are relatively underexplored in yield 
prediction tasks, they are prominent in related fields such as remote sensing, structured tabular learning, and image segmentation, 
offering complementary strengths to our ensemble.

Our motivation for including these diverse architectures lies in their unique contributions to learning from complex, multi-
source agricultural data. AE architectures enable efficient feature compression by learning lower-dimensional representations that 
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Fig. 5. RicEns-Net model details.

retain the most relevant information while mitigating noise, a valuable trait when handling noisy remote sensing data. DenseNet 
facilitates strong gradient flow and reuse of features through dense connectivity, making it especially effective in learning subtle and 
hierarchical patterns. U-Net, a widely used architecture in segmentation tasks, introduces a symmetric encoder–decoder structure 
with skip connections, which enhances spatial feature localisation, a critical factor for geospatially-aware yield prediction. Finally, 
TabTransformer brings attention mechanisms into tabular learning by integrating embeddings with transformer layers, enabling 
the model to capture feature interactions and contextual dependencies that traditional models often overlook. The complementary 
nature of these architectures strengthens RicEns-Net’s generalisation ability and predictive accuracy.

In developing the RicEns-Net ensemble model, extensive testing was conducted to determine the optimal architectures for 
each individual deep learning model. This rigorous process involved systematically evaluating various configurations, including 
the number of layers, types of activation functions, and loss functions. For each model, we experimented with different depths 
ranging from shallow to deep architectures to find the optimal balance between complexity and performance. We also tested various 
activation functions, such as ReLU, sigmoid, SiLU, and tanh, to identify the most effective function for each model. Additionally, 
we compared multiple loss functions, including mean squared error, mean absolute error, and Huber loss, to select the one that 
minimised prediction errors most effectively. Furthermore, each model’s architecture was refined through a series of experiments, 
incorporating cross-validation and hyperparameter tuning, to ensure the best performance for predicting rice yield. This exhaustive 
testing process ensured that each model within the ensemble was optimally configured to contribute to the overall predictive 
power of RicEns-Net. The details of these architectures, including the final selected configurations, are illustrated in Fig.  5. These 
configurations were chosen based on comprehensive performance evaluations, ensuring that each component model enhances the 
proposed deep ensemble’s accuracy and robustness.

To generate the ensemble output of RicEns-Net, we adopt a meta-learning strategy instead of a fixed weighted average. 
In this approach, individual predictions from the six constituent models: CNN, MLP, DenseNet, AutoEncoder (AE), U-Net, and 
TabTransformer are used as input to a shallow neural network, referred to as the meta-learner. This meta-learner is trained to learn 
an optimal, non-linear combination of the base model outputs, effectively capturing complex inter-model dependencies and residual 
patterns that static weighting schemes cannot model.

Let 𝑦𝑖 represent the prediction from the 𝑖th base model, where 𝑖 ∈ {MLP, CNN, Dense, AE, U-Net, transformer}. The input vector 
to the meta-learner is then defined as

𝐲 = [𝑦MLP, 𝑦CNN, 𝑦Dense, 𝑦AE, 𝑦U-Net, 𝑦transformer]⊤

. The meta-learner is a shallow feedforward neural network that takes 𝐲 as input and outputs the final prediction 𝑦RicEns-Net. The 
network is trained using a held-out validation set, where the true yield values are used to supervise the learning of the aggregation 
function. This allows the meta-learner to assign flexible, data-driven importance weights to each base model output.

This dynamic architecture enables RicEns-Net to adapt its fusion strategy to different input scenarios and error behaviours, rather 
than relying on heuristics or static assumptions. Empirically, this approach provides superior generalisation and lower predictive 
error compared to traditional ensemble methods based on fixed weightings.
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3.6. On deciding state-of-the-art

Despite significant advancements in computer vision research through the development of novel deep learning architectures, yield 
prediction research predominantly relies on traditional deep learning methods like CNN (Gavahi et al., 2021; Boppudi et al., 2024; 
Hashemi et al., 2024) and MLP (Maimaitijiang et al., 2020; Wu et al., 2024; Hussain et al., 2024), as well as state-of-the-art machine 
learning algorithms such as RF (Shahhosseini et al., 2021; Abdali et al., 2024; Manafifard, 2024), XGBoost (Shahhosseini et al., 
2020, 2021; Li et al., 2024), and SVR/SVM (Chen et al., 2022; Tao et al., 2023; Abdali et al., 2024). According to a recent (2024) 
systematic review in Trentin et al. (2024), nearly one-third of the papers published in this area propose one of RF, SVM/SVR or CNN 
as the best-performing models. Additionally, traditional time series deep learning techniques, including Long Short-Term Memory 
(LSTM) (Boppudi et al., 2024; Gopi and Karthikeyan, 2024) and its variants, have been extensively utilised in the literature. Given 
this context, selecting the appropriate state-of-the-art models for the comparison study in this paper is of paramount importance. 
This section is dedicated to explaining the rationale behind the choice of each comparison model.

As previously discussed, this paper utilises a dataset from the EY Open Science Challenge 2023. This global data science 
competition, sponsored by EY, a leading consulting firm, is notable for its innovative application of Data Science and Analytics 
to real-world business scenarios. The EY Open Science Challenge 2023 ran for two months, from January 31, 2023, to March 31, 
2023, attracting over 13,000 participants and more than 7500 submissions. The competition awarded USD 10,000 to the winner 
and USD 5000 to the runner-up. EY has provided performance results for the winning teams (global and employees) on the same 
test dataset, making these two models ideal candidates for comparison in this study. The global winner used a CatBoost regression 
model (referred to as CatBoost-EY in this paper), while the employee winner’s model was based on Extremely Randomised Trees 
(referred to as ExtRa-EY). We present these models’ performance metrics without infringing on their copyrights.

Considering that our ensemble model incorporates six deep learning architectures, we also evaluate their individual performance 
in the comparison study. This approach aligns with the systematic review paper (Joshi et al., 2023), which notes that 78 out of 102 
proposed models in the literature up to 2023 include these architectures. This validation supports our choice of comparison models, 
ensuring that the proposed RicEns-Net is benchmarked against state-of-the-art standards. Additionally, we incorporate advanced 
machine learning algorithms such as XGBoost, RF, SVR, AdaBoost, CatBoost, ElasticNet, and Gradient Boosting into the comparison 
pool, along with their Voting and Stacked ensemble models (Keerthana et al., 2021; Abdali et al., 2024).

3.7. Implementation of models

We conducted our research using Python version 3.10.9, leveraging the rich ecosystem of libraries available for data science 
and machine learning. Our desktop workstation, featuring a robust 20-core processor and ample 32 GB of RAM, provided the 
computational power necessary for handling large datasets and complex modelling tasks efficiently. The widely used scikit-learn
(sklearn) module served as the cornerstone for implementing traditional and state-of-the-art machine learning algorithms, offering a 
comprehensive suite of tools for data preprocessing, model selection, and evaluation. Additionally, for the implementation of deep 
learning architectures, we employed the widespread Python libraries tensorFlow and keras, which provide powerful abstractions 
and efficient computation frameworks tailored specifically for neural network development. These Python modules enabled us to 
explore a diverse set of modelling techniques and methodologies, ultimately facilitating the realisation of our research objectives 
with precision and scalability.

The dataset was divided into training and test sets with a split ratio of 3:1. The training set comprised 75% of the data, while 
the remaining 25% was reserved for testing. To ensure robustness in the model evaluation process, a 10-fold cross-validation (CV) 
procedure was applied exclusively to the training data. During this stage, the training data were split into 10 subsets, with each 
subset used as a validation set once while the model was trained on the remaining 9 subsets. This process was repeated 10 times 
to account for variability in training, and the results were averaged to minimise bias and variance. The test data, which was kept 
entirely separate, was evaluated only once after the training phase to assess the final model performance. This approach ensures 
that the test set remains unbiased by the training process and provides a reliable estimate of the model’s generalisation capability.

3.8. Evaluation metrics

All the models will undergo assessment utilising regression metrics such as RMSE (Root Mean Square Error), MAE (Mean Absolute 
Error), 𝑅2 Score (Coefficient Of Determination), and Adjusted 𝑅2 (Adjusted Coefficient Of Determination). While MAE stands as the 
most straightforward performance metric, RMSE poses a more rigorous criterion by squaring the prediction error before calculating 
its mean and taking the square root. MAE and RMSE exhibit differences in their sensitivity to outliers.

𝑀𝐴𝐸 = 1
𝑁

∑
(

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
)

(2)

𝑅𝑀𝑆𝐸 =
√

1
𝑁

∑
(

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙
)2 (3)

Another critical metric is 𝑅2, which is anticipated to fall within the 0 to 1 range, although it can dip below 0 for specific models. 
In simpler terms, the 𝑅2 value gauges the model’s capacity to elucidate the variance of the target variable. To provide a more precise 
definition, as outlined in the SkLearn user guide, it signifies the proportion of variance (of 𝑦) explained by the independent variables 
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Table 4
Rice crop yield prediction performance for all the utilised models. Bold and underlined values belong to the best and second-best models, respectively.
 Models RMSE MAE Train Test 10-fold CV 𝑅2 Test  
 𝑅2 𝑅2 Avg. 𝑅2 Diff. Adj. 𝑅2 
 Bayesian ARD 453.788 366.626 0.692 0.603 0.678 ± 0.055 0.088 0.589  
 U-Net 459.883 369.199 0.702 0.593 0.644 ± 0.061 0.109 0.578  
 kNN 475.213 379.494 0.739 0.565 0.665 ± 0.062 0.174 0.550  
 TabTransformer 440.256 345.702 0.704 0.627 0.657 ± 0.049 0.077 0.614  
 RF 449.309 361.096 0.733 0.611 0.678 ± 0.059 0.122 0.597  
 GB 452.787 354.215 0.814 0.605 0.656 ± 0.057 0.209 0.591  
 SVR 448.902 345.711 0.689 0.612 0.670 ± 0.051 0.077 0.598  
 CatBoost 459.893 361.478 0.792 0.593 0.666 ± 0.059 0.199 0.578  
 ElasticNet 450.985 351.660 0.688 0.608 0.668 ± 0.058 0.080 0.594  
 Huber 454.450 359.668 0.695 0.602 0.668 ± 0.059 0.093 0.588  
 XGBoost 458.956 365.439 0.702 0.594 0.666 ± 0.055 0.108 0.580  
 AdaBoost 445.593 357.625 0.742 0.618 0.677 ± 0.050 0.125 0.604  
 Bayesian ridge 455.703 361.456 0.700 0.600 0.669 ± 0.058 0.100 0.586  
 MLP 458.487 365.368 0.702 0.595 0.638 ± 0.090 0.107 0.581  
 Voting 446.990 351.604 0.779 0.615 0.633 ± 0.026 0.164 0.602  
 CNN 444.563 350.288 0.624 0.619 0.677 ± 0.041 0.005 0.606  
 DenseNet 455.715 348.658 0.695 0.600 0.677 ± 0.039 0.095 0.586  
 Stacking 467.695 375.251 0.691 0.579 0.668 ± 0.064 0.112 0.564  
 AE 458.844 360.194 0.664 0.595 0.666 ± 0.043 0.070 0.580  
 CatBoost-EY 441.200 – – – – – –  
 ExtRa-EY 449.900 367.000 – – – – –  
 RicEns-Net 437.125 335.865 0.699 0.632 0.689 ± 0.040 0.067 0.619  

in the model. It offers insight into the goodness of fit and serves as an indicator of how effectively the model is likely to predict 
unseen samples through the explained variance proportion (scikit-learn contributors, 2023). 

𝑅2 = 1 −
∑

(

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑛
)2

∑
(

𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑚𝑒𝑎𝑛
)2

(4)

Additionally, we employ a modified version of 𝑅2 known as Adjusted 𝑅2, which factors in the impact of an elevated number of 
predictors contributing to a higher 𝑅2 value. Furthermore, we compute the 𝑅2 score for the input training data to compare it with 
the testing 𝑅2 score. The disparity between them signals the potential for overfitting. The evaluation of models based on disparities 
in training and testing 𝑅2 scores aids in the identification of models that may not generalise effectively with unseen data. 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
[

(1 − 𝑅2) ⋅ (𝑛 − 1)
(𝑛 − 𝑘 − 1)

]

(5)

where 𝑛 refers to the number of observations and 𝑘 is the number of predictors.

4. Results

To comprehensively evaluate the proposed RicEns-Net framework, we conducted a detailed comparative analysis against various 
baseline models. These include traditional machine learning methods, deep learning models, and ensemble strategies. The evaluation 
is based on standard regression metrics, namely MAE, RMSE, and the Coefficient of Determination (𝑅2). Comparative results are 
reported for both training and independent test datasets to assess the robustness and generalisation performance of RicEns-Net.

We begin by comparing the performance of all state-of-the-art models mentioned above against the proposed RicEns-Net model. 
Table  4 presents the MAE and RMSE errors in predicting rice yield, along with the goodness of fit measures including train/test and 
adjusted 𝑅2 values.

Analysing the performance metrics in Table  4, it is evident that the models evaluated for rice crop yield prediction exhibit a 
range of performance across multiple metrics, including MAE, RMSE, and adjusted 𝑅2. Among these models, the proposed Deep 
Ensemble model, RicEns-Net, consistently demonstrates more precise predictive capability across all key indicators. Specifically, 
the RicEns-Net model achieves an MAE of 335.865 kg/Ha and an RMSE of 437.125 kg/Ha, representing improvements of around 
3%–5% over the next best-performing models (TabTransformer, SVR and CNN), depending on the metric.

RicEns-Net’s standout performance in terms of adjusted 𝑅2, where it achieves a value of 0.619, indicates a better overall fit 
compared to other models. This is particularly important as adjusted 𝑅2 accounts for the number of predictors in the model, making it 
a critical measure of the model’s generalisation ability. By contrast, while traditional models such as TabTransformer and CNN show 
relatively strong results, with adjusted 𝑅2 values of 0.614 and 0.606, respectively, they still fall short of RicEns-Net’s performance.

Furthermore, SVR and DenseNet, which also rank high in predictive performance, show MAE values of 345.711 and 348.658 
kg/Ha, and RMSE values of 448.902 and 455.715 kg/Ha, respectively. However, despite their solid performance, they trail behind 
RicEns-Net by a margin of approximately 3%–4% in MAE and RMSE.

In the evaluation of predictive performance across models, we performed a 10-fold cross-validation and calculated the average 𝑅2

values for each approach. RicEns-Net demonstrated the highest 𝑅2 score of 0.689 ± 0.040, outperforming other models in terms of 
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Fig. 6. Percentage performance gain of the RicEns-Net model compared to all other reference models in terms of RMSE and MAE.

predictive accuracy. Among the traditional machine learning models, Bayesian ARD, RF and AdaBoost exhibited strong performance, 
with 𝑅2 values of 0.678 ± 0.055, 0.678 ± 0.059 and 0.677 ± 0.050, respectively. Similarly, CNN achieved a competitive 𝑅2 score 
of 0.677 ± 0.041, further validating the efficacy of deep learning architectures in this task. In contrast, models such as Voting 
Regressor and U-Net yielded lower 𝑅2 scores of 0.633 ± 0.026 and 0.644 ± 0.061, indicating limitations in their ability to handle 
the complexity of multi-modal data.

Another key observation is the variance in 𝑅2 differences between the train and test sets for each model, highlighting the 
generalisation strength of each approach. RicEns-Net has the second lowest 𝑅2 differences at 0.067, indicating minimal overfitting 
compared to other models such as Gradient Boosting (0.209), CatBoost (0.199) and Voting (0.164). This is a significant achievement, 
as it suggests that RicEns-Net maintains stable performance across both training and unseen test data, further reinforcing its 
reliability for real-world applications.

While models like AdaBoost, RF, SVR, and voting Regressor also exhibit reasonable performance, with RMSE values ranging from 
445 to 449 kg/Ha, and MAE values between 345 and 361 kg/Ha, they are consistently outperformed by RicEns-Net in all metrics. 
Notably, CatBoost-EY, one of the models from the EY Data Science Challenge, shows a strong RMSE value of 441.200 kg/Ha but 
lacks data for other metrics, making a full comparison difficult. On the other hand, when comparing the performance of RicEns-Net 
with the EY Open Science Challenge winning models, the results in Table  4 show that RicEns-Net consistently outperforms these 
models in terms of MAE and RMSE. Furthermore, models such as TabTransformer, CNN, SVR, DenseNet, and Voting Regressor also 
display competitive performance compared to the EY winners.

In addition to the quantitative analysis of model performances, Figs.  6, 7, 8, and 9 provide visual representations that further 
elucidate the effectiveness of RicEns-Net compared to other models.

Fig.  6 presents a stacked bar chart comparing the MAE and RMSE values across all models. This visualisation highlights the 
performance improvement of RicEns-Net over the alternatives. Notably, TabTransformer, CNN, SVR, and the Voting Regressor 
models show relatively small performance degradation, with less than a 10% drop in accuracy compared to RicEns-Net. These 
models are the closest competitors to RicEns-Net in terms of cumulative error metrics. However, models like the kNN, Stacking 
Regressor, U-Net, and XGBoost exhibit more than a 10% increase in errors, indicating significantly lower predictive accuracy. This 
graphical representation clearly underscores RicEns-Net’s capability in minimising both MAE and RMSE.

Fig.  7 provides a scatter plot that illustrates the relationship between the 𝑅2 Difference (train-test gap) and the adjusted test 
𝑅2 values, offering insight into model generalisation and fit. The most effective models, occupying the optimal top-left region of 
the scatter plot, include RicEns-Net, TabTransformer, CNN, SVR, and ElasticNet. These models not only deliver high adjusted 𝑅2

scores but also maintain small differences between their training and test performances, indicating minimal overfitting and robust 
generalisation. In contrast, models like the Voting Regressor, CatBoost and AdaBoost, despite finding places in top-performing models 
in terms of MAE and RMSE, show a significant disparity between training and test 𝑅2 values. This suggests that these models overfit 
the training data and fail to generalise to unseen data. RicEns-Net’s placement in the optimal region confirms its strong generalisation 
ability and balanced performance across training and test sets.

Fig.  8 presents violin plots visualising the residual distributions (difference between the true and predicted yield values) of the 
top-performing models. This view allows for a nuanced evaluation of prediction error dispersion, central tendency, and bias. Notably, 
RicEns-Net and SVR exhibit median residuals close to zero, suggesting well-balanced and unbiased predictions. In contrast, other 
models, including ElasticNet, TabTransformer, and BARD, tend to have negatively shifted medians, indicating overestimation in yield 
predictions. While CNN displays the smallest interquartile range (IQR), comparable to RicEns-Net and SVR, it also has noticeably 
longer tails, implying higher sensitivity to extreme values despite its narrow central error range. An additional pattern emerges across 
the models from left to right: starting from SVR, residual distributions begin developing a second mode in the upper range. This 
secondary bulge becomes more visible in ElasticNet, TabTransformer, and BARD, potentially reflecting systematic underprediction 
for certain observations. Importantly, RicEns-Net and CNN maintain unimodal, symmetric distributions without this pattern. The 
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Fig. 7. 2D scatterplot of the Adjusted Test R2 and R2 difference values.

Fig. 8. Residual distributions (true – predicted yield) for the top 6 models.

combination of tight central spread, near-zero median, and unimodal shape confirms RicEns-Net as the most consistent and robust 
predictor among all tested models.

Finally, Fig.  9 offers a detailed visual analysis of RicEns-Net’s predictions for crop yield (𝑌 𝑖𝑒𝑙𝑑𝑟𝑎𝑡𝑒), focusing on spatial error 
distribution across the test dataset. This figure reveals that, while RicEns-Net maintains consistently low error margins across most 
of the test regions, there are small areas where the maximum absolute error reaches 10%. These outlier regions are concentrated in 
areas with higher actual yield rates (darker coloured circles), where RicEns-Net tends to underestimate 𝑌 𝑖𝑒𝑙𝑑𝑟𝑎𝑡𝑒. This observation 
suggests that while RicEns-Net excels in overall yield prediction, further refinement could be beneficial for regions with higher yields. 
Nevertheless, the majority of the test areas exhibit low prediction errors, further validating the model’s reliability in estimating crop 
yield under diverse conditions.

To sum up the above visual evaluation, the combined results from the figures highlight RicEns-Net’s competitive advantage, not 
only in terms of quantitative metrics but also in its ability to generalise well across different data conditions and accurately predict 
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Fig. 9. Map representation of the RicEns-Net’s 𝑌 𝑖𝑒𝑙𝑑𝑟𝑎𝑡𝑒 prediction error percentages. Coloured hexagons show error percentage averages and dots true Yield 
values in the test set.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

crop yield with minimal errors across various regions. Both quantitative and qualitative results presented in this section collectively 
affirm RicEns-Net’s effectiveness in yield prediction, highlighting its robustness, precision, and practical applicability in multi-source 
agricultural modelling.

5. Discussion

The results demonstrate the effectiveness of the proposed RicEns-Net model in achieving high accuracy for crop yield prediction. 
With a 2% to 10% improvement in both MAE and RMSE compared to other state-of-the-art models, RicEns-Net clearly shows its 
capability, particularly in handling multi-modal data from radar, optical, and meteorological sources. This aligns with previous 
findings where deep ensemble models have demonstrated enhanced predictive capabilities through the combination of diverse 
feature sets (Abdali et al., 2024; Shahhosseini et al., 2020; Keerthana et al., 2021). The significant improvement in adjusted 𝑅2

further emphasises the robustness of RicEns-Net, which surpasses even advanced models such as Transformers, CNN and SVR.
A closer inspection of the performance of traditional ensemble methods like the Voting Regressor, or boosting methods of Ada- 

and CatBoost reveals their strong performance in MAE and RMSE metrics. However, these models exhibit overfitting tendencies, 
as indicated by the large 𝑅2 disparities between training and test phases. This overfitting issue highlights a major advantage of 
RicEns-Net, which maintains a balance between training and test performance, avoiding overfitting through its deep ensemble 
design.

The performance of the RicEns-Net model, achieving a mean absolute error (MAE) of 336 kg/Ha, demonstrates its robust 
predictive capability in the context of crop yield forecasting for the Mekong Delta region in Vietnam. This region, often referred to as 
Vietnam’s ‘‘rice bowl’’, contributes more than half of the nation’s rice output and is critical to ensuring both domestic food security 
and Vietnam’s position as a leading global rice exporter (Food and Agriculture Organization (FAO), 2022; Maitah et al., 2020). 
Given the region’s susceptibility to climate variability, such as temperature fluctuations and erratic rainfall patterns, achieving high 
predictive accuracy in yield estimates is essential for implementing timely interventions and optimising resource allocation. The 
accuracy of 336 kg/Ha represents a meaningful advancement, given that the lowest average yield in the region is approximately 
6000 kg/Ha, as reported by Clauss et al. (2018). This error equates to around 5%–6% of the lowest yield, reaching a maximum of 
10% in some cases, as illustrated in Fig.  9. These findings underscore the value of RicEns-Net in enhancing crop yield predictions 
and its potential for broader applications in precision agriculture.

Furthermore, when comparing the results to the EY Open Science Challenge 2023 winners, the competitive performance of 
RicEns-Net is evident. This further validates the efficacy of the proposed deep ensemble approach for predictive tasks relying on 
multi-modal data. While models like TabTransformer, CNN and SVR also achieve competitive results, the effectiveness of neural 
network-based architectures for large-scale agricultural datasets is underscored. However, the underestimation of yield rates in 
high-yield regions, as noted in Fig.  9, suggests that future work could explore refining the model for these specific outlier cases.
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6. Conclusions

This study introduced RicEns-Net, a novel deep ensemble model for rice yield prediction, integrating multi-modal data sources 
including synthetic aperture radar (SAR), optical remote sensing, and meteorological measurements. Through comprehensive feature 
engineering and ensemble learning strategies, RicEns-Net consistently outperformed traditional machine learning models and recent 
state-of-the-art methods across various performance metrics (MAE, RMSE, R2). Our experiments, conducted on real-world data from 
the Mekong Delta region, demonstrated that leveraging diverse data modalities and ensemble approaches can substantially enhance 
the accuracy and robustness of crop yield forecasts. The findings contribute to the growing body of research advocating for integrated 
remote sensing and machine learning approaches in precision agriculture.

6.1. Limitations

Despite the promising results, several limitations of this study should be acknowledged. First, biases in the data could arise 
from the quality and availability of remote sensing and meteorological inputs. For example, cloud cover in multispectral imagery 
may introduce spatial and temporal gaps, potentially affecting model training and prediction accuracy in certain regions. Second, 
although RicEns-Net demonstrated robust performance across the Mekong Delta’s environmental conditions, its generalisability to 
other regions with different climate patterns, crop types, or farming practices remains to be fully validated. Third, the model assumes 
that the selected features sufficiently capture the variability in yield outcomes, yet site-specific factors such as soil health, irrigation 
practices, or pest pressures may not be fully represented. These assumptions highlight areas for future refinement to ensure broader 
applicability and accuracy across diverse agricultural contexts.

6.2. Practical implications

The practical implications of RicEns-Net for precision agriculture are significant. By accurately predicting crop yields based on 
multi-modal remote sensing and meteorological data, farmers and agricultural planners can make more informed decisions regarding 
resource allocation. For instance, optimised irrigation schedules and targeted fertiliser applications based on predicted yield potential 
can enhance both efficiency and sustainability. The use of radar and optical data enables real-time monitoring of crop and soil 
health, empowering farmers to take proactive measures against yield losses due to drought, disease, or pest outbreaks. Furthermore, 
RicEns-Net’s integration of meteorological information provides valuable risk management insights by anticipating weather-driven 
yield variability. As remote sensing technologies become increasingly accessible and affordable, models like RicEns-Net offer the 
potential for seamless integration into farm management systems, providing intuitive, data-driven decision support tools that can 
contribute to increased productivity and resilience in agricultural operations.

6.3. Future work

Future research could extend this study in several important directions. Enhancing the temporal resolution of input data remains 
a priority, particularly under conditions where satellite acquisitions are hindered by weather. Integrating UAV-based hyperspectral 
and LiDAR data, with their higher flexibility and spatial detail, could significantly refine yield predictions and enable finer-scale 
management recommendations. Moreover, emerging machine learning architectures, such as transformer models and self-supervised 
learning techniques, offer promising avenues for improving predictive performance and learning from sparse or incomplete data. 
Another area of improvement lies in incorporating additional ground-truth data, such as detailed soil health measurements or farm 
management records, to better capture localised influences on yield variability. Finally, expanding the application of RicEns-Net to 
different crops and diverse agro-ecological zones would allow for a robust assessment of its generalisability and practical value at 
broader scales.
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Appendix. Vegetation, soil and plant biochemical indices

This appendix section presents important vegetation, soil and plant biochemical indices in Table  A.5.

Data availability

The authors do not have permission to share data.

Table A.5
Vegetation, Soil, Water and Plant biochemical indices.
 Index Reference  
 Normalised Difference Vegetation Index (NDVI) 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷
 

 Transformed Vegetation Index (TVI) √

𝑁𝐷𝑉 𝐼 + 0.5  
 Simple Ratio (SR) 𝑅𝑁𝐼𝑅

𝑅𝑅𝐸𝐷
 

 Enhanced Vegetation Index (EVI) 2.5 ×
𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅 + 6𝑅𝑅𝐸𝐷 − 7.5𝑅 + 1
 

 EVI - 2-Bands (EVI2) 2.5 ×
𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅 + 2.4𝑅𝑅𝐸𝐷 + 1
 

 Soil adjusted vegetation index (SAVI) 1.5 ×
𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷 + 0.5
 

 Rice Growth Vegetation Index (RGVI) 1 −
(

𝑅 + 𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅 + 𝑅𝑆𝑊 𝐼𝑅1 + 𝑅𝑆𝑊 𝐼𝑅2

)

 
 Difference Vegetation Index (DVI) 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷  
 Modified Simple Ratio (MSR) 𝑆𝑅 − 1

√

𝑆𝑅 + 1
 

 Near Infra-Red Reflectance Of Vegetation (NIRv) 𝑁𝐷𝑉 𝐼 × 𝑅𝑁𝐼𝑅  
 Kernelized NDVI (kNDVI) tanh (𝑁𝐷𝑉 𝐼2)  
 NDVI-Red Edge (NNDVIre) 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒1

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒1
 

 Normalised Difference Red Edge 1 (NDRE1) 𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒2 − 𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒1

𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒2 + 𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒1
 

 Normalised Difference Red Edge 2 (NDRE2) 𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒3 − 𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒1

𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒3 + 𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒1
 

 Normalised Difference Water Index (NDWI) 𝑅𝐺𝑅𝐸𝐸𝑁 − 𝑅𝑁𝐼𝑅

𝑅𝐺𝑅𝐸𝐸𝑁 + 𝑅𝑁𝐼𝑅
 

 Bare Soil Index (BSI) (𝑅𝑅𝐸𝐷 + 𝑅𝑆𝑊 𝐼𝑅1) − (𝑅𝑁𝐼𝑅 + 𝑅)
(𝑅𝑅𝐸𝐷 + 𝑅𝑆𝑊 𝐼𝑅1) + (𝑅𝑁𝐼𝑅 + 𝑅)

 

 Land Surface Water Index (1.6 μm) (LSWI16) 𝑅𝑁𝐼𝑅 − 𝑅𝑆𝑊 𝐼𝑅1

𝑅𝑁𝐼𝑅 + 𝑅𝑆𝑊 𝐼𝑅1
 

 Land Surface Water Index (2.2 μm) (LSWI22) 𝑅𝑁𝐼𝑅 − 𝑅𝑆𝑊 𝐼𝑅2

𝑅𝑁𝐼𝑅 + 𝑅𝑆𝑊 𝐼𝑅2
 

 Chlorophyll Carotenoid Index (CCI) 𝑅𝐺𝑅𝐸𝐸𝑁 − 𝑅𝑅𝐸𝐷

𝑅𝐺𝑅𝐸𝐸𝑁 + 𝑅𝑅𝐸𝐷
 

 Green Chromatic Coordinate (GCC) 𝑅𝐺𝑅𝐸𝐸𝑁

𝑅𝑅𝐸𝐷 + 𝑅𝐺𝑅𝐸𝐸𝑁 + 𝑅
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