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1  Introduction

The tropical Indian Ocean and its interaction with the atmo-
sphere modulate regional and global climate, and exhibit 
multiple modes of climate variability on intraseasonal-
to-interannual timescales (Schott et  al. 2009). The Indian 
Ocean Dipole (IOD) is the dominant coupled mode of inter-
annual variability of sea surface temperature (SST) across 
the equatorial Indian Ocean (Saji et al. 1999; Webster et al. 
1999). It is characterised by cool SST anomalies in the east-
ern equatorial Indian Ocean (EEIO) and warm anomalies 
in the western equatorial Indian Ocean (WEIO) during its 
positive phase, while the opposite pattern of SST anoma-
lies occurs during its negative phase. Positive IOD events 
have been shown to increase flooding in East Africa (Wang 
and Cai 2020; Wainwright et al. 2021; Schwarzwald et al. 
2023), and monsoon rainfall in India (Ashok et  al. 2001; 
Hrudya et al. 2021) and Australia (Ashok et al. 2003; Saji 
and Yamagata 2003; Ashok et  al. 2007; Cai et  al. 2012; 
Liguori et al. 2022; Karrevula et al. 2024). A recent study 
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Abstract
Accurate seasonal prediction of the Indian Ocean Dipole (IOD) is crucial given its socioeconomic impacts on countries 
surrounding the Indian Ocean. Using hindcasts from the Met Office Global Seasonal Forecasting System (GloSea6), 
coupled mean-state biases in the western and eastern equatorial Indian Ocean (WEIO and EEIO) and their impacts on IOD 
prediction are examined. Results show that GloSea6 exhibits a pronounced cold bias in the EEIO that rapidly develops 
after the monsoon onset in boreal summer (JJA, July–August) and persists into autumn (SON, September–November). 
This cold bias is linked to erroneous easterlies and a shallow thermocline, likely associated with the monsoon circulation. 
The seasonal evolution and relative timing of the precipitation biases, such that they develop through JJA in the EEIO but 
follow in the WEIO in SON, suggests that the EEIO plays the leading role in the development of coupled feedbacks that 
lead to the large dipole pattern of coupled biases. Analysis of skill metrics for the IOD shows that GloSea6 achieves a high 
anomaly correlation coefficient at short lead times, though it tends to overestimate IOD amplitude. This overestimation 
is larger in the eastern IOD pole than in the western pole and is likely linked to the poor representation of the evolution 
of the sea surface temperature anomalies in the EEIO during IOD events in SON. This study highlights the crucial role 
of regional biases, particularly in the EEIO, in shaping IOD variability and demonstrates that addressing such biases in 
GloSea6 could improve IOD prediction.
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by Karrevula et al. (2024) using the North American Multi-
Model Ensemble seasonal forecasting system found that 
warming in the central Indian Ocean, driven by strong 
equatorial easterlies, plays a crucial role in modulating the 
frequency of extreme positive IOD events and their impact 
on summer monsoon precipitation from June to November.

The relationship between the IOD and the South Asian 
summer monsoon is complex and influenced by a range of 
coupled processes. While positive IOD events are often asso-
ciated with enhanced monsoon rainfall over parts of India, 
the teleconnection is modulated by several factors including 
equatorial Indian Ocean dynamics, land–atmosphere inter-
actions, and regional atmosphere circulation (Bollasina and 
Ming 2013; Annamalai et al. 2017; Crétat et al. 2017; Cher-
chi et al. 2021). Given the importance of regional climate 
and weather patterns influenced by the IOD, its accurate 
representation in models is crucial for producing reliable 
climate forecasts and future projections. Furthermore, since 
the IOD interacts with the El Niño-Southern Oscillation 
(ENSO), accurately capturing the observed IOD character-
istics is essential for improving forecasts of climate impacts 
on a global scale (Crétat et al. 2017; McKenna et al. 2020).    

Despite the socio-economic significance of the tropical 
Indian Ocean, the region suffers large mean state biases in 
general circulation models (GCMs) used for climate projec-
tions and seasonal forecasts (Li et al. 2015; Johnson et al. 
2017; McKenna et al. 2020; Long et al. 2020; Marathe et al. 
2021; Martin et  al. 2021; Wang et  al. 2021). Systematic 
biases during SON (September-November), when the IOD 
typically peaks and has significant regional climate impacts, 
have been found in the previous and latest generations of 
coupled GCMs that contribute to the Coupled Model Inter-
comparison Project (CMIP) (Li et al. 2015; Annamalai et al. 
2017; Wang et al. 2021; Long et al. 2020). Earlier studies 
suggest that coupled biases over the equatorial Indian Ocean 
originate from spring and summer seasons, and are linked to 
biases in the simulation of the South Asian monsoon (e.g. 
Bollasina and Ming 2013; Prodhomme et al. 2014; Li et al. 
2015; Annamalai et  al. 2017). Li et  al. (2015) found that 
these biases emerge during JJA, where a weakened South 
Asian monsoon leads to a warm SST bias over the western 
equatorial Indian Ocean, which is then amplified into SON 
via the Bjerknes feedback. On the other hand, Annamalai 
et  al. (2017) found that the equatorial Indian Ocean bias 
originates earlier, in April–May, when easterly wind stress 
bias begins to develop across the equatorial Indian Ocean 
and persists through the JJA and SON seasons, peaking in 
November. This easterly wind stress bias from April–May 
initiates a warm SST bias in the western Indian Ocean that 
persists into JJA, ultimately influencing the summer mon-
soon. A more recent study by Long et al. (2020) demonstrated 
the source of the positive IOD-like pattern of the mean state 

biases in precipitation and SST across the equatorial Indian 
Ocean is linked to the warm SST bias in the western Indian 
Ocean, which is influenced by the South Asian summer 
monsoon circulation during JJA (June-August). This warm 
SST bias amplifies into SON via the positive Bjerknes feed-
back, a process driven by the zonal SST gradient across the 
equatorial Indian Ocean that strengthens low-level easterly 
winds and reinforces the west-east temperature gradient. 
The strong ocean–atmosphere coupling associated with the 
South Asian summer monsoon dominates the low-level cir-
culation in the Indian Ocean during JJA, shaping the typical 
seasonal cycle of the IOD, which is observed to develop in 
JJA, peak in SON, and decay in boreal winter (DJF, Decem-
ber-February; Saji et al. 1999). Consequently, JJA and SON 
are key seasons for examining the predictability of the 
IOD and the development of coupled Indian Ocean biases. 
While the IOD typically develops during boreal summer 
and peaks in autumn, some events may begin earlier dur-
ing boreal spring, with possible links to Indo-Pacific Ocean 
interactions. For example, Annamalai et al. (2003) suggest 
that equatorial Pacific SST anomalies can remotely initiate 
EEIO cooling and wind-driven upwelling off the coast of 
Sumatra, potentially triggering IOD events that are later 
sustained by local ocean–atmosphere feedbacks during JJA.

In a recent study, Mayer et al. (2024) showed that sev-
eral current seasonal forecasting systems, provided by the 
Copernicus Climate Change Service (C3S 2018), share 
common mean state easterly wind and cold SST biases in 
the EEIO. For example, the fifth-generation European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) sea-
sonal forecast system (SEAS5) exhibits an easterly wind 
bias in the EEIO which develops within the first few days of 
the forecast and amplifies via coupled feedbacks, leading to 
a cold SST bias in the region (Mayer et al., 2022). On sea-
sonal timescales, Mayer et al. (2024) attributed the cold bias 
to strong equatorial easterlies that induce a local easterly 
wind bias and shallow thermocline in the EEIO. This cold 
SST bias, arising from wind-induced upwelling, is further 
worsened by a shallow thermocline bias that already fea-
tures in the EEIO oceanic initial conditions used.

Previous studies have shown that simulated mean state 
biases in the tropical Indian Ocean result in errors in the rep-
resentation of the IOD (Zhao and Hendon 2009; Shi et al. 
2012; Johnson et al. 2017; Hirons and Turner 2018; Wang 
et  al. 2021). A mean state bias in the zonal SST gradient 
along the equatorial Indian Ocean, associated with a steep 
west-east upward tilt in the thermocline, leads to larger IOD 
amplitude compared to observations in climate and forecast 
models (Zhao and Hendon 2009; Wang et al. 2021). This is 
because a shallower thermocline in the mean state over the 
EEIO leads to local SSTs that are more susceptible to wind 
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anomalies during IOD development, resulting in erroneous 
IOD SST anomalies (Johnson et al. 2017).

The development of such mean state biases in the equa-
torial Indian Ocean, along with poor initialisation of the 
subsurface ocean, have been shown to limit IOD predict-
ability on seasonal timescales (Zhao and Hendon 2009; Liu 
et al. 2023). Liu et al. (2023) assessed the IOD predictability 
across two generations of seasonal forecast models, with the 
upgraded version demonstrating improved skillful predic-
tion of the IOD of up to 6 months lead time, with a better 
simulated IOD spatial pattern and SST interannual vari-
ability, compared to its predecessor. The previous version 
exhibited a positive IOD-like bias in SST and zonal wind, 
resulting in stronger than observed cooling in the EEIO that 
extended too far west, accompanied by weak warming in 
the WEIO, during positive IOD events. They concluded that 
such a mean state bias in the tropical Indian Ocean led to an 
underestimation of the SST variability in the WEIO.

While some studies have focused on the sources of mean 
state biases in the equatorial Indian Ocean and others on the 
predictability of the IOD, very few have specifically linked 
these mean state biases to their impact on the prediction 
of the IOD. For example, although many of the aforemen-
tioned studies have highlighted persistent positive IOD-like 
biases in SST, circulation, and precipitation within coupled 
GCMs, most have not explored their effects on regional SST 
variability in the WEIO and EEIO, which are key poles of 
the IOD, and linked them to IOD prediction. Therefore, out-
standing questions remain, that we aim to address in this 
study:

	● How do mean-state biases in the atmosphere and subsur-
face ocean evolve in the WEIO and EEIO?

	● What influence do the WEIO and EEIO regional biases 
have on the representation and predictability of the IOD?

In this study, we assess the performance of the UK Met 
Office Global Seasonal Forecasting System version 6 
(GloSea6) in simulating the mean state and climate vari-
ability in the Indian Ocean, with a focus on the WEIO and 
EEIO regions. We examine the coupled ocean–atmosphere 
mean state biases and their interannual variability to better 
understand their influence on the representation of coupled 
dynamics and prediction skill of the IOD.

The remainder of this paper is structured as follows: a 
description of the forecast system, the observational data 
used, and the statistical methods applied is featured in Sect. 
2. Section 3 contains the analysis of the development of 
mean state biases in SST, circulation and precipitation in 
JJA and SON, over the large-scale Indian Ocean, including 
the WEIO and EEIO. In Sect. 3, we further examine the 
coupled nature of the biases, by investigating the subsurface 

ocean compared to observations, evaluate the representation 
of the IOD spatial pattern and SST variability, and examine 
the prediction skill of SST anomalies associated with the 
IOD. Section 4 summarises the results and concludes the 
paper.

2  Data and methods

2.1  Model description

GloSea6 is an ensemble prediction system that is fully 
coupled with atmosphere, land surface, ocean, and sea-ice 
components. GloSea6 in Global Configuration 3.2 (GC3.2) 
consists of the following components: the Met Office Uni-
fied Model (UM) Global Atmosphere version 7.2, the 
Nucleus for European Modeling of the Ocean Global Ocean 
version 6.0, the Joint U.K. Land Environment Simulator 
Global Land version 8.0, and the Los Alamos Sea Ice Model 
Global Sea ice version 8.1. The atmosphere and land models 
are based on Walters et al. (2019), and the ocean and sea ice 
models are based on Storkey et al. (2018) and Ridley et al. 
(2018), respectively. The atmospheric model resolution is 
N216, corresponding to horizontal grid spacings of approxi-
mately 70 km in the tropics, with 85 vertical model levels 
extending up to 85 km. The ocean model has a horizontal 
resolution of 25 km, equivalent to 0.25° (ORCA025), with 
75 vertical levels. MacLachlan et al. (2015) provide detailed 
model information on GloSea5, an earlier version of Glo-
Sea6 with the same atmospheric horizontal resolution. Both 
versions of GloSea produce sub-seasonal to seasonal fore-
casts for operational use, alongside corresponding hindcasts, 
and employ the same Stochastic Kinetic Energy Backscatter 
(SKEB) scheme to generate perturbations between ensem-
ble members initialised from the same analysis (Bowler 
et al. 2009). The SKEB scheme introduces small, random 
perturbations to the wind field during model integration to 
represent uncertainty from unresolved sub-grid processes, 
re-injecting a portion of the kinetic energy lost through the 
semi-Lagrangian advection scheme, thereby increasing 
ensemble spread and improving the representation of fore-
cast uncertainty.

In this study, monthly operational hindcasts are analysed 
to examine the Indian Ocean climate variability, and pre-
dictability of the IOD. GloSea6 uses a lagged initialisation 
approach to represent uncertainties in the initial conditions, 
with hindcasts initialised on the 1st, 9th, 17th, and 25th of 
every month from 1993 to 2016. Within the GloSea6 sys-
tem, each start date has seven ensemble members, resulting 
in a total of 28 members each month. Ensemble members 
initialised on the 1st of the month are integrated longer for 
seven complete calendar months, including the month of 
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comparison against the GloSea6 ocean potential tempera-
ture in the subsurface (Zuo et al. 2019).

2.2  Methods

The pattern correlation coefficient (PCC) and root mean 
square error (RMSE) are calculated with respect to observa-
tions to quantify the performance of GloSea6 in simulating 
the Indian Ocean mean climate and variability. PCC mea-
sures the degree of similarity between the spatial patterns 
of the observed and simulated fields, while RMSE measures 
the magnitude of the difference in simulation relative to 
observations. To assess the statistical significance of the dif-
ference between the simulated and observed Indian Ocean 
mean states, the paired Student’s t-test (Wilks, 2011) is per-
formed on the hindcast ensemble mean and observations.

Observed and predicted IOD events are identified using 
the Dipole Mode Index (DMI), which is defined by the 
west-east gradient of SST anomalies between the western 
equatorial Indian Ocean (WEIO; 50–70°E, 10°S-10°N) and 
eastern equatorial Indian Ocean (EEIO; 90–110°E, 10°S-0°) 
(Saji et al. 1999). SST anomalies of the DMI timeseries are 
calculated relative to the full validation hindcast period of 
1993–2016. To quantify the performance of GloSea6 in pre-
dicting the IOD, deterministic metrics such as the anomaly 
correlation coefficient (ACC) and root-mean-square error 
(RMSE) are evaluated. These metrics are calculated between 
the observed and predicted SST anomaly time series of the 
DMI. To compare the IOD variability between GloSea6 and 
observations, the amplitude ratio is computed, defined as 
the ratio of the standard deviation of the predicted DMI to 
that of the observed DMI (e.g. Johnson et al. 2019; Wedd 
et al. 2022). An amplitude ratio < 1 indicates that the model 
underestimates IOD variability compared to observations, 
while a ratio >1 suggests that the model overestimates it.

3  Results

In this section, the ability of GloSea6 to capture the observed 
climatological JJA and SON mean states, in the atmosphere 
and subsurface ocean, is assessed. Given the importance of 
JJA and SON on the seasonality of the development and 
maturity of the IOD, respectively, we evaluate the simu-
lated seasonal evolution of coupled processes with respect 
to observations. Specifically, we examine the biases related 
to monsoon circulation in JJA that influence the coupled 
ocean–atmosphere Bjerknes feedback across the equatorial 
Indian Ocean in SON.

initialisation, while those initialised on the 9th, 17th and 
25th produces forecasts for six complete months.

Lead time in this study is defined as the number of calen-
dar months elapsed since forecast initialisation. Forecasts at 
0-month lead time (LM0) refer to the first complete calendar 
month of forecast output. Therefore, for GloSea6 hindcasts 
initialised on the 1st of the month, LM0 corresponds to that 
same calendar month, as the forecast begins on day one and 
spans the entire month. In contrast, for hindcasts initialised 
later in the month (on the 9th, 17th, or 25th), LM0 corre-
sponds to the following calendar month, as GloSea6 outputs 
forecasts as monthly means starting from the first completed 
calendar month after initialisation. For example, LM0 for a 
1st February start date corresponds to February, while LM0 
for 9th, 17th, and 25th February start dates corresponds to 
March. Accordingly, monthly climatologies are constructed 
by averaging forecasts for the same calendar month across 
all relevant start dates. For instance, the March SST clima-
tology at LM0 includes March forecasts initialised on 9th, 
17th, and 25th February, and 1st March, averaged over all 
years from 1993 to 2016.

To assess the seasonal mean by lead time, monthly hind-
casts with the same lead time are averaged to produce a 
hindcast seasonal mean. For example, the JJA mean at LM0 
is created by averaging the first month of forecasts for June, 
July, and August. Likewise, the SON mean at a 0-month lead 
time is an average of the forecasts for September, October, 
and November, with each forecast started at the beginning 
of each month. By using this method, the influence of model 
drift is expressed equally in all three months.

2.1.1  Observational datasets

The fifth-generation ECMWF reanalysis (ERA5; Hersbach 
et al. 2020) at horizontal resolution 0.25° × 0.25°, is used for 
comparison with model output for dynamic fields such as 
10 m and 850 hPa winds. For precipitation fields, the Global 
Precipitation Climatology Project (GPCP) dataset at 2.5° × 
2.5° horizontal resolution, with monthly version 2.3 (Adler 
et  al. 2003) and the Tropical Rainfall Measuring Mission 
(TRMM) Multi-satellite Precipitation Analysis monthly 
product, 3B43, constructed by the National Aeronautics and 
Space Administration at 0.25° × 0.25° horizontal resolution 
are used.

For verification with GloSea6 SST outputs, monthly SST 
from the Met Office Hadley Centre Sea Ice and Sea Surface 
Temperature (HadISST) dataset (Rayner et  al. 2003) and 
National Oceanic and Atmospheric Administration Opti-
mum Interpolation Sea Surface temperature version 2 (OIS-
STv2) monthly data are used (Reynolds et  al. 2007). The 
ECMWF Ocean Reanalysis System 5 (ORAS5) is used for 
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dipole pattern is similar for JJA and SON with increasing 
lead time, the magnitude of the warming in the WEIO and 
cooling in the EEIO at LM2 is notably larger in JJA com-
pared to SON. At LM4 and LM6, the dipole structure of the 
JJA and SON SST biases becomes well established across 
the equatorial Indian Ocean (not shown).

The dipole pattern of JJA and SON SST biases at LM2 
resembles the SST anomalies typically observed during a 
positive IOD event (Saji et al. 1999). Previous studies (e.g., 
Johnson et al. 2017; Martin et al. 2021; Mayer et al. 2024) 
found a similar positive IOD-like pattern of JJA mean SST 
bias in GloSea5 and SEAS5 hindcasts. In GloSea6, the JJA 
and SON biases in precipitation and lower-tropospheric cir-
culation (Fig. 1e–h) are consistent with the changes in SST 
biases as lead time increases. A dry bias over India in JJA 
(a known problem in the GloSea forecast model; Johnson 
et  al. 2017; Martin et  al. 2021; Keane et  al. 2024) wors-
ens from LM0 to LM2, while a dipole between excessive 
rainfall in the central Indian Ocean and a dry bias in the 
EEIO, off the coast of Sumatra, increases (Fig. 1e and f). 

3.1  Development of coupled ocean–atmosphere 
biases in JJA and SON

Figure 1 compares the JJA and SON mean state biases in 
SST, precipitation, and 850 hPa winds at LM0 (0-month 
lead time) and LM2 (2-month lead time), showing how these 
biases differ between seasons and how they change with 
increasing lead time. Across the equatorial Indian Ocean, 
GloSea6 exhibits a predominantly warm SST bias, with a 
small but significant cold bias over the EEIO during JJA at 
LM0 (Fig. 1a). As lead time increases to LM2, this JJA SST 
bias intensifies into a distinct and significant dipole pattern, 
characterised by a warm SST bias in the WEIO and a cold 
SST bias in the EEIO (Fig. 1b). The SON SST bias follows 
a similar evolution: starting with a significant warm bias 
across much of the tropical Indian Ocean, which is largest 
over the EEIO at LM0 (Fig. 1c). By LM2, this bias devel-
ops into a dipole pattern resembling that of JJA at LM2, 
with pronounced warming in the WEIO and cooling in the 
EEIO (Fig. 1d). Although the evolution of SST bias into a 

Fig. 1  Climatological JJA and SON mean biases in GloSea6 for (a–
d) SST, and (e–h) precipitation and 850 hPa winds at 0-month (1st 
month of the forecast; LM0) and 2-months lead time (3rd month of 
the forecast; LM2). GloSea6 SST, precipitation and low-level winds 
are compared against HadISST, GPCP and ERA5, respectively, from 
1993–2016. Black boxes show the western (50–70°E, 10°S-10°N) 
and eastern (90–110°E, 10°S to equator) poles of the IOD. Grey box 

shows the central equatorial Indian Ocean (70–90°E, 5°S-5°N), used 
to capture a metric of zonal wind. Black stipples on the SST and pre-
cipitation panels indicate regions where these mean-state biases are 
statistically significant at the 95\% confidence level, based on a paired 
Student’s t-test. The overlaid 850 hPa wind vectors are shown only 
where they are also significant at the same confidence level

 

1 3

Page 5 of 16    328 



M. Gler et al.

February–April start dates, but then rapidly develops into a 
cold bias from May onwards, persisting through JJA during 
the boreal summer monsoon and into SON when initialised 
from May-August starts. The distinct EEIO cold bias is 
much larger in magnitude than the warm bias in the WEIO, 
and is notably larger when initialised from February to July 
compared to the relatively smaller cold bias that develops 
following August and September initialisations. Forecasts 
running through a larger portion of the JJAS season tend 
to suffer a worse bias. Together with the circulation bias 
seen off Sumatra in Fig. 1e–h, this finding suggests that the 
northern hemisphere monsoon in JJA strongly influences 
the evolution of the SST bias in the EEIO. This indicates 
a strong seasonal dependence in the development of the 
EEIO SST bias. As in the case of the EEIO cold SST bias, 
hindcasts started from May–August show rapid growth of 
dry bias into the SON months (Fig. 2d), showing a strong 
seasonal dependence. The dry bias for hindcasts initialised 
in the autumn is much smaller, after the withdrawal of the 
boreal summer monsoon. Meanwhile in the WEIO (Fig. 
2c), large precipitation biases do not begin to develop until 
autumn, coinciding with the positive IOD-like precipitation 
pattern of wet bias in the WEIO and dry bias in the EEIO 
during SON, which is also consistent with Fig. 1h. The more 
pronounced SST bias in the EEIO and the relative timing 
of the precipitation biases between the EEIO and WEIO, 
such that the biases develop through summer in the EEIO 
but only begin in the autumn in the WEIO, suggest that the 
EEIO plays a leading role in the development of the overall 
SST bias pattern. We note that the observational uncertainty 
in precipitation is generally larger compared to SST due to 
the highly variable nature of precipitation, which may con-
tribute to some of the discrepancies seen in these biases. 
For instance, GPCP and TRMM_3B43 show a discrepancy 
of approximately 0.5–1 mm/day from January-September in 
the WEIO and EEIO (Fig. 2c) in contrast to the small and 

Similarly, the SON biases in precipitation and circulation 
over the equatorial Indian Ocean show comparable changes, 
with significantly strengthened southeasterlies and a dry 
bias in the EEIO, alongside a wet bias in the WEIO by LM2 
(Fig. 1e–h). However, it is notable that the SON precipita-
tion bias is larger in the WEIO at LM2, despite responding 
to a smaller magnitude of SST bias, compared to the JJA 
precipitation bias at the same lead time. This may be related 
to the significantly stronger easterlies in the central equato-
rial Indian Ocean in SON compared to JJA at LM2, which 
likely enhances low-level convergence in the WEIO (Fig. 1f 
and h). A positive IOD-like precipitation pattern, with a wet 
western and central equatorial Indian Ocean and a dry EEIO, 
is established at LM2 in JJA and SON. These features are 
likely associated with the Bjerknes coupled feedback, where 
excessive easterly winds in the equatorial Indian Ocean are 
coupled with biased dipole patterns in SST and precipita-
tion. For instance, the significant erroneous southeasterly 
flow off the coast of Sumatra enhances upwelling, which 
cools the SST further in that region, reinforcing the dipole 
pattern. The interactions between SST, winds, and precipi-
tation leads to a coupled feedback loop that amplifies the 
initial biases and their associated patterns.

To investigate the interplay between SSTs, precipita-
tion, and the subsurface ocean, and to further examine how 
ocean–atmosphere biases evolve from months to seasons 
ahead in the tropical Indian Ocean, quantities were averaged 
over the WEIO and EEIO regions. Analysis was performed 
on hindcast ensemble means initialised between February 
and November.

Figure 2 shows the predicted climatological seasonal 
cycles of SST and precipitation compared to observations 
over the WEIO and EEIO. The SST in the WEIO (Fig. 2a) 
generally tends to be initialised systematically warmer than 
observations from May onwards in contrast to the EEIO 
(Fig. 2b). The EEIO SST bias initially shows warming for 

Fig. 2  Monthly evolution of clima-
tological (a and b) SST (against 
HadISST and OISSTv2) and c and 
d precipitation (against GPCP and 
TRMM_3B43) over the WEIO and 
EEIO in GloSea6 hindcasts ini-
tialised from February to Novem-
ber over the 1993–2016 hindcast 
period. Solid coloured lines repre-
sent the monthly ensemble means 
from 28 members: seven from each 
of four monthly start dates (1st, 
9th, 17th, 25th)
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acts to suppress these eastward-flowing Wyrtki Jets, which 
is particularly evident for hindcasts initialised in April and 
May. The easterly wind bias is especially strong in May, 
resulting in considerably weaker Wyrtki jets relative to 
ORAS5. Notably, despite differences in the magnitude of 
the easterly wind stress bias in April–May across different 
initialisation months, this bias rapidly intensifies from May 
to June following the onset of the summer monsoon, and 
continues to strengthen through JJA and into SON.

The timing of the evolution of the biases in the equato-
rial Indian Ocean therefore appears to follow the sequence 
of substantial EEIO SST and precipitation biases from May 
(Fig. 2b and d). This is followed by the rapid growth of the 
erroneous zonal SST gradient, characterised by a larger cold 
bias in the east than the smaller warm bias in the west (Fig. 
2a and b), and the central equatorial Indian Ocean wind 
biases in JJA (Fig. 3a and b), and then the WEIO precipita-
tion biases in SON (Fig. 2c). This structure of the coupled 
biases indicates that they arise from Bjerknes feedback in 
the equatorial Indian Ocean, emerging from the atmospheric 
bias in the EEIO driving substantial SST and thermocline 
depth biases in the region, which in turn increases the 
zonal SST gradient across the equatorial Indian Ocean and 
strengthens the easterlies in the central equatorial IO, which 
leads to large precipitation bias in the WEIO.

Given the focus on the EEIO and the suspicion that the 
circulation bias, related to the boreal summer monsoon, 
plays a crucial role in driving the IOD-like SST response, 
the evolution of near-surface winds and thermocline depth 
across the basin is examined. Figure 4 shows the devel-
opment of coupled mean state biases in 10 m zonal wind 
(u10m) and thermocline depth (using the 20 °C isotherm 
as a proxy) across the equatorial Indian Ocean for May-
November initialisations. The range of start months, from 
May to November, is chosen to examine how the biases in 
the subsurface ocean evolve from the pre-monsoon period 
through to the end of the autumn season, the period across 
which we have shown the biases in SST and precipitation to 
develop most rapidly.

Hindcasts initialised from May exhibit anomalous 10 m 
easterly winds originating in the eastern half of the basin, 
and shallower thermocline depth in the EEIO from June 
onwards (Fig. 4a and b), which indicates a coupled feed-
back that leads to upwelling of deeper, cooler water to the 
surface, resulting in colder SSTs than observations. Johnson 
et al. (2017) found similar characteristics of the anomalous 
SST and circulation over the Indian Ocean in GloSea5, 
which showed that this coupled mean state bias in the IO is 
related to the anomalous upward tilt of the thermocline to 
the east compared to observations.

The easterly wind bias strengthens and extends westward 
after the boreal summer monsoon onset in June, reaching a 

negligible monthly differences between HadISST and OIS-
STv2 throughout the year.

In the central equatorial Indian Ocean, easterly wind 
biases in near-surface 10  m zonal winds and zonal wind 
stress develop in late spring, then rapidly intensify through 
JJA, and peak in SON (Fig. 3a and b). In particular, Glo-
Sea6 exhibits a weak easterly wind stress bias in March-
April when initialised in February and March. As a result, 
the eastward-flowing Wyrtki jets remain relatively well 
developed in March and April for these early initialisations, 
compared to ERA5 (Fig. 3c). These jets are strong equato-
rial ocean currents that transport mass and heat in the upper 
ocean from the western to the eastern Indian Ocean biannu-
ally, during the spring and autumn intermonsoon seasons, 
driven primarily by westerly winds (Schott and McCreary, 
2001). Therefore, the opposing easterly wind stress bias 

Fig. 3  Monthly evolution of climatological a 10 m zonal wind (against 
ERA5), b zonal wind stress (against ERA5) over the central equato-
rial Indian Ocean (70–90°E, 5°S-5°N), as marked in Figure 1, which 
depicts the region used for capturing the metric for zonal winds, and 
c the Wrytki jet, measured as the depth-integrated (0–100 m) of zonal 
current (against ORAS5) at 0°, 85°E, adapted from Annamalai et al. 
(2017), in GloSea6 hindcasts initialised from February to November 
over the 1993–2016 hindcast period. Solid coloured lines represent the 
monthly ensemble means from 28 members: seven from each of four 
monthly start dates (1st, 9th, 17th, 25th). Dashed vertical lines during 
May and November illustrate the time when the Wyrtki jet peaks in 
ORAS5
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and dry bias in the EEIO in JJA (Fig. 2b and d), accompa-
nied by erroneous zonal 10  m easterly winds and a shal-
lower thermocline depth (Fig. 4a and b). This is followed by 
the strengthening of 850 hPa (not shown) and 10 m (Fig. 4a) 
easterly zonal wind biases through the JJAS months over 
the central equatorial Indian Ocean, and by a wet precipita-
tion bias in the WEIO in SON (Fig. 2c). These biases reflect 
a positive IOD-like pattern, amplified by the Bjerknes feed-
back, linking SST, wind, and precipitation biases, and high-
light the strong seasonal dependence of the coupled biases 
in the equatorial Indian Ocean.

3.2  Representation of SST variability over the 
Indian Ocean and the IOD

In the previous section, JJA and SON biases in the atmo-
sphere and subsurface ocean over the WEIO and EEIO 
were assessed. Here, the influence of these coupled mean 
state biases on the simulated interannual variability over the 
equatorial Indian Ocean, including IOD characteristics, is 
examined.

Figure 5 shows the forecast DMI compared against obser-
vations for different lead times. The correlation between 
the observed and GloSea6 DMI at LM0 and LM2 is gen-
erally well forecast, with ACC values of 0.80 and 0.71, 

maximum in boreal autumn, likely influenced by the mon-
soon circulation bias along the Sumatran coast (Fig. 4a). In 
hindcasts starting from May–September, the strengthening 
of erroneous easterlies in the central equatorial Indian Ocean 
during SON leads to the deepening of the thermocline in the 
west and shoaling in the east compared to observations (Fig. 
4a and b), via the positive Bjerknes feedback. The coupled 
feedback, with an erroneous upward tilt of the thermocline 
toward the EEIO, relates to the large cold and dry biases 
there in SON. Hindcasts initialised in August-November 
show biases in thermocline depth reducing across the equa-
torial Indian Ocean from December to February of the fol-
lowing year.

The comparison of JJA and SON mean state biases in 
GloSea6 reveals a predominantly warm SST bias across the 
equatorial Indian Ocean, developing into a distinct dipole 
pattern with a warm (wet) bias in the WEIO and cold (dry) 
bias in the EEIO as lead time increases in JJA and SON from 
LM0 to LM2 (Fig. 1). Investigating the evolution of coupled 
biases in the WEIO and EEIO showed that the boreal sum-
mer monsoon circulation bias in the EEIO during JJA likely 
influences the growth of the overall dipole pattern of biases 
in SST, precipitation, and the subsurface ocean into SON 
(Figs. 2 and 4). The seasonal evolution of coupled regional 
biases in the equatorial Indian Ocean begins with a cold SST 

Fig. 4  Hovmöller diagram (time versus longitude) of climatologi-
cal monthly mean biases in a) 10  m zonal wind (compared against 
ERA5) and b) thermocline (20 °C isotherm) depth (against ORAS5), 
latitudinally averaged 5 ◦S-5 ◦N, initialised from May to November 

(columns) from 1993–2016. Ensemble mean of 28 ensemble members 
from four initialised runs (1st, 9th, 17th, 25th) per month, each with 7 
ensemble members. Panel subtitles indicate the hindcast initialisation 
months, and time increases up the page in each case
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related to the erroneous easterlies in the central equatorial 
Indian Ocean, which strengthen and extend westward after 
the onset of the summer monsoon in June, peaking in SON 
(Fig. 4a). This hypothesis is supported by the findings of 
Johnson et al. (2017) who demonstrated that coupled mean-
state biases in the EEIO lead to errors in representing the 
IOD as a mode of variability in GloSea5, thereby reduc-
ing its ability to predict the Indian monsoon circulation. 
Here, we have shown that the strengthening of the easterly 
wind bias during SON leads to a deepening of the thermo-
cline in the west and shoaling in the east (Fig. 4), reinforc-
ing the already shallow SON climatological thermocline 
of GloSea6 in the EEIO (not shown). The easterly wind 
bias, combined with a shallower thermocline in the EEIO, 
suggests that even small fluctuations in wind are likely to 
quickly lead to changes in upwelling. This may in turn lead 
to rapid adjustments in SST, as the thermocline tilt shoals in 
the east making the region particularly responsive to wind 
variations.

To examine the representation of observed positive and 
negative IOD events, a composite analysis of the SON 
hindcast ensemble mean is performed. Here, positive and 
negative IOD events are classified when the observed nor-
malised DMI time series exceeds 1 standard deviation for 
September-November (Fig. 5). During the full hindcast 
period of 1993–2016, seven positive and six negative IOD 
events are identified in the observations.

respectively, exceeding the commonly used ACC thresh-
old of 0.5 (e.g., Zhao and Hendon 2009; Song et al. 2022). 
An ACC of 0.5 is used to indicate moderate forecast skill, 
which is comparable to using the climatological average as 
the forecast. In comparison to the ACC skill at LM0 and 
LM2, the forecast skill of the predicted DMI at LM4 and 
LM6 is relatively lower. At LM0, GloSea6 predicts stronger 
positive and negative IOD events compared to LM2, LM4, 
and LM6. For example, the magnitudes of the negative and 
positive IOD events observed in 1996 and 1997, respec-
tively, are overestimated at LM0 compared with longer lead 
times. This is reflected in the measure of the predicted IOD 
amplitude, defined as the standard deviation of the GloSea6 
DMI, with the highest value of 0.38 ◦C at LM0. Calculating 
the ACC values and amplitudes for the DMI at the individ-
ual poles of the IOD reveals that the EEIO DMI has con-
sistently lower ACC and higher IOD amplitude compared 
to the WEIO DMI for all lead times (LM0 to LM6) (not 
shown).

Examining the standard deviation of SST anomalies in 
SON, an important season during which the IOD peaks, 
shows a large SON SST variability over the EEIO, particu-
larly off the coasts of Sumatra and Java (Fig. 6). This sug-
gests that the larger IOD variability in the GloSea6 DMI 
compared to observations is likely due to increased SON 
SST variability over the EEIO. A possible hypothesis is that 
the larger SST variability in the EEIO in GloSea6 may be 

Fig. 6  Spatial distribution of the standard deviation of SON SST 
anomalies, as a measure of SST variability, in a HadISST and b–e 
GloSea6 at LM0, LM2, LM4 and LM6. For each lead time, SON is 

obtained by averaging the monthly ensemble means for September, 
October, and November, each comprising 28 members

 

Fig. 5  Time series of monthly 
DMI in HadISST (bars) and Glo-
Sea6, normalised by its standard 
deviation, at 0-month (orange line), 
2-month (green line), 4-month 
(cyan line) and 6-month (purple 
line) lead times from 1993 to 2016. 
The ACC between the observed 
and predicted DMI is included, 
and the standard deviation of the 
predicted DMI prior to normalisa-
tion is calculated. The observed 
and predicted DMI have been 
smoothed with a 3-month running 
mean
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Ocean that are comparable to observations, with pattern cor-
relations of 0.91 and 0.89, respectively (Fig. 7a, b, f and g). 
Figure 7 shows that the pattern correlation decreases, while 
the RMSE increases, with increasing lead time up to LM6 
for both positive and negative IOD composites.

Analysing the evolution of SST anomalies during SON 
for positive and negative IOD events reveals that these 
anomalies are poorly simulated in the EEIO compared to the 
WEIO from February to October start months. In Fig. 8, we 
further examine the seasonal cycle of monthly SST anoma-
lies at both poles for positive and negative IOD events. The 
simulated IOD SST anomalies are compared against two 
observational datasets (HadISST and OISSTv2). Notably, 
these datasets exhibit larger observational uncertainty in the 
EEIO than in the WEIO, particularly during SON.

The seasonal cycle of SST anomalies over the WEIO 
generally match observations across different start months 

At LM0, it is evident that GloSea6 exhibits larger SST 
anomalies over the WEIO and EEIO compared to obser-
vations for both phases of the IOD (Fig. 7b and g). For 
instance, the simulated positive IOD event shows colder 
SSTs in the EEIO and warmer SSTs in the WEIO than 
observed, suggesting a stronger positive IOD. This likely 
relates to the SON mean state biases in SST and circulation, 
characterised by a positive IOD-like pattern, that may be 
amplified during a positive IOD event. Likewise, a stronger 
negative IOD event relative to observations is simulated at 
LM0, accompanied by a dipole pattern of colder anomalies 
in the WEIO and much warmer SST anomalies in the EEIO 
than observed. Such large SST anomalies in the EEIO per-
sist at longer lead times of up to 4 months for a positive IOD 
and 6 months for a negative IOD (Fig. 7d and j). Gener-
ally, the positive and negative IOD composites of SON SST 
anomalies at LM0 exhibit large-scale patterns in the Indian 

Fig. 8  Monthly SST anomalies 
during positive (top) and negative 
(bottom) IOD events compared 
against HadISST (black line) and 
OISSTv2 (grey line) observations 
over the WEIO (a, c) and EEIO 
(b, d). Monthly anomalies are 
calculated by taking the difference 
against monthly climatological 
SST over the 1993–2016 hindcast 
period. Solid coloured lines repre-
sent the monthly ensemble means 
from 28 members: seven from each 
of four monthly start dates (1st, 
9th, 17th, 25th)

 

Fig. 7  Composite maps of SON SST anomalies of positive IOD events 
in a HadISST and b–e in GloSea6 at 0 to 6-month lead times. Panels 
f–j) as in a-e) for composite maps of negative IOD events. PCC and 
RMSE [°C] are calculated between HadISST and GloSea6, and shown 

in parenthesis at the top right-hand corner of each panel. The posi-
tive IOD composite includes the years 1994, 1997, 2002, 2006, 2011, 
2012, and 2015, while the negative IOD composite includes 1996, 
1998, 2001, 2005, 2010, and 2016
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IOD events. Although the low-level circulation anomalies 
have considerably weakened for positive and negative IOD 
events, the precipitation anomalies persist in the EEIO and 
extend into the central equatorial Indian Ocean up to 6 
months following initialisation (Fig. 9e and j). The precipi-
tation anomalies over the EEIO at LM6 coincide with the 
SST anomalies over the region at the same lead time (Fig. 
7e and j).

The pattern correlation of the SON precipitation anom-
alies compared to observations weakens as lead time 
increases, similar to the SST anomalies shown in Fig. 7. 
The dipole spatial pattern of precipitation anomalies over 
the IOD poles, and a large region of the Maritime Continent, 
shows comparable features. For instance, the magnitude and 
spatial distribution of precipitation over Indonesia and the 
Maritime Continent closely resemble observations at LM0.

Results indicate that the ability of GloSea6 to simulate 
observed IOD SST variability is strongest at short lead 
times, despite the larger monthly DMI amplitude and SON 
SST variability over the EEIO compared to HadISST (Figs. 
5 and 6). The high ACC of the DMI at LM0 and LM2, along 
with pattern correlations of over 0.7 for SST and precipi-
tation (Figs. 5, 7 and 9), suggests that GloSea6 may offer 
valuable potential for forecasting the IOD at short lead 
times. This section has shown that the large SON SST vari-
ability in the EEIO, compared to the WEIO (Fig. 6), likely 
relates to the poor representation of the evolution of SON 
SST anomaly in the EEIO during positive and negative IOD 
events relative to HadISST (Fig. 8).

3.3  Predictability of the IOD

The previous section showed the ability of GloSea6 to rep-
resent positive and negative IOD phases at their maturity in 
SON for lead times of up to 6 months. Here, we assess the 
predictability of the IOD during its developing and mature 

during the positive and negative IOD. GloSea6 is able to 
capture the observed warming in the WEIO during the 
development and mature phases of a positive IOD, spe-
cifically from June to November (Fig. 8a). Similarly, the 
observed cooling from June to November, associated with 
the evolution of SST anomalies in the WEIO during a nega-
tive IOD, is well represented (Fig. 8c).

In the EEIO, GloSea6 hindcasts started in February-
May struggle to simulate the observed evolution of the cold 
SST anomalies, associated with a positive IOD, from June 
to November particularly in the SON months. These EEIO 
SST anomalies are underestimated and do not reach the 
observed cold anomalies during SON, the mature phase of 
the IOD (Fig. 8b). In contrast, when hindcasts are started in 
June-October, the simulated EEIO SST anomalies in SON 
during a positive IOD are generally overestimated and are 
much colder than those in HadISST (Fig. 8b). The colder 
SON EEIO SST anomalies simulated following September-
November starts, compared to HadISST, (Fig. 8b) are con-
sistent with the larger SON EEIO SST anomalies at LM0 
relative to HadISST in Fig. 7b.

A similar pattern of evolution occurs with the warm SST 
anomalies in the EEIO during a negative IOD, where the 
observed warming is not well captured compared to Had-
ISST, with colder SST anomalies in June to November for 
February to March starts, and warmer anomalies following 
June to October starts (Fig. 8d). Thus, it is evident in Fig. 
8b and d, that the SST anomalies in the EEIO are poorly 
represented during the development and peak of the positive 
and negative IOD events when compared against HadISST.

The precipitation and circulation anomalies associated 
with IOD SSTs for SON are shown in Fig. 9. Consistent with 
the stronger positive IOD and negative IOD than observed 
at LM0, the precipitation anomalies over the WEIO tend to 
extend further into the central Indian Ocean, off the equator 
to the north near Sri Lanka, for both positive and negative 

Fig. 9  As in Fig. 7 but for SON precipitation (shaded) and wind (vec-
tors) anomalies compared to GPCP precipitation and ERA5 winds, 
respectively. PCC and RMSE [mm/day] are calculated between GPCP 

and GloSea6 precipitation and shown in parenthesis at the top right-
hand corner of panels (b–e) and g–j)
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September-November (Fig. 10c). The highest prediction 
errors of greater than 0.6 tend to be simulated for hindcasts 
started in February-May, which may be attributed to the 
large mean-state bias in SST that grows into SON over the 
EEIO following initialisation in spring shown in Figure 2b. 
An examination of ACC and RMSE skill scores of the sepa-
rate poles of the IOD reveals that the EEIO DMI has lower 
ACC and higher RMSE values than the WEIO DMI for up 
4 months lead time when initialised in July-September (not 
shown).

Overall, while GloSea6 demonstrates strong prediction 
skill for IOD events, especially when initialised in late 
boreal summer or early autumn, it shows limitations in the 
boreal winter months. Specifically, GloSea6 demonstrates 
skillful prediction of the IOD during its developing and 
mature phases when initialised in July. In addition, GloSea6 
tends to predict stronger IOD events than observed, with 
amplitude ratios higher than 1 for forecasts started between 
June and October. However, prediction errors are higher for 
forecasts initialised in March-June.

4  Conclusion

Despite the significance of the WEIO and EEIO as key 
regions of IOD SST variability, few studies have spe-
cifically explored the coupled mean-state biases in these 
regions and linked their impacts to IOD predictability (Zhao 
and Hendon 2009; Shi et al. 2012). The presence of these 
regional biases and their role in modulating local climate 
and weather patterns over countries surrounding the Indian 
Ocean through IOD atmospheric teleconnections highlights 
the importance of accurately representing the underlying 
coupled processes in both the mean climate and variability 
in the WEIO and EEIO. Most recent research has focused 
on mean-state biases and their sources across the broader 

phases by examining the monthly SST anomalies of the 
DMI as a function of lead time and different initialisation 
times.

Figure 10a demonstrates that an IOD, in its developing 
and mature phases, can be well predicted (defined by an 
ACC of 0.5 or higher) at up to 4–5-months lead time when 
initialised in July. In addition, GloSea6 shows good predic-
tive skill of the IOD at up to 6 months when initialised in 
June, following the onset of the boreal summer monsoon. 
The mature phase of the IOD, which usually peaks during 
SON, can be predicted as early as July. The high pattern 
correlation between the observed and simulated composites 
of SON IOD SST anomalies at LM0, shown in Fig. 7, is 
consistent with the skillful prediction for the SON months 
at LM0 when initialised in September-November (Fig. 10a). 
Another notable feature of the prediction skill in GloSea6 is 
the winter predictability barrier in the decaying phase of the 
IOD, indicated by the rapid decline of ACC skill in boreal 
winter when initialised in August-November. Such a feature 
has been found in a fully coupled forecast system (Luo et al. 
2007) regardless of the start month, and in a coupled GCM 
(Feng et  al. 2014). Another deterministic skill metric, the 
IOD amplitude ratio, is shown in Fig. 10b. As discussed in 
the previous section, GloSea6 simulates IOD events with 
amplitudes that are high compared to observations. Here, 
the amplitude ratio is determined as the ratio of monthwise 
standard deviation of the predicted monthly DMI to that of 
the observed standard deviation. Thus, an amplitude ratio 
of 1 indicates a perfect match between GloSea6 and obser-
vations. Stronger than observed amplitude of the predicted 
IOD, with ratios greater than 1, is simulated when started 
in June-September with up to 2 months lead. Similar to the 
ACC skill, the amplitude ratio falls rapidly in boreal winter 
for hindcasts initialised in August-December. Although Glo-
Sea6 predicts strong IOD events in SON, the RMSE scores 
show low prediction errors, less than 0.5, when started in 

Fig. 10  Skill metrics of the normalised monthly DMI as a function of 
lead month and forecast start months in a ACC, b amplitude ratio of 
the DMI predictions (ratio of the standard deviation of the GloSea6 

DMI to that of the observed) and c RMSE between the predicted and 
observed DMI. The dashed diagonal lines indicate consistent verifica-
tion months following forecast initialisation
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feedbacks across the equatorial Indian Ocean. Notably, Kar-
revula et  al. (2024) demonstrated using the North Ameri-
can Multi-Model Ensemble models that forecasts initialised 
in May capture warming in the central Indian Ocean due 
to strengthened equatorial easterlies, which they identified 
as critical in modulating the frequency of extreme positive 
IOD events and their impact on summer monsoon precipita-
tion from June to November

b) What influence do the WEIO and EEIO regional biases 
have on the representation and predictability of the IOD?

Results show that the GloSea6 DMI time series of monthly 
SST anomalies has a high anomaly correlation coefficient 
compared to the HadISST DMI at short lead times (LM0 
and LM2). The high ACC skill of the predicted monthly 
DMI at LM0 is consistent with the high pattern correlation 
of over 0.8 between the observed and simulated composites 
of SON SST and precipitation anomalies in both positive 
and negative IOD events. However, results also showed that 
the amplitude of monthly DMI is larger compared to Had-
ISST from LM0 to LM4 (0–4 month lead times), indicating 
higher IOD SST variability in GloSea6. Additionally, exam-
ining the separate poles of the IOD reveals lower ACC and 
higher IOD amplitude for the EEIO than the WEIO DMI for 
all lead times (0–6 month lead times). Investigating the SST 
variability in SON, during which the IOD peaks, showed a 
larger SON SST variability in the EEIO compared to Had-
ISST. A possible hypothesis is that the erroneous easterlies 
and shallow thermocline depth in the EEIO make the region 
highly sensitive to small wind fluctuations, which can rap-
idly alter upwelling and SST. This aligns with the findings 
of Johnson et al. (2017), who showed that coupled mean-
state biases in the EEIO lead to errors in representing the 
IOD as a mode of variability in GloSea5. The analysis of 
the seasonal cycle of SST anomalies over the WEIO and 
EEIO during positive and negative IOD events showed a 
difference in how well GloSea6 captures the observed SST 
anomalies in each region. In the EEIO, cold SST anoma-
lies in SON are overestimated relative to HadISST, espe-
cially when initialised from June onwards. However, in the 
WEIO, GloSea6 closely matches the observed evolution of 
warm SST anomalies into SON during the mature phase of 
a positive IOD, regardless of initialisation dates.

Assessing the predictability of GloSea6 showed consid-
erable skill in forecasting the IOD during its developing and 
mature phases, especially when initialised in June and July. 
The model demonstrates skillful prediction of IOD SST 
anomalies in SON, achieving an ACC of 0.5 or higher for 
forecasts started as early as July. Notably, the highest pre-
dictive skill for the IOD occurs when initialised between 
September and November, coinciding with the peak of 
observed IOD events. Although GloSea6 shows reason-
able predictive skill for the IOD, it encounters a significant 

equatorial Indian Ocean region, such as the persistent posi-
tive IOD-like bias in SST, precipitation, and circulation 
which is well-documented in coupled GCMs (Li et al. 2015; 
Long et al. 2020). In comparison, the evolution and interan-
nual variability of coupled biases in the WEIO and EEIO 
remain less studied. This study, therefore, focused on these 
regional biases, examining their evolution on seasonal and 
interannual timescales and linking them to IOD SST vari-
ability and prediction. The analysis of coupled initialised 
GloSea6 seasonal hindcasts aimed to answer the questions 
presented at the start of the study.

a) How do mean-state biases in the atmosphere and sub-
surface ocean evolve in the WEIO and EEIO? The analysis 
focused on the evolution of coupled mean state biases in JJA 
and SON, given their importance for IOD development and 
maturity, respectively. Both JJA and SON mean state biases 
in SST, precipitation, and 850 hPa winds at LM0 (0-month 
lead time) showed a predominantly warm SST bias across 
the equatorial Indian Ocean, along with significant cold and 
southeasterly wind biases over the EEIO. This cold bias in 
the EEIO intensifies by LM2 (2-month lead time), forming a 
distinct dipole pattern with warming in the WEIO and cool-
ing in the EEIO. At LM2, the related JJA and SON precipi-
tation biases show a consistent dipole pattern, resembling a 
positive IOD with a wet bias in the WEIO and a dry bias in 
the EEIO.

Investigation of the seasonal cycles of SST and precipita-
tion over the WEIO and EEIO revealed a persistent WEIO 
warm bias throughout the year, in contrast to a EEIO cold 
bias that gradually increases in magnitude from JJA to SON. 
Correspondingly, an EEIO dry precipitation bias rapidly 
develops in JJA and SON, which contrasts the WEIO wet 
precipitation bias that only peaks later in SON. Analysis of 
the seasonal evolution of the biases in the atmosphere and 
subsurface ocean showed that the EEIO plays the leading 
role in the development of the large SST and precipitation 
biases in SON, especially for forecasts initialised in May. 
The sequence begins with a circulation bias in the EEIO 
during JJA, characterised by erroneous easterlies and a shal-
low thermocline, likely related to the boreal summer mon-
soon circulation. These biases in the wind and thermocline 
lead to upwelling of cooler subsurface water, reinforcing the 
cold SST bias and dry conditions in the EEIO in JJA. At 
the same time, the 850 hPa and 10 m easterly wind biases 
in the central equatorial Indian Ocean strengthen through 
JJAS, amplifying into SON via the Bjerknes feedback. This, 
in turn, leads to the intensification of the WEIO wet bias 
by SON. This seasonal sequence, beginning with the mon-
soon-driven circulation bias in JJA in the EEIO and culmi-
nating in a large wet bias in the WEIO in SON, highlights 
the seasonal dependence of coupled biases in these regions 
and the leading role of the EEIO in initiating coupled 

1 3

Page 13 of 16    328 



M. Gler et al.

Indian Ocean and IOD simulation in GloSea6. Annamalai 
et  al. (2003) suggest that equatorial Pacific SST anoma-
lies can modulate EEIO conditions through changes in the 
Walker circulation during boreal spring, potentially trig-
gering IOD events. More recently, McKenna et al. (2020) 
found that coupled GCMs with warmer SSTs in the western 
Pacific tend to exhibit stronger IOD events. Further research 
is needed to explore these broader Indo-Pacific interactions 
that can influence IOD-like mean state biases and poten-
tially impact IOD prediction in forecasts systems.

Overall, this study highlights of addressing regional 
biases in the WEIO and EEIO is essential for improving 
IOD representation in coupled forecast systems like Glo-
Sea6 to enhance the predictability of climate impacts over 
the countries surrounding the Indian Ocean.
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winter predictability barrier, resulting in a rapid decline in 
skill during the IOD’s decaying phase. This limitation has 
also been found in another fully coupled forecast system 
(Luo et  al. 2007), regardless of the start month, and in a 
coupled GCM (Feng et  al. 2014). GloSea6 has also been 
shown to overestimate the intensity of IOD events, particu-
larly during the development phase in JJA, as indicated by 
amplitude ratios exceeding 1 when comparing the predicted 
DMI to the observed DMI. Additionally, RMSE scores of 
the GloSea6 DMI, calculated against HadISST, reveal large 
prediction errors for SON when initialised in June. This sug-
gests that the monsoon circulation in JJA likely plays an 
important role in shaping the mean state and variability in 
the equatorial Indian Ocean.

These results suggest that reducing regional coupled 
biases over the equatorial Indian Ocean, particularly in the 
EEIO, could lead to improved IOD forecasts during SON 
in GloSea6, potentially from as early as May. Our analysis 
highlights the strong influence of atmospheric circulation 
biases during and after the onset of the summer monsoon 
in driving surface cooling through wind-driven upwelling, 
particularly over the EEIO.

Further research could perform ’nudging’ sensitivity 
experiments in the EEIO, such as the technique imple-
mented by Crétat et al. (2017) and Martin et al. (2021), to 
disentangle the local and remote contributions of the oceanic 
and atmospheric components to the coupled processes in 
the Indian Ocean. Martin et al. (2021) applied atmospheric 
nudging by relaxing the winds and air temperature back 
to reanalysis at all model levels over the whole globe and 
chosen sub-domain regions that may be local and remote 
sources of Indian Ocean systematic biases in the model.

While this present study focused on regional processes 
within the Indian Ocean, additional sources of bias may 
arise from remote influences. For example, recent studies 
have highlighted the potential role of the Southern Ocean 
in IOD variability and predictability (e.g. Zhang et al. 2020; 
Feba et al. 2021). Zhang et al. (2020) propose a mechanism 
in which cold SST anomalies and anomalous subtropical 
high pressure in the southern Indian Ocean generate south-
easterly winds that strengthen the monsoon off the coast of 
Sumatra during May-August, independent of ENSO. The 
enhanced southeasterly winds induce early SST cooling via 
upwelling and latent heat loss, initiating an early IOD onset 
over the eastern IOD pole. This mechanism highlights the 
importance of the summer monsoon atmospheric circula-
tion over the EEIO as a critical region in driving coupled 
processes that can influence the Indian Ocean mean state 
and variability.

In addition, we recognise the potential role of the equato-
rial Pacific Ocean and the representation of the Indonesian 
Throughflow that may influence the coupled biases in the 
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