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Abstract—Existing optimization-based methods for non-rigid
registration typically minimize an alignment error metric based
on the point-to-point or point-to-plane distance between corre-
sponding point pairs on the source surface and target surface.
However, these metrics can result in slow convergence or a loss
of detail. In this paper, we propose SPARE, a novel formulation
that utilizes a symmetrized point-to-plane distance for robust non-
rigid registration. The symmetrized point-to-plane distance relies
on both the positions and normals of the corresponding points,
resulting in a more accurate approximation of the underlying
geometry and can achieve higher accuracy than existing methods.
To solve this optimization problem efficiently, we introduce an
as-rigid-as-possible regulation term to estimate the deformed
normals and propose an alternating minimization solver using
a majorization-minimization strategy. Moreover, for effective
initialization of the solver, we incorporate a deformation graph-
based coarse alignment that improves registration quality and
efficiency. Extensive experiments show that the proposed method
greatly improves the accuracy of non-rigid registration problems
and maintains relatively high solution efficiency. The code is
publicly available at https://github.com/yaoyx689/spare.

Index Terms—non-rigid registration, symmetrized point-to-
plane distance, numerical optimization, surrogate function.

I. INTRODUCTION

G IVEN a source surface and a target surface, non-rigid
registration aims to compute a deformation field that

aligns the source surface with the target surface. This problem
is fundamental in computer vision, with various applications
such as 3D shape acquisition and tracking.

In non-rigid registration, the challenge lies in aligning two
surfaces without knowing their correspondence in advance.
Motivated by the ICP algorithm [1] for rigid registration, many
non-rigid registration methods iteratively update the correspon-
dence using closest point queries from the source points to the
target surface, and then update the deformation by minimizing
an alignment error metric between the corresponding points
along with some regularization terms for the deformation
field [2]–[4]. The quality and speed of the registration are
heavily influenced by the alignment error metric. A commonly
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used metric is the “point-to-point” distance, measured between
points on the source surface and their corresponding closest
points on the target surface [2]–[8]. However, due to the
unreliability of such correspondence, the registration may
converge to a local minimum and produce unsatisfactory results.
Another frequently used metric is the “point-to-plane” distance,
which measures the distance between source surface points
and the tangent planes at their closest points on the target
surface [9]–[13]. As the point-to-plane distance is a first-order
approximation of the target surface shape around the closest
point, it provides a more accurate proxy of the target shape
than the point-to-point distance and enables faster alignment of
the two surfaces. Despite these efforts, non-rigid registration
can still be challenging and time-consuming. In the rigid
registration literature, alignment error metrics that incorporate
higher-order geometric properties have been utilized to achieve
faster convergence than the point-to-plane distance [14], [15],
but such higher-order properties are expensive to compute.
Recently, a symmetrized point-to-plane metric was proposed
in [16] for rigid registration. It measures the consistency
between the positions and normals of each source point and
its corresponding closest point, and achieves the minimal
value when the pair of points lies on a second-order patch
of surface [16]. When used for rigid registration, this gains
similar benefits of fast convergence as registration methods
that exploit second-order surface properties, but without the
need for explicit computation of such properties.

In this paper, we propose SPARE, a novel method that
utilizes the Symmetrized Point-to-plAne distance for Robust
non-rigid 3D rEgistration. Although the symmetrized point-to-
plane distance works well on rigid registration, deploying it for
non-rigid registration is a non-trivial task. First, compared to
rigid transformations, accurately modeling the point normals on
surfaces undergoing complex non-rigid deformations presents
significant computational challenges due to their nonlinear
geometric dependencies. Second, there is a large space of point
pair positions and normals that can minimize the symmetrized
point-to-plane distance. While this is beneficial for rigid
registration problems with a limited degree of freedom, it can
be problematic for non-rigid registration: due to the excessive
degrees of freedom, the symmetrized point-to-plane distance
may be minimized without actually aligning the two surfaces.
Finally, in real-world applications, non-rigid registration is
often carried out between surface data with noise, outliers or
partial overlaps, which may lead to erroneous correspondence
for closest-point queries and impact the effectiveness of the
symmetrized point-to-plane distance. To estimate point normals
after deformation, we assume local surface deformation is
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nearly rigid. We therefore introduce an as-rigid-as-possible
(ARAP) regularization term. This ARAP term, in conjunction
with the symmetrized point-to-plane distance, contributes to a
more accurate approximation of the distance between surfaces.
Furthermore, to address the problem of excessive degrees of
freedom, we incorporate a deformation graph-based coarse
alignment. This not only helps the deformation field to maintain
local structures of the source shape, but also reduces the degrees
of freedom and restores the effectiveness of the symmetrized
point-to-plane distance for non-rigid registration. In addition,
to address the issue of erroneous correspondence due to
noise, outliers and partial overlaps, we incorporate an adaptive
weight into the symmetrized point-to-plane metric, which is
computed according to the positions and normals of each
point pair and automatically reduces the influence of unreliable
correspondence.

As the resulting optimization problem is non-convex and
highly non-linear, we devise an iterative solver that alter-
nately updates the subsets of the variables, decomposing
the optimization into simple sub-problems that are easy to
solve. In particular, in each iteration we adopt a majorization-
minimization strategy [17] and construct a proxy problem
that minimizes a simple surrogate function that bounds the
target function from above, enabling us to derive closed-form
update steps that can effectively reduce the original target
function. Moreover, to effectively initialize the solver and avoid
undesirable local minima, we propose a strategy that uses a
deformation graph [18] to roughly align the two surfaces while
maintaining the structure of the source shape.

We perform extensive experiments to evaluate our method
on both synthetic and real datasets. Our method outperforms
state-of-the-art optimization-based and learning-based methods
in terms of accuracy and efficiency. To summarize, our
contributions include:
• We formulate a novel optimization-based approach for non-

rigid registration problem. Our formulation adopts a robus-
tified symmetrized point-to-plane distance in conjunction
with an as-rigid-as-possible regularization term, significantly
enhancing the robustness and accuracy of the registration
solution.

• We propose an efficient alternating minimization solver
for the resulting non-convex optimization problem, using
a majorization-minimization strategy to derive simple sub-
problems that effectively reduce the target function.

• We devise an effective initialization strategy for the solver,
by using a deformation graph-based coarse alignment that
maintains the overall structure of the source shape.

II. RELATED WORK

In the following, we review existing works closely related
to our approach. More complete overviews of non-rigid
registration can be found in recent surveys such as [19], [20].

A. Alignment Error Metric

For optimization-based non-rigid registration, the alignment
error metric is an important component in the formulation.
Many existing methods adopt the simple point-to-point distance

from the classical ICP algorithm [2], [6], [8], [21], [22]. Others
use the point-to-plane distance instead [11]–[13], [23]–[26],
which benefits from faster convergence than the point-to-point
distance albeit being more complicated to solve. Some methods
utilize both metrics to complement each other [7], [9], [27]–
[31]. Another class of methods, such as the coherent point
drift (CPD) [32], models the sample points using Gaussian
mixtures and formulates the alignment error from a probabilistic
perspective [32]–[35]. Recently, a Bayesian formulation of
CPD has been proposed in [36], with further work in [37],
[38] to improve its performance and accuracy. In [39], CPD
is also generalized to non-Euclidean domains to improve its
robustness on data with large deformations. However, when
the data quality is poor, e.g., with the presence of noise or
partial overlap, the registration quality will degrade rapidly.

To address this problem, some methods assign individual
weights to each point pair in the alignment metric to reduce
the impact of erroneous correspondence [2], [6], [7]. Others
apply a robust norm (such as the ℓ0-norm or the Welsch’s
function) to the alignment metric, which automatically reduces
the contribution of point pairs that are less reliable [8], [12],
[30], [40], [41]. Recently, DDM [42] proposes a distance
metric based on directional distance fields (DDF) featuring
a confidence score for enhanced alignment of 3D geometric
surfaces. Separately, [16] introduces a symmetrized point-to-
plane metric that considers higher-order properties of surfaces.
Our method incorporates this latter metric from [16] with
an adaptive weighting scheme for non-rigid registration; this
approach yields a robust alignment error metric and ultimately
leads to improved alignment performance.

B. Deformation Field

The performance of non-rigid registration also depends on
the representation of the deformation field. A simple approach is
to introduce a variable for the new position or transformation
of each source point [3], [21], [43]. Such a representation
provides abundant degrees of freedom to represent complex
deformations, but the resulting problem is often expensive
to solve due to the large number of variables. Other meth-
ods address this problem using an embedded deformation
graph [18], where each source point is deformed according
to the transformations associated with the nearby nodes of a
small graph on the surface [6], [8], [9], [44]. This reduces the
number of variables and improves computational efficiency,
at the cost of less expressiveness due to fewer degrees of
freedom. [45], [46] leverage model priors to parameterize
deformations into a set of pose and shape parameters. Recent
advancements in neural networks and deep learning have intro-
duced new strategies for representing deformation fields. Some
methods directly leverage neural networks for this task [47],
[48]. Others focus on reduced-dimensional representations,
employing deformation nodes, control points, or neural bones to
represent the reduced-dimensional deformation field [49]–[51].
Various specific techniques have also emerged: for instance,
[52], [53] iteratively predict the offset of each point based
on a per-vertex neural network; [54] introduces a basis point
set representation to predict the positions of deformed mesh
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points; [55] utilizes a combination of rigid transformations to
predict non-rigid deformations. [56], [57] adopt a bijective map
to model the reversible deformation field between two shapes;
and [58] employs the structure of an encoder and decoder to
predict deformation. However, these learning-based approaches
can exhibit data dependencies. In this paper, we propose a
combination of coarse alignment using a deformation graph
and fine registration based on pointwise variables, designed to
achieve high solution accuracy while maintaining fast solution
speed.

C. Correspondences

Due to initially unknown correspondences, optimization-
based methods generally follow the ICP algorithm’s
paradigm [1], which involves iteratively regarding the closest
points as correspondences and applying optimization steps to
gradually converge to an optimal solution. In recent years,
deep learning techniques have also been adopted to deal with
challenging non-rigid registration problems. Many methods
rely on supervised learning to improve the quality of the
alignment. Some methods learn the correspondences between
source and target surfaces from ground-truth correspondences,
which helps to handle data with large deformations [59]–[65].
Others use the ground-truth positions of the deformed model as
the supervision to train the network to learn the correspondences
or the deformation fields [60], [66], [67]. Despite their strong
capabilities, these methods rely on training data with ground-
truth correspondence or deformation, which is not always
easy to obtain. Some unsupervised methods that do not
require ground-truth correspondence have also been proposed
to address this problem [53], [55], [68], [69]. Such methods
still rely on a properly designed loss function that is minimized
during training to help the network learn the registration. Some
methods [60], [67] incorporate additional information, such as
texture or colors, to assist in the establishment of corresponding
points. Despite the rapid progress in learning-based methods,
research into optimization approaches still advances the field
in a complementary way: such approaches do not rely on
data and have stronger generalization capability. On the data
with relatively small deformation, they can usually achieve
higher accuracy. They may be used to compute the required
ground-truth information for supervised learning, and they
can also contribute to the knowledge of loss function design
for unsupervised methods. Furthermore, optimization-based
methods can be integrated with correspondences predicted
by learning-based methods to reduce reliance on the spatial
positions of the source and target, thereby achieving better
performance.

III. PROPOSED METHOD

Consider a source surface represented by sample points
V = {v1, ...,v|V| ∈ R3} equipped with normals Ns =
{n1, ...,n|V| ∈ R3}, and a target surface represented by
sample points U = {u1, ...,u|U| ∈ R3} with normals
Nt = {nt

1, ...,n
t
|U| ∈ R3}. We assume that the neighboring

relation between the source sample points in V is represented by
a set of edges E = {(vi,vj)}. This representation is applicable

to both meshes and point clouds: the sample points are either
mesh vertices or points within a point cloud, while the edges
are either mesh edges or derived from the k-nearest neighbors
in the point cloud. The normals can come directly from the
input data, be estimated from nearby points using PCA, or
calculated by averaging the normals of adjacent faces in a
mesh.

We aim to compute a deformation field for the source surface
to align it with the target surface. In practical applications,
the non-rigid registration problem is inherently challenging
due to partial overlap, the lack of known corresponding point
pairs, and the presence of noise and outliers in both the
source and target surfaces. To this end, we propose a novel
optimization formulation for non-rigid registration, utilizing
a robust symmetrized point-to-plane (SP2P) distance metric
and an as-rigid-as-possible (ARAP) regularization term in
the target function (Sections III-A & III-B). To efficiently
solve the resulting non-convex optimization, we derive a
majorization-minimization (MM) solver that decomposes it into
simple sub-problems with closed-form solutions (Section III-C).
Furthermore, to avoid local minima and improve the solution
accuracy and speed, we introduce a deformation graph-based
coarse alignment to initialize our MM solver (Section III-D).

A. Preliminary: Symmetrized Point-To-Plane Distance

A central component for optimization-based registration is
the alignment error metric that penalizes the deviation between
the source surface and the target surface. Many existing non-
rigid registration methods adopt a simple point-to-point metric
that originates from rigid registration [1]:

Ei
PP = ∥v̂i − uρi

∥2, (1)

where v̂i is the new position of vi after the deformation,
and uρi

is the closest target point to v̂i. This allows for
a simple solver that iteratively updates the closest point
correspondence and re-computes the deformation according to
the correspondence [2], similar to the classical ICP algorithm
for rigid registration [1]. However, this metric may not
accurately measure the alignment error: as the source and
target point clouds may be sampled from different locations
of the underlying surface, they may not fully align under
the ground-truth deformation, and the point-to-point metric
may not reach its minimum in this case. Moreover, the fixed
closest points in each iteration fail to account for the change of
correspondence for the moving source points, which can lead
to slow convergence, especially when the alignment requires
tangential movement along the target surface [15]. To address
such issues, other methods adopt a point-to-plane metric from
the rigid registration literature [70]:

Ei
PPL = [nt

ρi
· (v̂i − uρi

)]2, (2)

where nt
ρi

is the normal vector at uρi
. The metric penalizes the

deviation from the tangent planes at the closest target points.
Since the tangent plane is a first-order approximation of the
target surface around the closest point, this metric helps to
account for the target surface shape away from the sample
points and leads to faster convergence than the point-to-point
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Fig. 1. The target positions of the points on the source surface when minimizing different distance metrics. Here, we only show the position and the normal
vector of a potential minimum point. When considering the point-to-plane distance, the position of the minimum point may slide along the tangent plane of
the target point. For the symmetrized point-to-plane distance, the minimum point may slide along a symmetric surface that passes through the source point.
Additionally, for the point-to-point distance and the point-to-plane distance, the normal vector of the minimum point may rotate around the minimum point.

metric [15]. In the rigid registration literature, alignment error
metrics that encode higher-order geometric properties (such
as local curvatures) have also been adopted for even faster
convergence than the point-to-plane metric [14], [15]. However,
such higher-order properties can be expensive to compute.

To achieve faster convergence than the point-to-plane dis-
tance without evaluating higher-order properties, a symmetrized
point-to-plane (SP2P) metric (see Fig. 1) has been proposed
recently in [16] for rigid registration:

Ei
SPPL = [(n̂i + nt

ρi
) · (v̂i − uρi

)]2, (3)

where n̂i is the normal at the point v̂i on the deformed surface.
Here, the term (n̂i + nt

ρi
) · (v̂i − uρi) vanishes when the

corresponding point pair (v̂i,uρi
) and their normals (n̂i,n

t
ρi
)

are consistent with a locally quadratic surface centered between
them [16]. In other words, the metric can be considered as
penalizing the deviation between the deformed source point
v̂i and a family of quadratic approximations of the target
surface that are consistent with the corresponding target point
uρi

and its normal nt
ρi

. It has been observed in [16] that
the symmetrized point-to-plane metric (3) leads to faster
convergence of ICP than the point-to-plane metric (2).

B. Non-rigid Registration with Robust SP2P Distance

In this paper, we adopt the SP2P distance in Eq. (3)
to propose a new optimization formulation for non-rigid
registration, to benefit from its fast convergence. However,
in real-world applications, the closest-point correspondence
can become unreliable due to partial overlap, noise, outliers,
and large initial position differences in the input surfaces. In
such cases, the error metric on unreliable point pairs may steer
the optimization toward an erroneous alignment. One common
solution is to use dynamically adjusted weights for individual
source points to control their contribution to the alignment
energy based on the reliability of their correspondence [71].
Following this idea, we introduce a weighted alignment term
for the source point vi as

Ei
align = αi[(n̂i + nt

ρi
) · (v̂i − uρi

)]2, (4)

where the weight αi is computed based on the deformed
position v̂′

i, the corresponding point uρ′
i
, and their normals

n̂′
i,n

t
ρ′
i

in the previous iteration:

αi =


0, n̂′

i · nt
ρ′
i
< 0,

exp(−
∥v̂′

i − uρ′
i
∥2

2σ2
), otherwise,

(5)

where σ is a user-specified parameter. We set σ to the median
Euclidean distance from the initial source points to their closest
target points. The weight αi has a large value only if both the
positions and normals of the point pair are close to each other,
thus reducing the influence of unreliable correspondence.

Another challenge in using the SP2P metric for non-rigid
registration is that although it works well for rigid registration,
using it alone for non-rigid registration is usually insufficient
to achieve good results. This is because compared to the
point-to-point and point-to-plane metrics, the SP2P metric
has a much larger space of position and normal values with
a zero metric value: on the zero level set, the positions and
normals of the point pair are only required to be consistent
with a certain quadratic surface patch, but the quadratic patch
is not necessarily consistent with the target surface. This is
not an issue for rigid registration: since all the source points
must undergo the same rigid transformation, this induces an
implicit regulation for the deformed source points and their
normals, forcing them to align with the target surface eventually.
Furthermore, in non-rigid registration, the source surface
may undergo different deformations, making it challenging
to accurately model the normal direction after deformation. We
notice that in many non-rigid registration problems such as
human body tracking, the surface exhibits local rigidity during
deformation. Therefore, we introduce for each source point
an as-rigid-as-possible (ARAP) term [72] to help estimate the
normal direction after deformation. The ARAP term constrains
the deformation in its local neighborhood to be close to a rigid
transformation:

Ei
ARAP =

1

|N (vi)|
∑

j∈N (vi)

∥(v̂i − v̂j)−Ri(vi − vj)∥2. (6)

Here N (vi) is the index set of neighboring points for vi, and
Ri ∈ R3×3 is an auxiliary rotation matrix variable for a rigid
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transformation associated with the source point vi (i.e., it needs
to satisfy RT

i Ri = I and det(Ri) = 1). Therefore, we can
use the auxiliary rotation matrix Ri to approximate the normal
of v̂i after the deformation as

n̂i = Rini, (7)

so that the alignment term in Eq. (4) becomes

Ei
align = αi[(Rini + nt

ρi
) · (v̂i − uρi

)]2. (8)

Combining the alignment term (8) and the ARAP term (6) for
all source points, we obtain the overall alignment term and
ARAP term as

Ealign =
1

|V|
∑
vi∈V

Ei
align, EARAP =

1

2|E|
∑
vi∈V

Ei
ARAP. (9)

Our non-rigid registration is formulated as an optimization
problem

min
{v̂i},{Ri}

Ealign + wARAPEARAP

s.t. RT
i Ri = I, det(Ri) = 1, ∀ i,

(10)

where wARAP is a user-specified parameter.

C. Numerical Solver

The optimization problem (10) is challenging due to the non-
linearity, non-convexity, and constraints of rotation matrices. To
solve it efficiently and effectively, we devise an iterative solver
that alternately updates the closest points {uρi

}, the position
variables {v̂i}, and the rotation matrix variables {Ri} while
fixing the remaining variables. We denote their values after the
k-th iteration as {u

ρ
(k)
i

}, {v̂(k)
i }, and {R(k)

i }, respectively. In
the following, we explain how to update their values in the
(k+1)-th iteration.

Update of {uρi
}. Following the solver in [16], we fix the

source point positions v̂
(k)
i and update closest points via

ρ
(k+1)
i = argmin

ρi∈{1,...,|U|}
∥uρi

− v̂
(k)
i ∥. (11)

Afterward, we also compute the updated robust weights
{α(k+1)

i } according to Eq. (5).

Update of {v̂i}. After updating {uρi
}, we fix the closest points

{u
ρ
(k+1)
i

}, rotations {R(k)
i }, and robust weights {α(k+1)

i }, and
minimize the target function in Eq. (10) with respect to {v̂i}.
It is a linear least-squares problem and can be solved via a
linear system. Details can be found in Appx. A-A.

Update of {Ri}. Finally, we update the rotation matrices
{Ri} by fixing {v̂(k+1)

i } and {u
ρ
(k+1)
i

} and minimizing the
target function with respect to {Ri}. This is reduced to an
independent sub-problem for each Ri:

min
Ri

α
(k+1)
i [(Rini + nt

ρ
(k+1)
i

) · (v̂(k+1)
i − u

ρ
(k+1)
i

)]2

+ ω
∑

vj∈N (vi)

∥(v̂(k+1)
i − v̂

(k+1)
j )−Ri(vi − vj)∥2,

s.t. RT
i Ri = I, det(Ri) = 1, (12)

where ω =
wARAP · |V|

|N (vi)| · 2|E|
. As far as we are aware, there is no

closed-form solution to this problem. For an efficient update,
we adopt the idea of majorization-minimization (MM) [17]
and minimize a convex surrogate function F (Ri | R(k)

i ) that
is constructed based on the current variable value R

(k)
i . The

surrogate function should bound the original target function F

from above and have the same value as F at R(k)
i , i.e.,

F (Ri | R(k)
i ) ≥ F (Ri) ∀ Ri,

F (R
(k)
i | R(k)

i ) = F (R
(k)
i ).

(13)

As a result, the minimizer of F (Ri | R
(k)
i ) is guaranteed

to decrease the original target function F compared to R
(k)
i ,

unless R
(k)
i is already a local minimum of F (in which case

the minimizer of F (Ri | R(k)
i ) will be exactly R

(k)
i ) [17]. In

the following, we will derive a simple surrogate function that
allows for a closed-form solution, enabling fast and effective
update of {Ri}.

First, we note that the squared term [(Rini + nt

ρ
(k+1)
i

) ·

(v̂
(k+1)
i − u

ρ
(k+1)
i

)]2 in Eq. (12) can be written as

f(Ri) = [(Rini + nt
i) · d]2, (14)

where d = v̂
(k+1)
i −u

ρ
(k+1)
i

and nt
i = nt

ρ
(k+1)
i

. Then, we have

Proposition 1. If d ̸= 0, then f(Ri) in Eq. (14) satisfies

f(Ri) = ∥d∥2 ·minh∈P ∥Rini − h∥2, (15)

where P is a plane containing all vectors h ∈ R3 that satisfy

(h+ nt
i) · d = 0, (16)

i.e., f(Ri) is the squared distance from Rini to the plane P ,
scaled by a factor ∥d∥2.

Proof. If d ̸= 0, then for any vector h satisfying (16) we have

f(Ri) = [(Rini − h+ h+ nt
i) · d]2

= [(Rini − h) · d+ (h+ nt
i) · d]2

= [(Rini − h) · d]2.
(17)

Moreover, the plane P defined by (16) has a unit normal vector
d

∥d∥ . Since h belongs to the plane P , we have

[(Rini − h) · d]2 = ∥d∥2 ·
[
(Rini − h) · d

∥d∥

]2
. (18)

Note that (Rini − h) · d
∥d∥ is the signed distance from Rini

to the plane P . Therefore,[
(Rini − h) · d

∥d∥

]2
= min

h∈P
∥Rini − h∥2. (19)

Using Eqs. (17), (18) and (19), we obtain Eq. (15).

Based on Eq. (15), we can construct a surrogate function
for f at the variable value R

(k)
i as:

f(Ri|R(k)
i ) = ∥d∥2 · ∥Rini − h

(k)
∗ ∥2, (20)

where h
(k)
∗ is the closest projection of R(k)

i ni onto the plane
P , i.e., h(k)

∗ = argminh∈P ∥R(k)
i ni −h∥ (see Appx. A-B for
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a proof that f(Ri|R(k)
i ) satisfies the conditions of a surrogate

function).
It is easy to show that h(k)

∗ can be computed as

h
(k)
∗ = R

(k)
i ni − d

(
nt
i +R

(k)
i ni

)
· d

∥d∥2
. (21)

By replacing f(Ri) with its surrogate function in Eq. (20),
we replace the optimization problem (12) with the following
proxy problem:

min
Ri

α
(k+1)
i ∥d∥2 · ∥Rini − h

(k)
∗ ∥2

+ ω
∑

vj∈N (vi)

∥(v̂(k+1)
i − v̂

(k+1)
j )−Ri(vi − vj)∥2,

s.t. RT
i Ri = I, det(Ri) = 1.

This problem has a closed-form solution [73]:

R
(k+1)
i = VS

1 1
det(VSU

T
S )

UT
S , (22)

where the matrices US, VS are from the SVD

S = USΣSV
T
S

for the matrix

S = α
(k+1)
i ∥d∥2ni(h

(k)
∗ )T

+ ω
∑

vj∈N (vi)

(vi − vj)(v̂
(k+1)
i − v̂

(k+1)
j )T

= α
(k+1)
i

(
∥d∥2ni(n̂

(k)
i )T − nid

T ((nt

ρ
(k+1)
i

+ n̂
(k)
i ) · d)

)
+ ω

∑
vj∈N (vi)

(vi − vj)(v̂
(k+1)
i − v̂

(k+1)
j )T

(23)
where n̂

(k)
i = R

(k)
i ni. Note that although the above derivation

is based on Proposition 1 which requires d ̸= 0, the solution
in Eq. (22) remains effective when d = 0: in this case, the
target function in (12) reduces to

ω
∑

vj∈N (vi)

∥(v̂(k+1)
i − v̂

(k+1)
j )−Ri(vi − vj)∥2,

and the matrix S in Eq. (23) becomes

S = ω
∑

vj∈N (vi)

(vi − vj)(v̂
(k+1)
i − v̂

(k+1)
j )T .

Then the matrix R
(k+1)
i in Eq. (22) is exactly the solution to

the reduced optimization problem [73]. Later in Sec. IV-C, we
will showcase the benefits of this solution for updating {Ri}.

Termination criteria. We stop the iteration if at least one
of the following conditions is satisfied: (1) the ℓ2 norm of
the point position changes in an iteration is less than a
threshold, i.e., ∥V̂(k+1) − V̂(k)∥/

√
|V| < ϵ , where ϵ is a

user-specified parameter (we set ϵ = 10−4 in our experiments;
(2) the number of iterations reaches an upper bound K (we
set K = 30). Algorithm 1 summarizes our solver for the
optimization problem in Eq. (10).

Algorithm 1: Non-rigid registration with robust SP2P
distance.

Input: {vi,ni}|V|
i=1: the source points and normals;

{ui,n
t
i}

|U|
i=1: the target points and normals;

K: maximum number of iterations;
ϵ: convergence threshold.

Result: The deformed point positions {v̂i}|V|
i=1.

1 Set R(0)
i = I and v̂

(0)
i = vi for all i;

2 k = 0;
3 while k < K and ∥V̂(k+1) − V̂(k)∥/

√
|V| < ϵ do

4 For each i ∈ V , find the closest point u
ρ
(k+1)
i

for

v̂
(k)
i ;

5 Compute weight α(k+1)
i with Eq. (5);

6 Compute {v̂(k+1)
i } via linear system (32);

7 Compute {R(k+1)
i } with Eq. (22);

8 n̂
(k+1)
i = R

(k+1)
i ni;

9 k = k + 1;
10 end while

D. Coarse Alignment Using a Deformation Graph

Our numerical solver presented in Sec. III-C is a local solver
that searches for a stationary point near the initial solution.
Therefore, proper initialization is crucial for achieving desirable
results. To this end, we initialize the solver with a coarse
alignment computed using a deformation graph [18]. The
deformation graph controls the source surface shape with
a reduced number of variables, allowing us to efficiently
determine a deformation that roughly aligns the two surfaces
while preserving the structure of the source shape.

Specifically, to construct a deformation graph, we follow [4]
and first uniformly sample a subset VG = {p1, . . . ,p|VG |} from
V as the deformation graph nodes, so that the number of nodes
is much smaller than the number of source points. Next, we
establish an edge set EG by connecting the neighboring nodes,
thereby deriving a deformation graph G = {VG , EG}. We then
assign to each node an affine transformation, represented by a
matrix Aj ∈ R3×3 and a vector tj ∈ R3. The transformations
at the nodes determine the deformation of each source point
vi as

v̂i =
∑

pj∈I(vi)

wij · (Aj(vi − pj) + pj + tj), (24)

where I(vi) = {pj ∈ VG | D(vi,pj) < R} is the node set
that affects vi, with D(·, ·) denoting the geodesic distance and
R being the sampling radius. We set R = 10 · ls by default,
where ls is the average edge length of the source surface. The
weight wij for the influence of pj on vi is defined as [4]:

wij =
(1−D2(vi,pj)/R

2)3∑
pk∈I(vi)

(1−D2(vi,pk)/R2)3
.

Using the deformation graph, we perform a coarse alignment by
optimizing the transformation variables {(Aj , tj)} associated
with the nodes.

The target function is a combination of the following terms:
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• Alignment and ARAP terms. We use an alignment term
EC

align and an ARAP term EC
ARAP similar to the ones presented

in Sec. III-B but with two main differences: (1) the deformed
source point position v̂i is computed from the deformation
graph according to Eq. (24); (2) as only a rough alignment
is needed, we apply the alignment term only to a sampled
subset S of the source points V to reduce computation, i.e.,

EC
align =

1

|S|
∑

vs∈S
Es

align, (25)

where Es
align is defined in the same way as Eq. (4). By default,

we set the number of sampling points to 3000.
• Other regularization terms. To ensure the deformation

graph induces a smooth deformation that preserves the
structure of the source shape, we introduce two additional
regularization terms Esmo and Erot from [4] to enforce the
smoothness and rigidity of the transformations, respectively.

Using these terms, our optimization problem for coarse
alignment can be written as

min
{(Aj ,tj)},{Ri}

EC
align + wC

ARAPE
C
ARAP + wsmoEsmo + wrotErot,

(26)
where {Ri} are auxiliary rotation matrix variables for the
alignment and ARAP terms. Similar to Sec. III-C, we solve
this problem by alternating updates of the variables using an
MM strategy. Details of the solver can be found in Appx. A-C.

IV. RESULTS

We conducted comprehensive performance comparisons
of the proposed method with the state-of-the-art non-rigid
registration methods. In addition, we evaluated the effectiveness
of the components in our formulation. This section provides
details of our experiment settings and results.

A. Experiment Settings

To assess the effectiveness and accuracy of our method,
we conducted comparisons with several existing methods: the
non-rigid ICP method (N-ICP) from [2]; the Welsch function-
based formulation from [4] (AMM); the Bayesian Coherent
Point Drift method (BCPD) [36] and its variants BCPD++ [37]
and GBCPD/GBCPD++ [38]. Additionally, we compared our
method with state-of-the-art learning-based methods, including
LNDP [74], SyNoRiM [75], and GraphSCNet [63]. The compar-
isons were performed using the open-source implementations
of these methods1,2,3,4,5,6. All methods were evaluated using a
synthetic dataset, the DeformingThings4D (DT4D) dataset [76],
and real datasets including the articulated mesh animation
(AMA) dataset [77], the SHREC’20 Track dataset [78] the
DFAUST dataset [46] and the BEHAVE dataset [79]. Addi-
tionally, we assessed all optimization-based methods using real
datasets including DFAUST [46], DeepDeform [60] and the

1https://github.com/Juyong/Fast RNRR
2https://github.com/yaoyx689/AMM NRR
3https://github.com/ohirose/bcpd
4https://github.com/rabbityl/DeformationPyramid
5https://github.com/huangjh-pub/synorim
6https://github.com/qinzheng93/GraphSCNet

face sequence from [27], to test their effectiveness for non-
rigidly tracking. For each dataset, we tuned the parameters of
each optimization-based method to achieve the best overall
performance. For learning-based methods, we used the pre-
trained models provided by the authors for testing. Detailed
parameter settings can be found in Appx. C.

The optimization-based methods were run on a PC with
32GB of RAM and a 6-core Intel Core i7-8700K CPU at
3.70GHz. They were all running on Ubuntu 20.04 LTS system
built with Docker and all leveraged multi-thread acceleration on
the CPU. All learning-based methods were running on a server
equipped with an NVIDIA RTX A6000 GPU and utilized
CUDA acceleration. For all problem instances, we scaled the
source surface and target surface with the same scaling factor,
such that the two surfaces are contained in a bounding box with
a unit diagonal length to test all comparison methods. To have
a clear error scale, we rescale the model to its original size and
calculate the error in meters. In the subsequent presentation of
numerical results in tables, we highlight the best results using
bold fonts, while underlining the second-best results for clarity
and emphasis. In all result figures, we render the target surface
in yellow, while the source surface and the deformed surface
are rendered in blue.

For the evaluation metric, we calculated the root-mean-square
error between the deformed positions and the ground-truth
positions, referring to [4], [8], to measure the registration
error:

RMSE =

√
1

|V|
∑

vi∈V
∥v̂i − v̂∗

i ∥2, (27)

where v̂∗
i is the ground-truth positions for v̂i. Since some

data do not have ground-truth deformed positions but provide
ground-truth correspondences, we also calculate the distance
error between the correspondences, similar to [80], [81]:

Correrr =
1

|C|
∑

(i,j)∈C
DV(vτj ,vi), (28)

where C is the set of ground-truth correspondence pairs. For
a given target point uj , vi is the ground-truth corresponding
point on the source surface, while vτj is the corresponding
point obtained from the registration result where its deformed
position v̂τj is the closest to uj on the deformed source surface.
When the geodesic distance can be calculated for surface V ,
DV(·, ·) represents the geodesic distance between two points
on surface V . Otherwise, for example, if the source surface is
discretized as a mesh with multiple connected parts, DV(·, ·)
represents the Euclidean distance between two points. In the
following experiments, only the “crane” sequences from the
AMA dataset [77] with partial overlaps use the Euclidean
distance for error calculation. In addition, following established
practices [80], [81], we plotted cumulative curves (representing
the percentage of correspondences with errors below a varying
threshold) and computed the area under these curves (AUC).

B. Comparison with State-of-the-Art Methods

Clean data. We evaluated different registration methods using
the AMA dataset [77] to assess their performance in continuous

https://github.com/Juyong/Fast_RNRR
https://github.com/yaoyx689/AMM_NRR
https://github.com/ohirose/bcpd
https://github.com/rabbityl/DeformationPyramid
https://github.com/huangjh-pub/synorim
https://github.com/qinzheng93/GraphSCNet
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#S: 10002

#T: 10002

AMM: 0.009, 2.47s

BCPD++: 0.029, 1.10s GBCPD++: 0.014, 1.65s

GraphSCNet: 0.082, 1.35s

GBCPD: 0.007, 10.06s

LNDP: 0.023, 2.76s N-ICP: 0.043, 67.30s 

BCPD: 0.019, 14.97s Ours: 0.004，0.85s 

SyNoRiM: 0.029, 0.49s

0.094m

0

0.054m

0

#S: 10002

#T: 10002

AMM: 0.015, 2.97s

BCPD++: 0.023, 1.02s GBCPD++: 0.019, 2.95s

GraphSCNet: 0.091, 1.44s

GBCPD: 0.015, 12.51s

LNDP: 0.028, 2.36s N-ICP: 0.029, 83.23s 

BCPD: 0.015, 12.57s Ours: 0.011，0.87s 

SyNoRiM: 0.052, 0.53s

Fig. 2. Results from different methods on two problem instances from the “handstand”(top) and “march1”(bottom) sequences from [77]. For each method, we
show the deformed mesh (left), alignment result (right-bottom), and an error map (right-top) that visualizes the distance between each point and its ground-truth
corresponding points, as well as the RMSE and the computational time.

TABLE I
AVERAGE VALUES OF RMSE (×0.01) ↓ / CORRERR (×0.01) ↓ / AUC ↑ AND
COMPUTATIONAL TIME (S) ON “HANDSTAND” AND “MARCH1” SEQUENCES

FROM [77].

Method handstand march1

Accuracy Time Accuracy Time

N-ICP [2] 3.03 / 2.17 / 0.81 66.58 1.67 / 1.18 / 0.89 39.84
AMM [4] 1.19 / 0.62 / 0.94 2.35 0.70 / 0.21 / 0.98 1.51

BCPD [36] 1.29 / 0.79 / 0.92 4.97 1.18 / 0.76 / 0.93 5.40
BCPD++ [37] 1.71 / 1.31 / 0.87 3.21 1.74 / 1.29 / 0.88 3.33
GBCPD [38] 1.14 / 0.62 / 0.94 10.07 0.55 / 0.15 / 0.99 9.53

GBCPD++ [38] 1.46 / 1.09 / 0.89 2.68 1.08 / 0.73 / 0.93 2.38
GraphSCNet [63] 9.44 / 7.61 / 0.40 1.95 7.23 / 6.96 / 0.46 1.85

LNDP [74] 2.23 / 1.93 / 0.81 1.90 1.85 / 1.39 / 0.87 1.43
SyNoRiM [75] 3.20 / 2.83 / 0.73 0.54 2.20 / 1.93 / 0.83 0.48

Ours 0.86 / 0.38 / 0.96 0.96 0.26 / 0.03 / 1.00 0.80

sequence scenarios. The dataset consists of 10 sequences of
human continuous motion captured from real-world scenarios,
and data have been processed into triangular meshes with the
same connectivity structure in each sequence. Following [4], we
focused on the “handstand” and “march1” sequences from [77].
For each sequence, we selected 50 pairs of models to test,

considering the i-th mesh as the source model and the (i+2)-th
mesh as the target model, where 8 ≤ i < 48.

In Tab. I, we present the average values of RMSE, Correrr,
AUC and average computation time for each sequence. Ad-
ditionally, we provide visualizations of two specific cases in
Fig. 2 and the cumulative curves in Fig. 6. From the results, it
can be observed that our method achieves the highest accuracy
in terms of RMSE, Correrr, and AUC among all compared
methods. Furthermore, the average computation time of our
method is the second shortest and only longer than SyNoRiM,
which is a learning-based method with GPU acceleration.

Partial overlaps. In practice, many non-rigid registration
problems involve surface pairs with partial overlaps that
increase the difficulty of registration. To evaluate the methods
on such data, we used the “crane” sequence from the AMA
dataset [77] as test cases. We first selected ten pairs of meshes
{(ms

j ,m
t
j) | j = 1, . . . , 10} from the crane sequence, each

consisting of two adjacent frames in the sequence. For each
mesh pair, we derived nine pairs of point clouds by simulating
depth cameras from a fixed view angle vs for the source mesh
ms

j , and from nine different view angles for angle {vt1, ..., vt9}
for the target mesh mt

j with increasing deviation from the
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0

0.1m

#S: 29927

#T: 26660
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#S: 29927

#T: 26168
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4th view,  Overlap rate:  60%

7th view,  Overlap rate:  42%

Ours: 0.006，4.46s 

SyNoRiM: 0.158, 0.53s

Ours: 0.004，2.35s 

SyNoRiM: 0.036, 0.57s

Ours: 0.005，3.72s 

SyNoRiM: 0.103, 0.63s

AMM: 0.022, 21.25s

BCPD++: 0.050, 1.43s

AMM: 0.007, 16.33s

BCPD++: 0.027, 1.13s

AMM: 0.009, 15.73s

BCPD++: 0.047, 1.15s

GBCPD++: 0.071, 1.99s

GraphSCNet: 0.112, 4.54s

GBCPD++: 0.052, 2.00s

GraphSCNet: 0.129, 4.75s

GBCPD++: 0.074, 1.87s

GraphSCNet: 0.099, 4.46s

GBCPD: 0.084, 18.43s

LNDP: 0.117, 13.50s 

GBCPD: 0.069, 45.12s

LNDP: 0.064, 12.00s 

GBCPD: 0.071, 18.32s

LNDP: 0.165, 17.57s 

N-ICP: 0.071, 139.00s 

BCPD: 0.102, 10.51s

N-ICP: 0.036, 328.61s 

BCPD: 0.054, 13.73s

N-ICP: 0.050, 328.58s 

BCPD: 0.098, 9.52s

Fig. 3. The results obtained from different methods on problem instances with partial overlaps from [77]. For each method, we show the deformed mesh (left),
the alignment result (right-bottom), and an error map (right-top) that visualizes the distance between the ground-truth correspondences in the overlapping area
defined by Eq. (29) (Points with no correspondence are marked in gray), and label the value of Correrr and the computational time.

source view angle. This results in nine pairs of point clouds
for each mesh pair, with decreasing overlap ratios. we report
the average values of the following overlap ratio o for all pairs

using the same view angles:

o =
|{vi | ∥v̂∗

i − u
ρ
(∗)
i

∥ < lt/
√
3}|

|V|
, (29)

where v̂∗
i is vi’s position under the ground-truth deformation,

u
ρ
(∗)
i

is the closest target point to v̂∗
i , and lt is the average
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#T: 10636

N-ICP: 0.038, 77.76s AMM: 0.025, 5.60s

Ours: 0.022,  1.64s BCPD: 0.032, 15.26s BCPD++: 0.033, 1.98s GBCPD: 0.032, 4.84s GBCPD++: 0.034, 1.43s

LNDP: 0.183, 3.12s GraphSCNet: 0.040, 1.40s SyNoRiM: 0.029, 0.54s

#S: 10002

#T: 10535

N-ICP: 0.041, 79.74s AMM: 0.012, 5.71s

Ours: 0.007，1.58s BCPD: 0.025, 23.84s BCPD++: 0.033, 2.38s GBCPD: 0.022, 7.16s GBCPD++: 0.024, 3.86s

LNDP: 0.121, 3.16s GraphSCNet: 0.051, 0.84s SyNoRiM: 0.032, 0.53s

0.06m

0

Fig. 4. The results obtained from different methods on two problem instances from the SHREC’20 non-rigid correspondence dataset [78]. For each method,
we show the deformed mesh (left), the alignment result (right-bottom), and an error map (right-top) that visualizes the distance between the ground-truth
correspondences (Points with no correspondences are marked in gray). We also label the value of Correrr and the computational time for each method.

TABLE II
MEAN VALUES OF CORRERR ↓ (×0.001) AND AUC↑ ON “CRANE” SEQUENCE FROM AMA DATASET [77] WITH PARTIAL OVERLAPS. EACH COLUMN (VIEW

ANGLE PAIR(THE AVERAGE OVERLAP RADIO o (%))) SHOWS THE STATISTICS FOR A PARTICULAR PAIR OF VIEW ANGLES.

Method 1 (76.30) 2 (73.55) 3 (70.94) 4 (67.98) 5 (64.43) 6 (60.71) 7 (56.60) 8 (52.50) 9 (48.61)

N-ICP [2] 3.04 / 0.71 3.23 / 0.69 3.28 / 0.68 3.42 / 0.67 3.64 / 0.65 3.98 / 0.62 4.26 / 0.60 4.62 / 0.57 4.79 / 0.56
AMM [4] 0.79 / 0.92 0.79 / 0.92 0.83 / 0.92 0.85 / 0.92 1.05 / 0.90 0.99 / 0.90 1.17 / 0.89 1.43 / 0.87 2.00 / 0.83

BCPD [36] 6.49 / 0.51 7.12 / 0.45 7.80 / 0.41 9.78 / 0.29 10.68 / 0.24 11.37 / 0.22 12.34 / 0.20 12.41 / 0.18 13.36 / 0.17
BCPD++ [37] 3.30 / 0.70 3.54 / 0.68 3.70 / 0.66 4.29 / 0.61 4.50 / 0.59 4.85 / 0.58 6.02 / 0.47 6.48 / 0.43 7.81 / 0.38
GBCPD [38] 7.59 / 0.43 9.02 / 0.34 9.68 / 0.32 9.67 / 0.30 10.33 / 0.27 10.57 / 0.25 10.88 / 0.24 11.39 / 0.23 11.96 / 0.22

GBCPD++ [38] 7.30 / 0.41 8.09 / 0.37 8.34 / 0.34 8.52 / 0.34 9.61 / 0.29 9.86 / 0.27 10.10 / 0.26 10.60 / 0.25 11.21 / 0.23
GraphSCNet [63] 11.55 / 0.21 11.78 / 0.19 12.34 / 0.17 12.91 / 0.17 13.23 / 0.18 12.78 / 0.17 13.60 / 0.16 13.21 / 0.15 12.88 / 0.15

LNDP [74] 9.51 / 0.44 11.67 / 0.39 10.85 / 0.38 14.28 / 0.32 14.33 / 0.35 13.76 / 0.34 17.33 / 0.28 17.62 / 0.30 13.73 / 0.35
SyNoRiM [75] 3.89 / 0.65 4.42 / 0.60 5.01 / 0.57 4.79 / 0.56 6.41 / 0.49 7.35 / 0.45 6.85 / 0.46 8.93 / 0.40 11.17 / 0.35

Ours 0.41 / 0.96 0.42 / 0.96 0.42 / 0.96 0.44 / 0.96 0.46 / 0.96 0.48 / 0.95 0.49 / 0.95 0.50 / 0.95 0.57 / 0.95

distance between neighboring points on the target shape. That is,
o represents the proportion of source points whose distance to
the target shape, under the ground-truth deformation, is smaller
than a threshold related to the sampling density. Based on the
results shown in Tab. II, Fig. 3 and Fig. 6, it is evident that
the proposed method achieved the highest matching accuracy

among all the compared methods.
In addition, we utilized the models from the SHREC’20

dataset [78] to evaluate the performance of the registration
methods. The dataset consists of a complete mesh and 11
partial meshes of a real-world object, where the partial meshes
exhibit diverse shapes with fine details, resulting from different
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Fig. 5. The results obtained from different methods on two problem instances from the BEHAVE dataset [79]. For each method, we show the deformed
mesh (left), the alignment results (right-bottom), and an error map (right-top) that visualizes the distance between each point and the ground-truth positions
(right-top). We also label the value of RMSE and the computational time. The red dots on the source surface in the top-left corner mark the locations of the
landmark points.
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Fig. 6. The cumulative curves for the correspondence error Correrr of different
methods on various datasets.

deformations (stretch, indent, twist and inflate) and different
filling materials. We considered the full mesh as the source

TABLE III
MEAN VALUES OF DT-S

PP (×10−5), DT-S
PPL(×10−5), CORRERR (×0.01), AUC

AND AVERAGE COMPUTATIONAL TIME (S) USING DIFFERENT METHODS ON
THE SHREC’20 NON-RIGID CORRESPONDENCE DATASET [78].

Method DT-S
PP ↓ DT-S

PPL ↓ Correrr ↓ AUC ↑ Time

N-ICP [2] 66.43 37.12 4.59 0.58 79.59
AMM [4] 16.81 13.05 2.70 0.76 5.95

BCPD [36] 6.81 4.56 3.23 0.69 16.80
BCPD++ [37] 10.11 6.70 3.26 0.68 2.05
GBCPD [38] 1.07 0.58 2.79 0.73 7.17

GBCPD++ [38] 1.12 0.56 2.98 0.72 1.84
GraphSCNet [63] 37.10 23.99 5.33 0.52 1.59

LNDP [74] 203.71 114.46 14.11 0.23 3.06
SyNoRiM [75] 47.03 28.27 8.58 0.50 0.54

Ours 0.41 0.10 1.47 0.86 1.69

surface, and the partial meshes as the target surfaces. We
compute the Correrr with the provided sparse ground-truth
correspondences. To further evaluate the errors of dense points,
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GraphSCNet

Fig. 7. The results obtained from different methods on DT4D data [76] with gradually increasing deformation differences. The top shows the source and target
models for several frames. The line graphs in the lower left corner show the results of AUC ↑ and RMSE ↓ changing with the indices of the frame respectively.
The result of the 18th frame is visualized in the lower right corner. For each method, we show the deformed mesh (left), alignment result (right-bottom), and
an error map (right-top) that visualizes the distance between the ground-truth correspondences, as well as label the RMSE.

we calculate the point-to-point distance DT-S
PP and the point-to-

plane distance DT-S
PPL from the partial meshes to the deformed

source surfaces. Tab. III shows the numerical results, and Fig. 4
visualizes two specific cases. We can see that our proposed
method achieves notably higher accuracy compared to other
methods in the evaluation. This superior performance can be
attributed to the high degrees of freedom provided by our
dense deformation field, as well as the reweighting scheme that
can effectively handle partial overlaps. Moreover, our method
achieves the best speed among optimization-based methods, and
only falls behind the GPU-accelerated learning-based methods
SyNoRiM and GraphSCNet.

Noisy data. We assessed our method’s performance on noisy
data using the BEHAVE dataset [79], which depicts human-
object interactions and includes typical outliers produced by
depth sensors. From this dataset, we selected the “Data01”
sequence, containing 35 distinct motion sequences of an
individual. Each sequence in BEHAVE provides frame-by-
frame human body point clouds and their corresponding fitted
SMPL [82] mesh. In total, we constructed 1586 test cases, using
the SMPL mesh of the i-th frame as the source model, the
point cloud of the (i+1)-th frame as the target model, and the
SMPL mesh of the (i+1)-th frame as the ground-truth mesh for
error calculation. A significant challenge arose from the large
inter-frame differences within each sequence (as processed
by [79], see Fig. 5), which impacted the performance of all
evaluated methods. To mitigate this, we manually annotated
17 landmark corresponding points (marked on the SMPL mesh

TABLE IV
MEAN VALUES OF RMSE(×0.01), CORRERR (×0.01), AUC AND AVERAGE
COMPUTATIONAL TIME (S) USING DIFFERENT METHODS ON THE BEHAVE

DATASET [79].

Method RMSE ↓ Correrr ↓ AUC ↑ Time

N-ICP [2] 4.04 4.51 0.66 37.15
AMM [4] 4.11 4.73 0.68 8.32

BCPD [36] 23.53 33.89 0.17 82.34
BCPD++ [37] 15.94 21.22 0.40 2.52
GBCPD [38] 26.99 36.93 0.16 47.76

GBCPD++ [38] 18.12 25.12 0.31 2.14
GraphSCNet [63] 16.19 20.76 0.22 0.04

LNDP [74] 10.81 15.69 0.42 2.17
SyNoRiM [75] 74.32 56.86 0.03 0.71

Ours 2.37 2.62 0.81 1.13

and transferred to raw point clouds.) and integrated a landmark
term similar to that proposed in [2] into the registration process.
These landmarks were utilized by our method as well as all
other compared approaches, with the exception of the BCPD-
family of methods, which do not accommodate landmark inputs.
As shown in Table IV, Fig. 5 and Fig. 6, the comparison results
demonstrate that our method outperforms existing techniques.

Large deformation. To verify the robustness of our method
to the magnitude of deformation, we conducted evaluations
using data with gradually increasing deformation differences.
Specifically, we selected a sequence (“bear3EP Agression”)
from the DT4D dataset [76] and two sequences (“hips” and
“jumping-jacks”) from the DFAUST dataset [46] to test our
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BCPD++: 0.491 Ours: 0.010

SyNoRiM: 0.147
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0

1st 30th 1st 30th

hips jumping-jacks

Fig. 8. The results obtained from different methods on DFAUST dataset [46] with gradually increasing deformation difference. The line graphs in the top
show the results of AUC ↑ and RMSE ↓ changing with the indices of the frame respectively in “hips” and “jumping-jacks” sequences. The result of the 29th
frame in “jumping-jacks” is visualized in the bottom. For each method, we show the deformed mesh (left), alignment result (right-bottom), and an error map
(right-top) that visualizes the distance between the ground-truth correspondences, as well as label the RMSE.

method. DT4D is a synthetic dataset that includes continuous
motion sequences of various animals and humanoids. The
shapes in each sequence have ground-truth correspondences.
We set the first mesh as the source model and the i-th mesh
as the target model (i=2,...,18) for this sequence. DFAUST
contains multiple continuously moving human scans and the
corresponding SMPL mesh [82]. We set the SMPL mesh
corresponding to the first frame as the source model and the
i-th scan as the target model (i=2,...,30) to test the performance.
The corresponding i-th SMPL mesh is used to obtain ground-
truth correspondences for calculating the correspondence error
Correrr. From Fig. 7 and Fig. 8, we can observe that as
the deformation increases, our method achieves higher or
comparable accuracy compared to existing methods.

Non-rigid tracking. To evaluate the practicality of the
proposed method, we conducted non-rigid tracking experiments
on real-world data, including the DFAUST dataset [46], the
DeepDeform dataset [60] and the face sequence from [27]. For
a real scan sequence {T1, ..., TN}, we choose a template model
S0, and register it to T1 and obtain the deformed model Ŝ1.
Then we deform Ŝi to align with Ti+1(i = 1, ..., N − 1) and

obtain a mesh sequence {Ŝi}Ni=1 aligned with {Ti}Ni=1. Due
to the accumulation of errors in the registration process, this
setting increases the difficulty of the problem and makes it
easier to demonstrate the performance of different methods.
Since there is usually a small difference between two adjacent
frames, it is generally solved using optimization-based meth-
ods. Since learning-based methods excel in acquiring global
correspondences but often struggle with capturing intricate
details and exhibit limited stability in continuous registration,
we ignore the comparisons with learning-based methods in
these examples.

We utilized the template mesh from the SMPL model
matching the first frame as S0, and deformed it to align the
following i-th human scan, where 1 ≤ i < 200. We also used
the template meshes of the SMPL model matched to these
scans as the ground-truth meshes. We chose four sequences:
“hips”, “jiggle-on-toes”, “jumping-jacks” and “chicken-wings”
of the identity labeled as 50002 to test, where the deformations
of the latter two sequences are much larger than those of the
first two sequences. We compute RMSE between the registered
results with the ground-truth meshes, and show their average
values and the average running time in Tab. V. We also provide
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N-ICP: 0.008, 9.05s AMM: 0.002, 2.33s Ours: 0.001, 0.59s

BCPD++: 0.156, 2.34s GBCPD: 0.118, 12.86s GBCPD++: 0.057, 1.17s

Template: 6890 101st frame: 185285 BCPD: 0.186, 16.81s

N-ICP: 0.014, 19.24s AMM: 0.007, 4.88s Ours: 0.006, 0.71s

BCPD++: 0.107, 1.47s GBCPD: 0.140, 11.03s GBCPD++: 0.105, 1.33s

Template: 6890 51st frame: 184741 BCPD: 0.239, 23.04s

0

0.09m
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0.08m

Fig. 9. Results from different methods on two problem instances from “hips”(left) and “chicken-wings” (right) of the DFAUST dataset [46]. For each method,
we show the deformed mesh (left), the alignment result (right-bottom), and an error map (right-top) that visualizes the distance between each point and its
ground-truth positions, and label the value of RMSE and the computational time.

TABLE V
MEAN VALUES OF RMSE(×0.01) AND AVERAGE COMPUTATIONAL TIME

(S) USING DIFFERENT METHODS ON THE DFAUST DATASET [46]. DUE TO
ERROR ACCUMULATION, N-ICP ONLY OBTAINED VALID RESULTS ON SOME
SEQUENCES (195 FOR “JIGGLE-ON-TOES”, 74 FOR “JUMPING-JACKS”, AND
97 FOR “CHICKEN-WINGS”). WE ONLY MAKE STATISTICS ON THESE VALID

VALUES.

Method hips jiggle-on-toes jumping-jacks chicken-wings

N-ICP 3.70 / 8.54 1.73 / 12.21 10.16 / 14.18 4.74 / 14.29
AMM 0.97 / 2.18 0.93 / 2.60 4.50 / 4.51 2.49 / 4.32
BCPD 73.11 / 34.31 77.24 / 22.11 84.56 / 34.27 74.53 / 46.46

BCPD++ 57.98 / 3.63 77.23 / 2.86 80.28 / 3.77 51.77 / 5.84
GBCPD 59.75 / 13.71 79.39 / 12.32 83.90 / 13.66 55.22 / 14.10

GBCPD++ 53.08 / 1.45 44.95 / 1.45 35.56 / 1.38 36.85 / 1.62

Ours 0.55 / 0.53 0.92 / 0.58 3.51 / 0.64 2.11 / 0.63

visualizations of two cases in Fig. 9.
The face sequence from [27] is represented as depth maps

and captures facial expressions and muscle movements, which
were acquired using a single depth sensor. We utilized the
provided template model from [27] as the template model S0,
and deformed it to align with the continuous 299 point clouds,
which were obtained by converting depth maps.

The DeepDeform dataset [60] is a real RGB-D video dataset,
including various scenes such as humans, clothes, animals, etc.
Since it does not provide well-defined template meshes, we
adopted the reconstructed mesh from [57] as our template, first
adjusting it to match the initial frame via a rigid transformation,
and then deforming it to align with the subsequent 29 point
clouds converted from the depth maps. We notice that the
BCPD-class methods are too ineffective, so we omit their

N-ICP AMM OursTemplate Target

Fig. 10. The results obtained from different methods on two problem instances
from the DeepDeform dataset [60](top: 14th frame) and the face sequence
from [27](bottom: 100th frame). For each method, we show the deformed
mesh (left) and alignment result (right).

results. We show the 2 cases of registration results in Fig. 10 and
we can observe that the proposed method is significantly better
than other methods. It shows that our method can perform non-
rigid registration more stably and reliably. To more intuitively
show the performance, we also render the frame-by-frame
rendering results of different methods for these three datasets
in the Supplementary Video.

C. Effectiveness of Components

To measure the effectiveness of different components in
our method, we conducted experiments by either removing
a specific term or replacing it with an existing method. We
compared these variants on the AMA dataset [77] with small
differences (“handstand” and “march1” sequences in Tab. I)
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TABLE VI
MEAN VALUE OF CORRERR(×0.001) ↓ AND AUC ↑ USING DIFFERENT VARIANTS OF OUR METHODS ON THE AMA DATASET [77] AND THE SHREC’20

TRACK NON-RIGID CORRESPONDENCE DATASET [78].

Variants EC
align / Ealign Robust Weights handstand march1 SHREC’20 [78] Partial data from [77]

With EPP EPP ✓ 2.91 / 0.77 1.28 / 0.89 2.81 / 0.74 2.42 / 0.77
With EPPL EPPL ✓ 0.56 / 0.95 0.09 / 0.99 1.76 / 0.83 0.84 / 0.93

Welsch ✓ Welsch 0.44 / 0.96 0.10 / 0.99 1.53 / 0.85 0.58 / 0.95
Huber ✓ Huber 0.41 / 0.96 0.19 / 0.99 1.88 / 0.84 0.78 / 0.93

Geman McClure ✓ Geman McClure 0.43 / 0.96 0.21 / 0.99 1.90 / 0.84 1.09 / 0.91
Without Weight ✓ 0.75 / 0.95 0.39 / 0.99 1.89 / 0.84 1.35 / 0.89

Hard Thres. ✓ Eq. (30) 0.63 / 0.95 0.25 / 0.99 1.93 / 0.83 1.34 / 0.89

Ours ✓ ✓ 0.38 / 0.96 0.03 / 1.00 1.47 / 0.86 0.46 / 0.96

#S: 9992 #T: 9992 

Ours: 0.003 

0.09m

0

With E   : 0.050 PP With E     : 0.040 PPL

Fig. 11. Comparisons of our method and the variants with point-to-point dis-
tance and point-to-plane distance on a problem instance of “doggieMN5 Sleep”
from [76]. For each variant, we show the deformed mesh (left), alignment
result (right-bottom), and an error map (right-top) that visualizes the distance
between the ground-truth correspondences, as well as label the RMSE.

and partial overlaps (“crane” sequence in Tab. II). For the
“crane” sequence, we present the average values of the accuracy
on all examples. We also performed comparisons on the
SHREC’20 non-rigid correspondence dataset [78] and the
DT4D dataset [76]. We show all numerical comparisons in
Tab. VI and visualized results in Figs. 11, 12 and 13.

Effectiveness of symmetrized point-to-plane distance. We
replaced the symmetrized point-to-plane distance metric ESPPL
in our target function by the point-to-point distance metric EPP
(With EPP) and the point-to-plane distance metric EPPL (With
EPPL) respectively while keeping other components and the
reliable weights α

(k)
i the same. From Tab. VI and Fig. 11, we

observe that the symmetrized point-to-plane distance achieves
better results than the variants based on EPP and EPPL. We
also show a test case on the DT4D dataset [76], which has
more obvious visual differences due to its relatively large
deformation.

Effectiveness of the robust weights. Moreover, to test the
effectiveness of the adaptive robust weights, we compared with
the following strategies:

• Without Weight: setting α
(k)
i = 1 for all k and i (i.e., no

weight);
• Hard Thres.: setting

α
(k+1)
i =


0, if ∥v̂(k)

i − u
ρ
(k+1)
i

∥ > 3σ

or n̂(k)
i · nt

ρ
(k+1)
i

< 0,

1, Otherwise.

(30)

0.07m

0

#S: 29615 Hard Thres.: 0.020

Ours: 0.006

Without Weight: 0.018 

Geman McClure: 0.015

#T: 31412

Huber: 0.010Welsch: 0.009

Fig. 12. Comparisons of our method and the variants with different weights for
the alignment on a problem instance of partial overlapping data from “crane”
sequence [77]. For each variant, we show the deformed mesh with an error
map that visualizes the distance between the ground-truth correspondences
(left) and alignment result (right-bottom), as well as label the RMSE.

i.e., a hard thresholding of the weight based on the distance
between the corresponding points.

We also evaluated a common strategy for enhancing robustness,
which involves using established robust functions to measure
the alignment error. Specifically, we replace Ei

align with

Ẽi
align = βiϕ([(n̂i + nt

ρi
) · (v̂i − uρi

)]),

where βi is a binary weight designed to filter out point pairs
based on normal information; βi is set to 0 if n̂i · nt

ρ′
i
< 0

and 1 otherwise. ϕ(·) is a robust function, and we set it as
Welsch loss, Huber loss and Geman-McClure loss respectively
to conduct the experiments. These new optimization problems
were solved using iteratively reweighted least squares (IRLS)
algorithms, drawing on methodologies from [4] [83] [84]. From
Tab. VI and Fig. 12, we can observe that our method with
robust weights achieves the highest accuracy.

Efficiency of solving algorithms. To validate the effectiveness
of our proposed solution for updating {Ri} in the optimization
problem (12), we compared it with gradient-based solvers that
directly optimize the problem in (12) by the iterative gradient-
based optimization method: the steepest descent method and
the L-BFGS algorithm. Since {Ri} needs to be in the rotation
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Fig. 13. Comparisons of our method and the variants of updating rotations
with the steepest descent method or L-BFGS solver on two problem instances
from “bunnyQ Attack1” sequence of [76]. For each instance, we show the
curves of the objective function E and RMSE changing with the number of
iterations or time on the left. On the right, for each variant, we show the
deformed mesh (left), alignment result (right-bottom), and an error map (right-
top) that visualizes the distance between the ground-truth correspondences, as
well as label the RMSE (×0.01).

space, we transformed them in Lie algebra space so(3) and
solved them accordingly. Specifically, we replaced Ri ∈ R
with ri = [r1, r2, r3]

T ∈ so(3) via Rodrigues’ rotation formula.
By utilizing the transformed variables ri as independent
variables and removing the equality constraint in problem (12),
we can convert it into an unconstrained optimization problem.
This allows us to employ optimization algorithms such as the
steepest descent method or the L-BFGS algorithm to solve
it. To ensure optimal convergence of the algorithm, we set a
maximum limit of 103 iterations for solving each sub-problem
of ri. Additionally, the algorithm is terminated prematurely
if the difference in objective function values between two
consecutive iterations falls below a threshold of 10−10. To
eliminate potential discrepancies caused by adaptive weights,
we set α(k)

i = 1 for any k and i in this part. Fig. 13 displays the
curves depicting the changes in the objective function values
E = Ealign + wARAPEARAP in Eq. (10) and RMSE over the
iterations or time. Due to the high degree of nonlinearity of the
problem, gradient-based optimization methods are susceptible
to getting trapped in local optima. It is important to note that
the curve may exhibit fluctuations since using the closest point
as the corresponding point does not necessarily result in a
reduction of the symmetrized point-to-plane distance. From
Fig. 13, it is evident that our proposed method achieves stable
and rapid convergence toward the optimal solution.

V. LIMITATIONS AND FUTURE WORK

Although our method has achieved good performance in
many cases, it is important to note that our method primarily

focuses on local non-rigid registration. By relying on the nearest
point in Euclidean space for establishing correspondences,
our method is limited by the initial spatial position. As a
result, when significant differences exist between the source
and target shapes, the incorporation of global information
becomes crucial. This can be achieved through the integration of
semantic clues, overall shape analysis, other global features, and
initial correspondences predicted by learning-based methods.
By incorporating global information, our method can potentially
enhance its performance, robustness, and ability to handle larger
deformations. Exploring the integration of global information
represents a valuable direction for future improvements to our
approach. Additionally, our method does not currently account
for changes in topology during deformation. For example, when
a surface deforms and splits into two or more disconnected parts
(as shown in Fig. 10), our current approach is unable to handle
such scenarios. A valuable direction for future work will be to
develop techniques that can dynamically adjust the deformation
graph and local connection relationships in response to these
topological changes.

VI. CONCLUSION

We developed a novel optimization-based method for non-
rigid surface registration, which offers several key advantages
over existing approaches. Our method leveraged a symmetrized
point-to-plane distance metric, resulting in a more precise
alignment of geometric surfaces. By incorporating adaptive
robust weights, our method effectively handles data with
defects such as noise, outliers, or partial overlaps. To address
the complexity of the objective function, we employed an
alternating optimization scheme and designed a surrogate
function that is easy to solve. Additionally, we introduced
a graph-based deformation technique for coarse alignment to
improve both the accuracy and solution speed. Experimental
results demonstrated the superiority of our proposed method
compared to state-of-the-art techniques in most examples. Our
method achieved the best performance while maintaining a
relatively fast solution speed.
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