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Abstract
Liquid crystalline networks (LCNs) are stimuli-responsive materials formed from polymeric
chains cross-linked with rod-like mesogenic segments, which, in the nematic phase, align
along a non-polar director. A key characteristic of these nematic systems is the existence of
singularities in the director field, known as topological defects or disclinations, and classified
by their topological charge. In this study, we address the open question of modeling theo-
retically the coupling between mesogens disclination and polymeric network by providing
a mathematical framework describing the out-of-plane shape changes of initially flat LCN
sheets containing a central topological defect. Adopting a variational approach, we define an
energy associated with the deformations consisting of two contributions: an elastic energy
term accounting for spatial director variations, and a strain-energy function describing the
elastic response of the polymer network. The interplay between nematic elasticity, which
seeks to minimize distortions in the director field, variations in the degree of order, with
the consequent tendency of monomers in the polymer chains to distribute anisotropically in
response to an external stimulus, and mechanical stiffness, which resists deformation, deter-
mines the resulting morphology. We analyze the transition to instability of the ground-state
flat configuration and characterize the corresponding buckling modes.
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1 Introduction

Nematic liquid crystal networks (LCNs) are anisotropic materials combining the properties
of polymeric chains and nematic liquid crystals (LCs) [24, 25, 39, 42, 45–47]. Similarly to
classical LCs, in LCNs, the mesogenic segments in the nematic phase possess orientational
order but lack positional ordering of their centers of mass. Moreover, different from liquid
crystal elastomers (LCEs), in LCNs, cross-linking is tight and mobility of the nematic di-
rector is limited with respect to the polymer network, hence the coupling between nematic
order and polymer is strong enough to constrain the director field to follow material de-
formation [41]. A significant factor in the mechanical behavior of LCNs is the presence of
topological defects or disclinations [35]. These are singularities in the nematic orientation,
which emerge when LC molecules encounter sudden geometrical changes, such as sharp
edges or corners, and can be classified by their topological charge [23].

Many biological systems of cells and cytoskeletal elements can also form a nematic phase
where elongated constituents align parallel to each other, inducing partial orientational order
similar to that observed in nematic LCs [2, 18, 20, 29, 34]. For these systems, topological
defects in the nematic order can act as organizing centers enabling organisms to grow pro-
trusions or deplete material to relieve stress [8, 17, 18, 22, 34]. In Hydra’s ectoderm, for
example, topological defects align with morphological features: a defect of charge +1 is
localized at the tentacle’s tip, and two −1/2 defects reside at its base [22].

While LC disclinations and textures are ubiquitous in natural and synthetic soft matter,
their coupling with the polymeric network in LCNs is a difficult task to model analytically,
especially for topological charges different from +1 [13, 14, 26]. Defects of charge +1
have been primarily studied, for example, in [15, 27, 28]. Emergent shapes with Gaussian
curvature localized at point defects are discussed in [28, 42], while numerical approaches
such as shell theory simulations [10] and finite element methods with regularization [3]
have been employed to capture richer physical phenomena in LCNs, including origami-like
structures and deformations due to defects with varying topological charges.

In this work, we develop a mathematical framework for the study of LCN defects by
building on results from the LC theory [21, 31–33, 38]. The key characteristic of our ap-
proach, which also distinguishes our model from, for example [3, 10, 28], in the treatment
of defects with different topological charges, is that we consider a regime in which the ne-
matic phase around the defect is well established, and shape deformations arise to relieve
the mechanical stress originating from the imprinted, distorted director field with topologi-
cal disclinations, as well as from variations in the degree of order and mechanical stiffness.
Accordingly, an elastic energy that penalizes spatial distortions in the director field, mea-
sured by its gradient, is employed, along with a strain-energy function that describes the
elastic response of the nematic polymer network to deformations, depending on the degrees
of orientation and the director fields before and after the application of an external stimulus.
This framework is inspired by biological shape formation and morphogenesis, as well as
by the shape morphing of LCN sheets studied in [23]. Within this formalism, we adopt a
variational approach that enables an almost entirely analytical solution to the out-of-plane
buckling problem in nematic polymer networks.

In the following sections, we first define topological defects in planar LCN sheets
(Sect. 2). We then describe mathematically the formation of topological defects caused by
physical changes when external stimuli are applied (Sect. 3). To demonstrate our theoret-
ical framework, we present computed examples showing out-of-plane shape deformations
in initially flat LCN samples similar to those seen in physical experiments (Sect. 4). In this
context, the thickness of the flat LCN sheet is assumed to be sufficiently small to ensure
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Fig. 1 Thermally induced phase
transition in LCN material
(reprinted from [16])

that the imprinted director field has no significant component or variation in the thickness
direction, and can therefore be extended uniformly across the cross-section. Our energy will
scale linearly with the thickness and account for stretching. The resulting model will be
therefore a membrane model [5, 7, 30]. Another popular scaling of the free energy with the
thickness is cubic, leading to a plate model governed by bending effects. Examples include
models derived via formal asymptotics [30] and a von Kármán plate model obtained in [26]
using asymptotic analysis. In the concluding section, we highlight key challenges in deriv-
ing our results and provide an outlook on further investigations. More substantial detailed
calculations are deferred to appendices.

2 Topological Defects in the Plane

Nematic order in LCNs is described by a non-polar unit vector 𝒏 ∈ 𝕊
2, called the director,

and a scalar order parameter s ∈ [0,1]. The former describes the local average orientation
of the LC molecules at the macroscopic scale, and has a bearing on the spatial organization
of polymer strands. The constitutive molecules of nematic liquid crystals do not possess a
permanent dipole moment and exhibit head-tail symmetry, meaning that the director field 𝒏

is physically equivalent to −𝒏. The latter represents the average orientation of the nemato-
genic constituents at the microscopic scale, with s = 1 when LC molecules are perfectly
aligned with each other, and s = 0 when the material becomes isotropic. According to Er-
icksen’s theory [11], whose formalism will be employed in the following section, defects
correspond to localized isotropic regions where the scalar order parameter s vanishes, re-
flecting the absence of a preferred molecular orientation. Spatial variations in s can serve to
relax the distortion energy associated with defects.

For illustration, in a thermotropic mesogenic substance, the nematic phase is induced by
changing its temperature, as shown in Fig. 1. In the nematic phase, at a temperature lower
than Tc (nematic-isotropic transition temperature), mesogens and cross-linking sites are uni-
axially oriented along 𝒏, and the polymeric network is extended in the same direction. When
heated over Tc, the LC molecules lose their orientational order, and the polymeric network
contracts in the direction which was previously along 𝒏. These deformations are local and re-
versible. Local deformations then drive macroscopic shape changes. For example, in Fig. 2,
the distribution of the director field is marked by blue ellipsoids. On the left, the bending of
an LCN film with splay alignment is illustrated. This bending occurs due to thermally in-
duced contraction of the top side and elongation of the bottom side along the same direction
(the elongation in the orthogonal direction does not contribute to the bending). In the right
panel, a macroscopic deformation guided by an azimuthal LC alignment is shown. In this
case, the flat LCN film evolves into a nearly conical shape.
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Fig. 2 Thermally induced
macroscopic shape changes in a
LCN sheet containing a
disclination (reprinted from
[12, 16])

Assuming a planar geometry, let a unit vector field 𝒎0 lie in the plane, and 𝒆z be the unit
outer normal vector to the plane. We define the topological charge q of 𝒎0, with a point
defect at 𝒙0, as the winding number of 𝒎0 on the tangent plane of the defect [19]. Consider
any simple circuit 𝒞 within the plane, around 𝒙0, that can be continuously contracted toward
𝒙0. Conventionally, 𝒞 has an anti-clockwise orientation around 𝒆z. Let 𝒆0 be a unit vector
in the plane defined at a point along 𝒞. The angle by which 𝒎0 rotates about 𝒆0 along the
complete circuit 𝒞 equals 2πq , where q is the topological charge of the defect. This is
positive or negative, depending on whether the complete turn of 𝒎0 is consistent or not with
the orientation of 𝒞.

The director field with topological charge q on a plane with a defect at the origin is
represented with respect to a standard cylindrical coordinate system (r,ϑ, z) as

𝒎0 = (cosw)𝒆r + (sinw)𝒆ϑ , w = w(ϑ) = (q − 1)ϑ + ϑ0. (1)

Here, 𝒆r and 𝒆ϑ are the radial and azimuthal directions, respectively, w = w(ϑ) represents
the angle formed by 𝒎0 with the radial direction 𝒆r , and ϑ0 is the phase of the defect, i.e.,
the arbitrary overall rotation of the director about the z-axis.

To characterize the orientation of a defect when q ≠ 1, we find when the director 𝒎0

points radially outward from (or inward toward) the defect, i.e., when 𝒎0 = 𝒆r [38]. This
happens whenever w ≡ 0, and the following vectors are identified

𝒑 = cos

(︃
ϑ0

1 − q
− 1

)︃
𝒆r + sin

(︃
ϑ0

1 − q
− 1

)︃
𝒆ϑ mod

(︃
ϑ0

|1 − q|
)︃

(2)

Accordingly, for a defect of topological charge q ≠ 1, the orientation vectors 𝒑 identify
2|1 − q| regions in which 𝒎0 and −𝒎0 repeat themselves, as shown in Fig. 3. When q = 1,
𝒎0 points always radially.

We see from (1) that the field lines of 𝒎0 are the solutions (r(τ ),ϑ(τ )) to the differential
system

dϑ

dτ
= 1, r̂ ′(ϑ(τ))) = r(ϑ(τ))

tanw(ϑ(τ))
, (3)
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Fig. 3 Field lines of 𝒎0 defined
by (1), for a defect with
topological charge q at 𝒙0. Red
arrows indicate the orientations 𝒑
described by (2), which identify
the region of periodicity for each
defect
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subject to

ϑ(0) = ϑ̄ mod

(︃
ϑ0

|1 − q|
)︃

, (4)

according to the periodicity of the defect, and

r(0) = r̂(ϑ̄) = r̄ ∈ (0,1), (5)

where τ is a parameter and r(τ ) = r̂(ϑ(τ )).
The following solution

ϑ = τ mod

(︃
ϑ0

|1 − q|
)︃

, r̂(ϑ) = r̄

sinw(ϑ̄)1/(q−1)
sinw(ϑ)1/(q−1) (6)

satisfies the system described above.

3 Mathematical Framework

Drawing inspiration from biological shape formation and morphing, we present a mathe-
matical framework that describes the shape deformations of an LCN with imprinted direc-
tor field, 𝒏0 and order parameter s. We assume that an external stimulus like heat or light
has been applied to our system, causing the order parameter to change from s0 to s. Our
framework explains how deformations occur to relieve the mechanical stress induced by the
nematic director and the change in the order parameter.

Let B0 be the reference configuration of the LCN under consideration. Our model is
based on the following assumptions [6, 26]:

(a) The degrees of orientation s0 and s are prescribed functions on B0. The LCN is aligned
in the nematic phase according to a specific function s and director field 𝒏0, as a result
of an external stimulus that has altered the nematic order from s0 to s. For s0 = 0, the
sample was in the isotropic phase; for example, in the context of morphogenesis, this
setup can be understood as if cells, at that moment, adopt a specific degree of orientation
dictated by s, forming a defect at locations where s vanishes. This is an active impulse
that is yet to be understood, but it leads to a known function s and orientation field 𝒏0.

(b) All points of B0 suffer a deformation described by

𝝋 :
B0 → B = 𝝋 (B0) ,

𝑿 → 𝒙 = 𝝋(𝑿),
(7)

where B is the current (deformed) configuration of the LCN.
(c) Since 𝒏0 is constrained to follow the elastic deformation, 𝒏0 ∈ T𝑿B, the tangent space

to B0 at 𝑿, is mapped into 𝒏 ∈ T𝒙B, the tangent space to B at 𝒙, hence

𝒏(𝑿) = F𝒏0

|F𝒏0| , (8)

where F = ∇𝑿𝝋 is the gradient of the macroscopic deformation.
(d) The material is incompressible, hence

det F = 1. (9)



Shape Instabilities Driven by Topological Defects in Nematic Polymer. . . Page 7 of 26    69 

3.1 Free-Energy Functional

We adopt a variational approach to define an energy associated with the shape deformations
of an LCN, and derive general equilibrium and stability conditions by considering the first
and second variations of the energy functional. The energy associated with these deforma-
tions consists of two contributions,

F [𝝋] = FN[𝝋] + FEL[𝝋].

In our model, the macroscopic deformation is due to the material’s response to two distinct
mechanisms: on one hand, the mechanical stress induced by the distortion of the director
field in the reference configuration, and on the other hand, changes in the nematic order
parameter s. The first cause of activation is captured by the nematic contribution to the free
energy FN[𝝋], which retains no memory of s0. Indeed, FN quantifies the energetic cost asso-
ciated with the distortion of the director field 𝒏 in the deformed configuration, and accounts
only for the order parameter s and 𝒏 in B. The elastomer contribution FEL[𝝋] accounts for
how variations in the degree of orientation can drive the system out of equilibrium, leading
to shape changes.

The first contribution FN[𝝋] is associated with the nematic nature of the LCN, and ac-
counts for spatial variations in the director field 𝒏. In the one-constant approximation, it
takes the form

FN[𝝋] =
∫︂

B

kEs(𝝋−1(𝒙))2
⃓⃓∇𝒙𝒏(𝝋−1(𝒙))

⃓⃓2
d𝒙, (10)

where kE > 0 is an elastic constant characteristic of the material. It measures the cost as-
sociated with producing a distortion from the natural state, which, for nematic systems,
corresponds to any uniform director field. FN is frame-indifferent and it is even in 𝒏, since
𝒏 is non-polar. This quantity is defined on the deformed configuration, and depends only on
the gradient of the current director 𝒏, and order parameter s. We recall that both s and 𝒏

were expressed in terms of 𝑿 ∈ B0; specifically, s is a prescribed function on B0, while 𝒏

is determined by the deformation through equation (8).
The formulation (10) follows Ericksen’s continuum theory for nematic LCs [11], which

aims to provide a comprehensive treatment of defects with arbitrary space dimension. When
s vanishes, molecular orientation is completely disordered, indicating a transition to the
isotropic phase at that point of B without a temperature change; in this framework, defects
correspond to localized isotropic regions. While the classical theory, with a constant s, ade-
quately describes point defects in three-dimensional (3D) geometries, it fails in the case of
line and plane defects where an infinite energy is obtained. Allowing the degree of orienta-
tion s to vary in space mitigates singularities in 𝒏, enabling the LC to locally transition to
the isotropic phase wherever the classical theory predicts singularities in 𝒏 with infinite en-
ergy. To account for variations in s, an additional contribution proportional to |∇𝑿s(𝑿)|2 is
envisioned by Ericksen’s theory. However, since s is prescribed on B0, this term contributes
only as an additional constant in our formulation.

The second contribution FEL, describes the elastic response of the polymer network to
deformations, taking into account the anisotropic distribution of monomers before and after
the change in the order parameter, from s0 to s. It is therefore based on the well-known
phenomenological neoclassical strain-energy function describing liquid crystal elastomers
(LCEs) [1, 43, 44]. Under our hypothesis (a), which asserts that s0 and s are prescribed
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function of B0, it takes the generic form [36, 37]

FEL = μ0

2

∫︂
B0

tr
(︁
FTL−1FL0

)︁
d𝑿, (11)

where F represents the deformation gradient, μ0 is the shear elastic modulus at infinitesimal
strain, and the tensors L and L0 are step-length tensors corresponding to the reference and
current configurations, respectively [42]. The reference configuration B0 for this contribu-
tion is described by s0 and 𝒏0, which represent the scalar nematic order and the nematic
director prior to stimulation (by heating or illumination say), while s and 𝒏 represent the
scalar order and the nematic director in the present (activated) configuration B. The distor-
tion of 𝒏 in B is instead captured by the nematic contribution to the free energy, FN.

We represent L0 and L as [26]

L0 = a
−1/3
0 [(a0 − 1)𝒏0 ⊗ 𝒏0 + I] , L = a−1/3 [(a − 1)𝒏 ⊗ 𝒏 + I] . (12)

In (12), a0 > 1 and a > 1 depend on s0 and s, respectively. In the case of activation by light
or temperature for example, a also depends on how the light or temperature interacts with
the material.

We recall that, according to our model, s0 and s span [0,1], and are prescribed functions
on B0. Therefore, a0 = a0(s0) and a = a(s) are given on B0. When a = a0 ≡ 1, L0 and L
in (12) reduce to the identity tensor and the energy function (11) reduces to the classical
neo-Hookean formula of isotropic rubber elasticity [40].

In the setting we are interested in, even though the neoclassical strain energy function
in (11), which involves the director fields 𝒏0 and 𝒏 and the order parameters s0 and s,
plays a role in determining the ground state of the elastic energy, it does not account for
the spatial variation of the director field, which is measured by its gradient. In the presence
of a disclination, for example, the director field becomes highly distorted, and the nematic
contribution to the free energy in (10) tends to diverge in three dimensions near the defect
core. Therefore, when the nematic phase is well established away from the defect (i.e., when
s is sufficiently different from zero, typically between 0.3 and 0.7 [4]), this contribution
cannot be neglected.

Before building upon (10) and (11) the free-energy functional that we shall study further,
we find it useful to rescale all lengths according to the characteristic length scale set by
the diameter of B0, denoted as diam (B0). After rewriting the nematic contribution in (10),
originally expressed as an integral over the deformed configuration, in terms of the reference
configuration using (7) and the incompressibility condition (9), we rescale the position vec-
tor 𝑿 by diam (B0) to make it dimensionless, keeping its name unaltered. We then denote
the rescaled initial domain by ℬ̄0, and by defining the dimensionless elastic constant

κ = 2kE

μ0 diam (B0)
2 , (13)

we arrive at the following reduced functional, which is an appropriate dimensionless form
of F [𝝋]:

ℱ[𝝋] = 2F [𝝋]
μ0 diam (B0)

3 =
∫︂
ℬ̄0

[︂
κs(𝑿)2

⃓⃓∇𝑿𝒏F−1
⃓⃓2 + tr

(︁
FTL−1FL0

)︁]︂
d𝑿. (14)

Since [kE] = N = J/m, [μ0] = Pa = N/m2 = J/m3, and [F ] = J, all terms in (13) and (14)
are properly normalized to ensure the energy is expressed in a dimensionless form.



Shape Instabilities Driven by Topological Defects in Nematic Polymer. . . Page 9 of 26    69 

The constant κ defined in (13) is a measure of the balance between the nematic elastic-
ity, encapsulated in the elastic constant kE, and the material stiffness, described by μ0. It is
the interplay between nematic elasticity, which seeks to minimize distortions in the direc-
tor field, and mechanical stiffness, which resists deformation, that determines the resulting
morphology.

3.2 Equilibrium and Stability Conditions

We derive equilibrium and stability conditions by considering the first and second variations
of ℱ[𝝋] in (14), with the detailed computations deferred to Appendix A. In the follow-
ing, the first variation of ℱ is denoted by δ1ℱ and is associated with a test field G1 = δ1F
that represents an admissible variation of the deformation gradient F that satisfies the in-
compressibility assumption (d). As shown in the appendix, G1 is accordingly subject to the
condition

G1 · F−T = 0. (15)

The second variation of ℱ is instead denoted as δ2δ1ℱ , and is obtained by introducing an-
other admissible variation G2 = δ2F of F, such that G2 · F−T = 0, and further perturbing
δ1ℱ .

Making use of the identities recorded in Appendix A, the first variation of the dimension-
less energy functional ℱ at the field 𝝋 results in a linear functional of G1 given by

δ1ℱ[𝝋](G1) =
∫︂
ℬ0

[︂
2κs2A[𝒗1,G1] · (∇𝒏)F−1 + tr

(︁
GT

1 L−1FL0

)︁ + tr
(︁
FTL−1G1L0

)︁

+ a1/3
(︁
a−1 − 1

)︁
tr

(︁
FT(𝒏 ⊗ 𝒗1 + 𝒗1 ⊗ 𝒏)FL0

)︁ ]︂
d𝑿 = 0, (16)

where

A[𝒗1,G1] = (∇𝒗1)F−1 − (∇𝒏)F−1G1F−1, (17)

with 𝒗1 representing the variation of 𝒏 in (8), which is obtained as

𝒗1 = δ1𝒏 = 1

|F𝒏0| (I − 𝒏 ⊗ 𝒏)G1𝒏0. (18)

The equilibrium conditions for our system are given by requiring that

δ1ℱ[𝝋](G1) = 0 (19)

for any admissible test field G1 such that (15) holds.
Similarly, the second variation of ℱ at the field 𝝋 is obtained in Appendix A as the

following bilinear form in the admissible perturbations G1 and G2 of F,

δ2δ1ℱ[𝝋](G1,G2)

=
∫︂
ℬ0

{︁
2κs2

[︁(︁
(∇𝝃)F−1 − A[𝒗1,G1]G2F−1 − A[𝒗2,G2]G1F−1)︁ · (∇𝒏)F−1

+A[𝒗1,G1] · A[𝒗2,G2]] + tr
(︁
GT

1 L−1G2L0
)︁ + tr

(︁
GT

2 L−1G1L0
)︁
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+a1/3
(︁
a−1 − 1

)︁ [︁
tr

(︁
GT

1 (𝒏 ⊗ 𝒗2 + 𝒗2 ⊗ 𝒏)FL0

)︁ + tr
(︁
GT

2 (𝒏 ⊗ 𝒗1 + 𝒗1 ⊗ 𝒏)FL0

)︁
+ tr

(︁
FT(𝒏 ⊗ 𝒗2 + 𝒗2 ⊗ 𝒏)G1L0

)︁ + tr
(︁
FT(𝒏 ⊗ 𝒗1 + 𝒗1 ⊗ 𝒏)G2L0

)︁
+ tr

(︁
FT(𝒗2 ⊗ 𝒗1 + 𝒗1 ⊗ 𝒗2)FL0

)︁ + tr
(︁
FT(𝒏 ⊗ 𝝃 + 𝝃 ⊗ 𝒏)FL0

)︁]︁}︁
d𝑿. (20)

Here,

A[𝒗2,G2] = (∇𝒗2)F−1 − (∇𝒏)F−1G2F−1, (21)

while 𝒗2 and 𝝃 represent the variations of 𝒏 in (8) and 𝒗1 in (18), respectively, through G2,
and are given by

𝒗2 = 1

|F𝒏0| (I − 𝒏 ⊗ 𝒏)G2𝒏0, (22a)

𝝃 = − 1

|F𝒏0| [(𝒗1 ⊗ 𝒏)G2𝒏0 + (𝒗2 ⊗ 𝒏 + 𝒏 ⊗ 𝒗2)G2𝒏0] . (22b)

The stability of a specific equilibrium configuration, given by a solution 𝝋̂ of the equilib-
rium equations, is equivalent to requiring that

δ1δ2ℱ[𝝋̂](G1,G2) > 0 (23)

for all pairs (G1,G2) of admissible non-vanishing perturbations of F̂ = ∇𝝋̂ that, consistent

with (15), satisfy G1 · F̂
−T = 0 and G2 · F̂

−T = 0.

4 Out-of-Plane Perturbations

Using our mathematical framework, we aim to describe the out-of-plane shape deformations
of an initial LCN sheet represented in the 3D space as a flat slab of thickness H around a
disk-shaped mid-surface 𝒮0 of radius R,

B0 = 𝒮0 ×
[︃
−H

2
,
H

2

]︃
. (24)

A central defect 𝒎0 of topological charge q , described by (1), is imprinted on 𝒮0, and ex-
tended uniformly across the cross-section. Following a well-established practice (see, e.g.,
[[9], p. 171]) we posit that the energy concentration near defects causes a localized transition
to the isotropic phase, which constitutes a defect core. The energy associated with such a
phase transition is proportional to the core’s area and will be taken as approximately fixed.
Letting rc denote the core’s size, we set rc = εR, where a sensible value for the parameter
ε is ε ≈ 10−3, and we prescribe the degrees of order s0 and s on B0 to be zero around the
defect, and constant throughout the remaining region, meaning that the nematic phase is
well established away from the defect. More precisely,

s0 =
{︄

0 on 𝔹rc(0)

s̄0 on B0 \𝔹rc(0)
s =

{︄
0 on 𝔹rc(0)

s̄ on B0 \𝔹rc(0)
. (25)

where 𝔹rc(0) is a cylinder of radius rc around the disclination. Accordingly, the values ā0 =
a0(s̄0) and ā = a(s̄) are prescribed on B0 \𝔹rc(0).
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Since we are interested in the stability of the LCN, our base deformation corresponds to
the identity vector, and so

φ0(𝑿) = 𝑿 = r𝒆r + z𝒆z, (26)

and so the deformation gradient coincides with the identity tensor, F0 = I, while 𝒏 = 𝒎0

by (8). For out-of-plane deformations of the flat configuration, we refer to the experimental
study in [23], where 3D photo-activable LCNs, prepared with an imprinted central defect
of topological charge q , which is different for each sample, deform and adopt a complex
topography specific to that defect.

Our model assumes that s̄0 and s̄ in (25) represent the order parameters of the sample
before and after the activation, respectively, of the LCN sample. For example, in the case of
[23], the value s̄ is lower than the one at which the sample was originally prepared, s̄0. This
reduction in the degree of order, along with the mechanical stress induced by 𝒎0, plays a
role in the stability of the flat LCN disk.

We consider a relatively simple case involving only out-of-plane perturbations of the
flat configuration 𝝋0, i.e., along the z-direction. These perturbations δi𝝋 are described by
generic functions δhi , which depends on both the radial and polar coordinates (r,ϑ), as

δi𝝋0 = δhi(r,ϑ)𝒆z, (27)

where i = 1,2 in accordance with the nomenclature used for the first and second variations
of ℱ in the previous section.

Thus the admissible variations Gi of F0, result to be defined as

Gi = δiF0 = ∇δi𝝋0 = 𝒆z ⊗ ∇δhi = ∂δhi

∂r
𝒆z ⊗ 𝒆r + 1

r

∂δhi

∂ϑ
𝒆z ⊗ 𝒆ϑ , (28)

where ∇ = ∂r + 1
r
∂ϑ + ∂z is the gradient in polar coordinates.

We note that each Gi in (28) is consistent with the incompressibility constraint, as it
satisfies (15), which, in this case, reduces to tr Gi = 0.

By (28), we find in Appendix B that the flat disk 𝝋0 with the imprinted director field 𝒎0

in (1) is an equilibrium configuration for every q , while ā0, ā > 1 and κ > 0. It should be
observed that in the absence of a tendency for monomers in polymer chains to distribute
anisotropically, that is, when κ = 0 and ā0 = ā ≡ 1 and the material consists of an isotropic
rubber, the flat configuration 𝝋0 corresponds to the elastic ground state of the system.

To analyze the stability of the flat configuration for κ > 0, ā0 > 1, and ā > 1, we will
study the second variation (20) of the functional ℱ at 𝝋0. In Appendix B, we show that it
reduces to

δ2δ1ℱ[𝝋0](G1,G2)

= H

R

(︃
ā

ā0

)︃1/3 ∫︂ 1

ε

∫︂ 2π

0

[︃(︃
−kq2

r
+ rγ

)︃
v1v2 + kr∇v1 · ∇v2

+ rδh1,r δh2,r + 1

r
δh1,ϑ δh2,ϑ

]︃
dr dϑ, (29)

where

k = κs̄2ā
1/3
0

ā1/3
, γ = ā0 + 1 − 2ā

ā
, (30)
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and

vi = δhi,r cosw + 1

r
δhi,ϑ sinw, (31)

w = w(ϑ) defined in (1). Here, all lengths are rescaled to R instead of diam (B0), and
∇ = ∂r + 1

r
∂ϑ + ∂z represents the gradient in polar coordinates. Since a0 and a are both

greater than 1, it follows that γ in (30) satisfies

γ > −2. (32)

Note that two parameters, k and γ defined in (30), appear in the second variation.
The parameter γ represents the tendency of monomers in the polymer chains to distribute
anisotropically in response to an external stimulus (such as heat or light), and it vanishes
for isotropic rubber where a = a0 = 1. Its value changes according to variations in the de-
gree of order, from s̄0 to s̄, and thus depends on the values of ā0 and ā. For this reason, we
consider γ as a known quantity based on the experimental setup. The parameter k can be
interpreted as a reduced elastic constant that, according also to (13), measures the balance
between the nematic elasticity, represented by kE, the material stiffness, represented by μ0,
and the variation in s, represented by the ratio s̄2ā

1/3
0 /ā1/3.

For a given γ > −2, the onset of instability will be determined by the critical value
of k at which the flat configuration ceases to be a minimum for the dimensionless energy.
Moreover, we will also characterize the nature of the corresponding buckling modes for
which δ1δ2F [𝝋0](G1,G2) = 0.

4.1 Deformation According to the Topological Charge

To proceed, we apply a separation of variables to each function δhi , expressing it as a prod-
uct of a function fi , depending on r , and a function gi , depending ϑ ,

δhi(r,ϑ) = fi(r)gi(ϑ), (33)

and subject to the conditions

fi(ε) = 0, gi(0) = gi(2π). (34)

The first condition in (34) is allowed by the translational invariance of the free energy ℱ and
states that fi vanishes around the defects, while the periodicity condition on gi ensures the
continuity of δhi .

Moreover, since we expect that the deformation of the flat configuration 𝝋0 will have
the same periodicity of the defect 𝒎0 imprinted in the LCN, we introduce an ansatz for the
functions gi(ϑ), given (up to a multiplicative constant) by

gi(ϑ) = g(ϑ) =
⎧⎨
⎩

| sinw| for q = 2m + 1

2
, m ∈ ℤ,

cosw for q ∈ ℤ.
(35)

Indeed, for a defect with topological charge q , 2|q − 1| regions in which 𝒎0 and −𝒎0

repeat periodically can be identified, and we expect that these regions of periodicity will be
maintained by the deformation.

By substituting (33) and (35) in (29), a localization argument detailed in Appendix C
implies that, for a given γ > −2, δ2δ1ℱ[𝝋0](G1,G2) vanishes for every f2 satisfying (34)
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whenever there exists a critical value of the constant k for which there exists at least one non-
zero function f̄1(r), defined up to a multiplicative constant, which satisfies the following
equation on (ε,1):

kr(A − Aw)f iv
1 + 2k(A − Aw)f ′′′

1

+f ′′
1

r

[︁
k̄ ((3q − 2)A − (4q − 3)Aw − B) − (A + γ (A − Aw))r2

]︁

+f ′
1

r2

[︁−k̄ ((3q − 2)A − (4q − 3)Aw − B) − (A + γ (A − Aw))r2
]︁

+f1

r3

[︁
k̄ (2q(q − 1)(A − 2Aw) + B(q − 1) + Cw − 2Bw) + (B + γBw)r2

]︁ = 0 (36)

with the boundary conditions

f1(ε) = 0, (37a)

− kr(A − Aw)f ′′′
1 (1)

+ f ′
1(1)

2
[k (A(−5q + 4) + Aw(6q − 4) + 2B) + 2(A + γ (A − Aw))]

+ f1(1)

2
[k((A − 2Aw)(q − 1)(2q − 1) + 2Bw(q − 2) + B(q − 1))

+γ (2Aw − A)(q − 1)] = 0, (37b)

(A − Aw)f ′′
1 (1) + (q − 1)

2
(A − 2Aw)

(︁
f1(1) − f ′

1(1)
)︁ = 0, (37c)

ε(A − Aw)f ′′
1 (ε) + (q − 1)

2
(A − 2Aw)

(︃
1

ε
f1(ε) − f ′

1(ε)

)︃
= 0. (37d)

This critical value of k provides an upper bound estimate of the threshold at which the flat
configuration ceases to be a local minimum for the free energy, while the real part of the
corresponding δh1 = g(ϑ)f̄1(r), with g given by (35), represents the associated bucking
mode (defined up to an arbitrarily multiplicative constant).

In Figs. 4a-13a, we illustrate the contour plots of the buckling modes δh1 = g(ϑ)f̄1(r)

for q ∈ [−5/2,5/2], together with a comparison with the photomechanical response of azo-
LCN films reported in [23] and an illustration of the imprinted director field of the corre-
sponding topological charge q in the reference configuration. The critical value of k for each
q is also indicated. As a multiplicative constant, we consider c > 0 or c < 0 to enhance the
comparison with the experimental observation in [23]; since we are considering out-of-plane
deformation of an initially flat disk, upward and downward displacements are energetically
equivalent.

The deformation of the +1/2 defect is characterized as a valley (on which δh1 is zero)
extending outward from the defect center toward the film’s edge along the direction deter-
mined by the defect orientation 𝒑. In the remaining region, the flat configuration undergoes
an out-of-plane deformation, with a peak positioned opposite to the valley. The deformation
of the +1 defect can be described as a round cone, very similar to the predicted deformation
[27]. The +3/2 defects autonomously deforms into a tear-shaped dimple morphology and a
valley region (along the defect orientation 𝒑), both radiating from opposite side of the center
of the defect. The +2 defect, with 2-fold symmetry, deforms into two tear shaped dimples
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Fig. 4 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted director

field 𝒎0 of topological charge q = + 1

2
and ϑ0 = π

3
in the reference configuration. For γ = −1/2, this occurs

at the critical value k ≈ 1.43

Fig. 5 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted director

field 𝒎0 of topological charge q = − 1

2
and ϑ0 = π

3
in the reference configuration. For γ = −1/2, this occurs

at the critical value k ≈ 1.02

radiating from opposite sides of the center of the defect, while the +5/2 defect, with 3-fold
symmetry has 3 tear-shaped dimples radiating from the center. The self-molded shape of
the −1/2 defect can be described as three valleys radiating from the center at 120◦ offset
with respect to each other. The photo-induced deformation of the −1, −3/2, −2, and −5/2
defects are made up of four, five, six, and seven displacements between valleys and peaks
pointing toward the center, respectively.
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Fig. 6 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted director

field 𝒎0 of topological charge q = +1 and ϑ0 = π

3
in the reference configuration. For γ = −1/2, this occurs

at the critical value k ≈ 0.09

Fig. 7 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted director

field 𝒎0 of topological charge q = −1 and ϑ0 = π

3
in the reference configuration. For γ = −1/2, this occurs

at the critical value k ≈ 0.23

5 Conclusion

Different from other polymer networks, topological defects in liquid crystal networks
(LCNs) give rise to richer shape-morphing modes and mechanisms. They are also more
diverse and their evolution much richer than in fluid LCs.

We present here a clear mathematical description of textures caused by topological de-
fects in LCNs by focusing on a class of equilibrium configurations represented by a thin
LCN sheet containing various central defects and subject to an external stimulus. In the ex-
perimental study [23], similar LCN samples, prepared with an imprinted central defect of
topological charge q , deformed by adopting a complex topography specific to that defect.
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Fig. 8 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted director

field 𝒎0 of topological charge q = + 3

2
and ϑ0 = π

3
in the reference configuration. For γ = −1/2, this occurs

at the critical value k ≈ 1.43

Fig. 9 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted director

field 𝒎0 of topological charge q = − 3

2
and ϑ0 = π

3
in the reference configuration. For γ = −1/2, this occurs

at the critical value k ≈ 1.49

In our model, macroscopic deformations arise from the material’s response to two dis-
tinct mechanisms: (i) the mechanical stress induced by the distortion of the director field
in the reference configuration and (ii) variations in the nematic order parameter. The first
activation mechanism is captured by the nematic contribution to the free energy, which does
not retain memory of the initial degree of orientation but quantifies the energetic cost as-
sociated with the distortion of the director field in the deformed configuration. The second
contribution to the free energy is based on hyperelastic models for nematic polymer net-
works [26, 37] and accounts for how variations in the degree of orientation drive the system
out of equilibrium, leading to shape changes. We derive general equilibrium and stability
conditions by analyzing the first and second variations of the energy functional.
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Fig. 10 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted

director field 𝒎0 of topological charge q = +2 and ϑ0 = π

3
in the reference configuration. For γ = −1/2,

this occurs at the critical value k ≈ 0.73

Fig. 11 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted

director field 𝒎0 of topological charge q = −2 and ϑ0 = π

3
in the reference configuration. For γ = −1/2,

this occurs at the critical value k ≈ 0.12

Our results suggest that two key parameters govern the buckling instability of the thin
sheet: a parameter γ > −2, which represents the tendency of monomers in polymer chains
to distribute anisotropically in response to an external stimulus (such as heat or light), and
a parameter k > 0, interpreted as a reduced elastic constant that balances nematic elasticity,
material stiffness, and variations in the nematic order s. For a given admissible γ , we deter-
mined the critical value of k above which the flat configuration ceases to be stable against
a restricted set of perturbations. This provides an upper bound for the value of k at which
the system becomes unstable. Furthermore, we characterized the corresponding buckling
modes, which share the periodicity of the defect imprinted in the LCN. Specifically, for a
defect of topological charge q , we identify 2|q − 1| periodic regions where the direction of
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Fig. 12 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted

director field 𝒎0 of topological charge q = + 5

2
and ϑ0 = π

3
in the reference configuration. For γ = −1/2,

this occurs at the critical value k ≈ 1.39

Fig. 13 Illustration of the out-of plane buckling mode of deformation of LCN sheets with an imprinted

director field 𝒎0 of topological charge q = − 5

2
and ϑ0 = π

3
in the reference configuration. For γ = −1/2,

this occurs at the critical value k ≈ 0.24

the director repeats itself, and these regions of periodicity characterize also the deformation.
Our results are in good qualitative agreement with the available experimental examples.

These findings open several avenues for further exploration. A follow-up question con-
cerns the role of boundary conditions in stabilizing the flat ground state. Specifically, one
can ask whether there is a class of anchoring conditions capable of preventing out-of-plane
deformation of LCN sheets for all k > 0 and γ > −2. The study of interactions between
neighboring defects [38] and their influence on shape deformations presents another intrigu-
ing direction for future research.
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Our framework could also be extended to different geometries of the initial configuration,
or to incorporate the evolution of orientational order, hydrodynamic coupling, active defect
dynamics, and shape-changing surfaces.

Furthermore, our model can form the basis for a mathematical understanding of how
developing organisms achieve biological organization by growing persistent protrusions in-
duced by topological defects. In the context of morphogenesis, our setup can be interpreted
as an initially isotropic phase where cells adopt a specific degree of orientation dictated by
s, forming defects at locations where s vanishes. This transition represents an active impulse
that remains to be understood.

Appendix A: First and Second Variations: Detailed Calculations

To compute the first variation δ1ℱ[𝝋] of our rescaled free-energy functional ℱ[𝝋] in (14),
we introduce a test field G1 = δ1F that represents the variation of the deformation gradient
F in a way compatible with the incompressibility constraint det F = 1. This is possible by
ensuring that the following equality holds,

δ1 (det F) = 0. (A.1)

Here, δ1 denotes the first variation applied to the functional ℱ , represented by G1. The
second variation δ2δ1ℱ is obtained by further perturbing δ1ℱ through another admissible
variation G2 of F. Using the definitions of determinant and adjugate F∗ of the tensor F, and
considering an orthonormal basis (𝒆1, 𝒆2, 𝒆3) of 𝒱 , (A.1) can be rewritten as

δ1(F𝒆1 · F𝒆2 × F𝒆3) = tr(F∗TG1) = det F tr
(︁
F−1G1

)︁ = 0, (A.2)

and so all the admissible perturbations G1 of F satisfies (15). The same holds for the admis-
sible G2. Since 𝒏 is delivered by the deformation through (8), we can also introduce the test
field 𝒗1 that represents the variation of 𝒏 through G1,

𝒗1 = δ1𝒏 = 1

|F𝒏0|P(𝒏) (G1𝒏0) , (A.3)

where P(𝒏) = I − 𝒏 ⊗ 𝒏 is the projection onto the plane orthogonal to 𝒏. We note that 𝒗1 is
orthogonal to 𝒏, which is consistent with the constraint of unimodularity for 𝒏, δ1(𝒏 ·𝒏) = 0.
Since

δ1

⃓⃓∇𝑿𝒏F−1
⃓⃓2 =2

[︁
(∇𝒗1)F−1 + ∇𝒏 δ1(F−1)

]︁ · ∇𝒏F−1

=2
[︁
(∇𝒗1)F−1 − ∇𝒏F−1G1F−1]︁ · ∇𝒏F−1 (A.4a)

δ1 tr
(︁
FTF

)︁ =2G1 · F (A.4b)

In (A.4a) use has been made of the fact that since F−1F = I, then δ1(F−1)F + F−1G1 = 0,
and so

δ1(F−1) = −F−1G1F−1. (A.5)

Moreover, given the definition of L as a function of 𝒏 in (12), it follows that the constraint
det L = 1 is preserved under the perturbation. Indeed, by introducing the test field M, which
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represents the first variation of L through G1 and is defined as

M1 = δ1L = a−1/3(a − 1)(𝒗1 ⊗ 𝒏 + 𝒏 ⊗ 𝒗1), (A.6)

with 𝒗1 defined in (A.3), we compute

δ1(det L) = tr
(︁
L−1M1

)︁ = a−1/3(a − 1) tr
(︁
a−1𝒏 ⊗ 𝒗1 + 𝒗1 ⊗ 𝒏

)︁
, (A.7)

which vanishes due to the orthogonality of 𝒏 and 𝒗. Moreover, since L−1L = I, then

δ1L−1 = −L−1M1L−1 = −a1/3
(︁
a−1 − 1

)︁
(𝒏 ⊗ 𝒗1 + 𝒗1 ⊗ 𝒏). (A.8)

The first variation of the dimensionless energy functional ℱ at the field 𝝋 is then a linear
functional of G1 and results in (20).

By further perturbing δ1ℱ , we compute the second variation of the functional ℱ . Now
G2 = δ2F represents another admissible perturbation of F, such that G2 · F−T = 0, and we
define 𝒗2 and M2 the test fields that represents the variation of 𝒏 and L, respectively, through
G2,

𝒗2 = δ2𝒏 = 1

|F𝒏0|P(𝒏) (G2𝒏0) , (A.9a)

M2 = δ2L = a−1/3(a − 1)(𝒗2 ⊗ 𝒏 + 𝒏 ⊗ 𝒗2). (A.9b)

Moreover, since also 𝒗1 in (A.3) depends on F, we denote by 𝝃 = δ2𝒗1 its variation through
G2, which results in

𝝃 = δ2𝒗1 = − 1

|F𝒏0| [(𝒗1 ⊗ 𝒏)G2𝒏0 + (𝒗2 ⊗ 𝒏 + 𝒏 ⊗ 𝒗2)G1𝒏0] (A.10)

Since, as before, δ2(F−1) = −F−1G2F−1, we can express the second variation δ2δ1ℱ at the
field 𝝋 as in (20), which is a bilinear form in G1 and G2.

Appendix B: Out-of-Plane Deformations: Detailed Calculations

We apply (16) to 𝝋0 in (26), with 𝒏0 = 𝒎0 in (1), describing a central defect with topological
charge q , and s given by (25). By rescaling all lengths to the radius R of the initial cylinder
B0 in (24), instead of to diam (B0), (16) reduces to

δ1ℱ[𝝋0](G1)

= H

R

∫︂ 1

ε

∫︂ 2π

0

[︁
2κs̄2

(︁−∇𝒗1|𝝋0 + ∇𝒎0G1

)︁ · ∇𝒎0 + tr
(︁
GT

1 L−1L0

)︁ |𝝋0

+ tr
(︁
L−1GL0

)︁ |𝝋0 + ā1/3
(︁
ā−1 − 1

)︁
tr

(︁
(𝒎0 ⊗ 𝒗1|𝝋0 + 𝒗1|𝝋0 ⊗ 𝒎0)L0

)︁]︁
r dr dϑ, (B.1)

where ∇ represents the gradient in polar coordinates, while the perturbation 𝒗1|𝝋0 of 𝒎0

through G1 results by (A.3) to be

𝒗1|𝝋0 = v1𝒆z, where v1 = ∇δh1 · 𝒎0 = δh1,r cosw + 1

r
δh1,ϑ sinw. (B.2)
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Moreover,

∇𝒎0 = q

r
𝒎0⊥ ⊗ 𝒆ϑ , where 𝒎0⊥ = − sinw𝒆r + cosw𝒆ϑ , (B.3)

with w = w(ϑ) defined in (1), and ā0 and ā are functions of s̄0 and s̄, respectively, and thus
remain constant. Since

tr
(︁
GT

1 L−1L0

)︁ |𝝋0 = tr
(︁
L−1GL0

)︁ |𝝋0 = a1/3a
−1/3
0 ∇δ1h ⊗ 𝒆z, (B.4)

and since 𝒎0, 𝒎0⊥ and ∇δh1 are orthogonal to 𝒆z, it follows from (B.2), (B.3) and (28)
that δ1ℱ[φ0](G1) in (B.1) vanishes for all admissible test fields G1. Therefore, φ0 is an
equilibrium configuration, and we will study its stability.

The second variation of ℱ in (20) at the equilibrium configuration 𝝋0 in (26) is given by

δ1δ2ℱ[𝝋0](G1,G2)

= H

R

∫︂ 1

ε

∫︂ 2π

0

{︁
2κs̄2

[︁(︁∇𝝃 |𝝋0 − A[𝒗1|𝝋0 ,G1]G2 − A[𝒗2|𝝋0 ,G2]G1
)︁ · (∇𝒎0)

+A[𝒗1|𝝋0 ,G1] · A[𝒗2|𝝋0 ,G2]
]︁ + tr

(︁
GT

1 L−1G2L0

)︁ |𝝋0 + tr
(︁
GT

2 L−1G1L0|𝝋0

)︁
+ (︁

ā−1/3 − ā1/3
)︁ [︁

tr
(︁
GT

1 (𝒎0 ⊗ 𝒗2|𝝋0 + 𝒗2|𝝋0 ⊗ 𝒎0)L0|𝝋0

)︁
+ tr

(︁
GT

2 (𝒎0 ⊗ 𝒗1|𝝋0 + 𝒗1|𝝋0 ⊗ 𝒎0)L0|𝝋0

)︁
+ tr

(︁
(𝒎0 ⊗ 𝒗2|𝝋0 + 𝒗2|𝝋0 ⊗ 𝒎0)G1L0|𝝋0

)︁ + tr
(︁
(𝒎0 ⊗ 𝒗1|𝝋0 + 𝒗1|𝝋0 ⊗ 𝒎0)G2L0|𝝋0

)︁
+ tr

(︁
(𝒗2|𝝋0 ⊗ 𝒗1|𝝋0 + 𝒗1|𝝋0 ⊗ 𝒗2|𝝋0)L0|𝝋0

)︁ + tr
(︁
(𝒎0 ⊗ 𝝃 |𝝋0 + 𝝃 |𝝋0 ⊗ 𝒎0)L0|𝝋0

)︁]︁}︁
r dr dϑ,

(B.5)

where 𝒗1|𝝋0 is defined in (B.2) and

𝒗2|𝝋0 = v2𝒆z, where v2 = ∇δh2 · 𝒎0 = δh2,r cosw + 1

r
δh2,ϑ sinw, (B.6a)

𝝃 |𝝋0 = − [︁
(𝒗1|𝝋0 ⊗ 𝒎0)G2𝒎0 + (𝒗2|𝝋0 ⊗ 𝒎0 + 𝒏 ⊗ 𝒗2|𝝋0)G1𝒎0

]︁ = −v1v2𝒎0. (B.6b)

Making use of (B.2), (B.6a)–(B.6b) and (28), we obtain that

∇𝝃 |𝝋0 · ∇𝒎0 = − q2

r2
v1v2, (B.7a)

A[𝒗1|𝝋0 ,G1]G2 · ∇𝒎0 = A[𝒗2|𝝋0 ,G2]G1 · ∇𝒎0 =0, (B.7b)

A[𝒗1|𝝋0 ,G1] · A[𝒗2|𝝋0 ,G2] =∇v1 · ∇v2, (B.7c)

and δ2δ1ℱ[𝝋0] in (B.5) reduces to (29) in the main text. We recall that ∇ = ∂r + 1
r
∂ϑ + ∂z is

the gradient in polar coordinates.
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Appendix C: Determination of Buckling Modes

By substituting (33) and (35) in (29), the integrals over r and ϑ decouple. Upon integrating
by parts with respect to ϑ , and since g′(2π) = ±g′(0) according to q and ϑ0, we obtain

δ2δ1ℱ[𝝋0](f1, f2) = H

R

∫︂ 1

ε

{︁
k(A − Aw)f ′′

1 f ′′
2

+k

2
(q − 1)(A − 2Aw)

[︃
1

r

(︁
f1f

′′
2 + f ′′

1 f2

)︁ − f ′
1f

′′
2 − f ′′

1 f ′
2

]︃

+1

r
f ′

1f
′
2

[︁
k ((A − Aw)(−2q + 1) + B) + (A + γ (A − Aw))r2

]︁

+ 1

r3
f1f2

[︁
k (−2Bw(q − 1) + Cw) + (B + γBw)r2

]︁

+ 1

2r2
(f1f

′
2 + f ′

1f2) [k ((A − 2Aw)(q − 1)(2q − 1) + 2Bw(q − 2) + B(q − 1))

−γ (A − 2Aw)(q − 1)r2
]︁}︁

dr, (C.1)

where a prime denotes differentiation, k and γ are defined in (30), and

A =
∫︂ 2π

0
g2 dϑ, Aw =

∫︂ 2π

0
g2 sin2 w dϑ,

B =
∫︂ 2π

0
g′2 dϑ, Bw =

∫︂ 2π

0
g′2 sin2 w dϑ,

Cw =
∫︂ 2π

0
g′′2 sin2 w dϑ,

(C.2)

with g defined in (35).
Integrating by parts with respect to r in (C.1) yields

δ2δ1ℱ[𝝋0](f1, f2) = H

R

∫︂ 1

ε

{︁
kr(A − Aw)f iv

1 + 2k(A − Aw)f ′′′
1

+f ′′
1

r

[︁
k ((3q − 2)A − (4q − 3)Aw − B) − (A + γ (A − Aw))r2

]︁

+f ′
1

r2

[︁−k ((3q − 2)A − (4q − 3)Aw − B) − (A + γ (A − Aw))r2
]︁

+f1

r3

[︁
k (2q(q − 1)(A − 2Aw) + B(q − 1) + Cw − 2Bw) + (B + γBw)r2

]︁}︃
f2 dr

+
[︃
−r(A − Aw)f ′′′

1 + f ′
1

2r

[︁
k (A(−5q + 4) + Aw(6q − 4) + 2B) + 2(A + γ (A − Aw))r2

]︁

+ f1

2r2

[︁
k((A − 2Aw)(q − 1)(2q − 1) + 2Bw(q − 2) + B(q − 1))

+γ (2Aw − A)(q − 1)r2
]︁]︃⃓⃓

⃓⃓
r=1

f2(1)
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+k

[︃
r(A − Aw)f ′′

1 + (q − 1)

2
(A − 2Aw)

(︃
1

r
f1 − f ′

1

)︃]︃⃓⃓
⃓⃓
r=1

f ′
2(1)

− k

[︃
r(A − Aw)f ′′

1 + (q − 1)

2
(A − 2Aw)

(︃
1

r
f1 − f ′

1

)︃]︃⃓⃓
⃓⃓
r=ε

f ′
2(ε). (C.3)

The equations obeyed by a generic variation f1 satisfying (34) readily follows from (C.3).
The integrals and the three quantities evaluated at r = 1 or r = ε are independent of each
other. To make the second variation equal to 0, these quantities must vanish for all variations
f2. Therefore, due to the arbitrariness of f2, and the values f2(1), f ′

2(1) and f ′
2(0), f1 must

then satisfy equations (37a)–(37d).

A generic solution f1 of equation (36) in the bulk for q = 2m + 1

2
, m ∈ ℤ and g(ϑ) =

| sinw| as in (35) is given by

f1(r) = f11(r) + f12(r) + f13(r) + f14(r), (C.4)

where

f11(r) = c1r
1− α1

2 hypergeom

(︃[︃
1

4
− α1

4
,

3

4
− α1

4

]︃
,

[︂
1 − α1

2
,1 + α2

4
− α1

4
,1 − α2

4
− α1

4

]︂
,
r2 (4 + γ )

4k

)︃
,

f12(r) = c2r
1+ α1

2 hypergeom

(︃[︃
1

4
+ α1

4
,

3

4
+ α1

4

]︃
,

[︂
1 + α1

2
,1 + α2

4
+ α1

4
,1 − α2

4
+ α1

4

]︂
,
r2 · (4 + γ )

4k

)︃
,

f13(r) = c3r
1− α2

2 hypergeom

(︃[︃
1

4
− α2

4
,

3

4
− α2

4

]︃
,

[︂
1 − α2

2
,1 − α2

4
+ α1

4
,1 − α2

4
− α1

4

]︂
,
r2 (4 + η)

4k

)︃
,

f14(r) = c4r
1+ α2

2 hypergeom

(︃[︃
1

4
+ α2

4
,

3

4
+ α2

4

]︃
,

[︂
1 + α2

2
,1 + α2

4
+ α1

4
,1 + α2

4
− α1

4

]︂
,
r2 · (4 + γ )

4k

)︃
,

with

α1 = √︁−8q + 7, α2 = √︁
8q − 3 (C.5)

For q ∈ ℤ and g(ϑ) = cosw as in (35), these are expressed as

f11(r) = c1r
1− β1

6 hypergeom

(︃[︃
1

4
− β1

12
,

3

4
− β1

12

]︃
,

[︃
1 − β1

6
,1 − β1

12
− β2

12
,1 − β1

12
+ β2

12

]︃
,
(3γ + 4) · r2

12k

)︃
,
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f12(r) = c2r
1+ β1

6 hypergeom

(︃[︃
1

4
+ β1

12
,

3

4
+ β1

12

]︃
,

[︃
1 + β1

6
,1 + β1

12
+ β2

12
,1 + β1

12
− β2

12

]︃
,
(3γ + 4) r2

12k

)︃
,

f13(r) = c3r
1− β2

6 hypergeom

(︃[︃
1

4
− β2

12
,

3

4
− β2

12

]︃
,

[︃
1 − β2

6
,1 − β1

12
− β2

12
,1 + β1

12
− β2

12

]︃
,
(3γ + 4) r2

12k

)︃
,

f14(r) = c4r
1+ β2

6 hypergeom

(︃[︃
1

4
+ β2

12
,

3

4
+ β2

12

]︃
,

[︃
1 + β2

6
,1 + β1

12
+ β2

12
,1 − β1

12
+ β2

12

]︃
,
(3γ + 4) r2

12k

)︃
,

with

β1 =
√︂

54 − 3
√︁

64q2 − 48q + 153 − 48q, β2 =
√︂

54 + 3
√︁

64q2 − 48q + 153 − 48q.

(C.6)
Upon substituting these solutions into the boundary conditions (37a)-(37d), we obtain a
system of four equations with four unknowns, denoted cj, with j = 1, . . . ,4. The parameter k

in (30) is considered a control parameter. When the determinant of the matrix associated with
the system is non-zero, the unique solution to the system is the trivial solution, i.e., f1 ≡ 0,
and so the second variation of ℱ vanishes only in correspondence of the null-perturbation.
If, however, there exists a value of k for which the determinant vanishes, then the system
admits infinitely many solutions for f1, defined up to multiplicative constants. In this case,
we select the real part of these solutions.

Acknowledgements The work of S.P. and G.G.G. is partially supported by the European Union–Next Gen-
eration EU under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment
1.1–Call PRIN 2022 of Italian Ministry of University and Research. Project No. 202249PF73 “Mathematical
models for viscoelastic biological matter”. L.A.M. and S.P. also thank the Isaac Newton Institute for Mathe-
matical Sciences (INI), Cambridge, for their support and hospitality during the research programme “Uncer-
tainty Quantification and Stochastic Modelling of Materials” (USM), July-September 2023, when discussions
about these were initiated. The USM programme was supported by EPSRC Grant Number EP/R014604/1.

Author Contributions The Authors contributed equally to the design of the research and to its development.
S.P. performed the computations and prepared the figures and the original draft of the manuscript. All the
Authors contributed with revisions to the final version of the manuscript.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/


Shape Instabilities Driven by Topological Defects in Nematic Polymer. . . Page 25 of 26    69 

References

1. Bladon, P., Terentjev, E.M., Warner, M.: Deformation-induced orientational transitions in liquid crystals
elastomer. J. Phys. II 4(1), 75–91 (1994). https://doi.org/10.1051/jp2:1994100

2. Blanch-Mercader, C., Yashunsky, V., Garcia, S., Duclos, G., Giomi, L., Silberzan, P.: Turbulent dynamics
of epithelial cell cultures. Phys. Rev. Lett. 120, 208101 (2018). https://doi.org/10.1103/PhysRevLett.120.
208101

3. Bouck, L., Ricardo, H.N., Shuo, Y.: Reduced membrane model for liquid crystal polymer networks:
asymptotics and computation. J. Mech. Phys. Solids 187, 105607 (2024). https://doi.org/10.1016/j.jmps.
2024.105607

4. Brown, G.H.: Structure, properties, and some applications of liquid crystals. J. Opt. Soc. Am. 63,
1505–1514 (1973). https://doi.org/10.1364/JOSA.63.001505

5. Cesana, P., Plucinsky, P., Bhattacharya, K.: Effective behavior of nematic elastomer membranes. Arch.
Ration. Mech. Anal. 218, 863–905 (2015). https://doi.org/10.1007/s00205-015-0871-0

6. Cirak, F., Long, Q., Bhattacharya, K., Warner, M.: Computational analysis of liquid crystalline elastomer
membranes: changing Gaussian curvature without stretch energy. Int. J. Solids Struct. 51(1), 144–153
(2014). https://doi.org/10.1016/j.ijsolstr.2013.09.019

7. Conti, S., Dolzmann, G.: An adaptive relaxation algorithm for multiscale problems and application to
nematic elastomers. J. Mech. Phys. Solids 113, 126–143 (2018). https://doi.org/10.1016/j.jmps.2018.02.
001

8. Copenhagen, K., Alert, R., Wingreen, N., Shaevitz, J.: Topological defects promote layer formation
in myxococcus xanthus colonies. Nat. Phys. 17, 211–215 (2021). https://doi.org/10.1038/s41567-020-
01056-4211

9. De Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. The International Series of Mono-
graphs on Physics, vol. 83. Clarendon, Oxford (1993)

10. Duffy, D., Biggins, J.S.: Defective nematogenesis: Gauss curvature in programmable shape-responsive
sheets with topological defects. Soft Matter 16, 10935 (2020). https://doi.org/10.1039/D0SM01192D

11. Ericksen, J.L.: Liquid crystals with variable degree of orientations. Arch. Ration. Mech. Anal. 113,
97–120 (1991). https://doi.org/10.1007/BF00380413

12. Fernandez, G.: Exotic actuators. Nat. Mater. 12, 12 (2023). https://doi.org/10.1038/nmat3526
13. Fried, E., Todres, R.E.: Prediction of disclinations in nematic elastomers. Proc. Natl. Acad. Sci. USA

98(26), 14773–14777 (2001). https://doi.org/10.1073/pnas.261395098
14. Fried, E., Todres, R.E.: Disclinated states in nematic elastomers. J. Mech. Phys. Solids 50(12),

2691–2716 (2002). https://doi.org/10.1016/S0022-5096(02)00013-3
15. Fried, E., Todres, R.E.: Normal-stress differences and the detection of disclinations in nematic elas-

tomers. J. Polym. Sci., Part B, Polym. Phys. 40, 2098–2106 (2002). https://doi.org/10.1002/polb.10257
16. Gruzdenko, A., Dierking, I.: Liquid crystal-based actuators. Front. Soft Matter 2, 1052037 (2022).

https://doi.org/10.3389/frsfm.2022.1052037
17. Kawaguchi, K., Kageyama, R., Sano, M.: Topological defects control collective dynamics in neural pro-

genitor cell cultures. Nature 545, 327–331 (2017). https://doi.org/10.1038/nature22321
18. Keber, F.C., Loiseau, E., Sanchez, T., DeCamp, S.J., Giomi, L., Bowick, M.J., Marchetti, M.C., Dogic,

Z., Bausch, A.R.: Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2024).
https://doi.org/10.1126/science.1254784

19. Kralj, S., Rosso, R., Virga, E.: Curvature control of valence on nematic shells. Soft Matter 7, 670–683
(2011). https://doi.org/10.1039/C0SM00378F

20. Kumar, N., Zhang, R., de Pablo, J.J., Gardel, M.L.: Tunable structure and dynamics of active liquid
crystals. Sci. Adv. 4, eaat7779 (2018). https://doi.org/10.1126/sciadv.aat7779

21. Long, C., Tang, X., Selinger, R.B.L., Selinger, J.V.: Geometry and mechanics of disclination lines in 3D
nematic liquid crystals. Soft Matter 17, 2265–2278 (2021). https://doi.org/10.1039/d0sm01899f

22. Maroudas-Sacks, Y., Garion, L., Shani-Zerbib, L., Livshits, A., Braun, E., Keren, K.: Topological defects
in the nematic order of actin fibres as organization centres of Hydra morphogenesis. Nat. Phys. 17,
251–259 (2021). https://doi.org/10.1038/s41567-020-01083-1

23. McConney, M.E., Martinez, A., Tondiglia, V.P., Lee, K.M., Langley, D., Smalyukh, I.I., White, T.J.:
Topography from topology: photoinduced surface features generated in liquid crystal polymer networks.
Adv. Mater. 25, 5880–5885 (2013). https://doi.org/10.1002/adma.201301891

24. McCracken, J.M., Donovan, B.R., White, T.J.: Materials as machines. Adv. Mater. 32, 1906564 (2020).
https://doi.org/10.1002/adma.201906564

25. Mihai, L.A.: Stochastic Elasticity: A Nondeterministic Approach to the Nonlinear Field Theory.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06692-4

26. Mihai, L.A., Goriely, A.: A plate theory for nematic liquid crystalline solids. J. Mech. Phys. Solids 144,
104101 (2020). https://doi.org/10.1016/j.jmps.2020.104101

https://doi.org/10.1051/jp2:1994100
https://doi.org/10.1103/PhysRevLett.120.208101
https://doi.org/10.1103/PhysRevLett.120.208101
https://doi.org/10.1016/j.jmps.2024.105607
https://doi.org/10.1016/j.jmps.2024.105607
https://doi.org/10.1364/JOSA.63.001505
https://doi.org/10.1007/s00205-015-0871-0
https://doi.org/10.1016/j.ijsolstr.2013.09.019
https://doi.org/10.1016/j.jmps.2018.02.001
https://doi.org/10.1016/j.jmps.2018.02.001
https://doi.org/10.1038/s41567-020-01056-4211
https://doi.org/10.1038/s41567-020-01056-4211
https://doi.org/10.1039/D0SM01192D
https://doi.org/10.1007/BF00380413
https://doi.org/10.1038/nmat3526
https://doi.org/10.1073/pnas.261395098
https://doi.org/10.1016/S0022-5096(02)00013-3
https://doi.org/10.1002/polb.10257
https://doi.org/10.3389/frsfm.2022.1052037
https://doi.org/10.1038/nature22321
https://doi.org/10.1126/science.1254784
https://doi.org/10.1039/C0SM00378F
https://doi.org/10.1126/sciadv.aat7779
https://doi.org/10.1039/d0sm01899f
https://doi.org/10.1038/s41567-020-01083-1
https://doi.org/10.1002/adma.201301891
https://doi.org/10.1002/adma.201906564
https://doi.org/10.1007/978-3-031-06692-4
https://doi.org/10.1016/j.jmps.2020.104101


   69 Page 26 of 26 S. Paparini et al.

27. Modes, C.D., Bhattacharya, K., Warner, M.: Disclination-mediated thermo-optical response in nematic
glass sheets. Phys. Rev. E 81, 060701 (2010). https://doi.org/10.1103/PhysRevE.81.060701

28. Modes, C.D., Bhattacharya, K., Warner, M.: Gaussian curvature from flat elastica sheets. Proc. R. Soc.
Lond. A 467, 1121 (2011). https://doi.org/10.1098/rspa.2010.0352

29. Narayan, V., Ramaswamy, S., Menon, N.: Long-lived giant number fluctuations in a swarming granular
nematic. Science 317, 105–108 (2007). https://doi.org/10.1126/science.1140414

30. Ozenda, O., Sonnet, A., Virga, E.G.: A blend of stretching and bending in nematic polymer networks.
Soft Matter 16, 8877 (2020). https://doi.org/10.1039/D0SM00642D

31. Paparini, S., Virga, E.G.: Shape bistability in 2D chromonic droplets. J. Phys. Condens. Matter 33(49),
495101 (2021). https://doi.org/10.1088/1361-648X/ac2645

32. Paparini, S., Virga, E.G.: Stability against the odds: the case of chromonic liquid crystals. J. Nonlinear
Sci. 32, 74 (2022). https://doi.org/10.1007/s00332-022-09833-6

33. Paparini, S., Virga, E.G.: Spiralling defect cores in chromonic hedgehogs. Liq. Cryst. 50(7–10),
1498–1516 (2023). https://doi.org/10.1080/02678292.2023.2190626

34. Saw, T.B., Doostmohammadi, A., Nier, V., Kocgozlu, L., Thampi, S., Toyama, Y., Marcq, P., Lim, C.,
Yeomans, J., Ladoux, B.: Topological defects in epithelia govern cell death and extrusion. Nature 544,
212–216 (2024). https://doi.org/10.1038/nature21718

35. Selinger, J.V.: Introduction to topological defects and solitons. In: Liquid Crystals, Magnets, and Related
Materials. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-70200-6

36. Singh, H., Virga, E.G.: Bending and stretching in a narrow ribbon of nematic polymer networks. J. Elast.
154, 531–553 (2023). https://doi.org/10.1007/s10659-022-09978-1

37. Sonnet, A.M., Virga, E.G.: Model for a photoresponsive nematic elastomer ribbon. J. Elast. 155, 327–354
(2024). https://doi.org/10.1007/s10659-022-09959-4

38. Tang, X., Selinger, J.V.: Orientation of topological defects in 2D nematic liquid crystals. Soft Matter 13,
5481–5490 (2017). https://doi.org/10.1039/c7sm01195d

39. Terentjev, E.M.: Liquid crystal elastomers: 30 years after. Macromolecules 58, 2792–2806 (2025).
https://doi.org/10.1021/acs.macromol.4c01997

40. Treloar, L.R.G.: Stress-strain data for vulcanized rubber under various types of deformation. Trans. Fara-
day Soc. 40, 59–70 (1944). https://doi.org/10.1039/TF9444000059

41. Warner, M.: Topographic mechanics and applications of liquid crystalline solids. Annu. Rev. Condens.
Matter Phys. 11, 125–145 (2020). https://doi.org/10.1146/annurev-conmatphys-031119-050738

42. Warner, M., Terentjev, E.M.: Liquid Crystal Elastomers, paper back. Oxford University Press, Oxford
(2007)

43. Warner, M., Wang, X.: Elasticity and phase behavior of nematic elastomers. Macromolecules 24,
4932–4941 (1991). https://doi.org/10.1021/ma00017a033

44. Warner, M., Gelling, K.P., Vilgis, T.A.: Theory of nematic networks. J. Chem. Phys. 88(6), 4008–4013
(1988). https://doi.org/10.1063/1.453852

45. White, T.J.: Photomechanical effects in liquid crystalline polymer networks and elastomers. J. Polym.
Sci., Part B, Polym. Phys. 56, 695–705 (2018). https://doi.org/10.1002/polb.24576

46. White, T.J., Broer, D.J.: Programmable and adaptive mechanics with liquid crystal polymer networks
and elastomers. Nat. Mater. 14, 1087–1098 (2015). https://doi.org/10.1038/nmat4433

47. Xiao, T., Wu, J., Zhang, Y.: Recent advances in the design, fabrication, actuation mechanisms and appli-
cations of liquid crystal elastomers. Soft Sci. 3, 11 (2024). https://doi.org/10.20517/ss.2023.03

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1103/PhysRevE.81.060701
https://doi.org/10.1098/rspa.2010.0352
https://doi.org/10.1126/science.1140414
https://doi.org/10.1039/D0SM00642D
https://doi.org/10.1088/1361-648X/ac2645
https://doi.org/10.1007/s00332-022-09833-6
https://doi.org/10.1080/02678292.2023.2190626
https://doi.org/10.1038/nature21718
https://doi.org/10.1007/978-3-031-70200-6
https://doi.org/10.1007/s10659-022-09978-1
https://doi.org/10.1007/s10659-022-09959-4
https://doi.org/10.1039/c7sm01195d
https://doi.org/10.1021/acs.macromol.4c01997
https://doi.org/10.1039/TF9444000059
https://doi.org/10.1146/annurev-conmatphys-031119-050738
https://doi.org/10.1021/ma00017a033
https://doi.org/10.1063/1.453852
https://doi.org/10.1002/polb.24576
https://doi.org/10.1038/nmat4433
https://doi.org/10.20517/ss.2023.03

	Shape Instabilities Driven by Topological Defects in Nematic Polymer Networks
	Abstract
	Introduction
	Topological Defects in the Plane
	Mathematical Framework
	Free-Energy Functional
	Equilibrium and Stability Conditions

	Out-of-Plane Perturbations
	Deformation According to the Topological Charge

	Conclusion
	Appendix A: First and Second Variations: Detailed Calculations
	Appendix B: Out-of-Plane Deformations: Detailed Calculations
	Appendix C: Determination of Buckling Modes
	References


