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Abstract
Strong admissibility plays an important role in formal argumentation under the grounded semantics, especially
when explaining the acceptance of an argument. However, strong admissibility has so far only been defined in the
context of finite argumentation frameworks. In the current paper, we examine the case of infinite argumentation
frameworks. In particular, we assess what the challenges are when moving from finite to infinite argumentation
frameworks and we show that despite these challenges, strong admissibility can be meaningfully defined and
applied in the context of infinite argumentation frameworks.
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1. Introduction

Formal argumentation has become one of the key approaches for symbolic reasoning under uncertainty
[1]. Within formal argumentation, strong admissibility [2, 3, 4] plays a key role, especially in the context
of grounded semantics. In essence, strong admissibility relates to grounded semantics in a similar
way as admissibility relates to preferred semantics, especially when it comes to proof procedures. In
order to show that an argument is in a preferred extension, it is not necessary to construct the entire
preferred extension. Instead, it is sufficient to show that the argument is in an admissible set. Similarly,
in order to show that an argument is in the grounded extension, it is not necessary to construct the
entire grounded extension. Instead, it is sufficient to show that the argument is in a strongly admissible
set [4]. Such a strongly admissible set can then either be presented in its original form, or be the basis
for an interactive explanation in the form of a discussion game [5].

Strong admissibility was originally only defined for finite argumentation frameworks [2, 3, 4, 6, 7].
This can be a limitation, especially when applying strong admissibility in the context of instantiated
argumentation. For instance, when applying aspic+ [8] with domain independent strict rules (that is,
with strict rules based on classical logic entailment) the mere fact that there exist an infinite number
of tautologies implies that there will be an infinite number of arguments. As such, it is worthwhile to
explore how the concept of strong admissibility can be applied to infinite argumentation frameworks as
well.

In the current paper, we examine the challenges when it comes to applying strong admissibility in
the context of infinite argumentation frameworks. We provide a novel definition of strong admissi-
bility that can be applied in a meaningful way for both finite and infinite argumentation frameworks.
Moreover, we show that our new definition is backwards compatible with existing definitions of strong
admissibility that were restricted to finite argumentation frameworks only. That is, we show that for
finite argumentation frameworks, our new definition coincides with the existing definitions of strong
admissibility. In addition, we show that (even in the context of infinite argumentation frameworks) our
new definition satisfies properties very similar to what is satisfied by the existing definitions in the
context of finite argumentation frameworks.
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The current work is closely related to a paper that has recently been accepted to the ECSQARU
2025 conference [9]. However, where the ECSQARU paper restricts itself to finitary argumentation
frameworks,1 the current work reports on subsequent research where we are able to lift this restriction
and define strong admissibility for infinite argumentation frameworks in general (finitary or not).

The current paper is structured as follows. First, in Section 2, we provide some basic definitions and
formal preliminaries. Then, in Section 3 we present some of the existing definitions of strong admissi-
bility and examine why these are problematic in the context of infinite argumentation frameworks.2

Then, in Section 4 we introduce a new definition of strong admissibility, one that is well-defined for
both finite and infinite argumentation frameworks, is backwards compatible with previous definitions
of strong admissibility and satisfies similar properties. We round off in Section 5 with a discussion of
the obtained results.

2. Preliminaries

In the current section, we briefly restate some of the key concepts of abstract argumentation theory, in
its extension-based form.

Definition 1. An argumentation framework is a pair (Ar , att) where Ar is a set of entities, called
arguments, whose internal structure can be left unspecified, and att is a binary relation on Ar . For any
𝐴,𝐵 ∈ Ar we say that 𝐴 attacks 𝐵 iff (𝐴,𝐵) ∈ att . An argumentation framework is called finite iff Ar
is finite, and is called finitary iff for each 𝐴 ∈ Ar , the set {𝐵 | (𝐵,𝐴) ∈ att} is finite.

Definition 2. Let AF = (Ar , att) be an argumentation framework, 𝐴 ∈ Ar and 𝒜rgs ⊆ Ar . We
define 𝐴+ as {𝐵 ∈ Ar | 𝐴 attacks 𝐵}, 𝐴− as {𝐵 ∈ Ar | 𝐵 attacks 𝐴}, 𝒜rgs+ as ∪{𝐴+ | 𝐴 ∈ 𝒜rgs},
and 𝒜rgs− as ∪{𝐴− | 𝐴 ∈ 𝒜rgs}. 𝒜rgs is said to be conflict-free iff 𝒜rgs ∩ 𝒜rgs+ = ∅. 𝒜rgs
is said to defend 𝐴 iff 𝐴− ⊆ 𝒜rgs+. The characteristic function 𝐹AF : 2Ar → 2Ar is defined as
𝐹AF (𝒜rgs) = {𝐴 | 𝒜rgs defends 𝐴}.

Definition 3. Let AF = (Ar , att) be an argumentation framework. 𝒜rgs ⊆ Ar is said to be:

• an admissible set of AF iff 𝒜rgs is conflict-free and 𝒜rgs ⊆ 𝐹AF (𝒜rgs)
• a complete extension of AF iff 𝒜rgs is conflict-free and 𝒜rgs = 𝐹AF (𝒜rgs)
• a grounded extension of AF iff 𝒜rgs is the (unique) smallest (w.r.t. ⊆) complete extension
• a preferred extension of AF iff 𝒜rgs is a maximal (w.r.t. ⊆) complete extension

3. Strong Admissibility and Infinite Argumentation Frameworks

In the current section, we provide a brief overview of strong admissibility in its different forms,3 as
well as of the challenges one encounters when trying to apply this concept in the context of infinite
argumentation frameworks. Due to space limitations, we are unable to provide a general discussion of
how strong admissibility is applied for finite argumentation frameworks. For this, we refer the reader
to [4].

The concept of strong admissibility was first introduced by Baroni and Giacomin [2], using the notion
of strong defence.

Definition 4 ([2]). Let (Ar , att) be an argumentation framework, 𝐴 ∈ Ar and𝒜rgs ⊆ Ar . 𝐴 is strongly
defended by 𝒜rgs iff each attacker 𝐵 ∈ Ar of 𝐴 is attacked by some 𝐶 ∈ 𝒜rgs ∖ {𝐴} such that 𝐶 is
strongly defended by 𝒜rgs ∖ {𝐴}.

1An argumentation framework is finitary iff each argument has a finite number of attackers [10].
2Most of the contents of Section 3 is also contained in [9]. The reason for including it here as well is to make the paper
self-contained.

3Please notice that we restrict ourselves to set-based (instead of labelling-based) definitions of strong admissibility.



Baroni and Giacomin say that a set 𝒜rgs satisfies the strong admissibility property iff it strongly
defends each of its arguments [2]. However, it is also possible to define strong admissibility in an
equivalent way without having to refer to strong defence [4].

Definition 5 ([4]). Let (Ar , att) be an argumentation framework. 𝒜rgs ⊆ Ar is strongly admissible iff
every 𝐴 ∈ 𝒜rgs is defended by some 𝒜rgs ′ ⊆ 𝒜rgs ∖ {𝐴} which in its turn is again strongly admissible.

It is important to note that Definition 4 and Definition 5 have so far only been applied in the
context of finite argumentation frameworks (that is, argumentation frameworks in which the number
of arguments is finite). Unfortunately, these definitions cannot easily be applied in the context where
the argumentation framework is infinite. To see why, consider the infinite argumentation framework
AF 1 = (Ar , att) where Ar = {𝐴1, 𝐴2, 𝐴3, . . .} and att = {(𝐴𝑖+1, 𝐴𝑖) | 𝑖 ≥ 1}. This argumentation
framework is shown in Figure 1.
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Figure 1: AF 1: each argument is attacked by its successor

In argumentation framework AF 1 there exist precisely three admissible sets: ∅, {𝐴𝑖 | 𝑖 is odd } and
{𝐴𝑖 | 𝑖 is even }. The first set is the grounded extension. The second and third set are the preferred
extensions. However, when trying to apply either Definition 4 or Definition 5 to assess whether the
latter two sets are strongly admissible, one stumbles upon a problem. Take for instance the set {𝐴𝑖 | 𝑖
is odd }. When applying Definition 4 to assess whether 𝐴1 is strongly defended by {𝐴𝑖 | 𝑖 is odd },
we observe that 𝐴1’s attacker 𝐴2 is attacked by 𝐴3 ∈ {𝐴𝑖 | 𝑖 is odd } ∖ {𝐴1}. So we need to assess
whether 𝐴3 is strongly defended by {𝐴𝑖 | 𝑖 is odd } ∖ {𝐴1}. For this, we need to assess whether 𝐴5 is
strongly defended by {𝐴𝑖 | 𝑖 is odd } ∖ {𝐴1, 𝐴3}, etc. The point here is that Definition 4 has a recursive
nature, and for the argumentation framework AF 1 the recursion does not end. As such, one could
either assume that for each odd 𝑗, 𝐴𝑗 is strongly defended by {𝐴𝑖 | 𝑖 is odd } ∖ {𝐴𝑘 | 𝑘 is odd and
𝑘 < 𝑗}, or that for each odd 𝑗, 𝐴𝑗 is not strongly defended by {𝐴𝑖 | 𝑖 is odd } ∖ {𝐴𝑘 | 𝑘 is odd and
𝑘 < 𝑗}. Both assumptions are consistent with Definition 4, yet only one of them can hold.

A similar problem occurs in the context of Definition 5. Here, in order to determine whether {𝐴𝑖 | 𝑖
is odd } is a strongly admissible set, we have to determine whether 𝐴1 is defended by some subset
of {𝐴𝑖 | 𝑖 is odd } ∖ {𝐴1} which in its turn is strongly admissible. In essence, Definition 5 is another
example of a recursive definition of which the recursion does not end for argumentation framework
AF 1.

A third definition of strong admissibility was provided in [4, Lemma 2, Theorem 1].4

Definition 6. Let AF = (Ar , att) be an argumentation framework and let 𝒜rgs ⊆ Ar . Let 𝐻0
𝒜rgs = ∅

and 𝐻 𝑖+1
𝒜rgs = 𝐹AF (𝐻

𝑖
𝒜rgs) ∩ 𝒜rgs (𝑖 ≥ 0). 𝒜rgs is strongly admissible iff ∪∞𝑖=0𝐻

𝑖
𝒜rgs = 𝒜rgs .

Definition 6 is not recursive. As such, it avoids the problem of potential infinite recursion. In
particular, for AF 1 it can be observed that for any set𝒜rgs , 𝐻0

𝒜rgs = ∅, 𝐻1
𝒜rgs = 𝐹 (𝐻0

𝒜rgs)∩𝒜rgs = ∅,
𝐻2

𝒜rgs = 𝐹 (𝐻1
𝒜rgs) ∩ 𝒜rgs = ∅, etc. As such, the only set that is strongly admissible is the empty set,

which as we observed before, is also the grounded extension.
Although Definition 6 allows one to unambiguously assess, even for infininite argumentation

frameworks, whether a particular set is strongly admissible or not, it still has some issues. Con-
sider the argumentation framework AF 2 = (Ar , att) with Ar = {𝐴𝑖 | 𝑖 ≥ 1} ∪ {𝐵} and
att = {(𝐴𝑖, 𝐴𝑖+1) | 𝑖 ≥ 1} ∪ {(𝐴𝑗 , 𝐵) | 𝑗 is even }. This argumentation framework is shown
in Figure 2.
AF 2 only has one complete extension: {𝐴𝑗 | 𝑗 is odd } ∪ {𝐵}, which is also the grounded extension.

Yet, this grounded extension is not strongly admissible, at least not according to Definition 6. This
4It has been shown that Definition 4, Definition 5 and Definition 6 are equivalent to each other in the context of finite
argumentation frameworks [4].
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Figure 2: AF 2: an argumentation framework that is not finitary in the sense of [10]

is because (when taking 𝒜rgs as {𝐴𝑗 | 𝑗 is odd } ∪ {𝐵}) ∪∞𝑖=0𝐻
𝑖
𝒜rgs is {𝐴𝑗 | 𝑗 is odd } instead of

{𝐴𝑗 | 𝑗 is odd } ∪{𝐵}.5 More seriously, even though 𝐵 is in the grounded extension, there is no
strongly admissible set that contains 𝐵, at least not according to Definition 6. This is a problem, as the
whole idea of strong admissibility is to show that an argument is in the grounded extension by showing
that it is in a strongly admissible set [6].6 For finite argumentation frameworks, this property actually
holds; in particular, it also holds that the grounded extension is always strongly admissible. For infinite
argumentation frameworks, the property unfortunately does not always hold, as shown by the counter
example of AF 2.

In [9] the notion of strong admissibility is broadened from finite argumentation frameworks to finitary
argumentation frameworks. It is shown that, when restricted to finitary argumentation frameworks,
strong admissibility as defined by Definition 6 satisfies the following properties:7

• each strongly admissible set is an admissible set
• the empty set is the smallest strongly admissible set (w.r.t. ⊆)
• the grounded extension is the biggest strongly admissible set (w.r.t. ⊆)
• the strongly admissible sets form a lattice (w.r.t. ⊆)

4. A New Definition of Strong Admissibility

In the current section we introduce a new definition of strong admissibility and examine its properties.
However, before doing so, we first need to formally define the restriction of an argumentation framework
to a set of arguments.

Definition 7. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework and let𝒜rgs ⊆
Ar . We define AF |𝒜rgs as (𝒜rgs, att ∩ (𝒜rgs ×𝒜rgs)).

Our new definition of strong admissibility is as follows.

Definition 8. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework and let𝒜rgs ⊆
Ar . 𝒜rgs is called a strongly admissible set iff 𝒜rgs is the grounded extension of AF |𝒜rgs∪𝒜rgs− .

It should be mentioned that Definition 8 is not in any way restricted to finite or even finitary
argumentation frameworks. It is designed to be applied to any argumentation framework (finite or
infinite, finitary or non-finitary).

As an example of how Definition 8 is applied, consider the argumentation framework AF 3, de-
picted in Figure 3. Here, the strongly admissible sets are ∅, {𝐴}, {𝐴,𝐶}, {𝐴,𝐶, 𝐹}, {𝐷}, {𝐴,𝐷},
{𝐴,𝐶,𝐷}, {𝐷,𝐹}, {𝐴,𝐷,𝐹} and {𝐴,𝐶,𝐷, 𝐹}, the latter also being the grounded extension of
AF 3. As an example, the set {𝐴,𝐶, 𝐹} is strongly admissible because it is the grounded extension
of AF 3|{𝐴,𝐶,𝐹}∪{𝐴,𝐶,𝐹}− = AF 3|{𝐴,𝐵,𝐶,𝐸,𝐹} = ({𝐴,𝐵,𝐶,𝐸, 𝐹}, {(𝐴,𝐵), (𝐵,𝐶), (𝐶,𝐸), (𝐸,𝐹 )}).
As another example, the set {𝐹}, although admissible, is not strongly admissible, because it is not the

5A similar problem was observed in [10] w.r.t. the inductive proof procedure for grounded semantics.
6In a similar way, one shows that an argument is in a preferred extension by showing that it is in an admissible set.
7The same properties have previously been proven in [4] in the more restricted context of finite (instead of finitary) argumen-
tation frameworks.



grounded extension of AF 3|{𝐹}∪{𝐹}− = AF 3|{𝐸,𝐹} = ({𝐸,𝐹}, {(𝐸,𝐹 ), (𝐹,𝐸)}), as this grounded
extension is ∅, not {𝐹}. As for argumentation framework AF 2 (Figure 2), we observe that {𝐴𝑖 | 𝑖 is
odd } ∪ {𝐵} is indeed a strongly admissible set. This is because ({𝐴𝑖 | 𝑖 is odd } ∪ {𝐵}) ∪ ({𝐴𝑖 | 𝑖 is
odd } ∪ {𝐵})− = Ar , AF 2|Ar = AF 2 and {𝐴𝑖 | 𝑖 is odd } ∪ {𝐵} is indeed the grounded extension
of AF 2. As for argumentation framework AF 1 (Figure 1), although there are three admissible sets
(∅, {𝐴𝑖 | 𝑖 is odd } and {𝐴𝑖 | 𝑖 is even }), only one of them (∅) is strongly admissible. To see why for
instance {𝐴𝑖 | 𝑖 is odd } is not strongly admissible, we observe that {𝐴𝑖 | 𝑖 is odd } ∪ {𝐴𝑖 | 𝑖 is even }−
= {𝐴𝑖 | 𝑖 is odd or even } = Ar , that AF 1|Ar = AF 1, and that {𝐴𝑖 | 𝑖 is odd } is not the grounded
extension of AF 1 (∅ is).
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Figure 3: An example of a finite argumentation framework.

It can be observed that our new definition of strong admissibility (Definition 8) is backwards compat-
ible with one of the previous definitions of strong admissibility (Definition 6). In particular, we show
that for finitary argumentation frameworks, Definition 8 and Definition 6 coincide.

Theorem 1. Let AF = (Ar , att) be a finitary argumentation framework and let 𝒜rgs ⊆ Ar . 𝒜rgs is a
strongly admissible set (in the sense of Definition 8) iff 𝒜rgs is a strongly admissible set (in the sense of
Definition 6).

Proof.

“⇒” Let 𝒜rgs be a strongly admissible set in the sense of Definition 8. That is, 𝒜rgs is the grounded
extension of AF ′ = AF |𝒜rgs∪𝒜rgs− . This means that 𝒜rgs = ∪∞𝑖=0𝐹

𝑖 with 𝐹 0 = ∅ and
𝐹 𝑖+1 = 𝐹AF ′(𝐹 𝑖). We need to prove that 𝒜rgs = ∪∞𝑖=0𝐻

𝑖
𝒜rgs , with 𝐻0

𝒜rgs = ∅ and 𝐻 𝑖+1
𝒜rgs =

𝐹AF (𝐻
𝑖
𝒜rgs) ∩ 𝒜rgs . We proceed to show by induction that for each 𝑖 ≥ 0, 𝐹 𝑖 = 𝐻 𝑖

𝒜rgs .

BASIS (𝑖 = 0) 𝐹 0 = ∅ = 𝐻0
𝒜rgs .

STEP Suppose that for some 𝑖 it holds that 𝐹 𝑖 = 𝐻 𝑖
𝒜rgs . We proceed to show that 𝐹 𝑖+1 = 𝐻 𝑖+1

𝒜rgs .

“⊆” Suppose 𝐴 ∈ 𝐹 𝑖+1. That is, 𝐴 ∈ 𝐹AF ′(𝐹 𝑖). We need to prove that 𝐴 ∈ 𝐹AF (𝐻
𝑖
𝒜rgs)∩

𝒜rgs . From the induction hypothesis, it follows that it is sufficient to show that
𝐴 ∈ 𝐹AF (𝐹

𝑖) ∩ 𝒜rgs . We first show that 𝐴 ∈ 𝒜rgs . This follows from the fact that
𝒜rgs = ∪∞𝑖=0𝐹

𝑖 and that 𝐴 ∈ 𝐹 𝑖+1. We proceed to show that 𝐴 ∈ 𝐹AF (𝐹
𝑖). Let 𝐵

be an attacker of 𝐴 in AF . From the fact that 𝐴 ∈ 𝒜rgs , it follows that 𝐵 ∈ 𝒜rgs−.
Therefore, 𝐵 is also an attacker of 𝐴 in 𝐴𝐹 ′. As 𝐴 ∈ 𝐹AF ′(𝐹 𝑖) it follows that 𝐹 𝑖

contains a 𝐶 that attacks 𝐵 in AF ′. But then the same 𝐶 also attacks 𝐵 in AF . That
is, 𝐴 ∈ 𝐹AF (𝐹

𝑖).

“⊇” Suppose 𝐴 ∈ 𝐻 𝑖+1. That is, 𝐴 ∈ 𝐹AF (𝐻
𝑖
𝒜rgs) ∩ 𝒜rgs . We need to prove that

𝐴 ∈ 𝐹AF ′(𝐹 𝑖). From the induction hypothesis, it follows that it is sufficient to show
that 𝐴 ∈ 𝐹AF ′(𝐻 𝑖

𝒜rgs). That is, we need to prove that 𝐴 is defended by 𝐻 𝑖
𝒜rgs in AF ′.

The fact that 𝐴 is defended by 𝐻 𝑖
𝒜rgs in AF means that for every attacker 𝐵 of 𝐴 in

AF , 𝐻 𝑖
𝒜rgs contains a 𝐶 that attacks 𝐵 in AF . Every attacker of 𝐴 in AF ′ is also an

attacker of 𝐴 in AF , so for every attacker 𝐵 of 𝐴 in AF ′, 𝐻 𝑖
𝒜rgs contains a 𝐶 that

attacks 𝐵 in AF . The same 𝐶 also attacks 𝐵 in AF ′. That is, 𝐴 is defended by 𝐻 𝑖
𝒜rgs

in AF ′. That is, 𝐴 ∈ 𝐹AF ′(𝐻 𝑖
𝒜rgs).



From the thus proved fact that for each 𝑖 ≥ 0, 𝐹 𝑖 = 𝐻 𝑖
𝒜rgs , it follows that ∪∞𝑖=0𝐹

𝑖 = ∪∞𝑖=0𝐻
𝑖
𝒜rgs ,

so from 𝒜rgs = ∪∞𝑖=0𝐹
𝑖 it follows that 𝒜rgs = ∪∞𝑖=0𝐻

𝑖
𝒜rgs .

“⇐” Let 𝒜rgs be a strongly admissible set in the sense of Definition 6. That is, 𝒜rgs = ∪∞𝑖=0𝐻
𝑖
𝒜rgs

with 𝐻0
𝒜rgs = ∅ and 𝐻 𝑖+1

𝒜rgs = 𝐹AF (𝐻
𝑖
𝒜rgs) ∩𝒜rgs . We need to prove that 𝒜rgs is the grounded

extension of AF ′ = AF |𝒜rgs∪𝒜rgs− . That is, we need to prove that𝒜rgs = ∪∞𝑖=0𝐹
𝑖 with 𝐹 0 = ∅

and 𝐹 𝑖+1 = 𝐹AF ′(𝐹 𝑖) This follows from the induction proof above (at “⇒”) where it was shown
that for each 𝑖 ≥ 0, 𝐹 𝑖 = 𝐻 𝑖

𝒜rgs .

It has previously been shown that for finite argumentation frameworks, Definition 4, Definition 5
and Definition 6 coincide with each other [4]. As such, it follows from Theorem 1 that Definition 8
is backwards compatible not just with Definition 6 but also with Definition 4 and Definition 5 in the
context of finite argumentation frameworks.

Now that we have shown our new definition of strong admissibility (Definition 8) to be backwards
compatible with the previous definitions of strong admissibility, the next step is to show that it satisfies
similar properties. That is, we aim to show that strong admissibility in the sense of Definition 8 satisfies
the following properties:

• each strongly admissible set is an admissible set
• the empty set is the smallest strongly admissible set (w.r.t. ⊆)
• the grounded extension is the biggest strongly admissible set (w.r.t. ⊆)
• the strongly admissible sets form a lattice (w.r.t. ⊆)

These properties are to be shown for arbitrary argumentation frameworks (finite or infinite, finitary
or non-finitary) instead of just for finite argumentation frameworks [4] or finitary argumentation
frameworks [9].

We start with showing that under our new definition of strong admissibility (Definition 8), each
strongly admissible set is also an admissible set.

Theorem 2. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework and let 𝒜rgs ⊆
Ar be a strongly admissible set (in the sense of Definition 8). It holds that 𝒜rgs is also an admissible set of
AF .

Proof. The fact that 𝒜rgs is a strongly admissible set in the sense of Definition 8 means that 𝒜rgs is
the grounded extension of AF ′ = AF |𝒜rgs∪𝒜rgs− . As the grounded extension is admissible, it follows
that 𝒜rgs is an admissible set of AF ′. As such, 𝒜rgs is conflict-free in AF ′, from which it follows that
𝒜rgs is also conflict-free in AF . We proceed to show that 𝒜rgs also defends all its elements in AF .
Let 𝐴 ∈ 𝒜rgs . Then for each 𝐵 that attacks 𝐴 in AF ′, there exists a 𝐶 ∈ 𝒜rgs that attacks 𝐵 in AF ′.
Let 𝐵 be an attacker of 𝐴 in AF . As 𝐴 ∈ 𝒜rgs , it follows that 𝐵 ∈ 𝒜rgs−, so 𝐵 also attacks 𝐴 in AF ′.
It then follows that there is a 𝐶 ∈ 𝒜rgs that attacks 𝐵 in AF ′. The same 𝐶 also attacks 𝐵 in AF . That
is, 𝒜rgs defends 𝐴 in AF . The thus derived facts that 𝒜rgs is conflict-free in AF and defends all of its
elements in AF mean that 𝒜rgs is an admissible set in AF .

The next thing to observe is that the empty set is always strongly admissible.

Proposition 1. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework. It holds that
the empty set (∅) is strongly admissible in the sense of Definition 8.

Proof. It holds that AF |∅∪∅− = AF |∅ is the empty argumentation framework, which has the empty set
as its grounded extension.

As no set can be smaller than the empty set, it trivially follows that the empty set is the smallest
strongly admissible set in the sense of Definition 8.

We proceed to show that the grounded extension is the biggest strongly admissible set. For this, we
first show that the grounded extension is strongly admissible.



Theorem 3. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework. The grounded
extension of AF is strongly admissible (in the sense of Definition 8).

Proof. Let 𝐺𝐸 be the grounded extension of AF . That is, 𝐺𝐸 is the smallest fixpoint of 𝐹AF . We have
to prove that 𝐺𝐸 is also the grounded extension of AF |𝐺𝐸∪𝐺𝐸− . For this, we have to show that 𝐺𝐸 is
the smallest fixpoint of 𝐹𝐴𝐹|𝐺𝐸∪𝐺𝐸− in AF |𝐺𝐸∪𝐺𝐸− . We start with showing that 𝐺𝐸 is a fixpoint of
𝐹AF |𝐺𝐸∪𝐺𝐸− .

1. 𝐺𝐸 ⊆ 𝐹AF |𝐺𝐸∪𝐺𝐸− (𝐺𝐸)

Let 𝐴 ∈ 𝐺𝐸. Then from the fact that 𝐺𝐸 is a fixpoint of 𝐹AF it follows that 𝐴 ∈ 𝐹AF (𝐺𝐸).
That is, for each 𝐵 that attacks 𝐴 in AF , there is a 𝐶 ∈ 𝐺𝐸 that attacks 𝐵 in AF . Let 𝐵 be an
argument that attacks 𝐴 in AF |𝐺𝐸∪𝐺𝐸− . Then 𝐵 also attacks 𝐴 in AF (because every attack
in AF |𝐺𝐸∪𝐺𝐸− is also an attack in AF ), so there is a 𝐶 ∈ 𝐺𝐸 that attacks 𝐵 in AF . The same
𝐶 also attacks 𝐵 in AF |𝐺𝐸∪𝐺𝐸− (this is because every attack in AF between arguments in
𝐺𝐸∪𝐺𝐸− is also an attack in AF |𝐺𝐸∪𝐺𝐸− , together with the fact that 𝐴 ∈ 𝐺𝐸 and 𝐵 ∈ 𝐺𝐸−)
so 𝐴 ∈ 𝐹AF |𝐺𝐸∪𝐺𝐸− (𝐺𝐸).

2. 𝐹AF𝐺𝐸∪𝐺𝐸− (𝐺𝐸) ⊆ 𝐺𝐸.
Let 𝐴 ∈ 𝐹AF𝐺𝐸∪𝐺𝐸− (𝐺𝐸). Then for each 𝐵 that attacks 𝐴 in AF |𝐺𝐸∪𝐺𝐸− there is a 𝐶 ∈ 𝐺𝐸
that attacks 𝐵 in AF |𝐺𝐸∪𝐺𝐸− . Let 𝐵 be an argument that attacks 𝐴 in AF . Then 𝐵 also attacks
𝐴 in AF |𝐺𝐸∪𝐺𝐸− (this is because 𝐵 attacks 𝐴 ∈ 𝐺𝐸, so 𝐵 ∈ 𝐺𝐸−, so both 𝐴 and 𝐵 are in
𝐺𝐸 ∪𝐺𝐸−) so there exists a 𝐶 ∈ 𝐺𝐸 that attacks 𝐵 in AF |𝐺𝐸∪𝐺𝐸− . The same 𝐶 also attacks
𝐵 in AF (because every attack in AF |𝐺𝐸∪𝐺𝐸− is also an attack in AF ) so 𝐴 ∈ 𝐹AF (𝐺𝐸). From
the fact that 𝐺𝐸 is a fixpoint of 𝐹AF it follows that 𝐴 ∈ 𝐺𝐸.

Now that we have proved that 𝐺𝐸 is a fixpoint of AF |𝐺𝐸∪𝐺𝐸− , the next thing to prove is that 𝐺𝐸
is also the smallest fixpoint of AF |𝐺𝐸∪𝐺𝐸− . Let 𝐺𝐸′ ⊆ 𝐺𝐸 be a fixpoint in AF |𝐺𝐸∪𝐺𝐸− . That is,
𝐺𝐸′ = 𝐹AF |𝐺𝐸∪𝐺𝐸− (𝐺𝐸′). We proceed to show that 𝐺𝐸′ is also a fixpoint in AF .

1. 𝐺𝐸′ ⊆ 𝐹AF (𝐺𝐸′)
Let 𝐴 ∈ 𝐺𝐸′. Then from 𝐺𝐸′ = 𝐹AF |𝐺𝐸∪𝐺𝐸− (𝐺𝐸′) it follows that each 𝐵 that attacks 𝐴 in
AF |𝐺𝐸∪𝐺𝐸− there is a 𝐶 ∈ 𝐺𝐸′ that attacks 𝐵 in AF |𝐺𝐸∪𝐺𝐸− . Let 𝐵 be an argument that
attacks 𝐴 in AF . From the fact that 𝐵 attacks 𝐴 ∈ 𝐺𝐸′, it follows that 𝐵 ∈ 𝐺𝐸′−. From the
fact that 𝐺𝐸′ ⊆ 𝐺𝐸 it follows that 𝐺𝐸′− ⊆ 𝐺𝐸−, so 𝐵 ∈ 𝐺𝐸−. Similarly, from the fact that
𝐴 ∈ 𝐺𝐸′ and 𝐺𝐸′ ⊆ 𝐺𝐸 it follows that 𝐴 ∈ 𝐺𝐸. So 𝐴,𝐵 ∈ 𝐺𝐸 ∪ 𝐺𝐸−. This means that
𝐵 attacks 𝐴 not only in AF but also in AF |𝐺𝐸∪𝐺𝐸− . From the fact that 𝐴 ∈ 𝐹AF𝐺𝐸∪𝐺𝐸− (as
𝐴 ∈ 𝐺𝐸′ = 𝐹AF𝐺𝐸∪𝐺𝐸− ) it then follows that there is a 𝐶 ∈ 𝐺𝐸′ that attacks 𝐵 in AF𝐺𝐸∪𝐺𝐸− .
The same 𝐶 also attacks 𝐵 in AF (as every attack in AF |𝐺𝐸∪𝐺𝐸− is also an attack in AF ). So
𝐴 ∈ 𝐹AF (𝐺𝐸′).

2. 𝐹AF (𝐺𝐸′) ⊆ 𝐺𝐸′

Let 𝐴 ∈ 𝐹AF (𝐺𝐸′). We first observe that as 𝐹AF is a monotonic function, 𝐺𝐸′ ⊆ 𝐺𝐸 implies
that 𝐹AF (𝐺𝐸′) ⊆ 𝐹AF (𝐺𝐸). So the fact that 𝐴 ∈ 𝐹AF (𝐺𝐸′) implies that 𝐴 ∈ 𝐹AF (𝐺𝐸), so
𝐴 ∈ 𝐺𝐸, which means that 𝐴 is an argument in AF |𝐺𝐸∪𝐺𝐸− . The fact that 𝐴 ∈ 𝐹AF (𝐺𝐸′)
implies that for every 𝐵 that attacks 𝐴 in AF there exists a 𝐶 ∈ 𝐺𝐸′ that attacks 𝐵 in AF . Let
𝐵 be an argument that attacks 𝐴 in AF |𝐺𝐸∪𝐺𝐸− . Then 𝐵 also attacks 𝐴 in AF (as every attack
in AF |𝐺𝐸∪𝐺𝐸− is also an attack in AF ) so there is a 𝐶 ∈ 𝐺𝐸′ that attacks 𝐵 in AF . The same
𝐶 also attacks 𝐵 in AF |𝐺𝐸∪𝐺𝐸− . So 𝐴 ∈ 𝐹AF |𝐺𝐸∪𝐺𝐸− (𝐺𝐸′). As 𝐺𝐸′ = 𝐹AF |𝐺𝐸∪𝐺𝐸− (𝐺𝐸′) it
follows that 𝐴 ∈ 𝐺𝐸′.

From the thus obtained fact that 𝐺𝐸′ is a fixpoint of 𝐹AF , together with the fact that 𝐺𝐸 is the smallest
fixpoint of 𝐹AF (as 𝐺𝐸 is the grounded extension of AF ) it follows that 𝐺𝐸 ⊆ 𝐺𝐸′. This, together
with our initial assumption that 𝐺𝐸′ ⊆ 𝐺𝐸 implies that 𝐺𝐸 = 𝐺𝐸′. Hence, 𝐺𝐸 is the smallest
fixpoint of 𝐹AF |𝐺𝐸∪𝐺𝐸− .

Now that we have established that the grounded extension is a strongly admissible set, we proceed
to show that it is also the biggest strongly admissible set.



Theorem 4. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework. The grounded
extension of AF is the biggest strongly admissible set of AF in the sense of Definition 8.

Proof. Let 𝐺𝐸 be the grounded extension of AF and let𝒜rgs ⊆ Ar be a strongly admissible set of AF
(in the sense of Definition 8) such that 𝐺𝐸 ⊆ 𝒜rgs . We need to prove that 𝒜rgs ⊆ 𝐺𝐸.
We start with proving that 𝐺𝐸 is a complete extension of AF |𝒜rgs∪𝒜rgs− . First of all, from the fact that
𝐺𝐸 is conflict-free in AF , it follows that 𝐺𝐸 is also conflict-free in AF |𝒜rgs∪𝒜rgs− (as each attack in
AF |𝒜rgs∪𝒜rgs− is also an attack in AF ). We proceed to prove that 𝐺𝐸 = 𝐹AF |𝒜rgs∪𝒜rgs−

(𝐺𝐸).

“⊆” Let 𝐴 ∈ 𝐺𝐸. From the fact that 𝐺𝐸 ⊆ 𝒜rgs it follows that 𝐴 ∈ 𝒜rgs , so 𝐴 is an argument in
AF |𝒜rgs∪𝒜rgs− . Let 𝐵 be an argument that attacks 𝐴 in AF |𝒜rgs∪𝒜rgs− . Then 𝐵 also attacks
𝐴 in AF (as every attack in AF |𝒜rgs∪𝒜rgs− is also an attack in AF ). From the fact that 𝐺𝐸 =
𝐹AF (𝐺𝐸) it follows that there is a 𝐶 ∈ 𝐺𝐸 that attacks 𝐵 in AF . The same 𝐶 also attacks
𝐵 in AF |𝒜rgs∪𝒜rgs− , as 𝐶 ∈ 𝐺𝐸 and 𝐺𝐸 ⊆ 𝒜rgs , so 𝐶 ∈ 𝒜rgs ∪ 𝒜rgs−. Therefore, 𝐴 ∈
𝐹AF |𝒜rgs∪𝒜rgs−

(𝐺𝐸).

“⊇” Let 𝐴 ∈ 𝐹AF |𝒜rgs∪𝒜rgs−
(𝐺𝐸). From the fact that 𝐹AF |𝒜rgs∪𝒜rgs−

is a monotonic function,
the fact that 𝐺𝐸 ⊆ 𝒜rgs implies 𝐹AF |𝒜rgs∪𝒜rgs−

(𝐺𝐸) ⊆ 𝐹AF |𝒜rgs∪𝒜rgs−
(𝒜rgs), so 𝐴 ∈

𝐹AF |𝒜rgs∪𝒜rgs−
(𝒜rgs). As𝒜rgs is a strongly admissible set of AF , it holds by definition that𝒜rgs

is the grounded extension of AF |𝒜rgs∪𝒜rgs− , so 𝐹AF |𝒜rgs∪𝒜rgs−
(𝒜rgs) = 𝒜rgs , so 𝐴 ∈ 𝒜rgs .

The fact that 𝐴 ∈ 𝐹AF𝒜rgs∪𝒜rgs−
(𝐺𝐸) means that for each 𝐵 that attacks 𝐴 in AF |𝒜rgs∪𝒜rgs−

there is a 𝐶 ∈ 𝐺𝐸 that attacks 𝐵 in AF |𝒜rgs∪𝒜rgs− . Let 𝐵 be an argument that attacks 𝐴 in
AF . Then the fact that 𝐴 ∈ 𝒜rgs implies that 𝐵 attacks 𝒜rgs , so 𝐵 ∈ 𝒜rgs−. Therefore, 𝐵
also attacks 𝐴 in AF |𝒜rgs∪𝒜rgs− , so there exists a 𝐶 ∈ 𝐺𝐸 that attacks 𝐵 in AF |𝒜rgs∪𝒜rgs− .
The same 𝐶 also attacks 𝐵 in AF (as every attack in AF |𝒜rgs∪𝒜rgs− is also an attack in AF ).
Therefore, 𝐴 ∈ 𝐹AF (𝐺𝐸). As 𝐹AF (𝐺𝐸) = 𝐺𝐸, it directly follows that 𝐴 ∈ 𝐺𝐸.

Now that we obtained that 𝐺𝐸 is a complete extension of AF |𝒜rgs∪𝒜rgs− , we can infer that this is a
superset of the grounded extension of AF |𝒜rgs∪𝒜rgs− . That is, 𝐺𝐸 ⊇ 𝒜rgs , which is precisely what
we needed to prove.

The next step is to show that the union of two strongly admissible sets is strongly admissible. To do
so, we need the following proposition.

Proposition 2. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework and let
𝒜rgs ⊆ Ar . If 𝒜rgs is conflict-free then 𝐹AF (𝒜rgs) is also conflict-free.

Proof. Suppose 𝐹AF (𝒜rgs) is not conflict-free. Then 𝐹AF (𝒜rgs) contains arguments 𝐴 and 𝐵 such
that 𝐴 attacks 𝐵. From the fact that 𝐵 is defended by 𝒜rgs it follows that there must be a 𝐶 ∈ 𝒜rgs
that attacks 𝐴. From the fact that 𝐴 is defended by 𝒜rgs it follows that there must be some 𝐷 ∈ 𝒜rgs
that attacks 𝐶 . Hence, 𝒜rgs is not conflict-free.

Theorem 5. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework and let 𝒜rgs1
and 𝒜rgs2 be strongly admissible sets of AF (in the sense of Defintion 8). It holds that 𝒜rgs1 ∪ 𝒜rgs2 is
also a strongly admissible set of AF (in the sense of Definition 8).

Proof. The fact that𝒜rgs1 is a strongly admissible set ofAF means that𝒜rgs1 is the grounded extension
of AF |𝒜rgs1∪𝒜rgs−1

. Similarly, the fact that 𝒜rgs2 is a strongly admissible set of AF means that 𝒜rgs2
is the grounded extension of AF |𝒜rgs2∪𝒜rgs−2

. We need to show that 𝒜rgs1 ∪ 𝒜rgs2 is the grounded
extension of AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

. For this, we first show that 𝒜rgs1 ∪ 𝒜rgs2 is a fixpoint of
𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

. That is, we show that𝒜rgs1∪𝒜rgs2 =𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
(𝒜rgs1∪

𝒜rgs2).



“⊆” Let 𝐴 ∈ 𝒜rgs1 ∪ 𝒜rgs2. Without loss of generality, assume that 𝐴 ∈ 𝒜rgs1 (the case of
𝐴 ∈ 𝒜rgs2 is similar). Let 𝐵 be an argument that attacks 𝐴 in AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

.

Then by definition, 𝐵 ∈ 𝒜rgs−1 . So the fact that 𝐴 ∈ 𝒜rgs1 = 𝐹AF |𝒜rgs1∪𝒜rgs−1
implies that

there is a 𝐶 ∈ 𝒜rgs1 that attacks 𝐵 in AF |𝒜rgs1∪𝒜rgs−1
. The same 𝐶 ∈ 𝒜rgs1 ∪ 𝒜rgs2

also attacks 𝐵 in AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
(this is because every attack in AF |𝒜rgs1∪𝒜rgs−1

is also an attack in AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
). So 𝐴 is defended by 𝒜rgs1 ∪ 𝒜rgs2 in

AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
. That is, 𝐴 ∈ 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

(𝒜rgs1 ∪ 𝒜rgs2).

“⊇” Suppose 𝐴 ∈ 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
(𝒜rgs1 ∪ 𝒜rgs2). That is, each 𝐵 that attacks 𝐴 in

AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
is attacked by some 𝐶 ∈ 𝒜rgs1 ∪ 𝒜rgs2. We need to prove that

𝐴 ∈ 𝒜rgs1 ∪ 𝒜rgs2. From the fact that 𝐴 is an argument in AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
it

follows that 𝐴 ∈ 𝒜rgs1 ∪ 𝒜rgs2 ∪ 𝒜rgs−1 ∪ 𝒜rgs
−
2 . We distinguish two cases:

1. 𝐴 ∈ 𝒜rgs1 ∪ 𝒜rgs2.
In that case, we’re done.

2. 𝐴 ∈ 𝒜rgs−1 ∪ 𝒜rgs
−
2 .

Assume without loss of generality that 𝐴 ∈ 𝒜rgs−1 (the case of 𝐴 ∈ 𝒜rgs−2 is similar).
We first show that 𝒜rgs1 ⊆ 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

(𝒜rgs1). Let 𝐴′ ∈ 𝒜rgs1.

Let 𝐵 be an attacker of 𝐴′ in AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
. As 𝐴′ ∈ 𝒜rgs1, it fol-

lows that 𝐵 ∈ 𝒜rgs−1 . Therefore, 𝐵 also attacks 𝐴′ in AF |𝒜rgs1∪𝒜rgs−1
. so from

𝐴′ ∈ 𝒜rgs1 = 𝐹AF |𝒜rgs1∪𝒜rgs−1
(𝒜rgs1) it follows that 𝐴′ is defended by 𝒜rgs1 in

AF |𝒜rgs1∪𝒜rgs−1
, so there is a 𝐶 ∈ 𝒜rgs1 that attacks 𝐵 in AF |𝒜rgs1∪𝒜rgs−1

. The same
𝐶 also attacks 𝐵 in AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

. Therefore, 𝐴′ is defended by 𝒜rgs1 in
AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

. That is, 𝐴′ ∈ 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
(𝒜rgs1).

From the trivial fact that 𝒜rgs1 ⊆ 𝒜rgs1 ∪ 𝒜rgs2 and the fact
that 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

is a monotonic function, it follows that

𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
(𝒜rgs1) ⊆ 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

(𝒜rgs1 ∪ 𝒜rgs2).
This, together with the above derived fact that𝒜rgs1 ⊆ 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

(𝒜rgs1)
implies that 𝒜rgs1 ⊆ 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

(𝒜rgs1 ∪ 𝒜rgs2). The fact that

𝐴 ∈ 𝒜rgs−1 means 𝐴 attacks𝒜rgs1. Hence, 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
(𝒜rgs1 ∪𝒜rgs2) is

not conflict-free. From Lemma 2 it then follows that 𝒜rgs1 ∪ 𝒜rgs2 is not conflict-free.
However, as both 𝒜rgs1 and 𝒜rgs2 are strongly admissible sets of AF , it follows that the
grounded extension of AF contains both 𝒜rgs1 and 𝒜rgs2 (as it follows from Theorem
4 that the grounded extension is the biggest strongly admissible set of AF ). That is, the
grounded extension of AF contains 𝒜rgs1 ∪ 𝒜rgs2. Therefore, the grounded extension of
AF is not conflict-free. Contradiction.

Now that we have proved that 𝒜rgs1 ∪ 𝒜rgs2 is a fixpoint of 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
,

we proceed to prove that it is also the smallest fixpoint. For this, we first observe that
(AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

)|𝒜rgs1∪𝒜rgs−1
= AF |𝒜rgs1∪𝒜rgs−1

. Hence, the fact that 𝒜rgs1 is the
grounded extension of AF |𝒜rgs1∪𝒜rgs−1

(as it is an admissible set of AF ) trivially implies that it is
the grounded extension of (AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

)|𝒜rgs1∪𝒜rgs−1
= AF |𝒜rgs1∪𝒜rgs−1

. Hence,
𝒜rgs1 is a strongly admissible set of AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

. This implies that 𝒜rgs1 is a subset
of the grounded extension of AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

(Theorem 4). For similar reasons, 𝒜rgs2
is also a subset of the grounded extension of AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

. So overall, we obtain that
𝒜rgs1 ∪𝒜rgs2 is a subset of the grounded extension of AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

. The fact that the
grounded extension of AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2

contains𝒜rgs1 ∪𝒜rgs2 means that every fixpoint



of 𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
contains 𝒜rgs1 ∪ 𝒜rgs2. Hence, there cannot be a smaller fixpoint of

𝐹AF |𝒜rgs1∪𝒜rgs2∪𝒜rgs−1 ∪𝒜rgs−2
than 𝒜rgs1 ∪ 𝒜rgs2.

Theorem 5 allows us to infer that 𝒜rgs1 ∪ 𝒜rgs2 is a least upper bound of 𝒜rgs1 and 𝒜rgs2 as any
upper bound of 𝒜rgs1 and 𝒜rgs2 has to be a superset of 𝒜rgs1 ∪ 𝒜rgs2.

Now that we established that any two strongly admissible sets have a least upper bound, we proceed
to examine whether they also have a greatest upper bound. For this, we need the following lemma.8

Lemma 1. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework and let𝒜rgs ⊆ Ar .
𝒜rgs has a unique biggest (w.r.t. ⊆) strongly admissible subset (in the sense of Definition 8).

Proof. We first observe that there is always at least one strongly admissible subset of 𝒜rgs (the empty
set). We also observe that every increasing sequence 𝒜rgs1,𝒜rgs2,𝒜rgs3, . . . of strongly admissible
subsets of 𝒜rgs has an upper bound (∪∞𝑖=1𝒜rgs 𝑖 which is again strongly admissible; this follows from
Theorem 5; also, it is still a subset of 𝒜rgs). This allows us to apply Zorn’s lemma and obtain that
there is at least one maximal strongly admissible subset of 𝒜rgs .9 We now proceed to show that this
maximal strongly admissible subset is unique. Let 𝒜rgs1 and 𝒜rgs2 be maximal strongly admissible
subsets of 𝒜rgs . Now consider 𝒜rgs1 ∪ 𝒜rgs2. From Theorem 5 it follows that this is again a strongly
admissible set. From the fact that 𝒜rgs1 and 𝒜rgs2 are maximal strongly admissible subsets, it follows
that if 𝒜rgs1 ⊆ 𝒜rgs1 ∪ 𝒜rgs2 then 𝒜rgs1 = 𝒜rgs1 ∪ 𝒜rgs2, and that if 𝒜rgs2 ⊆ 𝒜rgs1 ∪ 𝒜rgs2
then𝒜rgs2 = 𝒜rgs1 ∪𝒜rgs2, so we obtain that𝒜rgs1 = 𝒜rgs1 ∪𝒜rgs2 and𝒜rgs2 = 𝒜rgs1 ∪𝒜rgs2
so 𝒜rgs1 = 𝒜rgs2.

We are now ready to introduce one of our main results: the fact that the strongly admissible sets (in
the sense of Definition 8) form a lattice.10

Theorem 6. Let AF = (Ar , att) be a (possibly non-finitary) argumentation framework. The strongly
admissible sets of AF (in the sense of Definition 8) form a lattice (w.r.t. ⊆).

Proof. We need to prove that each two strongly admissible sets have a supremum (a least upper bound)
and a infimum (a greatest lower bound).

supremum Let𝒜rgs1 and𝒜rgs2 be strongly admissible sets. From Theorem 5 it follows that𝒜rgs1 ∪
𝒜rgs2 is also a strongly admissible set. Since, by definition, 𝒜rgs1 ⊆ 𝒜rgs1 ∪ 𝒜rgs2 and
𝒜rgs2 ⊆ 𝒜rgs1 ∪𝒜rgs2, it follows that 𝒜rgs1 ∪𝒜rgs2 is an upper bound. Moreover, it is also a
least upper bound, since any proper subset of 𝒜rgs1 ∪𝒜rgs2 will not be a superset of 𝒜rgs1 and
𝒜rgs2.

infimum Let 𝒜rgs1 and 𝒜rgs2 be strongly admissible sets. Let 𝒜rgs3 be 𝒜rgs1 ∩ 𝒜rgs2. 𝒜rgs3 has
(unique) biggest strongly admissible subset (Lemma 1) which we will refer to as 𝒜rgs ′3. We
proceed to show that 𝒜rgs ′3 is the infimum of 𝒜rgs1 and 𝒜rgs2.

lower bound From the fact that 𝒜rgs ′3 ⊆ 𝒜rgs3 = 𝒜rgs1 ∩ 𝒜rgs2 ⊆ 𝒜rgs1 and the fact
that 𝒜rgs ′3 ⊆ 𝒜rgs3 = 𝒜rgs1 ∩ 𝒜rgs2 ⊆ 𝒜rgs2 it follows that 𝒜rgs ′3 ⊆ 𝒜rgs1 and
𝒜rgs ′3 ⊆ 𝒜rgs2.

greatest lower bound Let 𝒜rgs ′′3 be a strongly admissible set such that 𝒜rgs ′′3 ⊆ 𝒜rgs1 and
𝒜rgs ′′3 ⊆ 𝒜rgs2. This implies that 𝒜rgs ′′3 ⊆ 𝒜rgs1 ∩ 𝒜rgs2 = 𝒜rgs3. As 𝒜rgs ′3 is the
biggest strongly admissible subset of 𝒜rgs3, it follows that 𝒜rgs ′′3 ⊆ 𝒜rgs ′3.

8Lemma 1 uses a similar structure as Lemma 2 of [9]. The main difference is that it uses Theorem 5, which is based on
Definition 8.

9Although not explicitly mentioned in [10], a similar form of reasoning is needed to prove that maximal admissible sets
(i.e. preferred extensions) always exist, even for an infinite argumentation framework with an infinite sequences of ever
increasing admissible sets.

10Theorem 6 uses a similar structure as Theorem 5 of [4]. The main difference is that it uses Theorem 5 and Lemma 1, which
are based on Definition 8.



5. Discussion

Grounded semantics plays an important role in computational argumentation because it is one of the
few mainstream semantics that is computationally tractable11 [11].

However, in many cases, the aim is not just to compute whether an argument is accepted, but also to
show or explain why it is accepted. For preferred semantics, there is a well-known concept (that of an
admissible set) that can be used to show that an argument is in a preferred extension. For grounded
semantics, the concept of a strongly admissible set plays a similar role. Instead of having to construct
(and show) the entire grounded extension, it suffices to show that the argument in question is in a
strongly admissible set. As such, strong admissibility provides a local property that can be used to
explain membership of the grounded extension.12 Also, unlike an admissible set, a strongly admissible
set can be constructed in polynomial time [6, 7].

Traditionally, an important limitation of strong admissibility was its restricted scope. Whereas
the notion of an admissible set was applicable to each argumentation framework (finite or infinite)
right from the start [10], the notion of a strongly admissible set was originally only defined for finite
argumentation frameworks [2, 4]. The contribution of the current paper is that it breaks with this
limitation, making the notion of strong admissibility applicable to all argumentation frameworks.

The road towards the current result can be seen as consisting of three steps. The first step was
defining strong admissibility in the context of finite argumentation frameworks [2, 4]. This resulted
in Definition 4 [2], Definition 5 [4] and Definition 6 [4]. It was proved that in the context of finite
argumentation frameworks, these three definitions are equivalent to each other and satisfy the following
properties:

1. each strongly admissible set is an admissible set
2. the empty set is the smallest strongly admissible set (w.r.t. ⊆)
3. the grounded extension is the biggest strongly admissible set (w.r.t. ⊆)
4. the strongly admissible sets form a lattice (w.r.t. ⊆)

The second step was to observe that the scope of Definition 6 can be broadened from finite argumentation
frameworks to finitary argumentation frameworks, while still satisfying the above four properties.
The third step, as presented in the current paper, was to come up with a new definition of strong
admissibility (Definition 8) that satisfies the above four properties for any arrgumentation framework
(finite or infinite). Moreover, we observed that the new definition is backwards compatible with the
previous definitions in their respective domains. That is, for finite argumentation frameworks Definition
8 coincides with Definition 4, Definition 5 and Definition 6, and for finitary argumentation frameworks
Definition 8 coincides with 6.

On the Relevance of Infinite Argumentation Frameworks

Infinite argumentation frameworks play an important role in the context of instantiated argumentation,
where the argumentation framework is constructed using an underlying knowledge base.13 As an
example of how such construction works, consider the case of logic programming based argumentation
[14, 15, 16]. Let 𝑃1 be the following logic program [15].

𝑏← 𝑐, not 𝑎 𝑎← not 𝑏
𝑝← 𝑐, 𝑑, not 𝑝 𝑝← not 𝑎
𝑐← 𝑑 𝑑←

𝑃1 would yield the argumentation framework AF𝑃1 depicted in Figure 4 [15].
The basic idea of argument construction in [14, 15, 16] is that the logic programming rules are used

to form what can be described as an “derivation tree”. Each rule in such a derivation tree that contains
11together with conflict-free semantics and native semantics
12See [12] for an example of what such an explanation can look like.
13Such instantiated argumentation formalisms can be applied for reasoning under incomplete or uncertain information [13].



𝐴6

𝑏← 𝑐, not 𝑎
|

𝑐← 𝑑
|

𝑑←
𝐴4

𝑎← not 𝑏

𝐴1

𝑑←

𝐴2

𝑐← 𝑑
|

𝑑←

𝐴5

𝑝← not 𝑎

𝐴3

𝑝← 𝑐, 𝑑, not 𝑝
⧸ ⧹

𝑐← 𝑑 𝑑←
|

𝑑←

Figure 4: AF𝑃1
: the argumentation framework built using logic program 𝑃1

a strong literal (that is, a literal not preceded by not) in its body has to have a child rule that has this
literal in its head. Weak negation is ignored when constructing the arguments and is only used when it
comes to defining the attacks. That is, an argument 𝐴 attacks an argument 𝐵 iff the conclusion of 𝐴
(that is, the consequent of its top rule) is contained as a weakly negated literal in the body of one of the
rules in 𝐵. The intuition behind this is that “not 𝑐” means that 𝑐 is not derivable. So if there actually is
a derivation (argument) for 𝑐, then this argument attacks everything that contains “not 𝑐”.

Although in the example above, a finite logic program 𝑃1 generates a finite argumentation framework
AF𝑃1 , this is not always the case. Consider the following logic program 𝑃2.

𝑎← 𝑏← 𝑎
𝑎← 𝑏 𝑐← not 𝑏

Using 𝑃2, we can construct an argument for 𝑐 (consisting of the single rule 𝑐← not 𝑏). We can also
construct an infinite number of arguments for 𝑏, as there is no limit on how often one can apply the
sequence of rules 𝑏← 𝑎 and 𝑎← 𝑏 in the construction of an argument. This means that the argument
for 𝑐 has an infinite number of attackers, making the argumentation framework non-finitary.14

Even when defining a formalism in such a way to prevent the same rule from occurring more than
once in a root-originated path of the derivation tree, there are instantiated argumentation formalisms
for which this is not sufficient. An example of this would be aspic+ [17]. In aspic+ there are two
types of rules: strict and defeasible. The idea is that strict rules represent inferences that can be made
in an underlying classical logic (e.g. propositional logic). In this way, aspic+ is able to encapsulate
classical logic, in a similar way as for instance Default Logic [18] is able to encapsulate classical logic.15

Argument construction is done in a comparable way as we showed above for logic programming, with
an argument essentially consisting of a “derivation tree” of strict and defeasible rules.

aspic+ can lead to an infinite number of arguments because of the way it encapsulates classical logic.
As an example, suppose there is an aspic+ argument (say 𝐴) of which the conclusion is 𝑝 ∧ 𝑞. If we
would apply the strict rule 𝑝 ∧ 𝑞 → 𝑝 (as the strict rules are based on classical logic, and the fact that
𝑝 ∧ 𝑞 ⊢ 𝑝 means there is a strict rule 𝑝 ∧ 𝑞 → 𝑝) we obtain another argument that consists of 𝐴 with
the rule 𝑝 ∧ 𝑞 → 𝑝 on top of it. The point, however, is that from 𝑝 ∧ 𝑞 there is an infinite number of
ways to derive 𝑞, especially if more than one rule is involved. For instance, instead of extending 𝐴
with the single rule 𝑝 ∧ 𝑞 → 𝑝, one could instead extend 𝐴 with the pair of rules 𝑝 ∧ 𝑞 → 𝑝 ∧ 𝑝 and
𝑝∧𝑝→ 𝑝, or with the pair of rules 𝑝∧ 𝑞 → 𝑝∧𝑝∧𝑝 and 𝑝∧𝑝∧𝑝→ 𝑝, etc. As such, there is an infinite

14Although [14, 15, 16] prevent this situation by disallowing using a rule that has already been used further down the argument,
other rule-based instantiated argumentation formalisms such as aspic+ [17] do not implement such preventive measures
and can therefore generate an infinite argumentation framework even from a finite rule base.

15As such, it should not come as a surprise that aspic+ is able to model (prioritised) default logic [19].



number of arguments with conclusion 𝑝, even without any rules occurring more than once in any of
these arguments. Moreover, if there is an argument (say 𝐵) that contains an assumption of which 𝑝 is
the contrary, such an argument will have an infinite number of attackers, making the argumentation
framework non-finitary.

One last formalism that we would like to mention is Assumption-Based Argumentation (ABA) [20]. In
ABA, a derivation is basically a tree-based structure, comparable to what is done in logic programming
based argumentation [14, 15, 16] or aspic+ [17]. Arguments, however, abstract from the particular
structure of such a derivation. This is done by representing arguments as pairs, written as 𝐴𝑠𝑚𝑠 ⊢ 𝑐,
where 𝐴𝑠𝑚𝑠 is a set of assumptions such that there exists a derivation that uses these assumptions to
infer conclusion 𝑐. As such, an ABA argument in essence represents an equivalence class of derivations,
each of which uses the same assumptions and derives the same conclusion. Even if there is an infinite
number of such derivations in the equivalence class, it will generate only one associated ABA argument.
This allows ABA to deal with the kind of issues discussed above. However, in spite of this, ABA can still
generate an infinite number of arguments when encapsulating classical logic. This is for instance the
case because in classical logic a tautology can be inferred without needing any premises or assumptions,
which leads to an ABA argument ∅ ⊢ 𝑡 for each tautology 𝑡. As classical logic supports an infinite
number of tautologies, this translates to an infinite number of ABA arguments.

The point we want to make is that the current formalisms for instantiated argumentation tends to
generate infinite argumentation frameworks, even when applying a finite knowledge base. In order
for any theory of abstract argumentation to be useful for instantiated argumentation, it will need to
be applicable for such infinite argumentation frameworks. Theories that are only defined for finite
argumentation frameworks are not going to cut it.
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