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ABSTRACT
A 2H-TaS2 (0001) single crystal was studied with XPS. The quantification and fitting procedures for this material are discussed 
in detail. It is shown that conventional approaches for data deconvolution fail, and an in-depth analysis utilising theoretical sen-
sitivity factors and taking into account the shake-up and loss structures is needed to produce accurate results. Additionally, the 
inherent asymmetry of the Ta and S peaks is highlighted, and appropriate line shapes are determined.

1   |   Introduction

Transition metal dichalcogenides (TMDs) have attracted much 
attention over the last few years [1] due to their 2D nature, as 
van der Waals structures, for various applications ranging from 
catalysis [2–6] and microelectronics [7–11] to superconductiv-
ity [12–14]. The 2H polymorph of TaS2 is a promising material 
due to its metallic characteristics [15], exotic correlated quan-
tum states [16], superconductivity [12, 17], and catalytic prop-
erties [6, 18].

XPS is one of the most widely used techniques for the study of 
TMDs due to its inherent surface sensitivity and qualitative, 
quantitative, and electronic information it can provide. While 
XPS of 2H-TaS2 has been reported since the 1970s [19], there has 
not been a detailed study that properly deconvolutes the spectra. 
This material is particularly interesting because it is metallic, 
but not an elemental metal, and as such it should have asym-
metric peaks [20–22], which is true for both the Ta and S peaks. 

Moreover, TMDs are known for the presence of both bulk and 
surface plasmons [23], which need to be considered for accurate 
fitting and quantification. However, an overview of the 2H-
TaS2 XPS spectra reported in 2024 reveals major problems in 
the analysis [24–30], not only disregarding the aforementioned 
asymmetry, but also inappropriate backgrounds and spin-orbit 
splitting components. Given the importance of understanding 
the Ta environment in materials, it is of utmost importance to 
set a solid foundation for its characterisation. We therefore ex-
amine carefully the fitting process and quantification for all Ta 
and S core levels for a 2H-TaS2 (0001) single crystal.

2   |   Experimental

A synthetic single crystal of 2H-TaS2 was purchased from HQ 
Graphene. Before introducing it to the ultrahigh vacuum (UHV) 
chamber, it was mechanically exfoliated in an Ar glovebox using 
a double-sided copper tape, which was also used for mounting 
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the crystal on the holder, and then transferred in an inert atmo-
sphere, minimising contamination. No further treatment was 
performed to avoid sample degradation [31].

All XPS data were acquired using a Kratos Axis SUPRA using a 
monochromated Al Kα X-ray source (1486.69 eV) at 17 mA emis-
sion and 15 kV HT (255 W – unless otherwise stated) and an 
analysis area of 700 × 300 μm. The instrument was calibrated 
to gold metal Au 4f7/2 (83.96 eV) and dispersion adjusted to give 
a Binding Energy (BE) of 932.62 eV for the Cu 2p3/2 line of me-
tallic copper. The Ag 3d5/2 line FWHM at 10 eV pass energy 
was 0.54 eV. Source resolution for monochromatic Al Kα X-rays 
was ∼0.3 eV. The instrumental resolution was determined to be 
0.29 eV at 10 eV pass energy using the Fermi edge of the valence 
band for metallic silver. Instrument resolution with the charge 
compensation system on was determined to be < 1.33 eV FWHM 
on PTFE. All core level spectra were collected with a PE of 20 eV, 
while the survey scan was at 160 eV.

Data analysis was performed using CasaXPS 2.3.26rev1.2V. A 
Shirley background was used for all regions, except Ta 4s, where 
an offset Shirley background was used. For the core level peaks, 
the LF line shape was used, while the rest were fitted using 
Voigt-like line shapes. The LF line shape is a modified version 
of the LA function and is defined by four parameters: LF(α, β, 
w, m). The parameters α and β control the Lorentzian asym-
metry on the high- and low-binding energy sides of the peak, 
respectively. w is a damping factor that accounts for the finite 
background window, and m defines the Gaussian broadening. 
For further details, readers are referred to the CasaXPS manual, 
which is publicly available. For the quantification, both Scofield 
and Kratos RSFs were used, after correcting for the electron 
analyser transmission function exponential factor (N = 0) and 
the X-ray angular distribution (source-analyser angle = 54°).

3   |   Results and Discussion

The wide scan spectrum was initially recorded, Figure  1a, to 
check the sample purity. Only small amounts of carbon and oxy-
gen were present, indicating a successful exfoliation and sample 
transfer procedure. High-resolution spectra of all the regions are 
presented in Figure 1b–h. It is evident that all the detected sig-
nals display a certain degree of asymmetry, which is expected, 
as mentioned previously. It is worth highlighting the observed 
asymmetry for the S 2p, S 2s, and S 3s peaks, which, while it has 
been established in the literature [32–34], is rarely regarded in 
the analysis of metallic TMDs.

The Ta 4f region, Figure 1f, shows some additional features at 
higher BEs, more specifically at around 26 and 28 eV. These fea-
tures are an inherent property of certain samples and represent 
an excess of intercalated TaOx species [19]. While they are pres-
ent in all Ta orbitals, because of their low intensity and overlap 
with other spectral features, fitting was not performed to discern 
them. In the S 2p region (Figure 1e), additional features near the 
main peak are observed that are not attributable to peak asym-
metry. These components have been labeled as surface-related 
species and may correspond to polysulphides, surface sulphides, 
Ta–S–O compounds, bridging sites, or S-terminated domains 
introduced during exfoliation [35–39], which are most likely 

intrinsic to the surface. Although their contribution is relatively 
minor—accounting for approximately 8% of the total sulphur 
signal—they must be considered during peak fitting to ensure 
accuracy. However, they do not significantly affect the overall 
results presented in this work. To fit the experimental data ac-
curately, a quantification analysis was first carried out. For this 
purpose, a conventional approach was used, where the regions 
noted on Figure 1b–d, e insert, and f (for the S 2s region, the loss 
feature was not taken into account) and the RSF provided by 
Kratos were utilised. The quantification results, summarised in 
Table 1 under the conventional approach column, indicate that 
there is a significant excess of sulphur in the sample, taking of 
course into account that a small portion of the detected Ta is in 
the form of TaOx species. Moreover, the Ta 4s and Ta 4p regions 
are not 1:1 with the Ta 4f peak. To solve this problem, theoret-
ical (Scofield) RSFs were used, along with wider regions to en-
tail any loss features. These loss features are due to plasmons 
and valence band and core-level excitations [40]. The results 
obtained under these analysis conditions are summarised in 
Table 1 under the losses fitting column. Evidently, this approach 
works better for this system as all the Ta regions appear to have 
an area ratio of 1. The S over Ta ratio is 1.85, slightly below 2, as 
expected. Utilising this information, the Ta 4f region was decon-
voluted, as shown in Figure 1f.

Fitting of the Ta 4f loss region requires us to also fit the Ta 5p and 
5s signals. For the Ta 5p orbital, the 5p3/2 component is well sep-
arated from the loss features and is used to constrain the area, 
½ ratio, and position, +9.26 eV, of the 5p1/2 spin-orbit split peak. 
No meaningful results could be obtained by fixing both the area 
ratio and the FWHM, so only the area ratio was used, suspecting 
the presence of a Coster-Kronig transition [41]. Considering the 
Ta 5s, the position was constrained according to Bearden et al. 
[42] and the area according to Ta 4f, Ta 4f: Ta 5s ratio is 24.59. 
For the fitting of the Ta 4f losses, the fewest number of peaks 
was used, 5, without any constraints. Additionally, loss features 
for the Ta 5p and 5s orbitals are expected, but no fitting was used 
to discern these. For quantification purposes, however, the loss 
features of the 5p orbital were estimated to be 0.42 times the de-
convoluted area, while for the 5s orbital this is 0.52 times.

Fitting the Ta 4d and S 2s region is challenging due to the over-
lap of the corresponding peaks. To address this, the Ta 4d3/2 
component was used to constrain the 4d5/2 orbital, allowing 
the remaining intensity in the region to be attributed to the S 
2s peak. Further support for this assignment comes from the 
observed energy separation between the S 2s and S 2p3/2 lev-
els, which matches that of both single-crystal and CVD-grown 
MoS₂ samples [10, 11]. Regarding loss features, metallic tanta-
lum typically exhibits two broad plasmon-related losses [43], 
whereas the S 2s loss structure is expected to resemble that of 
the S 2p region. Accordingly, three peaks were used to model 
the loss features in this region: two for Ta 4d and one for S 2s. 
The tantalum loss peaks were constrained to have comparable 
FWHM and energy separations to those observed for the spin–
orbit components of Ta 4d. In contrast, the position of the sul-
phur loss peak was not constrained, as a distinct spectral feature 
is present, and its fitted position agrees well with the S 2p loss 
structure. The selected fitting range also accommodates higher-
binding-energy loss features that are not fully resolved, and 
this approach is further justified by the quantification results. 
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FIGURE 1    |    XP spectra of all the measured regions with the proposed fittings. (a) Wide scan, (b) Ta 4s, (c) Ta 4p and O 1s, (d) Ta 4d, S 2s, and C 1s, 
(e) S 2p, (f) Ta 4f, (g) Ta 4f, Ta 5p, and Ta 5s, (h) S 3s and valence band.
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TABLE 1    |    Quantification of the 2H-TaS2 single crystal using the two different approaches discussed.

Losses fitting Conventional approach

Area (CPs x eV) RSF (Scofield) Area/Ta 4f Area (CPs x eV) RSF (Kratos) Area/Ta 4f

Ta 4s 11,534.2 1.440 0.94 11,534.2 0.244 3.12

Ta 4p 57,544.6 6.529 1.04 57,544.6 3.266 1.16

Ta 4d 128,080.3 16.327 0.93 128,080.3 5.192 1.72

Ta 4f 86,745.1 10.231 1.00 47,026.0 3.109 1.00

Ta 5s 3684.7 0.416 1.04 — N/A —

Ta 5p 12,886.0 1.288 1.18 — N/A —

S 2s 23,740.5 1.484 1.89 16,717.0 0.391 2.83

S 2p 28,658.1 1.829 1.85/2.05a 21,482.4 0.673 2.10/2.58a

S 3s 1037.0 0.173 0.70 — N/A —

O 1s 2174.3 2.427 0.10 2174.3 0.780 0.10

C 1s 3795.9 1.000 0.45 3795.9 0.278 0.49
aSubtracting contamination.

TABLE 2    |    Fitting parameters used for all the regions measured.

Position (eV) Relative area FWHM (eV) Line shape

Ta 4s

4s 564.00 1 (7,411.9) 7.40 LF(1.5,2,20,0)

Loss +20.93 0.556 16.98 GL(30)

Ta 4p

4p3/2 401.49 1 (26,947.7) 5.04 LF(1.1,1.7,20,0)

Loss 1 +22.08 0.396 12.32 GL(30)

Loss 2 +43.91 0.028 9.08 GL(30)

Ta 4d

4d5/2 227.40 1 (53,913.4) 4.64 LF(1.5,1.5,20,0)

4d3/2 +11.50 0.667 4.64 LF(1.5,1.5,20,0)

Loss 1 +19.75 0.428 13.19 GL(30)

Loss 2 +35.51 0.282 13.70 GL(30)

S 2s

2s 225.38 1 (16,712.5) 1.94 LF(1.1,1.7,30,0)

Loss +24.44 0.421 6.23 GL(30)

S 2p

2p3/2 160.81 1 (13,251.1) 0.47 LF(0.9,2.5,25,25)

2p1/2 +1.20 0.500 0.47 LF(0.9,2.5,25,25)

(contamination) 2p3/2 +1.02 0.081 0.53 LF(0.9,2.5,25,25)

(contamination) 2p1/2 +2.22 0.040 0.53 LF(0.9,2.5,25,25)

Loss 1 +23.00 0.530 5.58 LF(1,1.5,4,0)

Loss 2 +29.26 0.010 1.74 GL(30)

(Continues)
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Notably, variations in the high-BE endpoint have minimal in-
fluence on the core-level peak fitting and primarily affect the 
representation of the loss features. It should be mentioned that 
the only peak area that does not agree with the quantification 
results is the S 3s, which is significantly smaller than expected, 
which may be due to the 3s orbitals being part of the Valence 
Band [44] for which no loss features were taken into account 
and potential overlap with O 2s and C 2s orbitals. The Valence 
Band consists of Ta 5d and S 3p mixed orbitals, while the VB 
edge is mostly attributed to the Ta 5d orbital [44]. Fitting was 
performed to represent the envelope with the smallest number 
of peaks, as shown in Figure 1h. The fitting results for all the 
regions are summarised in Table 2.

Overall, the differences between the two approaches may be due 
to a number of contributing factors. The first, and most likely, 
is that the most important reason for the observed differences 
when analysing Ta is that the loss features are not taken into 
account, as is frequently done with other elements [45]. With re-
gard to the experimental RSFs, while the original papers [46, 47] 

list the values, the exact regions used were not mentioned, so 
in this respect there may be some inconsistencies. Finally, the 
presence of contaminants on the surface affects the quantifica-
tion of the peaks and the determination of the experimental RSF 
values, which are typically obtained from samples with a small 
degree of contamination.

4   |   Conclusions

A single crystal of the basal plane of 2H-TaS2 was examined by 
XPS. It was shown that conventional approaches for quantifi-
cation of the peaks fail, and a more thorough approach is nec-
essary to obtain accurate results. It was shown that due to the 
metallic nature of the material, all peaks displayed asymmetric 
features, and their line shapes were determined, which is espe-
cially important for the S orbitals because they rarely display 
such features. Based on the present results and the described 
methodology, future analysis of TaS2 by analysts can lead to a 
more accurate understanding of the physical system.

Position (eV) Relative area FWHM (eV) Line shape

Ta 4f

4f7/2 22.76 1 (22,051.3) 0.44 LF(0.8,4,20,10)

4f5/2 +1.91 0.750 0.44 LF(0.8,4,20,10)

(contamination) 4f7/2 +1.16 0.177 1.18 GL(30)

(contamination) 4f5/2 +3.07 0.133 1.18 GL(30)

(contamination) 4f7/2 +3.25 0.054 1.42 GL(30)

(contamination) 4f5/2 +5.16 0.041 1.42 GL(30)

Loss 1 +23.66 1.022 12.16 GL(30)

Loss 2 +24.13 0.166 4.42 GL(30)

Loss 3 +34.49 0.022 3.87 GL(30)

Loss 4 +45.49 0.578 15.39 GL(30)

Loss 5 +68.07 0.234 16.09 GL(30)

Ta 5p

5p3/2 34.07 1 (6,003.9) 1.87 LF(1.1,2.5,15,0)

5p1/2 +9.26 0.50 3.18 LF(1.1,2.5,15,0)

Ta 5s

5s 69.86 1 (2,203.2) 4.34 LF(1.1,2.5,15,0)

S 3s

3s 12.55 1 (991.4) 2.52 LF(1.2,5,3,50)

Valence band

Ta 5d 0.22 1 (556.5) 0.43 LF(1.1,5,10,0)

VB 1 +1.88 1.735 1.50 GL(30)

VB 2 +3.16 0.710 1.05 GL(30)

VB 3 +4.13 0.148 0.59 GL(30)

VB 4 +4.61 2.705 2.82 GL(30)

TABLE 2    |    (Continued)
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While this work presents a detailed analysis of all spectral re-
gions, such an approach is often not practical for routine analy-
sis of common samples containing 2H-TaS₂, where the material 
is typically present in low concentrations and thus produces 
weak XPS signals. For sulfur analysis, the S 2p peak is recom-
mended, as it is well-resolved and free from significant overlap. 
For tantalum, the Ta 4f orbitals are generally the most reliable 
starting point; however, in oxygen-rich environments, the Ta 4d 
or even Ta 4p3/2 orbitals may provide more accurate informa-
tion, depending on the spectral quality.

When performing quantification using experimental RSFs 
and standard background subtraction methods, sulfur content 
is typically overestimated by approximately 30%. For systems 
where a high degree of precision is not required, conventional 
methods may still be employed—with the sulfur overestimation 
clearly noted. In cases demanding more accurate quantification, 
the use of Scofield RSFs, fitting of only the main components, 
and application of relative loss feature ratios (as listed in Table 2) 
are recommended to obtain reliable peak areas.

Finally, as the intensity and position of loss features depend on 
the sample's crystallinity and the electronic structure of its va-
lence and conduction bands, they may also serve as qualitative 
indicators of surface modification, such as oxidation. However, 
in systems with low crystallinity, plasmon loss features are typ-
ically less pronounced, and the fitting strategies outlined here 
should be applied with caution.
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