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ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide,
necessitating accurate and robust predictive approaches to assist oncologists with
prognosis prediction and therapeutic decision-making in clinical practice. Here, we
aimed to identify key genes involved in colorectal cancer pathology and develop a
model for prognosis prediction and guide therapeutic decisions in CRC patients. We
profiled 49 matched tumour and normal formalin-fixed paraffin-embedded (FFPE)
samples using Affymetrix HGU133-X3P arrays and identified 845 differentially
expressed genes (FDR < 0.001, fold change >2), predominantly enriched in the
extracellular matrix (ECM)-receptor interaction pathway. The integrative analysis of
our data with publicly available mRNA and miRNA datasets, including their
differentially expressed gene analyses, identified four overexpressed genes in the
ECM-receptor interaction pathway as key regulators of human CRC development
and progression. These four genes were independently validated for their differential
expression and association with prognosis in a newly collected CRC cohort and
publicly available datasets. A prognostic risk score was developed using these genes,
with patient stages weighted by multivariate Cox regression coefficients to stratify
patients into low-risk and high-risk groups, showing significantly poorer overall
survival (OS) in the high-risk group. In conclusion, our risk assessment model
exhibits strong potential for predicting poor survival and unfavorable
clinicopathological features in CRC patients, offering valuable insights for
personalised management strategies.

Subjects Bioinformatics, Genomics, Oncology, Pathology, Translational Medicine
Keywords Colorectal cancer, Transcriptome analysis, Biomarker, Prognostic, Risk model

INTRODUCTION

Colorectal cancer (CRC) ranks as the third most commonly diagnosed malignancy and the
second leading cause of cancer-related deaths globally, with over 1.9 million new cases and
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935,000 deaths reported in 2020 (Sung et al., 2021). The majority of patients are diagnosed
at an advanced stage, typically characterised by invasion, lymph node involvement, and
distant metastasis, at which point treatment options remain limited (Wang et al., 2016;
Woolf, 2000). Despite advances in surgical techniques, chemotherapeutic options, and the
identification of several molecular biomarkers such as KRAS, BRAF mutations, and MSI
status over the past decades, their predictive value remains limited and highlighting the
need for novel prognostic markers (Koncina et al., 2020).

High-throughput global gene expression analysis technologies, such as microarray and
RNA sequencing, offer valuable approaches for identifying potential prognostic markers
related to survival and personalised CRC treatment (Chen et al., 2017; Kohne, 2014; Zuo,
Dai & Ren, 2019). In this context, reported dysregulated gene expression-discovered
biomarkers present significant potential for predicting clinical outcomes and classifying
different subtypes (Li et al., 2017; Reitsam et al., 2024; Zhao et al., 2024). Additionally, there
are various commercially available gene-expression-based multi-gene assays with
prognostic value for CRC patients, such as Oncotype DX, ColoPrint, and ColDX (Fontana
et al,, 2019). The Oncotype DX® Colon Cancer Assay is one of the most popular tests for
measuring the expression signatures of 12 genes in stage II colon cancer patients to predict
the risk of recurrence (Fontana et al., 2019; Qian et al., 2021; Sun et al., 2018). However,
these predictive factors remain inadequate as they provide only a limited reflection of the
overall status of cancer patients. Given CRC’s complex pathogenesis and high
heterogeneity, accurate patient stratification and the development of effective targeted
therapies continue to pose challenges (Grothey, Fakih ¢» Tabernero, 2021; Hull et al., 2020).
An integrated strategy that identifies key biological pathways, control elements, and
interactions within the multi-modular biology of cancer may lead to more robust,
reproducible, and accurate predictions (Song et al., 2014). Therefore, further risk
stratification is crucial to identify patients at high risk for advanced disease and to guide
prognosis, management, and enable personalised therapy. In this context, the tumour
microenvironment (TME), as a central component in the dynamics of cancer development
and treatment, has attracted increasing attention. A key component within this
microenvironment, the extracellular matrix (ECM), acts as a highly active and dynamic
entity, significantly impacting tumour cell behaviour and metastatic capabilities (Karlsson
& Nystrom, 2022). Throughout tumourigenesis, the ECM undergoes continuous
remodelling during tumour formation, establishing a microenvironment that promotes
tumour progression, invasion, angiogenesis, immune evasion, and drug resistance
(Prakash e Shaked, 2024). In the context of colorectal cancer, the composition and
structural arrangement of the ECM have been linked to tumour progression, patient
outcomes, and responses to cancer treatments. Consequently, ECM components present a
promising avenue for discovering novel prognostic markers and developing therapeutic
strategies, as well as for improving risk stratification in patients (Karlsson ¢ Nystrom, 2022;
Yang et al., 2024).

In this study, we performed transcriptome profiling on forty-nine formalin-fixed
paraffin-embedded (FFPE) matched tumour and normal tissue samples from sporadic
colorectal cancer cases. Using an integrated approach, we combined our data with publicly
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available mRNA and miRNA datasets to identify candidate prognostic biomarkers. This
analysis revealed four overexpressed genes (THBS2, FNI1, COLIAI, and COL5A1),
which were subsequently validated in an independently collected CRC cohort. We
developed a four-gene prognostic signature and validated this model in two independent
microarray datasets to predict overall survival (OS) in CRC. Our findings indicate that
these genes are linked to CRC pathogenesis and that our risk score offers a novel
prognostic biomarker.

MATERIALS AND METHODS

Patient cohorts and sample preparations

A total of 49 matched tumour and normal FFPE sporadic colorectal cancer tissue samples
(discovery dataset, Fig. 1: IIA1) obtained from the Ankara University, Faculty of Medicine,
were used for transcriptome profiling. A second cohort of 64 tumours and matched
normal CRC samples (validation dataset, Fig. 1: IIA2) was subsequently used to validate
and test the reproducibility of the expression results. Table 1 presents the demographic and
clinical features of participants in both the discovery and validation cohorts. Ethical
approval for both the discovery (Ref: 153-4854) and validation (Ref: 15-200-19) cohorts
was obtained from the Ankara University School of Medicine Clinical Research Ethics
Committee. All participants provided informed consent, and the study was conducted in
accordance with the Declaration of Helsinki.

The FFPE tissue samples were fixed in 10% neutral-buffered formalin immediately after
collection, embedded in paraffin blocks. The blocks used in discovery and validation
datasets were 2-8 and 4-10 years old, respectively. A pathologist reviewed H&E slides to
select sections containing ~90% tumour cells. Four 8-pum sections per block were cut,
placed on slides (2 per slide), one stained with H&E to mark tumour areas and stored at
—20 °C until used for transcriptome profiling analysis.

FFPE RNA extraction and microarray transcriptome profiling

The marked tumour regions were macrodissected from serial sections and used for RNA
extraction with the RNeasy FFPE kit (Qiagen, Hilden, Germany), following a modified
deparaffinization step as previously described (Belder et al., 2016). Genomic DNA was
removed using the gDNA Eliminator spin column included in the kit. RNA concentration
and purity were assessed with a NanoDrop ND-1000 Spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA), and integrity was evaluated with an Agilent
Bioanalyzer 2100 using the RNA 6000 Nano Assay (Agilent Technologies, Santa Clara,
CA, USA).

According to the manufacturer’s instructions, 100 ng of input RNA was used to
generate the amplified RiboSPIA product using the Ovation® FFPE WTA System
(NuGEN, San Carlos, CA, USA). The fragmented and labelled samples (3.5 pg) were then
hybridised to Affymetrix GeneChip® Human X3P Arrays (Affymetrix, Santa Clara, CA,
USA) with rotation for 19 h at 45 °C. Subsequently, the arrays were washed and stained
using user-prepared wash and staining reagents in a Fluidics Station 450 (Affymetrix) and
scanned using a GeneChip Scanner 3000 (Affymetrix).
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Figure 1 Workflow of the current study. We collected 49 paired tumour-control FFPE samples (98 samples in total) and conducted a tran-
scriptome profiling analysis. Significantly differentially expressed genes were identified, and functional pathway enrichment analysis was performed.
Then, an integrated mRNA microarray analysis was conducted using GEO CRC datasets. In both analyses, differentially expressed genes were
primarily implicated in the ECM-receptor interaction pathway. To restrict the candidate gene list, we conducted an integrative meta-analysis for
selected publicly available microRNA microarray datasets to identify miRNA-regulated genes in the ECM-receptor interaction pathway. Combining
our data with the external mRNA/miRNA microarray analysis results, we identified four overexpressed genes in the ECM-receptor interaction
pathway—a key regulator in human CRC development and progression. QRT-PCR validated the expression changes of the critical genes in the
discovery microarray sample set and an independent cohort (64 tumours and 64 matched controls). The predictive value of our candidate genes was
verified using the TCGA and independent GEO datasets and the high expression of all four genes correlated with poor CRC prognosis. A prognostic
risk score was established for each patient by combining the expression values of the critical genes and disease stage weighted by regression
coefficients in the multivariate Cox regression analysis. The reliability of the four-gene signature was validated using two independent GEO datasets
(GSE17536 and GSE40967). Full-size & DOI: 10.7717/peer;.19852/fig-1
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Table 1 Clinicopathological characteristics of patients included in the discovery and validation

datasets.
Discovery cohort Validation cohort

Characteristics n (49) % n (64) %
Mean age (years) 45 67
Sex
Female 22 449 34 42.5
Male 27 55.1 46 57.5
Stage
I 4 8.16 - -
I 21 42.86 36 45
111 23 46.94 38 47.5
v 1 2.04 6 7.5
Grade
1 3 6.12 1 1.25
1I 26 53.06 66 82.5
111 20 40.82 10 12,5
Unknown - - 3 3.75
Tumor location
Left-sided 38 77.55 55 68.75
Right-sided 11 22.45 25 31.25

Microarray data pre-processing and analysis

The Affymetrix CEL files were pre-processed with Genomics Suite Version 6.6 (Partek
Inc., St. Louis, MO, USA) using the robust multi-array analysis (RMA) algorithm,
including background correction, quantile normalisation, logging of probes using base 2,
and probe summarisation (Irizarry et al., 2003). A paired t-test was performed to
determine which genes were differentially expressed between the tumour and matched
normal samples, followed by Benjamini-Hochberg correction. The threshold for
identifying differentially expressed genes (DEGs) was set as a false discovery rate (FDR) of
<0.001 and [log,FC| =1. Unsupervised hierarchical cluster analysis was performed in the
Partek Genomic Suite using the Euclidean distance and average linkage algorithm. The
gene expression data were deposited in the NCBI’s Gene Expression Omnibus Database
(GEO: GSE271719).

Pathway and gene set enrichment analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID, https://
davidbioinformatics.nih.gov/) (Huang da, Sherman & Lempicki, 2009) was used to
perform KEGG pathway enrichment analysis of the DEGs. A threshold-adjusted p-value of
< 0.05 was considered statistically significant. Gene Set Enrichment Analysis (GSEA)
software (version 4.1.0) (http://software.broadinstitute.org/gsea/index.jsp) was employed
to validate the ECM-receptor interaction pathway enrichment in CRC using our discovery
dataset. The number of gene set permutations was set at 1,000. NES (normalized
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enrichment score) >1 and FDR (false discovery rate) q-value < 0.05 were defined as the
significant cut-off criterias of enrichment.

Integrated mMRNA microarray dataset analysis

Differential gene expression and subsequent pathway enrichment analysis were conducted
using independent colorectal cancer gene expression datasets to support our microarray
data and pathway analysis. Three independent datasets (GSE9348, GSE24550, and
GSE21510) were downloaded from the NCBI GEO repository (https://www.ncbi.nlm.nih.
gov/geo/) to identify DEGs between tumour and normal samples for the integrated
microarray dataset analysis (Fig. 1: I). Detailed information about the datasets, including
the platform and the number of samples, is provided in Table S1. A threshold of |log,FC| >
1 and an adjusted p-value of <0.05 were set to screen the DEGs. To analyse overlapping
DEGs, we used an online Venn diagram tool (https://bioinfogp.cnb.csic.es/tools/venny/).
KEGG pathway enrichment analysis was performed on the common DEGs using the
DAVID bioinformatics resources.

miRNA microarray data set analysis

An integrative meta-analysis of publicly available miRNA microarray datasets was
conducted to identify the miRNA-regulated genes involved in the ECM-receptor
interaction pathway. Our goal was to narrow down the candidate gene list from our
transcriptome analysis and identify key molecules relevant to CRC pathogenesis for
further investigation.

We analysed a total of 161 samples (76 controls and 85 tumours) from the following
datasets: NCBI GEO GSE68377 and GSE35982; Array Express E-MTAB-752, E-GEOD-
35834, and E-MTAB-813. Detailed information on these datasets is provided in Table S2
(Fig. 1: III). Differential expression of miRNAs (DEMs) was assessed for each platform
using cut-off values of adjusted p < 0.05 and |FC| 21.5. DEMs were categorized as
up-regulated or down-regulated for further analysis.

miRNA-mRNA target interactions

Potential target genes of DEMs were predicted using the miRTarBase (http://mirtarbase.
mbc.nctu.edu.tw/php/index.php) and miRWalk2.0 (http://zmf.umm.uni-heidelberg.de/
apps/zmf/mirwalk2/) databases. Overlapping analysis was performed using a Venn
diagram to obtain a comprehensive list of miRNA target genes. Common genes were then
identified by intersecting the miRNA target genes with the DEGs from our discovery
dataset for further analysis. miRNA-mRNA pairs showing inverse correlation expression
trends were filtered out, and genes involved in the ECM-receptor interaction pathway were
selected as key genes from miRNA-mRNA target data analysis.

Determination of candidate target genes

Functional pathway enrichment analysis of our CRC gene expression microarray data and
integrated microarray analysis of independent GEO CRC gene expression datasets
revealed that the DEGs were primarily implicated in the ECM-receptor interaction
pathway. We, therefore, focused on this pathway using an integrated approach to identify
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candidate genes more accurately by combining genes in the ECM pathway from our
microarray study, the GEO mRNA datasets, and critical genes mentioned in the miRNA
meta-analysis. The Venn diagram tool (http://bioinfogp.cnb.csic.es/tools/venny) was used
to analyse overlapping genes. Five genes (THBS2, FNI, COLIAI, COL5A1, CD44)
intersecting in the ECM-receptor interaction pathway were identified as candidate genes
for further analysis. Univariate Cox regression analysis was applied to examine their
association and patient overall survival (OS) using the GSE17536 and TCGA datasets
(Fig. 1: II-2). Four of these genes (THBS2, FN1, COL1A1, and COL5A1), which showed a
statistically significant association (p < 0.05) with patient OS, were identified as the critical
target genes for subsequent analysis.

Quantitative real-time PCR (qRT-PCR)

To validate expression changes in the four target genes, QRT-PCR was conducted using our
discovery dataset of RNA samples (n = 49). Retrospective validation was also performed
using the validation cohort, which consisted of independently collected FFPE colorectal
cancer samples and matched controls (n = 64). cDNA was synthesized from 0.5 pg total
RNA using the Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel, Switzerland)
with random primers in a total volume of 20 pl. The reverse transcription reaction was
carried out at 55 °C for 30 min, followed by 85 °C for 5 min. qRT-PCR was performed in
triplicate using the SYBR Green I Master Kit (Roche, Basel, Switzerland) on a
LightCycler480 instrument (Roche, Basel, Switzerland), following the manufacturer’s
instructions. Amplification was performed at 95 °C/180 s followed by 40 cycles at 95 °C/
30 s and 60 °C/30 s, 72 °C/30 s. Gene expressions were normalized to the geometric mean
of HPRT and B2M mRNA levels. Ct values were acquired using the LightCycler® 480
software, and data were analyzed using the AACT method (Livak & Schmittgen, 2001).
Primer sequences are listed in Table S3.

Verification of expression patterns and prognostic value of four
candidate key genes in publicly available CRC datasets

External validation cohorts from the GEO and TCGA datasets were used to confirm the
reproducibility of the overexpression of the four target genes in CRC (GSE44076,
GSE24551, GSE39582, GSE32323, TCGA COAD-READ). Associations between elevated
gene expression and advanced tumour progression (examined in GSE14333, GSE37892,
GSE40967, GSE17538), as well as recurrence (examined in GSE40967, GSE17538), were
also assessed, as shown in Fig. 1 (IICla). Statistical significance was set at p < 0.05.
Additionally, the prognostic value of these genes in CRC (TCGA, GSE17538) was
evaluated using Kaplan-Meier analysis, with p-values calculated via the log-rank test
(GraphPad Prism 6.6). A log-rank p-value < 0.05 was considered statistically significant.
Differences in gene expression for THBS2, FN1, COLIA1, and COL5A1 across different
cancers were assessed using Oncomine (https://www.oncomine.org), with threshold
parameters of p < 0.05, fold-change >2, and gene rank within the top 10%. To further
investigate the potential biological roles of candidate prognostic genes in CRC, gene set
enrichment analysis was performed using independent datasets (GSE17536 and
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GSE39582), as previously outlined. For each gene, patients were dichotomized into high-
and low-expression groups based on the median expression value, and GSEA was carried
out separately using KEGG pathway gene sets (c2.cp.kegg.v7.4.symbols.gmt).

Correlation analysis

The discovery dataset was subjected to Spearman correlation analysis in GraphPad Prism
6.6 to evaluate the interactions among the key genes at the transcription level. Correlation
coefficients were calculated to assess the strength and direction of the correlations.
Correlations among the genes were validated using external datasets, including GSE17536,
GSE40967, and TCGA datasets.

Protein-protein interaction (PPI) network analysis

The online resource Search Tool for the Retrieval of Interacting Genes (STRING)
database (http://stringdb.org/) was utilised to explore relationships for our crucial target
proteins. After importing the candidate genes (THBS2, FN1, COLIAI and COL5A1) into
STRING, a confidence score of >0.4 was applied as the threshold for the PPI network

information.

Determining the prognostic risk score for patient risk stratification

A multivariate Cox regression analysis was carried out on the discovery dataset with the
log2 normalised expression values of the four candidate genes (THBS2, FNI, COLIA1, and
COL5A1) and disease stage as the variables for each patient (p = 0.025). A combined gene
score (X(Bi x Expi)) was calculated, where Expi represented the expression level of
prognostic gene i, and i was the regression coefficient for gene i obtained from the
multivariate Cox analysis (Fig. 1: IIC2). The cohort was proportionally split into Low- and
High- score values across the mean. The method was similarly applied to the GSE
datasets and overall survival of the patients with high- and how- risk scores was
compared by Kaplan-Meier survival and log-rank (Mantel-Cox) test to assess significance
(Fig. 1: TIC2a).

Statistical analyses

All statistical analyses were conducted using GraphPad Prism 6.6 (GraphPad Software,
Inc., San Diego, CA, United States), IBM SPSS® Statistics (version 20.0; IBM Company,
New York, NY, USA) software package, and R v. 3.4.3. Univariate and multivariate Cox
regression analyses were conducted to evaluate the predictive value of the target genes, risk
scores, and clinicopathological features in CRC. All tests were two-tailed, and p-values of
<0.05 were considered statistically significant.

RESULTS

A combined prognostic model was established using an integrative approach
incorporating the expression values of four genes (THBS2, FN1, COL1A1, and COL5A1)
and each patient’s CRC disease stage. The risk model demonstrated independent
prognostic value in CRC. The overall design of the present study is shown in Fig. 1.
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Table 2 Number of differentially expressed genes.

Genes Tumor vs. Control
Up-regulated 320
Down-regulated 525
Total 845

Gene expression profile associated with sporadic colorectal cancer
Affymetrix GeneChip Human Genome U133 X3P expression arrays were used to identify
differences in gene expression between the 49 cases of sporadic CRC FFPE tissue and their
paired normal tissue samples. Applying the criteria of an adjusted p-value of <0.001 and a
fold change (|log,FC|) of 1, a total of 845 DEGs were identified, comprising 320
up-regulated genes and 525 down-regulated genes (Table 2, Table S4). The distribution of
the DEGs was visualised using the volcano plot in Fig. 2A, in which genes meeting the
criteria of a p-value < 0.001 and [log,FC| > 1 are represented by green and red dots,
respectively. The PCA plot (Fig. 2B) shows a distinct separation between the tumour and
control samples. Additionally, hierarchical clustering of the 845 DEGs across the 49 paired
samples (Fig. 2C) demonstrated that DEG expression patterns effectively distinguished
tumour tissues from normal counterparts.

Table 3 lists the top 10 upregulated and downregulated DEGs. Among these, THBS2
(Thrombospondin-2), a member of the thrombospondin family, exhibited the highest
upregulation (fold change = 20.20) in CRC compared to matched controls. The most
downregulated gene (fold change = —39.40) was SLC26A3 (solute carrier family 26,
member 3), which functions as an anion exchanger.

DEGs are primarily involved in the ECM-receptor interaction pathway
To explore the functional relevance of the 845 DEGs, KEGG pathway enrichment analysis
was performed using the DAVID (v6.8) online tool and identified 13 enriched pathways
(FDR < 0.05). The ECM-receptor interaction pathway was the most dysregulated in CRC,
followed by pathways in cancer, focal adhesion, and PI3K-Akt signalling (Fig. 3A). Most
upregulated genes were linked to focal adhesion and ECM-receptor interaction, while
downregulated genes were mainly associated with metabolic processes (Fig. 3B). GSEA
further confirmed significant enrichment of ECM-receptor signalling in tumour samples
(Fig. 3C).

To support our findings, three independent CRC microarray datasets (GSE9348,
GSE24550, GSE21510) from the NCBI GEO repository were analysed (Fig. 1: I)., resulting
in 4,874, 5,634, and 7,853 DEGs (adjusted p < 0.05 and [log2FC| > 1), respectively
(Table S5). The volcano plots for the DEGs in all three datasets are displayed in
Figs. STA-S1C. A Venn diagram revealed 971 common DEGs across these datasets
(Fig. S2). Pathway analysis of these common DEGs highlighted four significant pathways
in CRC: cell cycle, DNA replication, ECM-receptor interaction, and small-cell lung cancer
(Fig. 3D). Considering both the discovery dataset and the external GEO CRC datasets for
the pathway enrichment analysis, only the ECM-receptor interaction pathway emerged as
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Figure 2 Heatmap, PCA, and volcano plot of significantly differentially expressed genes. (A) Volcano plot of differentially expressed genes. Red
points represent high expression genes; green points represent low expression genes; black points represent genes with no significant difference
(FDR £0.001, |logFC| = 1). (B) PCA scatter plot of CRC gene expression data. Each point represents a sample coloured by group status. Red dots
represent tumour samples; blue dots represent normal samples. (C) Heatmap of significantly differentially expressed genes. Samples are indicated
along the horizontal axis and grouped by the colour bar between the dendrogram and the heat map. Red indicates relatively high gene expression;
green indicates relatively low gene expression; black indicates no significant changes in gene expression (FDR < 0.001, |logFC| = 1).
Full-size &) DOT: 10.7717/peerj.19852/fig-2

Table 3 Top ten up-regulated and down-regulated genes.

Gene symbol  Gene title FDR FC
Up-regulated

THBS2 Thrombospondin 2 1.40E-13 20.2049
COL10A1 Collagen, type X, alpha 1 1.00E-11 18.735
FAP Fibroblast activation protein, alpha 8.44E-15 17.5485
INHBA Inhibin, beta A 8.08E-15 16.7212
GRIN2D Glutamate receptor, ionotropic, N-methyl D-aspartate 2D 1.70E-13 15.0628
MMP11 Matrix metallopeptidase 11 (stromelysin 3) 5.84E-11 12.4528
SULF1 sulfatase 1 1.13E-13 10.8833
BGN Biglycan 1.58E-14  10.7824
SPP1 Secreted phosphoprotein 1 3.49E-09 9.76149
H19 H19, imprinted maternally expressed transcript 2.00E-11 9.62265
Down-regulated

SLC26A3 Solute carrier family 26 member 3 8.28E-15  -39.4028
CLCAl Chloride channel accessory 1 1.16E-13  -36.9304
CA2 Carbonic anhydrase II 4.17E-16  —34.482
SLC4A4 Solute carrier family 4, member 4 3.76E-16  -34.0366
CLCA4 Chloride channel accessory 4 2.57E-13  -33.4777
MS4A12 Membrane-spanning 4-domains, subfamily A, member 12 2.81E-15 -32.2239
CEACAM7 Carcinoembryonic antigen-related cell adhesion molecule 7 7.87E-14  -21.9921
CHGA Chromogranin A (parathyroid secretory protein 1) 1.05E-15  -20.2786
CAl Carbonic anhydrase I 2.60E-15  -19.9087
SCNNI1B Sodium channel, non-voltage-gated 1, beta subunit 4.46E-15 -17.3185

Belder et al. (2025), PeerJ, DOI 10.7717/peerj.19852

10/31


http://dx.doi.org/10.7717/peerj.19852/fig-2
http://dx.doi.org/10.7717/peerj.19852
https://peerj.com/

Peer/

A Top canonical pathways enriched within gene list B Top canonical pathways enriched within gene list

ECM-receptor interaction

Pathways in cancer Pathway in cancer

PI3K-Akt signaling pathway

Focal Adhesion

Proteoglycans in cancer

ECM-receptor interaction

Ameobiasis

Protein digestion and absorption

Retinol metabolism

Pentose and glucuronate interconconversions
Steroid hormone biosynthesis

Drug metabolism - other enzymes

PI3K-Akt signaling pathway

Pentose and glucuronate interconconversions
Amoebiasis

Proteoglycans in cancer

Protein digestion and absorption

Retinol metabolism

Ascorbate and aldatate metabolism

Steroid hormone biosynthesis

Drug metabolism - other enzymes
Aldosterone -regulated sodium reabsorption
Malaria
Bladder Cancer

skemyjed
skemyjed

Drug metabolism - cytochrome P450 L B Mala_rla
Phagosome A one -r reabsorption
Whnt signalling pathway Ascorbate and aldatate metabolism
k T T T 1 | T T T T d
10° 107 10 10  10° 0 10 20 30 40 50
p value Gene Count

C D

Enrichment plot: KEGG_ECM_RECEPTOR_INTERACTION Top canonical pathways enriched within gene list

(Integrated microarray dataset analysis)

—
m o Cell cycle
;’ 0.5 DNA replication
S 0.4 ECM-receptor interaction
b Small cell lung cancer

= ) p53 signalling pathway E
g 0.2 1rpRr=0.014 % Ribosome biogenesis in eukaryotes-ll!
i< ES-O- 6.6 s Protein digestion and absorption H
223 (011 gy o . . '
= NES=1.67 < Purine metabolism !
W 0.0 { ® Ameobiasisl |
| Pyrimidine metabolismll |
Mismatch repairl
'
Pathways in cancerl '
Nitrogen metabolism- !
T T T d
o 10° 105 10-1° 1015 10-20
15 Tumour Paired Control p value

Figure 3 ECM-receptor interaction is a crucial pathway involved in colorectal cancer. (A) Kyoto Encyclopaedia of Genes and Genomes Pathway
(KEGG) enrichment analyses of the 845 DEGs from the discovery dataset. The bar graph presents the top deregulated pathways in CRC. The
horizontal bars denote the different pathways based on the p values. Only results with p < 0.05 were considered significant. (B) Pathways of DEG in
the discovery set based on gene count. The horizontal bars denote the different pathways based on the gene count in the pathways. (C) GSEA
enrichment plot of ECM-receptor interaction pathway between tumour and paired normal samples from the discovery dataset. The red-to-blue
colour bar shows the ranking of the genes of our microarray analysis for 49 paired tumour-normal samples from upregulated to downregulated in
CRC. The vertical black bars present the position of the genes across the ranked gene list. The green line shows the running enrichment score (ES)
across the ranked gene list. NES is the normalised enrichment score. Genes associated with ECM-receptor interaction are enriched in tumours from
the discovery dataset (D) KEGG pathway enrichment analyses of the common genes in the integrated microarray analysis performed on three
independent CRC GEO datasets. The bar graph presents the top deregulated pathways in CRC. The horizontal bars denote the different pathways
based on the p-value. Only results with p < 0.05 were considered significant. Full-size K] DOLI: 10.7717/peerj.19852/fig-3

a common and significantly enriched pathway. Given its crucial role in CRC, this pathway
was selected as the starting point for identifying target genes and conducting further
analyses.

THBS2, FN1, COL1A1, and COL5A1 were identified as candidate
target genes

We conducted an integrative meta-analysis of selected publicly available miRNA
microarray datasets to narrow down the enriched ECM-receptor interaction pathway gene
list derived from the discovery dataset and integrated microarray analysis (Fig. 1: III).
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GSE68377 and GSE35982 (GEO datasets), E-MTAB-752, E-GEOD-35834, and
E-MTAB-813 (Array Express datasets) (Table S2), were analysed separately. Differentially
expressed miRNAs (DEMs) were identified for each platform (adj. p < 0.05, [FC| > 1.5) and
classified as upregulated or downregulated miRNAs for further analysis. Overall,

110 miRNAs from the analysis of the Affymetrix E-MTAB-752, E-GEOD-35834, and
GSE68377 datasets showed significant expression differences, with 63 upregulated and 47
downregulated. Additionally, we obtained 90 DEMs, including 75 upregulated and 15
downregulated miRNAs, from the analysis of the Agilent GSE35982 and E-MTAB-813
datasets (Table S6). Forty-two miRNAs were common across both platforms (Fig. S3).

Target genes for these forty-two miRNAs were predicted using miRTarBase and
miRWalk2.0, and a Venn diagram identified overlapping genes with the DEGs from our
discovery dataset (Table S7). miRNA-mRNA pairs showing an inverse correlation in
expression trends were filtered out. Genes involved in the ECM-receptor interaction
pathway and supported by miRNA analysis were prioritised (Fig. 4A). By intersecting
ECM pathway genes from our microarray study, integrated analysis of GEO mRNA
datasets, and miRNA analysis, we identified five candidate genes (THBS2, FN1, COL1Al,
COL5A1, CD44) for further investigation (Fig. 1: II-1; Fig. 4B).

To assess their prognostic significance, a univariate Cox regression analysis was
performed to examine the association between these five genes and patient OS using the
GSE17536 dataset (Fig. 4C) and TCGA dataset (Fig. 4D). Among the five genes, four
(THBS2, FN1, COL1A1, and COL5A1) showed a statistically significant association
(p < 0.05) with patient OS and were therefore selected as essential target genes for
subsequent analysis (Fig. 1: II-2). All four candidate genes were significantly upregulated
(p < 0.05) in tumour samples compared to normal samples in both the discovery
microarray dataset and the three independent GEO CRC datasets used for the integrated
microarray analysis (Fig. 4E). The dysregulation and subsequent upregulation of these
genes likely contribute to CRC tumorigenesis and prognosis.

THBS2, FN1, COL1A1, and COL5A1 gene expression changes in CRC
were technically and externally verified

All four candidate genes (THBS2, FN1, COL1A1, COL5A1) were found to be upregulated
in tumour samples compared to matched normal samples in our microarray analysis
(Fig. 5A). To ensure the reliability of the differential expression of these four genes
identified by our microarray profiling, we used qRT-PCR, the gold standard for confirming
gene expression. The qQRT-PCR results confirmed the upregulation of these genes in the
same set of samples (p < 0.05) (Fig. 1: IIA1; Fig. 5B).

To assess the biomarker potential of these target genes, it is essential to validate their
expression changes or upregulation in different and independent tumour samples.
Therefore, we evaluated the robustness of the gene panel in four independent GEO
colorectal cancer datasets (GSE44076, GSE24551, GSE39582, and GSE32323) and the
TCGA COAD-READ dataset (Fig 1: IIA3). All four candidate genes were significantly
upregulated in CRC patients compared to healthy controls, except for FNI in the TCGA
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cohort (p < 0.05) (Fig. 5C). This validation across multiple and different cohorts highlights
their potential importance in colorectal carcinogenesis.

Overexpression of THBS2, FN1, COL1A1, and COL5A1 in CRC tissues
was further confirmed biologically

To validate the expression profile of the four candidate prognostic genes, a new set of
independent cohort of 64 CRC tumours and matched normal samples was collected (Fig. 1
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Figure 5 Validation of candidate target gene expression changes. (A) Expression of THBS2, FNI, COLIAI, and COL5A1 in our discovery
microarray dataset. (B) Up-regulation of the four genes was confirmed with qRT-PCR in the same set of our discovery samples. (C) Expression
changes of our four key genes were externally validated in four independent GEO datasets (GSE44076, GSE24551, GSE39582, and GSE32323) and
The Cancer Genome Atlas (TCGA) COAD-READ dataset—red, tumour, blue, normal. Data are shown as means + SE. Differences between groups
were analysed using Student’s t-test. “p < 0.05, **p < 0.01, and ***p < 0.001 indicate level of statistical difference from the control.

Full-size Kl DOL: 10.7717/peer].19852/fig-5

ITA2). The qRT-PCR results demonstrated that THBS2, FN1, COLIAI, and COL5A1 were
significantly overexpressed in CRC tissues compared to their matched controls (p < 0.05)
(Fig. 6A). Confirming the previously identified up-regulation in independent clinical
samples highlights the validity and reliability of the results obtained from the microarray
analysis. Furthermore, utilising the Oncomine database, we conducted a pan-cancer
differential gene expression analysis for THBS2, FN1, COL1A1, and COL5A1 (Fig. 1 IIA3).
As shown in Fig. 6B, our candidate genes were significantly upregulated in many cancer
types compared to normal tissues. In particular, THBS2, COL1A1, and COL5A1 genes are
upregulated in most cancer types, except for bladder, kidney, melanoma, and ovarian
cancer. These results suggest that our essential genes may predominantly exhibit
oncogenic characteristics in multiple types of cancer, particularly in CRC. To further
investigate the functional roles of these genes in CRC progression, GSEA was performed
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Figure 6 Independent validation in CRC and expression analysis in different types of cancers (ONCOMINE). (A) qRT-PCR analysis of THBS2,
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using the GSE17536 and GSE39582 datasets. Patients were stratified into high- and
low-expression groups based on the median expression values. Notably, the
high-expression groups exhibited significant enrichment in several pathways, including
focal adhesion, actin cytoskeleton regulation, and cell adhesion molecules (CAMs), in
addition to the ECM-receptor interaction pathway. Furthermore, the KEGG mTOR
signalling pathway was also enriched, suggesting a potential link between these genes and
mTOR signalling in CRC progression. These findings offer a potential mechanistic link
between the candidate genes and CRC progression (Tables S8-515).
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Figure 7 Prognostic significance of the identified candidate genes THBS2, FN1, COL1A1, and COL5A1 in colorectal cancer. (A-D) mRNA
expression levels of the four candidate genes across different cancer stages. Expression levels were correlated with pathological T stages or ductal
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High expression of THBS2, FN1, COL1A1 and COL5A1 is associated
with advanced stage and worse prognosis in CRC patients

We analysed the mRNA expression of THBS2, FN1, COL1A1, and COL5A1 across CRC
stages using four GEO datasets (GSE14333, GSE17538, GSE40967, GSE37892) (Fig. 1
IIC1a). A significant increase in expression was observed from early to late stages

(p < 0.05), suggesting their role in CRC progression (Figs. 7A-7D). We then examined
whether the overexpression of the four genes was associated with the prognosis of the CRC
patients in the GSE17538 and TCGA CRC datasets (Fig. 1 IIC1b). The results indicated
that high expression of THBS2 (p = 0.0016, p = 0.018), FNI (p < 0.0001, p = 0.0532),
COLIAI (p = 0.018, p = 0.0239), and COL5A1 (p = 0.0001, p = 0.067) was significantly
associated with poor OS in GSE17538 and TCGA (Figs. 7E, 7F). Additionally, these genes
were significantly upregulated in the recurrent CRC group compared to the non-recurrent
group, further highlighting their prognostic relevance. (p < 0.05) (Figs. 7G, 7H).
Spearman’s correlation analysis results revealed clear positive correlations (r > 0.6,

p <0.001) between genes in colorectal cancer in the discovery dataset (Fig. 1: IIB; Fig. 8A),
which were confirmed in the independent GEO and TCGA datasets (GSE17536: r > 0.6,
p < 0.001; GSE40967: r > 0.6, p < 0.001; TCGA COAD-READ: r > 0.8, p < 0.001)

(Figs. 8B-8D). A heatmap further visualized these co-expressions, highlighting their
collaborative role in CRC (Figs. 8E-8H). Notably, the strongest positive correlation across
all datasets was observed between COLIAI and COL5A1 (discovery dataset: r = 0.86,
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Figure 8 Co-expression and interaction analysis of THBS2, FN1, COL1A1l, and COL5A1 in CRC. (A-D) Spearman’s correlation of mRNA
expression levels for THBS2, FN1, COLIAI, and COL5AI genes in CRC across different datasets: (A) Discovery dataset; (B) GSE17536;
(C) GSE40967; (D) TCGA. (E) Spearman’s correlation heatmaps of gene expression in the same datasets, with correlation coefficients visualized
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network of the key target genes based on the STRING database.

Full-size K&l DOT: 10.7717/peerj.19852/fig-8

p <0.0001; GSE17536: 1 = 0.95, p < 0.0001; GSE40967: r = 0.96, p < 0.0001; TCGA COAD-
READ: r = 0.97, p < 0.0001). Finally, a PPI network analysis in the STRING confirmed a
highly significant interactions, highlighting the biological interconnectivity of these genes
(PPI enrichment p = 1.15e-05) (Fig. 8I).

A four-gene signature-based risk assessment model was established
to predict the prognosis of colorectal cancer

Given the limitations of using a single gene to predict prognosis in a complex disease like
cancer, we evaluated the combined prognostic value of the four genes. Since tumour stage
is a crucial factor in patient survival (Brierley et al., 2019), we developed a prognostic risk
score model that incorporates the expression levels and regression coefficients of these four
genes alongside tumour stage to predict overall survival (OS) in our discovery dataset
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Figure 9 Predictive values of the four-gene signature-based risk score model. Kaplan-Meier curve of the risk score for OS in (A) Discovery
dataset; (B) GSE17536; (C) GSE40967. The p values were calculated from the Log-rank test using GraphPad Prism 6.6. Violin plot visualisation of the
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spectrum from blue to red represents low to high gene expression.
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(Fig 1: IIC2). We then calculated the risk score for each patient and divided the CRC
patients into high-risk and low-risk groups using the median cut-off of the risk score.
Kaplan-Meier plots indicated significant differences in OS between the two groups.
Patients in the high-risk group showed significantly poorer OS compared to those in the
low-risk group (p = 0.0443; Fig. 9A).

To assess the robustness and effectiveness of our risk score model and verify its
reproducibility, we used two independent GEO datasets (GSE17536, n = 145 and
GSE40967, n = 560) with OS and gene expression information of the CRC patients
(Fig 1. IIC2a). As shown by the Kaplan-Meier OS curves in Figs. 9B and 9C, patients in the
high-risk group had shorter overall survival than those in the low-risk group
(GSE17536: p < 0.0001; GSE40967: p = 0.0446) (Fig. 9B; Fig. 9C). Gene expression for all
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four prognostic genes was significantly higher in the high-risk group (p < 0.0001) (Figs.
9D-9I). Overall, the results confirmed that our risk score model, based on the four-gene
scoring system and incorporating disease stage, could provide an accurate prognosis for
CRC patients.

DISCUSSION

This study elucidates the molecular basis of colorectal cancer (CRC) prognosis by
identifying gene signatures linked to overall survival, thereby enabling improved patient
stratification and therapeutic decision-making. Through transcriptomic analysis of

49 matched tumour and normal tissue samples from sporadic CRC cases (n = 98), we
identified differential gene expression, predominantly enriched in the ECM-receptor
interaction pathway, a finding corroborated by Gene Set Enrichment Analysis. To validate
the robustness of our microarray data and pathway analysis, we conducted an integrated
mRNA expression analysis across three independent CRC datasets, uncovering 971
overlapping DEGs. Subsequent pathway analysis demonstrated enrichment in cancer
related pathways; notably, only the ECM-receptor interaction pathway was consistently
enriched across both discovery and validation cohorts, underscoring its recurrent
biological relevance in CRC.

ECM’s abundance, composition, and structural alterations, along with the resulting
cell-ECM interactions, have crucial implications for cellular and tissue functions (Winkler
et al., 2020). Alterations in ECM composition and structure profoundly affect tumour
biology, enabling hallmark features such as uncontrolled proliferation, apoptosis
resistance, angiogenesis, invasion, and immune evasion (Hanahan ¢ Weinberg, 2011;
Pickup, Mouw & Weaver, 2014; Winkler et al., 2020). Mounting evidence suggests that
ECM remodelling not only underpins tumour progression but also fosters metastasis and
therapeutic resistance across various cancers, including breast cancer (Bao et al., 2019),
squamous cell carcinoma (Parker et al., 2022), pancreatic ductal adenocarcinoma (Laklai
et al., 2016), and ovarian cancer (Januchowski et al., 2014). In addition to its direct effects
on tumour cells, ECM remodelling critically influences the stromal compartment, shaping
the tumour microenvironment (TME). In CRC, dynamic interactions between ECM
components and stromal cells, particularly cancer-associated fibroblasts (CAFs), promote
tumour invasion, metastasis, and therapy resistance (Henke, Nandigama ¢» Ergun, 2019;
Kim et al., 2021; Petersen et al., 2020). Recent studies have further emphasised the pivotal
role of the stromal compartment in defining tumour phenotypes. Calon et al. (2015)
demonstrated that poor-prognosis CRC subtypes are primarily defined by stromal gene
expression, particularly TGF-B-induced programs in CAFs (Calon et al., 2015). Similarly,
Isella et al. (2015) reported that a substantial proportion of the CRC transcriptome
originates from stromal cells, correlating with therapeutic failure and adverse outcomes
(Isella et al., 2015). Building on this, Lee et al. (2024) showed that dysadherin contributes to
ECM remodelling through the MMP9 axis and CAF activation, promoting a more
aggressive tumour microenvironment (Lee et al., 2024). Along with our findings, these
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observations highlight ECM remodeling and stromal dynamics as key contributors to an
aggressive tumour microenvironment in CRC, with potential as both prognostic
biomarkers and therapeutic targets.

Given the pivotal role of ECM-receptor interactions in colorectal cancer pathogenesis,
we sought to refine our gene panel by integrating miRNA expression data to explore
potential post-transcriptional regulatory mechanisms affecting ECM-related genes.
miRNAs are well-known post-transcriptional regulators and are frequently dysregulated in
cancer (Bracken, Scott ¢ Goodall, 2016; Lin & Gregory, 2015). By analysing publicly
available miRNA datasets, we identified differentially expressed miRNAs and predicted
their target genes within the ECM-receptor interaction pathway. This integrative approach
revealed five commonly overexpressed genes—THBS2, FN1, COL1AI, COL5A1, and
CD44—involved in ECM-receptor interactions. We subsequently evaluated the the
predictive value of these five genes for OS in the GSE17536 and TCGA CRC datasets. Four
genes (THBS2, FN1, COL1A1, and COL5A1) demonstrated statistically significant
associations with OS, indicating that patients with high expression of these genes have
worse OS outcomes. Additionally, all four candidate genes showed significant upregulation
in tumour samples compared to normal samples in our discovery microarray dataset,
independent GEO CRC, and the TCGA COAD-READ dataset. Given the critical
importance of independent validation for substantiating the reproducibility,
generalizability, and biomarker potential of these findings (Ramspek et al., 2021; Shariat
et al., 2010), we conducted a biologically independent validation using 64 archival FFPE
samples comprising matched colorectal tumour and normal tissues. Quantitative RT-PCR
analysis confirmed significant upregulation of all candidate genes in tumour samples. To
further contextualize these results, we examined their expression profiles across multiple
cancer types using Oncomine. Notably, THBS2, FN1, COL1A1, and COL5A1 were
consistently overexpressed in colorectal and other malignancies compared to
corresponding normal tissues, reinforcing their potential oncogenic roles in tumorigenesis.
To gain additional mechanistic insight beyond expression patterns, we performed
complementary in silico analyses using gene set enrichment analysis (GSEA) across two
large, independent CRC cohorts (GSE17536 and GSE39582). These analyses revealed
consistent enrichment of key oncogenic pathways, including ECM-receptor interaction,
focal adhesion, actin cytoskeleton regulation, and notably, the mTOR signalling pathway,
among high-expression groups of THBS2, FN1, COL1A1, and COL5A1. While the
enrichment of ECM-related pathways is in line with the known roles of THBS2, FN1,
COL1A1, and COL5A1 in extracellular matrix remodelling and tumour progression, the
concurrent upregulation of mTOR signalling presents an intriguing finding. Recent
evidence suggests a reciprocal relationship between ECM remodelling and mTOR pathway
activation in cancer. Integrin-mediated signalling triggered by ECM components activates
the PI3K/AKT/mTOR pathway and contributes to metastatic potential (Gargalionis et al.,
2022; Matsuoka et al., 2012). In turn, mTOR activation has been shown to upregulate
MMP-2 and MMP-9—downstream effectors that degrade the ECM and facilitate tumour
cell invasion (Xu et al., 2023). This bidirectional interaction between ECM-integrin
signalling and mTOR-MMP axis may underlie the coordinated activation of these
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pathways in CRC and highlights their mechanistic relevance in tumour progression. In
colorectal cancer, ECM components such as collagen 1 have been shown to activate
PI3K/AKT/mTOR signalling and promote stemness and metastasis (Wu et al., 2019).
Furthermore, THBS2 appears to play a multifaceted role. In addition to promoting
angiogenesis via PI3K/AKT activation (Huang et al., 2023), THBS2-expressing
cancer-associated fibroblasts have been identified as drivers of oxaliplatin resistance
through the secretion of COL8AI, which activates PI3K/AKT signalling and induces
epithelial-mesenchymal transition (Zhou et al., 2024). Despite accumulating evidence of
the interplay between ECM remodeling and mTOR signalling across various malignancies,
studies specifically linking ECM-related genes to mTOR pathway activation in colorectal
cancer remain limited. Our findings thus further substantiate the connection between
ECM remodelling and colorectal cancer progression and provide a foundation for future
hypothesis-driven studies.

We examined the interaction between candidate genes and pathological stages in CRC
patients, and found that high THBS2, FN1, COL1A1, and COL5A1 expression levels were
positively associated with disease progression. These genes were also significantly
overexpressed in the recurrent group compared to the non-recurrent group, suggesting
their role in CRC pathogenesis. Additionally, analysis in independent datasets (GSE17538
and TCGA COAD-READ) confirmed that elevated expression of these genes predicts
poorer OS in CRC patients. In conclusion, our findings highlight the critical role played by
our candidate genes in CRC and suggest that these genes individually may be therapeutic
targets for CRC and valuable for prognostic and diagnostic purposes. These results are
consistent with previous studies demonstrating the pathological significance of these genes
in cancer progression. For instance, Deng, Liu ¢ Wang (2021) reported that elevated
THBS2 expression correlates with shorter overall and disease-free survival, alongside a
positive association with immune infiltrates in CRC, supporting its role as both a
prognostic and immunological biomarker. Similarly, Qu ef al. (2022) reported a significant
upregulation of THBS2 in CRC tissues compared to normal tissues. They found that
THBS2 overexpression enhanced the migration and invasion of CRC cells and was
associated with worse OS in CRC patients (Qu ef al., 2022). A recent study demonstrated
that THBS2 secreted by cancer-associated fibroblasts (CAFs) promotes CRC progression
by binding to CD47 on tumour cells and activating the MAPK/ERKS5 signalling cascade
(Liu et al., 2025). In addition, Zhou et al. (2024) identified a distinct subset of THBS2-
expressing CAFs as key drivers of oxaliplatin resistance, wherein COL8A1 secreted from
these cells activates the PI3K-AKT signalling pathway, thereby inducing
epithelial-mesenchymal transition and promoting chemoresistance in CRC. Collectively,
these studies underscore the multifaceted role of THBS2 in CRC biology. Fibronectin 1
(FNI), a one of the major extracellular matrix glycoprotein, is known to mediate cell
adhesion, migration, and invasion (Wang et al., 2022; Zhang et al., 2022). Numerous
studies have shown that elevated FNI expression is associated with the development and
progression of various cancer types, including head and neck squamous cell carcinoma
(Zhou et al., 2022), hepatocellular cancer (Zhang et al., 2022), thyroid cancer (Chen ¢
Shen, 2023), gastric cancer (Li et al., 2022a), ovarian cancer (Lou et al., 2013) and renal
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cancer (Waalkes et al., 2010). Although the precise mechanisms underlying FN1-mediated
tumorigenesis in CRC remain to be fully elucidated, its upregulation has been shown to
promote tumour growth and confer drug resistance in CRC (Ye, Zhang ¢ Feng, 2020). In
line with this, FNI has been shown to promote colorectal cancer progression by enhancing
cell viability, invasion, and migration through interaction with ITGAS5. Its elevated
expression in CRC tissues correlates with adverse clinicopathological features and poorer
survival outcomes, underscoring its potential as a prognostic biomarker and therapeutic
target (Cai et al., 2018). The extracellular matrix is an essential component of the tumour
microenvironment, with COLIA1 playing a crucial role in tumour development and
metastasis as a significant structural ECM protein (Geng et al., 2021; Lu, Weaver ¢» Werb,
2012). COLIA1 overexpression has been reported across several malignancies, including
breast, gastric, and hepatocellular carcinoma (Geng et al., 2021; Li et al., 2022b), and is
associated with poor prognosis, metastasis, and drug resistance (Li ef al., 2022b). In CRC,
Zhang et al. (2018a, 2018b) demonstrated that COL1A1 upregulation promotes tumour
progression and metastasis, while its inhibition markedly suppresses cell proliferation,
invasion, and migration. They also reported that elevated COL1A1 expression is associated
with poorer outcomes and disease-free survival patients with CRC patients (Zhang et al.,
2018a, 2018b). Collectively, the findings from these studies indicate that COLIAI is a
potential prognostic biomarker and a promising therapeutic target for CRC patients.
COL5A1, the final gene in our prognostic panel, is upregulated across multiple
malignancies, including glioma, clear cell renal cell carcinoma, and gastric cancer
(Feng et al., 2019; Gu et al., 2021; Yang et al., 2022). Overexpression of COL5A1 is also
associated with tumorigenicity and metastasis, supporting its potential as a prognostic
biomarker and therapeutic target. Notably, Zhang et al. (2021) reported a correlation
between COL5A1 overexpression and tumour-infiltrating immune cells (TIICs),
proposing its utility in predicting ovarian cancer progression and paclitaxel (PTX)
resistance (Zhang et al., 2021). However, to our knowledge, the clinical significance
and role of COL5A1 in CRC are still unknown. Our study is the first to systematically
evaluate the prognostic value of COL5A1 in CRC through integrated bioinformatics and
biological analyses. Functionally related genes are frequently co-expressed (Eisen et al,
1998), and several studies have demonstrated that assessing gene co-expression can aid in
identifying appropriate targets and uncovering regulators underlying diseases and other
phenotypes (Shi, Derow ¢ Zhang, 2010; Van Dam et al., 2018). Therefore, we conducted a
Spearman’s correlation analysis better to understand the relationship among the four
candidate genes. We found they were positively intercorrelated in CRC in the discovery,
GSE17536, GSE40967, and TCGA COAD-READ datasets. We also examined the PPI
network for our key target genes using the STRING dataset, revealing significant
interactions between them, reinforcing their potential functional linkage in CRC
pathophysiology.

Although conventional clinicopathologic features, such as TNM staging, currently aid
in predicting CRC prognosis to some extent, these parameters often fail to biologically
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differentiate tumours, resulting in ineffective treatments (Eschrich et al., 2005; Feng et al.,
2022; Sveen, Kopetz ¢ Lothe, 2020). Given CRC’s heterogeneous and complex biology,
there is a need to establish more accurate and valuable prognostic models. It is also
important to note that combining prognostic models with conventional
clinicopathological parameters offers better predictive potential than a single biomarker.
Recently, gene expression-based risk assessment models have gained significant attention
and shown enormous potential in predicting prognosis in various cancers, including CRC
(Cheong et al., 2022; Liu et al., 2019; Zhou et al., 2020). In the current study, we evaluated
the expression of the proposed key genes (THBS2, FNI, COLIAI, and COL5A1) in
combination with the disease stage as a clinical parameter to develop a new prognostic
prediction model. Survival analysis revealed that patients with high-risk scores had
considerably shorter OS times than patients with low-risk scores. The predictive accuracy
of our four-gene signature-based risk assessment model was further validated in two
independent CRC gene expression datasets. While the model demonstrated modest but
statistically significant performance in the discovery cohort (p = 0.0443), it was
independently validated in two external datasets—GSE17536 (p < 0.0001) and GSE40967
(p = 0.0446). This dual validation across cohorts with distinct clinical backgrounds
supports the robustness and potential generalisability of the ECM-associated risk score.
We believe that our findings will provide a new and accurate classification and treatment
strategy for CRC, which will improve patient outcomes. Nonetheless, despite consistent
performance across retrospective cohorts, validation in large-scale, prospective clinical
cohorts would be valuable for confirming the model’s translational relevance and
facilitating its integration into routine clinical practice.

Despite the robust multi-tiered validation strategy employed in this study—including
experimental, clinical and in silico analyses—we acknowledge that the relatively modest
sample sizes in both the discovery and validation cohorts may limit the broader
generalisability of our findings. To strengthen the translational potential of this gene set,
future investigations involving larger, prospectively collected patient cohorts will be
essential to confirm their prognostic value and clinical relevance. Moreover,
comprehensive functional studies—encompassing protein-level validation and both in
vitro and in vivo experiments—are required to elucidate the biological roles of these
ECM-associated genes in colorectal cancer pathogenesis.

CONCLUSION

In conclusion, our findings underscore the critical role of our candidate genes in CRC,
particularly in the context of the ECM-receptor interaction pathway, suggesting their
potential as therapeutic targets and valuable biomarkers for prognosis and diagnosis. All
these genes are overexpressed in a variety of tumours as well in CRC, and they may play
crucial roles in tumour development and progression rather than being expressed merely
as a result of the cancer cells phenotypic change. We also constructed and validated a new
four-gene expression signature model in combination with cancer stage to divide CRC
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patients into poor- and good-prognosis groups that could contribute to overall survival
prediction and management of individualized therapy. However, further research,
including clinical validation of our findings will provide new insights into developing
alternative therapeutic strategies and personalised therapies.
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