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ABSTRACT

We construct Convolutional Neural Networks (CNN5s) trained on exponentiated fractional Brownian motion (xfBm) images, and
use these CNNs to analyse Hi-GAL images of surface density in the Galactic Plane. The CNNs estimate the Hurst parameter,
‘H (a measure of the power spectrum), and the scaling exponent, S (a measure of the range of surface densities), for a square
patch comprising [NV x N'] = [128 x 128], [64 x 64], or [32 x 32] pixels. The resulting estimates of # are more accurate
than those obtained using A-variance. We stress that statistical measures of structure are inevitably strongly dependent on the
range of scales they actually capture, and difficult to interpret when applied to fields that conflate very different lines of sight.
The CNNs developed here mitigate this issue by operating effectively on small fields (small '), and we exploit this property to
develop a procedure for constructing detailed maps of H and S. This procedure is then applied to Hi-GAL maps generated with
the PPMAP procedure. There appears to be a bimodality between sightlines with higher surface density (2 32M pc2), which
tend to have higher # (2 0.8) and S (2 1); and sightlines intercepting regions of lower surface density (< 32 M pe~2), which
tend to have lower H (< 0.8) and S (< 1); unsurprisingly the former sightlines are concentrated towards the Galactic Midplane
and the Inner Galaxy. The surface density PDF takes the form dP/dX o £73 for £ > 32M_ pc~2, and on most sightlines this

power-law tail is dominated by dust cooler than ~ 20 K, which is the median dust temperature in the Galactic Plane.
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1 INTRODUCTION

The processes that regulate the evolution of the Galactic interstellar
medium (ISM) — magnetohydrodynamic turbulence, self-gravity,
non-LTE chemistry, radiation transport, etc. — are non-linear, and
therefore the overall structure of the ISM is chaotic. However, the
structure of the ISM appears to be approximately statistically self-
similar over a wide range of length scales. Consequently many
attempts have been made to estimate a fractal dimension, D,
(e.g. Bazell & Desert 1988; Falgarone, Phillips & Walker 1991;
Elmegreen 1997; Stutzki et al. 1998; Elia et al. 2014). Here D,
is the fractal dimension of an image in £-dimensional space, and
is essentially a measure of how efficiently structures fill that space
(Mandelbrot & Cannon 1984). The fractal dimension is a non-integer
number, with possible values ranging from D, =& —1to D, =&
(e.g. the perimeter area dimension), or fromD, = EtoD, =& + 1
(e.g. the box-counting dimension). It has the advantage that (i) it is
straightforward to estimate D, from a 2D image; (ii) if the 2D image
is the projection of a statistically isotropic 3D field, and D, is well
defined, then itis likely that the underlying 3D field is also fractal, and
its dimension, D, , can be constrained. In this paper, we consider 2D
images of surface density, derived from dust optical-depth estimates.

Various methods have been adopted to estimate D,, in par-
ticular perimeter-area analysis of contoured images to estimate
D, ., (Bazell & Desert 1988; Dickman, Margulis & Horvath 1990;
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Falgarone et al. 1991; Williams, Blitz & McKee 2000; Marchuk et al.
2021), and box-counting analysis to measure D, ;. (Mandelbrot &
Cannon 1984; Sanchez, Alfaro & Perez 2005; Federrath, Klessen &
Schmidt 2009; Elia et al. 2018). These two fractal dimensions should
be related by D,,, =D,,. —1 (Voss 1988; Vogelaar & Wakker
1994; Stutzki et al. 1998).

Many of the above analyses have sought to determine a single
fractal dimension that obtains over a large dynamic range. In other
words they have assumed that the observed structures subscribe to
a mono-fractal hierarchy. However, the turbulent cascade operating
in the interstellar medium is complicated. First, turbulent energy is
injected by many different processes, on many different length and
time-scales, and frequently anisotropically. Secondly, the turbulent
cascade appears to deliver objects with increasingly strong self-
gravity, and evolving proportions of solenoidal and compressive
modes, as it progresses to smaller length scales. Consequently
the fractal dimension may be scale-dependent, and may vary with
position.

A more general approach that admits this possibility is to assume
that there is an ensemble of interwoven structures with different
fractal dimensions, and hence that the overall structure is multifractal
(e.g. Chappell & Scalo 2001; Elia et al. 2018; Robitaille et al.
2020b). This has the advantage that it delivers a more detailed
description, and therefore facilitates more detailed intercomparison
between different observed images (for example, different patches
on the sky, or the same patch observed at different wavelengths),
and between observed images and synthetic images (for example,
the results of numerical simulations). However, the basic products of
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such analyses are rather abstract, and usually involve distributions of
parameters. These distributions can sometimes be reduced to a few
numbers, but the interpretation of those numbers in terms of physics
is usually still quite difficult, as acknowledged in Chappell & Scalo
(2001). We give an example in Appendix A.

In addition, these methods can in general only be applied to regular
rectangular images comprising a large number of pixels. This means
it is likely that the user is analysing a combination of regions that
have very different intrinsic structures, and are being combined in
unknown proportions within an arbitrary frame. For example, the
analyses in Elia et al. (2018) treat most of a single Hi-GAL tile
(see Molinari et al. (2010) and Section 4 for further details of the
Hi-GAL survey). Therefore they include lines of sight through dense
star-forming regions, lines of sight through very diffuse gas, and lines
of sight through regions between these two extremes.

An alternative method for quantifying statistically the structure of
a 2D image is to estimate its A-variance (Stutzki et al. 1998). A-
variance analysis assumes that the underlying structure subscribes,
at least approximately, to a fractional Brownian motion (fBm)
distribution (Peitgen & Saupe 1988; Stutzki et al. 1998; Elia et al.
2014). It involves computing the variance, o2 (L), of the image after
it has been convolved with an isotropic filter, ®;, of length scale L.
The Hurst parameter of the image, H, is then given by

©din(L) . M
where S is the index of the power spectrum. Basically H measures
how smooth the underlying structure is; large H means that the
image is dominated by extended structures; small H means that
the image is dominated by compact structures. The corresponding
perimeter-area and box-counting fractal dimensions for a 2D image
areD,,, =2—Hand D, =3 —H.

fBm images have both negative and positive values. To create
synthetic images that can be compared with real surface density
images (which, apart from noise, are everywhere positive-valued)
we follow Elmegreen, Kim & Staveley-Smith (2001) and generate
an fBm image, then exponentiate this fBm image using a scaling
parameter S, thereby creating an exponentiated fractional Brownian
motion (xfBm) image. These xfBm images have a log-normal
distribution of surface density (cf. Robitaille et al. 2020b). The width
of the log-normal distribution is regulated by S (see equation 2);
large S gives a broad distribution of surface density, and small S a
narrow one.

Indeed, we would argue that two parameters may be the minimum
required to characterize the statistics of a 2D image: one (here
H) to describe the degree to which the contours of the image
are convoluted; and one (here S) to describe the range of values
represented by the contours. (Other parameters might reflect the
degree of ‘nestedness’, and any intrinsic anisotropy.)

In the sequel, synthetic xfBm images are used to train a Con-
volutional Neural Network (CNN), which is then used to analyse
Hi-GAL images of the surface density in the Galactic Plane, in terms
of the distributions of Hurst parameter, 7, scaling parameter, S, and
surface density . The plan of the paper is as follows.

In Section 2 we describe how we generate xfBm images with
different combinations of H and S. In Section 3 we explain how we
use these images to train efficient Convolutional Neural Networks
(CNNis) that return reliable estimates of 7 and S, and we compare the
performance of these CNNs with the performance of A-variance. In
Appendix B we explain why the Hurst parameter is a valid descriptor
for an xfBm field. In Section 4 we describe the high-resolution Hi-
GAL images of surface density to which we apply the CNNs from
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Section 3; the Point Process Mapping (PPMAP) technique used to
obtain these images is outlined in Appendix C. In Section 5 we
describe the procedure for generating detailed maps of H and S,
emphasizing the issues that derive from the finite range of angular
scales captured. In Section 6 we illustrate the procedure by applying
it to the three Hi-GAL tiles closest to the Galactic Centre, and analyse
the results. In Section 7 we apply the procedure to the whole Galactic
Plane, and discuss the resulting statistics. In Section 8 we summarize
the main conclusions.

We adopt H and S to characterize surface density structures,
because they are parameters with a straightforward visual meaning
(as illustrated in Section 2, Fig. 1). We are not challenging the possi-
bility that Hi-GAL images may be more accurately characterized as
multifractal. We are simply exploring an alternative procedure that
has merit by virtue of its ability (i) to work on very small patches
of an image, and (ii) to deliver metrics that, although essentially
monofractal, admit a relatively simple interpretation.

2 CONSTRUCTING EXPONENTIATED
FRACTIONAL BROWNIAN MOTION IMAGES

The procedure used to generate square 2D xfBm images is described
in detail in Bates, Whitworth & Lomax (2020). Here we summarize
briefly the five stages involved. Square 2D xfBm images are char-
acterized by four parameters: the Hurst parameter, H, the scaling
parameter, S, the number of pixels along one side of the square,
N, and a random seed, R. For this study we explore 0 < H < 1,
0<S8<3,and N =32, 64, or128.

In STAGE 1, we construct a periodic fBm image f(#H:r) for
the specified H, using the spectral synthesis method introduced
in Peitgen & Saupe (1988), by first generating a power spectrum,
fH:r), and then performing an inverse discrete Fourier transform.
Here r takes integer values in the range 1 < r < 4N

In STAGE 2, the fBm image is exponentiated, using the specified
scaling parameter, S,

@

g(HS:r):exp{ S f(H:r) }

(f2H:m)

This transforms the normally distributed fBm image into a lognormal
image, thereby ensuring that the image is everywhere positive.

In STAGE 3, we cut out the central N'x N patch, so as to have a
non-periodic image, g(HS:r). We do this because the real images
that we wish to mimic are not periodic.'

In STAGE 4, we add random noise to each pixel. The noise values
are uniformly distributed between 0 percent and 5 per cent of the
standard deviation, o, of the xfBm image, g(HS:r).

In STAGE 5, extreme pixels are filtered out. Specifically, any pixel
with ¢ > u, + 2.50, is replaced with u, 4+ 2.50,, where i, is the
mean of the xfBm image.

Fig. 1 shows nine xfBm images generated with different com-
binations of H and S but the same random seed. Consequently
the large-scale structure has the same features in all images. All
the images are rendered with the same surface density colour-table.

!In Bates et al. (2020) we first shifted the centre of mass of the periodic image
to the geometric centre, and then cut out the central ' x N patch. This was
because the procedure developed there was designed to analyse individual
molecular clouds and star clusters. Here, we are concerned with arbitrarily
positioned patches, and so this centring step is not appropriate. We therefore
refer to the images generated here as un-centred. This is the only fundamental
difference from the images presented in Bates et al. (2020).
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Figure 1. The surface densities of square xfBm images generated using different combinations of H and S but the same seed — so that the same structures
are visible on all nine images, and the differences between the images are entirely due to differences in H and S. In order to make this more obvious, we have
centred the images on the highest density peak, but the images used for training the CNNs are uncentred. All images have 128 x 128 pixels. The images in
each column have the same value of S, but H decreases from top to bottom and therefore the amount of small-scale structure increases from top to bottom. The
images in each row have the same value of #, but S increases from left to right and therefore the range of surface densities increases from left to right. The
colour represents the cube-root of the surface density, in order to capture the large dynamic range. The scale of the colour bar is arbitrary, but the same for all

images.

The three images on the top row all have H = 1, so the power is
concentrated in the long wavelength modes and there is little small-
scale structure. Conversely, the three images on the bottom row all
have H = 0, so the power is concentrated in the short wavelength
modes and there is lots of well-defined small-scale structure. (The
same trend is also seen in fig. 5 of Dib et al. (2020), except that
they use § to characterize the power spectrum, instead of #, see
equation 1). Likewise, the three images in the left-hand column all

have S = 0.5, so there is a rather small range of surface density and
little contrast in the image, whilst the three images in the right-hand
column have § = 3.0, a large range of surface density, and therefore
high contrast.

These images are computationally cheap to generate. On a personal
computer, ~65 128 x 128-pixel images, or ~130 64 x 64-pixel
images, or ~550 32 x 32-pixel images, can be generated in one
second. However, given an xfBm image, it is more complicated
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Table 1. The architectures of CNN:128, CNN:64, and CNN:32. CNN: A takes a normalized N x N pixel image and outputs estimates for HS, by passing
the image through logz(./\/ ) — 2 convolutional layers and five fully connected layers. Each convolutional layer outputs the convolution of a 3 x 3 window
with a trainable kernel, and is followed by a max pooling layer that outputs the maximum value of a 2 x 2 sliding window with a step of 2. For each operation
we give the number of trainable parameters.

CNN:128 Trainable CNN:64 Trainable CNN:32 Trainable

Layer Operation Output size Params. Output size Params. Output size Params.
Input input layer 128 x 128 x 1 0 64 x 64 x 1 0 32 x32x1 0
Convolutional 1 3 x 3 kernel 126 x 126 x 256 2560 62 x 62 x 256 2560 30 x 30 x 256 2560
MaxPooling 1 2 x 2 max-pool 63 x 63 x 256 0 31 x 31 x 256 0 15 x 15 x 256 0
Convolutional 2 3 x 3 kernel 61 x 61 x 256 590080 29 x 29 x 256 590080 13 x 13 x 256 590080
MaxPooling 2 2 x 2 max-pool 30 x 30 x 256 0 14 x 14 x 256 0 6 x 6 x 256 0
Convolutional 3 3 x 3 kernel 28 x 28 x 256 590080 12 x 12 x 256 590080 4 x 4 x 256 590080
MaxPooling 3 2 x 2 max-pool 14 x 14 x 256 0 6 x 16 x 256 0 2 x 2 x256 0
Convolutional 4 3 x 3 kernel 12 x 12 x 256 590080 4 x 4 x 256 590080 - -
MaxPooling 4 2 x 2 max-pool 6 x 6 x 256 0 2 x 2 x 256 0 - -
Convolutional 5 3 x 3 kernel 4 x 4 x 256 590080 - - - -
MaxPooling 5 2 x 2 max-pool 2 x 2 x256 0 - - - -
Flatten to 1D layer 1 x1x 1024 0 1 x1x 1024 0 1 x1x 1024 0
Dense 1 fully connected 1 x1x512 262400 1 x1x256 262400 1 x1x256 262400
Dense 2 fully connected 1x1x512 65792 1 x1x256 65792 1 x1x256 65792
Dense 3 fully connected 1 x1x512 65792 1 x1x256 65792 1 x1x256 65792
Dense 4 fully connected 1x1x512 65792 1 x1x256 65792 1 x1x256 65792
Dense 5 fully connected 1 x1x512 65792 1x1x256 65792 1 x1x256 65792
Output a channel each 1x1x2 514 I x1x2 514 1x1x2 514

for H and S - - - - - -
Totals 2888962 2298882 1708 802

to estimate 7 and/or S. The A-variance procedure introduced by
Stutzki et al. (1998) and refined by Ossenkopf, Krips & Stutzki
(2008), is able to estimate H quite accurately, provided the power
spectrum has sufficient dynamic range, say N > 128, but it is not
designed to estimate S.

Strictly speaking, the Hurst parameter, / (or equivalently, the
power-spectrum exponent, § = 2[1 4+ H]) is a property of the un-
derlying 2D fBm image, rather than the final xfBm image. However,
the power-spectrum basically reflects the amount of structure on
different spatial scales (rather than the absolute heights of those
structures), and this is not greatly changed by exponentiation. This
was shown by Bates et al. (2020) (see their section 3.3 and Fig. 4).
For pure 128 x 128 fBm fields, A-variance returned the correct 8
to within 1 per cent. If the images were rendered non-periodic, the
uncertainty increased to 9 per cent, but the mean was still very close
to the initial value. And if the images were then exponentiated, the
uncertainty increased to 18 per cent, but again the mean was still very
close to the initial value. Stutzki et al. (1998) obtained a very similar
result. They took an fBm field and squared it (an alternative way to
render the field positive definite), thereby producing an ‘fBm?’ field.
Then, by applying A-variance to the fBm? field, they retrieved a 8
value very close to the one used to generate the original fBm field.
We speculate further on the reasons for this in Appendix B.

3 CONVOLUTIONAL NEURAL NETWORKS
FOR ANALYSING XFBM IMAGES

In this section we describe the procedure used to train CNN:128,
CNN:64, and CNN:32 (where CNN:A is a CNN applicable to
a square image with N x A/ square pixels). The architectures of
CNN:128, CNN:64, and CNN:32 are presented in Table 1. The
architecture of CNN:128 is similar to the 128 x 128 CNN developed
in Bates et al. (2020), but the dimensions of the convolutional and
max-pooling layers are different. The reader is referred to Bates et al.
(2020) for an explanation of what the different layers do.

MNRAS 523, 233-250 (2023)

For each CNN, we execute 100 training epochs, and in each
training epoch we use 20 000 newly generated and unique synthetic
xfBm images (thus 2000 000 different images in total). The xfBm
images have random values of H distributed uniformly on the interval
0 <H < 1, and random values of S distributed uniformly on the
interval 0 < S < 3.

During a training epoch, these images are fed through the CNN in
batches of 32, and the training loss-function of the batch,

‘CBATCH TRAINING — < [F (xINPUT) - yKNOWN] 2>

is computed. In equation (3), the elements of y, . are the known
values of H and S for the batch, and the elements of F (x ;)
are the corresponding estimates of H and S. After the processing
of each batch, the parameters of the CNN are tuned to minimize
L renraming » Using the method of gradient descent.

At the end of each training epoch, a further 200 new synthetic
xfBm images are generated and the validation loss-function,

€)

5
32

2
‘CEPOCHVALIDATION = <[F(xINPUT) - yKNOWN] >200 > 4

is computed and monitored. By virtue of using unique images at each
epoch, L ,ocuvaumamiony d€Creases more-or-less monotonically, albeit
increasingly slowly.

After 100 epochs, the training and validation cycle is terminated
(because L pocuvamarion 1S NO longer decreasing significantly) and
the accuracy of the CNN is evaluated. For this purpose, 10 000 new
N x N xfBm images are generated (again with random values of H
distributed uniformly on the interval 0 < H < 1, and random values
of S distributed uniformly on the interval 0 < S < 3). These images
are then fed through the CNN and the resulting estimates of H and
S, recorded.

Fig. 2 shows the results of these evaluations. The results for
CNN:128 are shown in the left-hand column, those for CNN:64 in
the middle column, and those for CNN:32 in the right-hand column.
The panels on the top row show estimated H plotted against true
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Figure 2. The fidelity of the different CNNs. The panels on the top row display estimated H against true H for 10 000 different random combinations of true
H (distributed uniformly on the interval [0,1]) and true S (distributed uniformly on the interval [0,3]). The panels on the bottom row display the corresponding
values of estimated S against true S. The panels in the left-hand column show the results for CNN:128; those in the middle column, CNN:64; and those in the
right-hand column, CNN:32. In each panel the black line represents exact correspondence, and the root-mean-square error is given in the top left-hand corner.

Table 2. The root-mean-square errors for CNN:128, CNN:64, and CNN:32.
The numbers in square brackets on the €. ,, row are the corresponding errors
for A-variance, evaluated as in Bates et al. (2020).

N 128 64 32
€ 0.040[0.097] 0.056[0.116] 0.091[0.245]
€sn 0.182 0.221 0.271

H. The panels on the bottom row show estimated S plotted against
true S. In each plot the black line represents exact agreement. The
root-mean-square errors are given in the corner of each plot, and are
summarized in Table 2. Given the small dynamic range of angular
scales on the the xfBm images, and their lack of periodicity, these
are acceptable statistics. We did explore the possibility of applying
a spline correction to the results, to improve the fit further, and in
some cases the fits did look better. However, in terms of the root-
mean-square error, the improvement was very small. This is because
the systematic errors (which are due to the non-uniqueness of the
CNN) are smaller than the random ones (which are due to the lack
of periodicity and the limited dynamic range). In the sequel we use
CNN:64 and CNN:32, for reasons explained in Section 5.

The uncertainties obtained here for CNN:128 are significantly
smaller than those obtained for the 128 x 128 network developed in
Bates et al. (2020). This is because here, at each epoch, we generate
new xfBm images, both for training and validation, whereas in Bates
et al. (2020) we used the same images at each epoch, and simply
divided them randomly between training and validation.

In Table 2 we also give root-mean-square errors for 7 when eval-
uated on the same images using A-variance. We see that these errors
are significantly larger than the corresponding errors obtained with
the CNNs, and deteriorate faster with decreasing V. This is because
the dynamic range of length scales over which dln (o3 ) /dIn(L) can

be estimated faithfully is very sensitive to A/, and in effect vanishes
for N < 16.

4 HIGH-RESOLUTION HI-GAL IMAGES OF
SURFACE DENSITY ALONG THE GALACTIC
PLANE

To analyse the structure of the interstellar medium in the disc
of the Milky Way, we use images of surface density based on
observations from the Herschel infrared Galactic Plane (Hi-GAL)
survey (Molinari et al. 2010). The Hi-GAL survey divides the
Galactic Plane into 163 [2.4° x 2.4°] tiles, each of which has been
observed by The Herschel Space Observatory (Pilbratt et al. 2010) in
the PACS bands centred at 70 and 160 pm (Poglitsch et al. 2010) and
the SPIRE bands centred at 250, 350, and 500 pwm (Griffin et al. 2010).
Each individual tile is labelled with the integer Galactic longitude
closest to its centre. Thus, for example, the tile towards the Galactic
Centre is labelled £000, and the tile towards the Anti-Centre is
labelled ¢ 180.

Images of surface density have been generated using the PPMAP
analysis procedure (Marsh, Whitworth & Lomax 2015). In the
first instance, the version of PPMAP developed by Marsh et al.
(2017) delivers images of the contributions, Az, , to the total dust
optical-depth at 300 um, from dust at twelve different representative
temperatures, 7,. These images are then added to obtain images of
the total optical-depth of dust at 300 pum, .

The PPMAP analysis procedure is outlined more fully in Ap-
pendix C, and here we simply stress two points. (i) AT, represents
the contribution from a range of dust temperatures around T, ;
for example, T, = 15.6 K represents dust with temperature in the
range 143K < T < 16.9K, and T, = 18.4K represents dust with
temperature in the range 16.9K < T < 20.0K (see Table C1). (ii)
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The raw PPMAP images have ¢, = 8.5 arcsec pixels, corresponding
to a linear scale of 0.041 pc [Dkpc~!] for a structure at distance D
along the line of sight.

We eschew the convention of converting the total dust optical depth
into a column density of molecular hydrogen, since this appears to
make little sense on at least two counts. First, on many lines of sight,
even close to the Galactic Midplane, the fraction of hydrogen that
is actually molecular is low and poorly constrained by observation.
Under most circumstances, molecular hydrogen (as inferred by its
presumed association with carbon monoxide) is only the dominant
form of hydrogen in the interstellar medium if the volume and surface
densities are sufficiently high. The exact threshold above which
molecular hydrogen becomes the dominant form of hydrogen is quite
complicated to formulate (e.g. Mac Low & Glover 2012), but rea-
sonable working values are p > 2 x 1072 gcm™3, £ > 50 gcm™2
(equivalently A, 2 2). Consequently on most of the lines of sight in
the Hi-GAL survey, a significant fraction of the hydrogen is atomic,
as can be seen by comparing maps from the Leiden/Argentina/Bonn
21 cm Survey (Kalberla et al. 2005, and references therein) with the
12CO(1-0) survey of the whole Galactic Plane by Dame, Hartmann &
Thaddeus (2001) or the Galactic Ring Survey of Jackson et al. (2006).

Secondly, it is frequently implied, or even presumed, that the
temperatures derived from far-infrared Spectral Energy Distributions
are gas-kinetic temperatures. In reality they are dust-vibrational
temperatures, and — unless the density is high, n,, >10°cm™3,
the gas-kinetic temperature can be very different from (often much
higher than) the co-spatial dust-vibrational temperature. In other
words, it is important to be mindful that what is being observed is
dust and not gas.

However, in order to make the PPMAP IMAGES more easily visual-
ized, they are presented in terms of surface density (in M, pc=2). The
surface density is derived on the assumption that the net mass opacity
of dust at 300 um (i.e. cross-section per unit mass of everything) is
=[0.11em’*g™'] = [2.1 x 107 p* M_']. 5)

K300

It follows that the presented total surface densities are given by

s = Lo _ (4.8 x 10* M, pC_z] Ta00 - ©

K300

Similarly the temperature differential surface densities are given by
A%, =[4.8 x 10*M, pc ] ATy, . 7

Since this involves a single, well-defined conversion factor, the
images can easily be recalibrated if a different value of «,,, is deemed
appropriate.

None the less, even this is problematic, since «,, is likely to vary
with location in the Galaxy (and therefore along the line of sight),
in particular (i) due to spatial variations in interstellar metallicity,
and (ii) due to variations in the mix of dust types in different
environments. Even if one neglects the likelihood that the mix of dust
types changes with metallicity, it is still to be expected that the amount
of dust increases, more-or-less monotonically, with metallicity. There
is at least a fourfold variation in metallicity between the central
regions of the Galaxy and the outer regions observed by Herschel
(e.g. Wenger et al. 2019), and therefore presumably a comparable
— or even greater (e.g. Galliano et al. 2021) — variation in the
abundance of dust. It is also to be expected that the properties of
dust will vary between different phases of the interstellar medium,
due to coagulation and ice-mantle growth (e.g. Ormel et al. 2009,
2011). In short, it is important to keep in mind that the fundamental
quantity derivable from long-wavelength dust-continuum emission
— as detected by Herschel or any other far-infrared telescope — is the
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dust optical-depth (here ,,,). Any other quantity derived therefrom
is dependent on uncertain conversion factors, like the one we adopt
in equations (6) and 7.

Fig. 3 shows maps of temperature differential surface density
for the Galactic Centre tiles (£ 358, £ 000, £ 002), and for the dust-
temperature intervals for which there is significant emission (7' <
12.1K, 12.1K < T < 143K, etc.).

In the £ 002 tile there is little dust at 7 < 143K or T > 23.6K.
Consequently the signal to noise in the corresponding maps (panels
(a) and (f) in Fig. 3) is much lower than in the other temperature
differential maps, and so the corresponding estimates of surface
density are also extremely uncertain. This is the reason why there
is a discontinuity on these maps, between the £ 002 tile and the
adjacent €000 tile. We note that in the 143K <7 < 169K,
169K < T <20.0K, and 20.0K < T < 23.6 K maps, where there
is higher signal-to-noise, there is no discernible discontinuity. Hence
there is also no discernible discontinuity on the map of total surface
density, Fig. 4.

The dust in the € 002 tile is also significantly cooler than that in
the other two tiles, by of order AT ~ 3 K. If we adopt the canonical
relationship T oc U'/#+fp], where U is the ambient radiant energy
density, and B, is the far-infrared/sub-millimetre emissivity index,
with B, ~ 2, this corresponds to the ambient radiation field being
roughly two times stronger in the £ 000 and ¢ 358 tiles than in the
£002 tile

Fig. 4 shows the total surface density for the three Hi-GAL tiles
closest to the Galactic Centre (£ 002, £000, £ 358). These maps are
obtained by summing the contributions from all the temperature
intervals,

9=0
©=> {A%}, ®)
q=1

where Q is the total number of discrete temperatures, 7, (i.e. by
adding all the maps in Fig. 3).

In the sequel we first use the CNNs developed in Section 3 to
analyse the maps of total surface density (e.g. Fig. 4), and in Section 7
we show that there appear to be two structural modes: one (the
undulating mode) representing lines of sight with low surface density,
and one (the monolithic mode) representing lines of sight with high
surface density. We then use the temperature differential information
(e.g. Fig. 3) to show that there is no clear evidence for a distinction
between these two structural modes on the basis of their distributions
of dust-vibrational temperature.

5 MAPS OF H AND S

5.1 Notation for estimates of H and S

This section is necessarily rather laboured, but it makes an important
point that is critical and should be kept in mind. Any procedure for
quantifying the structure of an image of the interstellar medium must
be explicit about the range of angular scales that is meaningfully
represented. There cannot be any a priori expectation that the
resulting metrics (fractal dimension, multifractal spectrum, Hurst
parameter, scaling parameter, power spectrum, etc.) will be the same
if different ranges are considered, even if the procedure is notionally
perfect.

This is illustrated by the maps of 7 and S generated and analysed
here. These maps depend on two user-controlled parameters: (i) the
angular size of the pixels, ¢min; and (ii) the size of the CNN used,
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(@a): T=121K (b): 12.1K<T=14 3K

(c): 143K <T=16.9K

(e): 20.0K<T=23.6K

0.0 0.5 10 15 2.0 2.5 3.0
l0g10 (AZ4/IM pc=2])

Figure 3. Images of the temperature-differential surface density, A " for the three Hi-GAL tiles towards the Galactic Centre (£ 002, £ 000, £ 358), and
different ranges of dust temperature: (a) T < 12.1K (represented by T, = 8.00K, 7, = 9.45K, and T, = 11.2K, see Table Cl); (b) 12.1K < T < 14.3K
(represented by 7, = 13.2K); (¢) 143K < T < 16.9K (represented by T, = 15.6K); (d) 16.9K < T < 20.0K (represented by T, = 18.4K); (e) 20.0K <
T <23.6K (represented by T, = 21.7K); and (f) T > 23.6K (represented by 7, = 25.7K, T, = 30.3K, T\, = 35.8K, 7}, =42.3K, and T}, = 50.0K).
Surface densities are derived from PPMAP estimates of the temperature-differential dust optical depth at 300 pm, using a standard conversion factor (see equation
7). The tiles have been combined using the REPROJECT package (Robitaille, Deil & Ginsburg 2020a). The co-ordinates, (b, £), are omitted in order to increase
the size of each panel, but can be inferred from Fig. 4, which shows exactly the same region.
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Figure 4. Images of the total surface density in the £ 002, £ 000, and ¢ 358 Hi-GAL tiles. These tiles cover an approximately 7° x 2° region in the direction
of the Galactic Centre. Surface densities are derived from PPMAP estimates of the total dust optical depth at 300 pm, using a standard conversion factor (see
equation 6). The three tiles have been combined using the REPROJECT package (Robitaille et al. 2020a).
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i.e. the number of pixels, NV, along one side of the patch on which
the CNN operates.

The angular size, ¢y, of the square pixels on the PPMAP image
determines the angular size of the smallest structures that can be
resolved, which is ~2¢,,. It is only ‘user-controlled’ in the sense
that the user can chose to rebin the raw image, thereby degrading the
resolution but increasing the signal-to-noise. Here we use both raw
PPMAP images (with 8.5 arcsec pixels, see Section 4 and Appendix C)
and also rebinned PPMAP images (with 17 arcsec pixels).

The size, NV, of the square CNNs used determines the angular size
of the patches to be analysed, ¢max = N @min, and hence the size of
the largest structures that can be resolved, i.e. S ¢max.

In order to distinguish values of H or S produced with different
combinations of ¢, and A, we denote them H A xomin A0 Sy omin®
where in the subscripts to 7 and S it is implicit that ¢, is measured
in arcseconds. For example, H,, , < is an estimate of H based on an
image with 8.5 arcsec pixels, using CNN:32. It therefore registers
structures with angular scale between 8.5 arcsec and 32 x 8.5
arcsec = 272 arcsec, and is different from (say) H.,, ,, which
registers structures with angular scale between 17 arcsec and 32 x 17
arcsec = 544 arcsec. Only under the idealized circumstance that (i)
the field being analysed is an exact xfBm field with dynamic range
extending from «8.5 arcsec to >>544 arcsec, and (ii) CNN:32 has

zero error (€,,,, = 0), are the two estimates necessarily the same,

Hipss = Haprr-

In reality, observed fields are not exact xfBm fields. Consequently,
even though observed fields are noisy, and as a result values of H
and S estimated by the CNNs have errors (see Table 2), some of the
difference between different estimates (for example, H,, , — and
H gy With N # N and/or ¢in # @);,) may be attributable to
real physical factors. For example, if the power spectrum flattens
with decreasing wavenumber, H should (all other things being
equal) be smaller than H

32x17

32x8.5°

5.2 Constructing maps of H and S

To produce maps of H,, and S, , - we first specify the pixel
size, ¢min, and, if the raw surface density image has smaller pixels
than required, we rebin the image accordingly.

Next we create a square N’ x A grid with A2 square pixels each
having dimension ¢, X @min. This grid is placed on the surface

density image, thereby isolating a small ¢yax X Pmax-patch, where

¢max = N(bmin’ (9)
and CNN:V is then used to estimate a single value of H and a single
value of S for this patch.

The grid is then re-positioned and the process repeated. The grid
is always positioned so that it only encloses whole pixels, and all
possible positions of the grid are considered. For the relatively small
values of A/ considered here (A" = 32 and 64), there are ~2 x 10°
different grid positions per tile when the raw PPMAP images are used
(with ¢min = 8.5 arcsec), and ~5 x 10° different grid positions when
rebinned images with ¢, = 17 arcsec are used.

Once all possible positions of the grid have been treated, each pixel
is allocated values of H ., . ~and S, . which are the means of
the values for all the grid positions that contain that pixel. Since the
grids have an angular extent of ~¢.,,« (see equation 9), and therefore
pull in information from pixels that far away, the resolution of the
resulting maps of H ., . and SNX¢>min iS ~Pmax.

There is evidently a compromise to be made here. For a given map,
and hence a given ¢, increasing A increases the range of scales
that can be captured. If we are dealing with a perfect monofractal, an
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Table 3. The parameters regulating different estimates of 7 and S. The first
and second columns give the symbols used for these estimates. The third
column gives the dynamic range of angular scales that is registered, N\, i.e.
the number of pixels along one side of the grid. The fourth column gives the
pixel size of the surface density image used, ¢min. The fifth column gives the
resolution of the resulting maps, ¢max-

HN><¢min SNwm;n N G min Drnax

Hesrss Seuxss 64 8.5 arcsec 544 arcsec
X7 Siir 32 17 arcsec 544 arcmin

Hipss Sivss 32 8.5 arcsec 272 arcsec

increased range of scales is useful, since it allows a more accurate
evaluation of the Hurst parameter. This is because the notion of
monofractality involves self-similarity (strictly self-affinity) across a
large dynamic range, and so it is easier to measure when there is a
large dynamic range. This is particularly true when the field analysed
is non-periodic, because under this circumstance the larger scales do
not accurately reflect the underlying self-similarity.

However, as shown by Elia et al. (2014, 2018), the Hi-GAL tiles are
clearly not monofractal, and the statistics of substructure are likely to
vary, both over an individual Hi-GAL tile (between lines of sight that
intersect dense molecular gas, and lines of sight that intercept very
little) and between different Hi-GAL tiles. Increasing N increases
P max (see equation 9), and thereby degrades the resolution, increasing
the likelihood that lines of sight with very different statistics are
analysed together. There is therefore an advantage to using a
relatively small NV, provided that the resulting estimates of H and S
are sufficiently accurate.

In Section 3 we have shown that CNN:64, and even CNN:32, return
acceptably accurate values of 7 and S (see Fig. 2 and Table 2). The
compromise we adopt is therefore to use CNN:64 and CNN:32 in the
sequel, in order to obtain better resolution than would be obtained
with CNN:128. Specifically we consider the three combinations of
N and ¢ i, Whose properties are summarized in Table 3.

6 THE TILES TOWARDS THE GALACTIC
CENTRE

We illustrate these issues by analysing the three Hi-GAL tiles close
to the direction of the Galactic Centre (£ 358, £ 000, and ¢ 002). One
should be mindful that in these tiles, as in all the other Hi-GAL
tiles, the observed intensities, and hence also the estimated surface
densities, reflect integrals along the line of sight. Consequently on
many lines of sight there may be confusion, due to contributions from
different structures superposed along the line of sight. At the same
time we note that, if the structures intercepted are truly monofractal,
as our analysis assumes, there is no problem with confusion, since
the statistical properties of a monofractal structure are independent of
resolution, and therefore independent of the distance to that structure.

The two panels on the top row of Fig. 5 show H,, ., and S, ..,
i.e. estimates of H and S obtained with ¢, = 8.5 arcsec (the raw
PPMAP image) and CNN:64, for the three Galactic Centre tiles. The
maps capture the statistics of substructure between ~8.5 arcsec and
~@Pmax = 64 x 8.5 arcsec = 544 arcsec. The angular resolution of the
maps is ~@max, and for a region at distance D along the line of sight,
this angular resolution corresponds to a linear resolution of L ~
13.2pc[D/5 kpc]. In these tiles a significant fraction of the emission
is likely to come from structures at the Galactic Centre at distance
D ~ 8kpc, and hence for these structures the linear resolution is
L ~ 21 pc.
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Figure 5. Maps of H and S in the three tiles close to the direction of the Galactic Centre (tiles ¢ 358, £ 000, £ 002). The left-hand panels show 7, and the
right-hand panels show S. The panels on the top row show H, .. and S, .., i.e. values generated by applying CNN:64 directly to the high-resolution PPMAP
images; these maps have an angular resolution of 544 arcsec and sample a dynamic range of angular scales, from ~8.5 to ~544 arcsec (i.e. x 64). The panels
on the middle row show H,,, ; and S, ., i.e. values generated by first rebinning the PPMAP image by a linear factor of two, and then applying CNN:32; these
maps have an angular resolution of 544 arcsec (the same as those on the row above), but a smaller dynamic range of angular scales, from ~17 to ~544 arcsec
(i.e. x 32). The panels on the bottom row show H,, .- and S,, ., i.e. values generated by applying CNN:32 directly to the high-resolution PPMAP image;
these maps have an angular resolution of 272 arcsec (i.e. finer than that of the maps on the two rows above), and they register angular scales from ~8.5 to 272
arcsec (again a range of x 32, but registering smaller angular scales than those on the row above, and disregarding larger angular scales). See the text for further
details. The background contours represent surface density, as shown in Fig. 4, and are labelled with the value of log;o(X/[M pc~2]),i.e. 1.2, 1.8, and 2.4. The
tiles have been combined using the REPROJECT package (Robitaille et al. 2020a).

We note that on the panels of Fig. 5, there are sometimes linear
structures marking the join between adjacent tiles, for example
between tiles ¢ 000 and £ 358 in Fig. 5(a), at positive latitudes. These
features arise because the values of ‘H and S for a given pixel are
obtained by averaging over a patch of pixels on the same tile, as
explained in Section 5.2. For two adjacent pixels on opposite sides
of the join between two tiles, this averaging pulls in values of H and
S from completely different patches (because they are on completely
distinct tiles). Therefore such features are inevitable at joins where
there is a gradient in the overall background on scales of order ¢ y,x.
In contrast, for adjacent pixels on the same tile, the associated patches
are offset by at most /2 min-

The two panels on the middle row of Fig. 5 show H,, ,and S;, .,
i.e. estimates of  and S obtained with ¢, = 17 arcsec (a rebinned
version of the PPMAP image) and CNN:32. The angular resolution
of these maps iS ~@max = 32 x 17 arcsec = 544 arcsec, the same
as the maps on the top row. However, because the pixels are larger
(¢min = 17 arcsec rather than ¢, = 8.5 arcsec), H and S

32x17 32x17

only capture the statistics of substructures between ~17 and ~544
arcsec.

The two panels on the bottom row of Fig. 5 show H,, .. andS,, ..,
i.e. estimates of 7 and S obtained with ¢, = 8.5 arcsec (the raw
PPMAP image) and CNN:32. The angular resolution of these maps is
~@Pmax = 32 x 8.5 arcsec = 272 arcsec ~ 4.5 arcmin. These maps
therefore have better resolution than the maps on the two rows above,
but they only capture the statistics of substructures between ~8.5 and
~272 arcsec. The corresponding linear resolution at distance D is
L ~ 6.6pc[D/5kpc], thus ~ 10.6 pc for structures at the Galactic
Centre.

The solid contours on the panels of Fig. 5 represent lines
of constant surface density. They are labelled with the value of
log (X/IM,, pc2]),i.e. 1.2, 1.8, and 2.4. On lines of sight outside the
contour labelled ‘1.2’ (equivalently, lines of sight with surface density
¥ < 16 M, pc~2, sub-millimetre optical depth, 7,,, < 0.0003, and
visual extinction of A, < 0.7), PPMAP surface densities tend to
become less reliable, i.e. the uncertainties returned by PPMAP are
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sometimes comparable with the expectation values. However, lines
of sight compromised in this way are only a very small fraction of
the total.

PPMAP returns NaN (‘Not-a-Number’) for pixels that do not contain
enough signal to support a meaningful evaluation of the surface
density. These pixels are mainly towards the edges of the tiles, but
there are a few in the interiors of the tiles. If the A/ x N —grid
overlaps a pixel with NaN, the CNN cannot operate. Consequently
these pixels do not have estimates of  or S, and surrounding pixels
have estimates of 7{ and S that are more uncertain. An example of a
region that is void for this reason can be seen near £ = 0.75° on all
the panels of Fig. 5.

6.1 Comparing maps of H and S with the same angular
resolution but different dynamic range of angular scales

If we treat H,, ,, and S,,, ,, (middle row of Fig. 5) as our reference,
then H,, ., and S, . (top row of Fig. 5) have the same resolution
(Pmax = 544 arcsec) but capture a larger dynamic range of angular
scales (Pmax/Pmin = 64, rather than 32, because they have smaller
Pmin)- Specifically, substructures between ~8.5 and ~17 arcsec come
into the reckoning when estimating #, and S, , butare ignored
when estimating H,, , and S, ;.

Comparing the maps of H, .. (Fig. 5a) and H,, ,, (Fig. 5¢),
there is both an overall morphological similarity and a systematic
shift, in the direction H, . > H,, ,. This implies a paucity of
small-scale substructure between ~8.5 and ~17 arcsec (which at the
Galactic Centre corresponds to linear scales between ~ 0.3 pc and
~ 0.6 pc). Consequently the power spectrum steepens a little at large
wavenumber, and this increases H slightly.

The maps of S, ., (Fig. 5b) and S,, ,, (Fig. 5d) are mor-
phologically very similar, but S, .. is systematically larger than
S,,.17» implying that the small-scale substructures between ~8.5
and ~17 arcsec have higher surface density than the more extended
substructures on the map, as would be expected if the small-scale
substructures tend to be nested within the larger ones.

64x8.5

6.2 Comparing maps of H and S with the same dynamic range
of angular scales but different angular resolution

If we continue to treat H,, ., and S,, ,, (middle row of Fig. 5) as our
reference, then H,, ., and S,, . (bottom row of Fig. 5) capture the
same dynamic range of angular scales (¢ max/@min = 32) but with finer
resolution (¢max = 272 arcsec, rather than 544 arcsec). Substructures
between 8.5 and 17 arcsec come into the reckoning when estimating
H.,,.s5 and S,, ., but are ignored when estimating H,, , and S,, ..
Conversely, substructures between 272 and 544 arcsec come into the
reckoning when estimating H and S,, ,, but are ignored when
estimating H,, . and S,, ..

Comparing the maps of H,, . (Fig. Se) and H,,_,, (Fig. 5¢), the
two maps have comparable morphology, but H,, . (typically in the
interval [0.8,1.0]) is systematically larger than H., ,, (typically in
the interval [0.6,0.8]). Again this is attributable to a steepening of
the power spectrum at large wavenumber, and a flattening at small
wavenumber.

If we compare the maps of S,, .. (Fig. 5f) and S,, ,, (Fig. 5d),
they are quite similar, apart from the fact that S, . has visibly
better resolution (~272 arcsec >~ 0.075°, so 32 resolution elements
across a tile) than S,, |, (~544 arcsec >~ 0.151°, so 16 resolution
elements across a tile). In other words, if Fig. 5(f) were re-gridded
to the resolution of Fig. 5(d), the two maps would look very similar.

Since these maps reflect the scaling of surface density (i.e. £(L),

32x17
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the mean surface density on scales of order L) — and by implication
the scaling of volume density (i.e. p(L), the mean volume density
on scales of order L; cf. Larson 1981) — this suggests that these
scaling laws are self-similar across the full range of scales from 8.5 to
544 arcsec.

7 ANALYSIS OF THE WHOLE GALACTIC
PLANE

7.1 The distributions of  and S for all Hi-GAL tiles

The top row of Fig. 6 shows the distributions of (a) H,, ., (b) H,,,7»
and (c) H,, . for all the non-NAN pixels on all the Hi-GAL tiles.
The middle row of Fig. 6 shows the corresponding distributions of
d) S, 45> ©) S,y 5 and (H S, The bottom row of Fig. 6 shows
plots of (h) H against S, ., (i) H,,,,, against S, ., and (j)
H

4x8.5°
32x8.5
a5 AZAINSt 864><8.5'

These distributions reproduce the trends found for the tiles towards
the Galactic Centre, in Section 6. Specifically, (i) the power spectrum
is curved, i.e. flatter at small wavenumbers, and steeper at large
wavenumbers; (ii) the larger the range of scales represented (i.e. the
larger N = Prax/Pmin), the larger the value of S. We must also be
mindful that the different pixels represented in Fig. 6 correspond to a
variety of lines of sight, with a relatively small fraction intercepting
dense and highly structured star-forming molecular clouds, and a
larger fraction intercepting more quiescent regions at higher Galactic
latitudes.

Consider first the distributions of H., .. (Fig. 6a) and S,, ,, (Fig.
6d). Scales between 8.5 and 272 arcsec are represented, whilst scales
between 272 and 544 arcsec are not, so the power spectrum is biased
towards larger wavenumbers, and is relatively steep, i.e. large H ~ 1.
The dynamic range is relatively small (272 arcsec/8.5 arcsec = 32),
so § is also relatively small (S ~ 0.9).

Next consider the distributions of H,, ., (Fig. 6b) and S, ,, (Fig.
6e). Scales between 17 and 544 arcsec are represented, whilst scales
between 8.5 and 17 arcsec are not, so the power spectrum is biased
towards smaller wavenumbers, and is somewhat flatter, i.e. smaller
‘H. The dynamic range is again relatively small (544 arcsec/17
arcsec = 32), so S is again relatively small (S ~ 0.9). There are
indications of bimodality in the distributions, and Fig. 6(h) suggests
one concentration of pixels with (H,, ,,, S,,, ;) = (0.9, 1.0), and a
second with (H,,_,, S,,, ;) = (0.2,0.5).

Finally consider the distributions of H,, ., (Fig. 6c) and S,
(Fig. 6f). Scales between 8.5 and 544 arcsec are represented, so the
power spectrum reflects both smaller and larger wavenumbers and
the dynamic range is larger (544 arcsec/8.5 arcsec = 64). There are
again indications of bimodality, and in general H increases with
increasing S, .., as shown on Fig. 6(i).

The bimodality reflects two distinct types of line of sight. One
type is characterized by a mode which we label the ‘monolithic
mode’, with relatively large angular scales dominant (large H 2 0.8)
and quite high scaling parameter (large S 2 1). The second type is
characterized by a mode which we label the ‘undulating mode’,
with a broader range of angular scales (intermediate H < 0.8) and
lower scaling parameter (S < 1). With CNN:32 operating on the
un-rebinned PPMAP images (Pmin = 8.5 arcsec ¢pmax = 272 arcsec;
panels 6a, 6d, and 6g), the distinction between the two types of line
of sight is weak; the small dynamic range (A" = 32) makes it hard to
capture the broad range of angular scales of the undulating mode, and
the small ¢,.x makes it hard to capture the large angular scales of the
monolithic mode. With CNN:32 operating on the rebinned PPMAP im-
ages (Pmin = 17 arcsec, Pmax = 544 arcsec; panels 6b, 6e and 6h), the

64x8.5
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Figure 6. Top row, left to right: the distributions of (a) H, s » (b) H,,,, , and (¢c) H,,, 5. Middle row, left to right: the distributions of (d) S, 4 5 . (€) Sy, 7 »
and (f) S, ¢ 5. Bottom row, left to right: the 2D distributions of (g) H,,, s against S, ., (h) H,,, ,, against Sy, , , and (i) H,,,, 5 against S,, 5. On each
panel there is a value or point for each of the ~2 x 10® pixels on the Hi-GAL maps. On panels (a) through (c), the bin size is AH = 6.70 x 1073, and on panels
(d) through (f) the bin size is AS = 1.80 x 1072. On panels (a) through (f) the ordinate values have been divided by 107, and give the number of pixels in that
bin. The contours on panels (g), (h), and (i) represent 107, 108, and 7 x 10® points per bin, respectively.

bimodality starts to emerge, because the monolithic modes are better
captured by the larger ¢ax. Finally, with CNN:64 operating on the
un-rebinned PPMAP images (Pmin = 8.5 arcsec, ¢max = 544 arcsec;
panels 6¢, 6f, and 61), the bimodality becomes even clearer, because
the undulating modes are now better captured by the larger dynamic

range (¢max/¢min = 64)

7.2 H and S as a function of surface density, X

The panels on the top row of Fig. 7 show the distributions of
Hapss> Haons and H, o against surface density, . The panels
on the bottom row show the corresponding distributions of S.

32x8.5°
Syqs and S, o against X. In general H and S both increase with
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Figure 7. Top row, left to right: the distributions of (a) H,, 5, (b) Hy,, ., » and () H,, g 5, against log;o(X/[My pc2]), where ¥ is the surface density,

computed as described in Section 4. Bottom row, left to right: the distributions of (d) S,

ixss > (©) Sy 7 -and () Sy, o o, against logo(2/[M pc_z]). On each of

these plots, there is a point for each of the ~2 x 10% pixels on the Hi-GAL maps. The contour levels are the same as for Fig. 6 (i.e. 107, 108, and 7 x 108 bin™!).
The bin sizes are: AH = 6.70 x 10_3, AS = 1.80 x 10_2, and Alogm(E) =1.44 x 1072,

increasing surface density, especially for the maps that best capture
the bimodality (i.e. 64 x 8.5 best, 32 x 8.5 worst). In other words,
the substructure around pixels with large surface density tends to
have a steeper power spectrum (power more concentrated towards
large angular scales) and a larger range of surface density. Thus
the monolithic mode tends to correlate with high surface density,
X 2 32M, pc~2, and the undulating mode tends to correlate with
low surface density, & < 32M_ pc~2.

This in turn suggests that the monolithic mode describes molecular
clouds where self-gravity is important (and therefore there may be
imminent or on-going star formation) and a power-law distribution
of surface density at high values (e.g. Kainulainen et al. 2009;
Schneider et al. 2012; Girichidis et al. 2014; Schneider et al. 2015,
2022). In contrast, the undulating mode describes regions where
turbulence maintains an approximately log-normal distribution of
surface density, with a flatter power spectrum (smaller ) and a
narrower range (smaller S).

7.3 H and S as a function of Galactic longitude, £

The panels on the top row of Fig. 8 show the distributions of ‘H
7-t}2><17’ and 7-LG4><8.5

32x8.5°
against Galactic longitude, ¢. The panels on
the middle row show the distributions of S, .., S, ,;, and S,
against £. The panel on the bottom row shows the distribution of total
surface density against £. Each black dot gives the mean value of H
(upper plots), S (middle plots), or log W(E/ Mg pc2]) (bottom plot)
for the individual tile at that longitude. The vertical colour-coded
line through a black dot gives the distribution of the corresponding
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quantity for the individual pixels in that individual tile. There are
163 tiles, hence 163 black dots on each plot. Each tile contains over
100 pixels, and therefore the colour-coded vertical distributions for
individual tiles are well defined.

Since the larger values of H and S are associated with the mono-
lithic mode, and hence dense molecular clouds, the distributions of
‘H, and to a lesser extent the distributions of S, involve significantly
lower values in directions towards the outer Galaxy (90° < £ < 270°).
As with all systematic trends, these signatures are weakest for the
values obtained with (N, ¢min) = (32, 8.5), and strongest for those
obtained with (N, ¢min) = (64, 8.5). As explained in Section 7.1,
this is because (N, @min) = (64, 8.5) is most able to capture the
monolithic mode, and (N, ¢in) = (32, 8.5) least able.

The red dashed lines in Fig. 8(g) mark the approximate longitudes
of the tangent lines to spiral arms, according to Hou & Han (2014,
2015) (see the Caption to Fig. 8 for the identities of these lines).
There are weak features at all these positions, but there are many
other equally strong features. In general, these surface density peaks
represent the accumulation of many contributing molecular clouds
along the line of sight. An individual cloud at distance D, with cross-
sectional area A on the sky, and therefore linear extent L ~~ A2, only
occupies a fraction

L 1’7 p1?
f =~ 0.002
10pc Skpc

of the tile in which it is located. Therefore individual clouds are
unlikely to be clearly identifiable on this plot.
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Figure 8. Top row, left to right: the distributions of (a) H,, s » (b) H;,,; » and (¢) H,, . <, in each tile, against the longitude, £ (in degrees). Middle row, left
to right: the distributions of (d) S, ¢ 5 » (€) Ss,,;; > and (f) S, 5, in each tile, against £. Bottom row, panel (g), the distribution of total surface density in each
tile, against £. On each panel, the black dots represent the mean value in the individual tile at that longitude, and the colour-coded vertical lines through a black
dot represents the distribution of surface densities for the individual pixels in that tile; there are ~10° pixels in each tile. The red dashed lines represent the
approximate longitudes of the tangent lines to spiral arms, according to Hou & Han (2014, 2015): € ~ 32°, Scutum Arm; ¢ ~ 51°, Sagittarius Arm; £ ~ 282°,
Carina Arm; ¢ ~ 308°, Centaurus Arm; £ ~ 327°, Norma Arm.

7.4 Temperature differential surface densities analysed in Sections 6 and 7, and allows us to compute a meaningful
median dust-vibrational temperature (see below). The individual
temperature-differential maps (Fig. 3) cannot usefully be analysed
with the CNNss developed here, because it is unclear how the resulting
Hurst parameters should be interpreted. Under most circumstances

In the first instance, PPMAP delivers maps of temperature-differential
surface density; these are then co-added to produce maps of total
surface density. It is this fundamental aspect of the PPMAP procedure
that underpins the high resolution of the surface density maps
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Figure 9. Distributions of surface density, X /[M pc2], for dust at all temperatures (black curves), then just for the dust below a given separatrix-temperature,
T (red curves), and just for the dust above 7 (blue curves). From left to right, the five columns have separatrix-temperatures 7y = 12.1K, 14.3K, 16.9K,
20.0K, and 23.6 K. On the top row the plots show the results for all ~2 x 10% pixels. On the middle row the plots show the results when we restrict consideration
to the ~5 x 107 pixels with £ > 23 M, pc~2; this threshold is equivalent to Ay, ~ 1. On the bottom row the plots show the results when we restrict consideration
to the ~3 x 10° pixels with £ > 180 M, pc2; this threshold is equivalent to A, ~ 8, and corresponds to the approximate threshold above which low-mass
star formation in Ophiuchus, Aquila/Serpens, and Taurus appears to be concentrated (cf. Johnstone, Di Francesco & Kirk 2004; Konyves et al. 2015; Marsh
et al. 2016; Ladjelate et al. 2020; Howard et al. 2021). Both axes are scaled logarithmically.

it must be presumed that the different dust-vibrational temperatures
represent dust in different layers of a structure (cloud, filament, or
shell) that is either predominantly heated by externally incident
radiation, resulting in a positive radial temperature gradient; or
predominantly heated by internally generated radiation (e.g. from
stars), resulting in a negative radial temperature gradient.

We can however explore whether the two structural modes (mono-
lithic and undulating) that we have identified in Section 7.1 are asso-
ciated with different temperature regimes, given that the monolithic
mode appears to be correlated with higher surface densities than the
undulating mode. The top row of Fig. 9 shows the distribution of
surface density in different dust-vibrational temperature intervals. In
each panel the interval is defined by specifying a separatrix tempera-
ture, 7. The black histogram gives the distribution of surface density
for all dust. The red histogram then gives the distribution of surface
density only for dust with vibrational temperature T' < T, whilst
the blue histogram gives the distribution only for dust with T > Tj.
Reading from left to right, there are five values of T, = 12.1K,
14.3K, 16.9K, 20.0K, and 23.6 K.

The middle row of Fig. 9 shows the corresponding distributions,
when we limit consideration to pixels with surface density above
23M, pc~2. In the solar vicinity, this corresponds to visual extinction
A, 2 1mag.

The bottom row of Fig. 9 shows the corresponding distributions,
when we limit consideration to pixels with surface density above
180 M, pc=2. In the solar vicinity, this corresponds to visual ex-
tinction A, 2 8 mag, and hence to the surface density above which
low-mass star formation in Ophiuchus, Aquila/Serpens, and Taurus
is concentrated (e.g. Johnstone et al. 2004; Konyves et al. 2015;
Marsh et al. 2016; Ladjelate et al. 2020; Howard et al. 2021).
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Several features of Fig. 9 are noteworthy. First, the distribution of
surface density for all dust is, de facto, independent of T, and hence
the black distribution is the same for each plot on the same row of
Fig. 9. On the middle and bottom plots, the vertical black line marks
the surface density cut-off (23 M, pc=2 or 180 M pc2).

Secondly, if we focus on a single pixel, both the the surface
density corresponding to dust below the separatrix temperature,
and the surface density corresponding to dust above the separatrix
temperature, are necessarily smaller than the surface density of all
dust. Consequently (i) they do not normally contribute to the same
histogram-bin as the surface density of all dust (but rather to a lower
bin), and (ii) one or both may actually contribute to a bin below
the cut-off. This means that the blue and red distributions can, and
inevitably do, at some surface densities lie above the black histogram,
especially, but not exclusively, at low surface densities.

Thirdly, the median dust temperature is ~ 20K, and this result
is more-or-less independent of whether we apply a surface density
cut. In other words, irrespective of whether we consider all lines of
sight or only lines of sight with surface density above the thresholds
(23 M, pc=? or 180 M, pc™?), half the dust is hotter than ~ 20K and
half is colder. At first sight, this result seems rather surprising, given
that in simple radiation transport models of externally heated clouds,
employing symmetric geometries, the coldest dust is located on lines
of sight with large surface densities — and therefore predominantly
the monolithic mode.

However, we should be mindful of the fact that in nature lines of
sight that intercept dense molecular gas (i) usually also intercept
large columns of more diffuse atomic gas, in which the dust is
not significantly shielded from the ambient radiation field and is
therefore relatively warm; and (ii) often take in dust that is heated by
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nearby star-formation activity, for example dust in photo-dissociation
regions (PDRs).

Fourthly, except where the surface densities are very low, both the
cooler dust and the warmer dust approximate rather well to power-
law probability distributions at large surface densities,
dp 1
— X —.

dx 33

This corresponds to a slope of —2 on a plot of
log,{dP/dlog,o(Z/[M, pc2])} against log,o(Z/[M, pc~2])
(cf. Girichidis et al. 2014; Schneider et al. 2015). The low surface
densities, which appear to subscribe to a log-normal distribution,
are only visible in the plots on the top row. Once a surface density
threshold is introduced, they are not adequately sampled.

10)

8§ SUMMARY

We have developed and implemented a family of CNNs that can be
used to analyse xfBm substructure in a pixelated map, in terms
of the Hurst parameter, H, and a scaling parameter, S. For 2D
images, the Hurst parameter, 7, is related to the power-law exponent,
B =~ 2(1 4+ H), the perimeter-area fractal dimension, D,,, ~2 — H,
and the box-counting fractal dimension D, ;. >~ 3 — H. The scaling
parameter, S, measures the range of intensities on the map. The
CNNs are very efficient, in terms of the computational resource
required to apply them. In addition, they evaluate 7 more accurately
and faster than A-variance, and can operate on smaller fields than
A-variance (fewer pixels). The CNNs also return estimates of S,
which A-variance does not.

The CNNs developed here can operate on patches of N' x N =
128 x 128, 64 x 64, or 32 x 32 pixels. If the pixels are square,
with angular size @min X @min, the patch captures structures with size
between ~@ i and ~ Pax = N Pmin; thus A regulates the dynamic
range of the substructures that can be captured by the CNN, and the
accuracy with which the parameters H and S are estimated; larger A/
gives greater accuracy. We stress that when estimating the statistics
of substructure on maps that are not robust xfBm fields, it is essential
to be mindful of the range of structures that can be captured, i.e. the
range [@min, PmaxJ> and that statistics estimated using different ranges
may be different for robust physical reasons.

Smaller N allows the user to isolate a smaller patch on the map
being analysed, and hence to estimate more distinctly localized
values of H and S. This has considerable advantages when the
map being analysed contains regions characterized by very different
substructure, and this is certainly the case for maps of the surface
density of the interstellar medium, such as the Hi-GAL maps derived
from thermal dust emission that are considered here. We implement
a procedure for obtaining values of 7 and S for an individual pixel
by considering, and averaging over, all possible positions of the CNN
patch which overlap that pixel.

To explore the trade-off between a larger dynamic range (larger
N) and finer resolution (smaller @pax = N ¢min), we first apply the
32 x 32 CNN to the raw PPMAP maps, which have 8.5 arcsec pixels
(these results are labelled ‘32 x 8.5°); then we apply the 32 x 32
CNN to rebinned PPMAP maps, which have 17 arcsec pixels (these
results are labelled ‘32 x 17°); and finally we apply the 64 x 64
CNN to the raw PPMAP maps (these results are labelled ‘64 x 8.57).

Regions of higher surface density (> 32M_ pc™2) are concen-
trated towards the inner Galaxy, and tend to have larger H (= 0.8)
(implying a steep power spectrum, with power concentrated on large
angular scales) and larger S (= 1) (a broad range of surface densi-
ties); we term this the monolithic mode. Regions of lower surface
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density are more ubiquitous, and tend to have lower H (< 0.8) (a
shallower power spectrum, with power on a broader range of angular
scales) and lower S (< 1) (a smaller range of surface density); we
term this the undulating mode. These structural differences between
different regions are most apparent when the analysis is performed
with 64 x 8.5, and least apparent when the analysis is performed
with 32 x 8.5.

We also analyse the distribution of surface density as a function
of dust temperature, distinguishing the surface density associated
with dust at temperatures less than, and more than, a user-defined
separatrix temperature 7. This is done for 7y = 12.1K, 14.3K,
16.9K, 20.0K, and 23.6 K. The median dust temperature is ~ 20 K.
For all T, both the cooler dust (< T), and the warmer dust (>
T;), approximate well to a power-law surface density distribution,
dP/dY o 73 (corresponding to a slope of —2 on a log—log plot) at
large surface density. The distribution of dust-vibrational temperature
appears to be very similar for the two different structural modes
(monolithic and undulating).
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APPENDIX A: MULTIFRACTAL ANALYSIS

As an illustration of the difficulty of interpreting multifractal spectra,
we have revisited the plot of D_,, (fractal dimension of order +20)
against D_,, (fractal dimension of order —10), which was explored
by Elia et al. (2018) (their fig. 19), as one way of encapsulating the
products of multifractal analysis. The order, 6, of the generalized
fractal dimension, D,, can take any real value between § = —oo
and 6 = +oo. With large positive 8, D, reflects the scaling of
the higher density (i.e. more contrasted) structures within the map.
Conversely, with large negative 6, D, reflects the scaling of lower
density structures. For details of how D, is computed, the reader is
referred to Elia et al. (2018), where they show that a pure fBm
field with a specific power-law exponent 8 = 2.4 (equivalently
H = 0.2), and a specific random seed, here labelled ‘C’ (hence a
given overall structure, like the images in our Fig. 1) corresponds to
a specific (D_,,, D,,,) = (2.25, 1.96). However, this would seem
to be of limited use, since a viable statistical parameter must
be independent of the random seed used to generate a particular
realisation.

Their fig. 19 is much more interesting because it shows the
distribution of (D_,,, D,,,) for a large sample of trial fields with
a range of different characteristics, and is able to distinguish some
features quite clearly. (i) The HiGAL fields have 2.0 < D_, < 2.3,
and 0.7 < D,, < 1.8, suggesting that the higher density structures
have a broader range of scalings than the lower density ones. (ii) In
contrast, their fBm fields have 2.0 < D ) $2.9 and D,,, ~ 1.95
suggesting a broad range of scalings for the lower density structures,
and an almost universal, marginally fractal scaling for the higher
density ones, as should be expected. (c) Finally the fields from
numerical simulations do not subscribe to either of these patterns.
D_,, and D_|; tend to be anticorrelated, i.e. strong scaling of higher
density structures tends to combine with weak scaling of lower
density structures, and vice versa. It is therefore interesting to explore
where xfBm fields lie on this plot.

Fig. Al shows the results obtained for xfBm fields generated
using the procedure described in Section 2, but with [N x N] =
[10% x 10?] and [103 x 103]. The fields analysed have been generated
with three discrete values of S, which are represented with different
markers in Fig. Al: S = 0.1, represented with filled circular dots;
S = 1, represented with stars; and S = 3, represented with crosses.
For each value of S, we generate 1000 realizations with random

1.0

: - : - - . - : 0.0
2.0 2.5 3.0 35 4.0 4.5 5.0 5.5 6.0
D-10

Figure Al. Plots of the fractal dimension of the order of +20 (D_,,) against the fractal dimension of the order of —10 (D_,,). Fields with S = 0.1 are
represented with solid circular dots; fields with S = 1 are represented with stars; and fields with S = 3 are represented with crosses. The colours of the symbols
encode the value of 7, according to the colour-bar on the right. The left-hand plot is obtained with fields having [N x A'] = [10%> x 10?] pixels, and the

right-hand plot with fields having [103 X 103] pixels.
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Table C1. The discrete dust temperatures used in the Marsh et al. (2017) PPMAP analysis. The first row gives ¢, the dust temperature ID. The second row
gives the discrete dust temperature, T, . The third and fourth rows give, respectively, the lower limit, 0.920 7, , and the upper limit, 1.087 7, , for the range of
temperatures represented by 7, . The lowest discrete temperature, 7, = 8.00 K, must actually represent dust below its listed lower limit, “7.36 K*, and dust at
these very low temperatures is therefore poorly represented; however, the results suggest that the amount of dust at these very low temperatures is extremely
small. Similarly, the highest discrete temperature, T;, = 50.0 K, must actually represent dust above its listed upper limit ‘54.3 K’, and dust at these very high
temperatures is therefore poorly represented; however, the results suggest that the amount of dust at these very high temperatures is again extremely small.

q 1 2 3 4 5 6 7 8 9 10 11 12
T,/K 8.00 9.45 11.2 13.2 15.6 18.4 21.7 25.7 30.3 35.8 423 50.0
>0.9207, /K ’>7.36 >8.69 >10.3 >12.1 >14.3 >16.9 >20.0 >23.6 >27.9 >33.0 >38.9 >46.0
<1.0877,/K <8.69 <103 <12.1 <143 <16.9 <20.0 <23.6 <279 <33.0 <389 <46.0 ‘<543

values of H distributed uniformly on the interval [0,1], and the
markers are colour-coded according to the value of H, using the
colour-bar on the right-hand side of the figure. There is a clear trend
on the (D_,,, D_,,) plane, and unsurprisingly it is somewhat better
defined with the [10° x 10%] fields (right-hand plot) than with the
[10% x 107] fields (left-hand plot). However, given the scatter, the
trend with increasing S, from low D_,; and high D, to high D_
and low D_,;, is almost parallel to the trend with decreasing H.
Consequently this plot has limited use as a diagnostic of xfBm fields.
An xfBm image with given (D_,,, D_,,) could have a range of H
and S values, satisfying the approximate relation

S[1.2 — H.5{[D_,— 21 +[D,,, -2}, 0<H <1. (A1)

In contrast, the CNN-based procedure developed here raises this
degeneracy.

APPENDIX B: THE FIDELITY OF THE HURST
PARAMETER FOR NON-FBM FIELDS

In Bates et al. (2020) and this paper, we have applied A-variance and
CNNs to determine the Hurst parameters of fields that are not true
fractional Brownian motion (fBm) fields — albeit that they are derived
from true fBm fields (by exponentiation plus additional procedures to
render them non-periodic and noisy; see Section 2). Therefore they
always have a well defined underlying Hurst parameter. Similarly
Stutzki et al. (1998) successfully apply A-variance to fields that
have been obtained by squaring fBm fields. The question then arises
as to why these techniques (A-variance and CNNs) are still able
to produce reasonably accurate estimates of the underlying Hurst
parameter.

We suggest here that this is because both techniques ultimately,
if indirectly, measure the contour structure of the fields to which
they are applied — as indeed do the area-perimeter and box-counting
procedures for estimating fractal dimension. Neither exponentiation,
nor squaring, alters the structure of the contours, and therefore the
Hurst parameter is not changed very much, if at all. In the case
of exponentiated (xfBm) fields, the height of the contours is of
course changed by exponentiation, but this is reflected in the scaling
parameter, S.

Indeed, we suggest that statistical characterization of a 2D field
necessarily requires two parameters, one reflecting the contour
structure (here ) and one reflecting the relative heights of the
contours (here ). Thus, in principle, a map of the Netherlands
might have the same H as a map of Switzerland, but a very different
S. (In reality the H values for the two countries are probably very
different because the geographical processes shaping their surfaces
have been very different.)

APPENDIX C: THE PPMAP ANALYSIS
PROCEDURE

The PPMAP analysis procedure used by Marsh et al. (2017) to analyse
the Hi-GAL tiles assumes that the radiation detected in the Herschel
bands is primarily thermal emission from dust; that the mass opacity
coefficient of the emitting dust can be approximated by

K, = Ky [A/300 pm] 2 (C1)

(Sadavoy et al. 2012); and that the emission is optically thin. The
intensity on a given line of sight is then given by

T=00
I~ / B 4% ar (€2)
A g dT N

T=0

In equation (C2), B(T) is the Planck Function; T is the dust-
vibrational temperature;

§=00

7.(T) =k, / p(T, s)ds (C3)

5s=0

is the optical-depth along the line of sight due to dust at vibrational
temperatures less than 7; and p(7, s) is the density of dust with
vibrational temperature less than 7' at distance s along the line of
sight. Equation (C3) assumes that «,,,, and hence «,, do not vary
along the line of sight; otherwise «, cannot be taken outside the
integral.

The standard procedure for analysing multiwavelength images
of dust emission (Modified Blackbody Fitting) assumes that all the
dust along a given line of sight can be accurately represented by
a single mean vibrational temperature, T. Equations (C2) and (C3)
then reduce to
I, ~ B (T) 7, [»/300 um] 2, (C4)
where ., is the optical-depth at 300 pm, due to all the dust along
the line of sight. To estimate T and t,,,, the observational data from
the different bands is first rebinned to the coarsest resolution (for
Herschel this is 36 arcsec at 500 um) and then the spectral energy
distribution is fit with equation (C4). This procedure tends to over-
estimate 1,,,, because the overestimated contribution from warmer
than average dust out-weighs the underestimated contribution from
cooler than average dust (e.g. Marsh et al. 2015; Jdquez-Dominguez
et al. 2023; Juvela 2023). It also ignores a lot of high-resolution
information from the shorter wavelength Herschel bands.
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The PPMAP analysis procedure is predicated on the assumption
that on most lines of sight there is a significant range of dust
temperatures, and that this range can be represented by Q discrete
dust temperatures, between T}, and T,,,,, viz.

T, = Ty (C5)
T,=FT,_,, 2<q<0Q; (C6)
where

1200-1]
F= [TMAX/TMIN} ! > (€7

and hence T, = T,,,. Each discrete dust temperature 7, therefore
represents a finite range of dust temperature, 7, /F < T < FT,.

The integral in equation (C2) is then approximated by a sum over
the discrete dust temperatures,

q9=0

I ~ {B(T,) Aty } [»/300 um]~>. (C8)
q=0

In equation (C8), At,,, is the contribution to the optical depth at

300 pm, from the dust at temperature 7, , or — strictly speaking — the
dust in the temperature-range 7, /F < T < FT_, i.e.

T=FTq
dr
ATy, = / ﬁdT. (C9)
T=T,/F

Marshetal. (2017) adopt 0 =12,T,,,, = 8.00K,and 7,,,, = 50.0K.
Hence F = [50/8]"2> = 1.087. The resulting discrete dust temper-
atures, 7,, and the finite ranges that they represent are given in
Table C1.

The PPMAP procedure starts by giving the optical-depth contribu-
tions, AT, , uncorrelated random values from a Gaussian distribu-
tion, and computing the resulting synthetic integrated intensities in
the observed Herschel bands, Hb,

A=00
I, = / I, F(A)dA. (C10)
A=0
where F,(A) is the spectral response function in the Hb band.
These synthetic intensities are then compared with the true observed

intensities, but with the uncertainties artificially inflated, so that,
despite the mismatch between the synthetic intensities and the true

intensities being large, the fit is tolerable — in the sense that the
adjustments to the Az, ~values that are required to improve the fit
are in the linear regime. This process is then repeated recursively with
the uncertainties slowly but steadily reduced until they correspond
to the true noise. PPMAP thereby returns expectation values and
uncertainties for the optical-depth contributions, Az, .

By using the data at its native resolution, PPMAP delivers images
with the finest resolution; for Herschel this is ¢, = 8.5 arcsec
at 70 um.> Thus each [2.4° x 2.4°] tile furnishes 24 images, each
comprising [1440 x 1440] pixels, and representing the expectation
values for At , and the corresponding uncertainties, o, , for
the 12 different temperatures, Tq.3 The effect of interpolating the
long-wavelength emission to pixels that are smaller than the long-
wavelength resolution is reflected in the uncertainties. By invoking a
range of temperatures, the contributions from warmer than average
dust and cooler than average dust are estimated more accurately. The

estimated total optical-depth at the reference wavelength is

q=0
T30 = Z {Ar300:q} . (C1D)
g=1

2The PACS beam at 70 um is distorted by the parallel PACS/SPIRE fast-scan
mode, and has dimensions ~6 arcsec x 12 arcsec. Since the Hi-GAL maps
combine Herschel observations from two orthogonal scan directions Marsh
et al. (2017) adopt a circular beam with FWHM equal to the geometric mean
of these dimensions (although strictly speaking the combined beam is not
exactly circular).

31t is tempting to assume that the dust at different temperatures is concentrated
at different locations along the line of sight, and sometimes this may be a
reasonable approximation. However, it should be kept in mind that in reality
some of the dust at different temperatures could simply be dust of different
types mixed together in the same region, or even small transiently heated
grains caught at different stages as they cool following a temperature spike.
Under this circumstance, «,, should be a sum of the mass-opacity coefficients
of the different types of dust, weighted in proportion to their masses.
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