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A B S T R A C T 

We construct Convolutional Neural Networks (CNNs) trained on exponentiated fractional Brownian motion (xfBm) images, and 

use these CNNs to analyse Hi-GAL images of surface density in the Galactic Plane. The CNNs estimate the Hurst parameter, 
H (a measure of the power spectrum), and the scaling exponent, S (a measure of the range of surface densities), for a square 
patch comprising [ N × N ] = [128 × 128], [64 × 64], or [32 × 32] pixels. The resulting estimates of H are more accurate 
than those obtained using � -variance. We stress that statistical measures of structure are inevitably strongly dependent on the 
range of scales they actually capture, and difficult to interpret when applied to fields that conflate very different lines of sight. 
The CNNs developed here mitigate this issue by operating effectively on small fields (small N ), and we exploit this property to 

develop a procedure for constructing detailed maps of H and S . This procedure is then applied to Hi-GAL maps generated with 

the PPMAP procedure. There appears to be a bimodality between sightlines with higher surface density ( � 32 M � pc −2 ) , which 

tend to have higher H ( � 0 . 8) and S ( � 1); and sightlines intercepting regions of lower surface density ( � 32 M � pc −2 ) , which 

tend to have lower H ( � 0 . 8) and S ( � 1); unsurprisingly the former sightlines are concentrated towards the Galactic Midplane 
and the Inner Galaxy. The surface density PDF takes the form d P /d � ∝ � 

−3 for � � 32 M � pc −2 , and on most sightlines this 
power-law tail is dominated by dust cooler than ∼ 20 K, which is the median dust temperature in the Galactic Plane. 

Key words: methods: data analysis – methods: statistical – stars: formation – ISM: clouds. 
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 I N T RO D U C T I O N  

he processes that regulate the evolution of the Galactic interstellar 
edium (ISM) – magnetohydrodynamic turb ulence, self-gra vity, 

on-LTE chemistry, radiation transport, etc. – are non-linear, and 
herefore the o v erall structure of the ISM is chaotic. Ho we ver, the
tructure of the ISM appears to be approximately statistically self- 
imilar o v er a wide range of length scales. Consequently many
ttempts have been made to estimate a fractal dimension, D E 
e.g. Bazell & Desert 1988 ; Falgarone, Phillips & Walker 1991 ;
lmegreen 1997 ; Stutzki et al. 1998 ; Elia et al. 2014 ). Here D E 

s the fractal dimension of an image in E-dimensional space, and 
s essentially a measure of how efficiently structures fill that space 
Mandelbrot & Cannon 1984 ). The fractal dimension is a non-integer 
umber, with possible values ranging from D E = E − 1 to D E = E 
e.g. the perimeter area dimension), or from D E = E to D E = E + 1
e.g. the box-counting dimension). It has the advantage that (i) it is
traightforward to estimate D 2 from a 2D image; (ii) if the 2D image
s the projection of a statistically isotropic 3D field, and D 2 is well
efined, then it is likely that the underlying 3D field is also fractal, and
ts dimension, D 3 , can be constrained. In this paper, we consider 2D
mages of surface density, derived from dust optical-depth estimates. 

Various methods have been adopted to estimate D 2 , in par- 
icular perimeter-area analysis of contoured images to estimate 
 2:PA (Bazell & Desert 1988 ; Dickman, Margulis & Horvath 1990 ;
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algarone et al. 1991 ; Williams, Blitz & McKee 2000 ; Marchuk et al.
021 ), and box-counting analysis to measure D 2:BC (Mandelbrot & 

annon 1984 ; Sanchez, Alfaro & Perez 2005 ; Federrath, Klessen &
chmidt 2009 ; Elia et al. 2018 ). These two fractal dimensions should
e related by D 2:PA = D 2:BC − 1 (Voss 1988 ; Vogelaar & Wakker
994 ; Stutzki et al. 1998 ). 
Many of the above analyses have sought to determine a single

ractal dimension that obtains o v er a large dynamic range. In other
ords the y hav e assumed that the observed structures subscribe to
 mono-fractal hierarchy. Ho we ver, the turbulent cascade operating 
n the interstellar medium is complicated. First, turbulent energy is 
njected by many different processes, on many different length and 
ime-scales, and frequently anisotropically . Secondly , the turbulent 
ascade appears to deliver objects with increasingly strong self- 
ra vity, and ev olving proportions of solenoidal and compressive 
odes, as it progresses to smaller length scales. Consequently 

he fractal dimension may be scale-dependent, and may vary with 
osition. 
A more general approach that admits this possibility is to assume

hat there is an ensemble of interwo v en structures with different
ractal dimensions, and hence that the o v erall structure is multifractal
e.g. Chappell & Scalo 2001 ; Elia et al. 2018 ; Robitaille et al.
020b ). This has the advantage that it delivers a more detailed
escription, and therefore facilitates more detailed intercomparison 
etween different observed images (for example, different patches 
n the sky, or the same patch observed at different wavelengths),
nd between observed images and synthetic images (for example, 
he results of numerical simulations). Ho we ver, the basic products of
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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1 In Bates et al. ( 2020 ) we first shifted the centre of mass of the periodic image 
to the geometric centre, and then cut out the central N ×N patch. This was 
because the procedure developed there was designed to analyse individual 
molecular clouds and star clusters. Here, we are concerned with arbitrarily 
positioned patches, and so this centring step is not appropriate. We therefore 
refer to the images generated here as un-centred . This is the only fundamental 
difference from the images presented in Bates et al. ( 2020 ). 
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uch analyses are rather abstract, and usually inv olve distrib utions of
arameters. These distributions can sometimes be reduced to a few
umbers, but the interpretation of those numbers in terms of physics
s usually still quite difficult, as acknowledged in Chappell & Scalo
 2001 ). We give an example in Appendix A . 

In addition, these methods can in general only be applied to regular
ectangular images comprising a large number of pixels. This means
t is likely that the user is analysing a combination of regions that
av e v ery different intrinsic structures, and are being combined in
nknown proportions within an arbitrary frame. For example, the
nalyses in Elia et al. ( 2018 ) treat most of a single Hi-GAL tile
see Molinari et al. ( 2010 ) and Section 4 for further details of the
i-GAL surv e y). Therefore the y include lines of sight through dense

tar-forming regions, lines of sight through very diffuse gas, and lines
f sight through regions between these two extremes. 
An alternative method for quantifying statistically the structure of

 2D image is to estimate its � -variance (Stutzki et al. 1998 ). � -
ariance analysis assumes that the underlying structure subscribes,
t least approximately, to a fractional Brownian motion (fBm)
istribution (Peitgen & Saupe 1988 ; Stutzki et al. 1998 ; Elia et al.
014 ). It involves computing the variance, σ 2 

� 

( L ), of the image after
t has been convolved with an isotropic filter, �L , of length scale L .
he Hurst parameter of the image, H, is then given by 

 H = 

d ln 
(
σ 2 

� 

)
d ln ( L ) 

= β − 2 , (1) 

here β is the index of the power spectrum. Basically H measures
ow smooth the underlying structure is; large H means that the
mage is dominated by extended structures; small H means that
he image is dominated by compact structures. The corresponding
erimeter-area and box-counting fractal dimensions for a 2D image
re D 2:PA = 2 − H and D 2:BC = 3 − H. 

fBm images have both ne gativ e and positiv e values. To create
ynthetic images that can be compared with real surface density
mages (which, apart from noise, are e verywhere positi ve-v alued)
e follow Elmegreen, Kim & Staveley-Smith ( 2001 ) and generate

n fBm image, then exponentiate this fBm image using a scaling
arameter S, thereby creating an exponentiated fractional Brownian
otion (xfBm) image. These xfBm images have a log-normal

istribution of surface density (cf. Robitaille et al. 2020b ). The width
f the log-normal distribution is regulated by S (see equation 2 );
arge S gives a broad distribution of surface density, and small S a
arrow one. 
Indeed, we would argue that two parameters may be the minimum

equired to characterize the statistics of a 2D image: one (here
) to describe the degree to which the contours of the image

re convoluted; and one (here S) to describe the range of values
epresented by the contours. (Other parameters might reflect the
egree of ‘nestedness’, and any intrinsic anisotropy.) 
In the sequel, synthetic xfBm images are used to train a Con-

olutional Neural Network (CNN), which is then used to analyse
i-GAL images of the surface density in the Galactic Plane, in terms
f the distributions of Hurst parameter, H, scaling parameter, S, and
urface density �. The plan of the paper is as follows. 

In Section 2 we describe how we generate xfBm images with
ifferent combinations of H and S. In Section 3 we explain how we
se these images to train efficient Convolutional Neural Networks
CNNs) that return reliable estimates of H and S, and we compare the
erformance of these CNNs with the performance of � -variance. In
ppendix B we explain why the Hurst parameter is a valid descriptor

or an xfBm field. In Section 4 we describe the high-resolution Hi-
AL images of surface density to which we apply the CNNs from
NRAS 523, 233–250 (2023) 
ection 3 ; the Point Process Mapping (PPMAP) technique used to
btain these images is outlined in Appendix C . In Section 5 we
escribe the procedure for generating detailed maps of H and S,
mphasizing the issues that derive from the finite range of angular
cales captured. In Section 6 we illustrate the procedure by applying
t to the three Hi-GAL tiles closest to the Galactic Centre, and analyse
he results. In Section 7 we apply the procedure to the whole Galactic
lane, and discuss the resulting statistics. In Section 8 we summarize

he main conclusions. 
We adopt H and S to characterize surface density structures,

ecause they are parameters with a straightforward visual meaning
as illustrated in Section 2 , Fig. 1 ). We are not challenging the possi-
ility that Hi-GAL images may be more accurately characterized as
ultifractal. We are simply exploring an alternative procedure that

as merit by virtue of its ability (i) to work on very small patches
f an image, and (ii) to deliver metrics that, although essentially
onofractal, admit a relatively simple interpretation. 

 CONSTRUCTI NG  EXPONENTI ATED  

RAC TI ONA L  B ROW N I A N  M OT I O N  IMAG ES  

he procedure used to generate square 2D xfBm images is described
n detail in Bates, Whitworth & Lomax ( 2020 ). Here we summarize
riefly the five stages involved. Square 2D xfBm images are char-
cterized by four parameters: the Hurst parameter, H, the scaling
arameter, S, the number of pixels along one side of the square,
 , and a random seed, R . For this study we explore 0 ≤ H ≤ 1,
 ≤ S ≤ 3, and N = 32 , 64 , or 128. 
In STAGE 1, we construct a periodic fBm image f ( H : r ) for

he specified H, using the spectral synthesis method introduced
n Peitgen & Saupe ( 1988 ), by first generating a power spectrum,
ˆ 
 

( H : r ), and then performing an inverse discrete Fourier transform.
ere r takes integer values in the range 1 ≤ r ≤ 4 N . 
In STAGE 2, the fBm image is exponentiated, using the specified

caling parameter, S, 

( HS : r ) = exp 

{ 

S f ( H : r ) 〈
f 2 ( H : r ) 

〉1 / 2 

} 

. (2) 

his transforms the normally distributed fBm image into a lognormal
mage, thereby ensuring that the image is everywhere positive. 

In STAGE 3, we cut out the central N ×N patch, so as to have a
on-periodic image, g( HS : r ). We do this because the real images
hat we wish to mimic are not periodic. 1 

In STAGE 4, we add random noise to each pixel. The noise values
re uniformly distributed between 0 per cent and 5 per cent of the
tandard deviation, σ g , of the xfBm image, g( HS : r ). 

In STAGE 5, extreme pixels are filtered out. Specifically, any pixel
ith g > μg + 2.5 σ g is replaced with μg + 2.5 σ g , where μg is the
ean of the xfBm image. 
Fig. 1 shows nine xfBm images generated with different com-

inations of H and S but the same random seed. Consequently
he large-scale structure has the same features in all images. All
he images are rendered with the same surface density colour-table.
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Figure 1. The surface densities of square xfBm images generated using different combinations of H and S but the same seed – so that the same structures 
are visible on all nine images, and the differences between the images are entirely due to differences in H and S. In order to make this more obvious, we have 
centred the images on the highest density peak, but the images used for training the CNNs are uncentred. All images have 128 × 128 pixels. The images in 
each column have the same value of S, but H decreases from top to bottom and therefore the amount of small-scale structure increases from top to bottom. The 
images in each row have the same value of H, but S increases from left to right and therefore the range of surface densities increases from left to right. The 
colour represents the cube-root of the surface density, in order to capture the large dynamic range. The scale of the colour bar is arbitrary, but the same for all 
images. 
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he three images on the top row all have H = 1, so the power is
oncentrated in the long wavelength modes and there is little small-
cale structure. Conversely, the three images on the bottom row all 
ave H = 0, so the power is concentrated in the short wavelength
odes and there is lots of well-defined small-scale structure. (The 

ame trend is also seen in fig. 5 of Dib et al. ( 2020 ), except that
hey use β to characterize the power spectrum, instead of H, see 
quation 1 ). Likewise, the three images in the left-hand column all
ave S = 0 . 5, so there is a rather small range of surface density and
ittle contrast in the image, whilst the three images in the right-hand
olumn have S = 3 . 0, a large range of surface density, and therefore
igh contrast. 
These images are computationally cheap to generate. On a personal 

omputer, ∼65 128 × 128-pixel images, or ∼130 64 × 64-pixel 
mages, or ∼550 32 × 32-pixel images, can be generated in one
econd. Ho we ver, gi ven an xfBm image, it is more complicated
MNRAS 523, 233–250 (2023) 
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Table 1. The architectures of CNN:128, CNN:64, and CNN:32. CNN: N takes a normalized N × N pixel image and outputs estimates for HS, by passing 
the image through log 

2 
( N ) − 2 convolutional layers and five fully connected layers. Each convolutional layer outputs the convolution of a 3 × 3 window 

with a trainable kernel, and is followed by a max pooling layer that outputs the maximum value of a 2 × 2 sliding window with a step of 2. For each operation 
we give the number of trainable parameters. 

CNN:128 Trainable CNN:64 Trainable CNN:32 Trainable 
Layer Operation Output size Params. Output size Params. Output size Params. 

Input input layer 128 × 128 × 1 0 64 × 64 × 1 0 32 × 32 × 1 0 
Convolutional 1 3 × 3 kernel 126 × 126 × 256 2560 62 × 62 × 256 2560 30 × 30 × 256 2560 
MaxPooling 1 2 × 2 max-pool 63 × 63 × 256 0 31 × 31 × 256 0 15 × 15 × 256 0 
Convolutional 2 3 × 3 kernel 61 × 61 × 256 590 080 29 × 29 × 256 590 080 13 × 13 × 256 590 080 
MaxPooling 2 2 × 2 max-pool 30 × 30 × 256 0 14 × 14 × 256 0 6 × 6 × 256 0 
Convolutional 3 3 × 3 kernel 28 × 28 × 256 590 080 12 × 12 × 256 590 080 4 × 4 × 256 590 080 
MaxPooling 3 2 × 2 max-pool 14 × 14 × 256 0 6 × 16 × 256 0 2 × 2 × 256 0 
Convolutional 4 3 × 3 kernel 12 × 12 × 256 590 080 4 × 4 × 256 590 080 – –
MaxPooling 4 2 × 2 max-pool 6 × 6 × 256 0 2 × 2 × 256 0 – –
Convolutional 5 3 × 3 kernel 4 × 4 × 256 590 080 – – – –
MaxPooling 5 2 × 2 max-pool 2 × 2 × 256 0 – – – –
Flatten to 1D layer 1 × 1 × 1024 0 1 × 1 × 1024 0 1 × 1 × 1024 0 
Dense 1 fully connected 1 × 1 × 512 262 400 1 × 1 × 256 262 400 1 × 1 × 256 262 400 
Dense 2 fully connected 1 × 1 × 512 65 792 1 × 1 × 256 65 792 1 × 1 × 256 65 792 
Dense 3 fully connected 1 × 1 × 512 65 792 1 × 1 × 256 65 792 1 × 1 × 256 65 792 
Dense 4 fully connected 1 × 1 × 512 65 792 1 × 1 × 256 65 792 1 × 1 × 256 65 792 
Dense 5 fully connected 1 × 1 × 512 65 792 1 × 1 × 256 65 792 1 × 1 × 256 65 792 
Output a channel each 1 × 1 × 2 514 1 × 1 × 2 514 1 × 1 × 2 514 

for H and S – – – – – –
Totals 2 888 962 2 298 882 1 708 802 
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o estimate H and/or S. The � -variance procedure introduced by
tutzki et al. ( 1998 ) and refined by Ossenkopf, Krips & Stutzki
 2008 ), is able to estimate H quite accurately, provided the power
pectrum has sufficient dynamic range, say N � 128, but it is not
esigned to estimate S. 
Strictly speaking, the Hurst parameter, H (or equi v alently, the

ower-spectrum exponent, β = 2[1 + H]) is a property of the un-
erlying 2D fBm image, rather than the final xfBm image. Ho we ver,
he power-spectrum basically reflects the amount of structure on
ifferent spatial scales (rather than the absolute heights of those
tructures), and this is not greatly changed by exponentiation. This
as shown by Bates et al. ( 2020 ) (see their section 3.3 and Fig. 4 ).
or pure 128 × 128 fBm fields, � -variance returned the correct β

o within 1 per cent. If the images were rendered non-periodic, the
ncertainty increased to 9 per cent, but the mean was still very close
o the initial value. And if the images were then exponentiated, the
ncertainty increased to 18 per cent, but again the mean was still very
lose to the initial value. Stutzki et al. ( 1998 ) obtained a very similar
esult. They took an fBm field and squared it (an alternative way to
ender the field positive definite), thereby producing an ‘fBm 

2 ’ field.
hen, by applying � -variance to the fBm 

2 field, they retrieved a β
alue very close to the one used to generate the original fBm field.
e speculate further on the reasons for this in Appendix B . 

 C O N VO L U T I O NA L  N E U R A L  N E T WO R K S  

O R  A NA LY S I N G  XFBM  IMAG ES  

n this section we describe the procedure used to train CNN:128,
NN:64, and CNN:32 (where CNN: N is a CNN applicable to
 square image with N × N square pixels). The architectures of
NN:128, CNN:64, and CNN:32 are presented in Table 1 . The
rchitecture of CNN:128 is similar to the 128 × 128 CNN developed
n Bates et al. ( 2020 ), but the dimensions of the convolutional and
ax-pooling layers are different. The reader is referred to Bates et al.

 2020 ) for an explanation of what the different layers do. 
NRAS 523, 233–250 (2023) 
For each CNN, we execute 100 training epochs, and in each
raining epoch we use 20 000 newly generated and unique synthetic
fBm images (thus 2000 000 different images in total). The xfBm
mages have random values of H distributed uniformly on the interval
 < H < 1, and random values of S distributed uniformly on the
nterval 0 < S < 3. 

During a training epoch, these images are fed through the CNN in
atches of 32, and the training loss-function of the batch, 

 BATCH TRAINING = 

〈 [
F 

(
x INPUT 

) − y 
KNOWN 

]2 
〉 

32 
, (3) 

s computed. In equation ( 3 ), the elements of y 
KNOWN 

are the known
alues of H and S for the batch, and the elements of F 

(
x INPUT 

)
re the corresponding estimates of H and S. After the processing
f each batch, the parameters of the CNN are tuned to minimize
 BATCH TRAINING , using the method of gradient descent. 
At the end of each training epoch, a further 200 new synthetic

fBm images are generated and the validation loss-function, 

 EPOCH VALIDATION = 

〈 [
F 

(
x INPUT 

) − y 
KNOWN 

]2 
〉 

200 
, (4) 

s computed and monitored. By virtue of using unique images at each
poch, L EPOCH VALIDATION decreases more-or-less monotonically, albeit
ncreasingly slowly. 

After 100 epochs, the training and validation cycle is terminated
because L EPOCH VALIDATION is no longer decreasing significantly) and
he accuracy of the CNN is e v aluated. For this purpose, 10 000 new
 ×N xfBm images are generated (again with random values of H

istributed uniformly on the interval 0 < H < 1, and random values
f S distributed uniformly on the interval 0 < S < 3). These images
re then fed through the CNN and the resulting estimates of H and
, recorded. 
Fig. 2 shows the results of these e v aluations. The results for

NN:128 are shown in the left-hand column, those for CNN:64 in
he middle column, and those for CNN:32 in the right-hand column.
he panels on the top ro w sho w estimated H plotted against true
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Figure 2. The fidelity of the different CNNs. The panels on the top row display estimated H against true H for 10 000 different random combinations of true 
H (distributed uniformly on the interval [0,1]) and true S (distributed uniformly on the interval [0,3]). The panels on the bottom row display the corresponding 
values of estimated S against true S. The panels in the left-hand column show the results for CNN:128; those in the middle column, CNN:64; and those in the 
right-hand column, CNN:32. In each panel the black line represents exact correspondence, and the root-mean-square error is given in the top left-hand corner. 

Table 2. The root-mean-square errors for CNN:128, CNN:64, and CNN:32. 
The numbers in square brackets on the εH : N 

row are the corresponding errors 
for � -variance, evaluated as in Bates et al. ( 2020 ). 

N 128 64 32 
εH : N 

0.040 [0.097] 0.056 [0.116] 0.091 [0.245] 
εS: N 

0.182 0.221 0.271 
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. The panels on the bottom row show estimated S plotted against
rue S. In each plot the black line represents exact agreement. The
oot-mean-square errors are given in the corner of each plot, and are
ummarized in Table 2 . Given the small dynamic range of angular
cales on the the xfBm images, and their lack of periodicity, these
re acceptable statistics. We did explore the possibility of applying 
 spline correction to the results, to impro v e the fit further, and in
ome cases the fits did look better. Ho we ver, in terms of the root-
ean-square error, the impro v ement was v ery small. This is because

he systematic errors (which are due to the non-uniqueness of the 
NN) are smaller than the random ones (which are due to the lack
f periodicity and the limited dynamic range). In the sequel we use
NN:64 and CNN:32, for reasons explained in Section 5 . 
The uncertainties obtained here for CNN:128 are significantly 

maller than those obtained for the 128 × 128 network developed in 
ates et al. ( 2020 ). This is because here, at each epoch, we generate
ew xfBm images, both for training and validation, whereas in Bates
t al. ( 2020 ) we used the same images at each epoch, and simply
ivided them randomly between training and validation. 
In Table 2 we also give root-mean-square errors for H when e v al-

ated on the same images using � -variance. We see that these errors
re significantly larger than the corresponding errors obtained with 
he CNNs, and deteriorate faster with decreasing N . This is because
he dynamic range of length scales o v er which d ln 

(
σ 2 

� 

)
/ d ln ( L ) can
e estimated faithfully is very sensitive to N , and in effect vanishes
or N � 16. 

 H I G H - R E S O L U T I O N  H  I - G A L  I MAG ES  O F  

URFAC E  DENSITY  A L O N G  T H E  G A L AC T I C  

LANE  

o analyse the structure of the interstellar medium in the disc
f the Milky Way, we use images of surface density based on
bservations from the Herschel infrared Galactic Plane (Hi-GAL) 
urv e y (Molinari et al. 2010 ). The Hi-GAL surv e y divides the
alactic Plane into 163 [2.4 ◦ × 2.4 ◦] tiles, each of which has been
bserved by The Herschel Space Observatory (Pilbratt et al. 2010 ) in
he PACS bands centred at 70 and 160 μm (Poglitsch et al. 2010 ) and
he SPIRE bands centred at 250, 350, and 500 μm (Griffin et al. 2010 ).
ach individual tile is labelled with the integer Galactic longitude 
losest to its centre. Thus, for example, the tile towards the Galactic
entre is labelled � 000, and the tile towards the Anti-Centre is

abelled � 180. 
Images of surface density have been generated using the PPMAP 

nalysis procedure (Marsh, Whitworth & Lomax 2015 ). In the 
rst instance, the version of PPMAP developed by Marsh et al.
 2017 ) delivers images of the contributions, �τ300: q , to the total dust
ptical-depth at 300 μm, from dust at twelve different representative 
emperatures, T 

q 
. These images are then added to obtain images of

he total optical-depth of dust at 300 μm, τ300 . 
The PPMAP analysis procedure is outlined more fully in Ap- 

endix C , and here we simply stress two points. (i) �τ300: q represents
he contribution from a range of dust temperatures around T 

q 
;

or example, T 5 = 15 . 6 K represents dust with temperature in the
ange 14 . 3 K < T ≤ 16 . 9 K, and T 6 = 18 . 4 K represents dust with
emperature in the range 16 . 9 K < T ≤ 20 . 0 K (see Table C1 ). (ii)
MNRAS 523, 233–250 (2023) 
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he raw PPMAP images have φmin = 8.5 arcsec pixels, corresponding
o a linear scale of 0 . 041 pc [D kpc −1 ] for a structure at distance D
long the line of sight. 

We eschew the convention of converting the total dust optical depth
nto a column density of molecular hydrogen, since this appears to
ake little sense on at least two counts. First, on many lines of sight,

ven close to the Galactic Midplane, the fraction of hydrogen that
s actually molecular is low and poorly constrained by observation.
nder most circumstances, molecular hydrogen (as inferred by its
resumed association with carbon monoxide) is only the dominant
orm of hydrogen in the interstellar medium if the volume and surface
ensities are sufficiently high. The exact threshold abo v e which
olecular hydrogen becomes the dominant form of hydrogen is quite

omplicated to formulate (e.g. Mac Low & Glo v er 2012 ), but rea-
onable working values are ρ � 2 × 10 −21 g cm 

−3 , � � 50 g cm 

−2 

equi v alently A V � 2). Consequently on most of the lines of sight in
he Hi-GAL surv e y, a significant fraction of the hydrogen is atomic,
s can be seen by comparing maps from the Leiden/Argentina/Bonn
1 cm Surv e y (Kalberla et al. 2005 , and references therein) with the
2 CO(1-0) surv e y of the whole Galactic Plane by Dame, Hartmann &
haddeus ( 2001 ) or the Galactic Ring Surv e y of Jackson et al. ( 2006 ).
Secondly, it is frequently implied, or even presumed, that the

emperatures derived from far-infrared Spectral Energy Distributions
re gas-kinetic temperatures. In reality they are dust-vibrational
emperatures, and – unless the density is high, n H 2 � 10 5 cm 

−3 ,
he gas-kinetic temperature can be very different from (often much
igher than) the co-spatial dust-vibrational temperature. In other
ords, it is important to be mindful that what is being observed is
ust and not gas. 
Ho we ver, in order to make the PPMAP IMAGES more easily visual-

zed, they are presented in terms of surface density (in M � pc −2 ). The
urface density is derived on the assumption that the net mass opacity
f dust at 300 μm (i.e. cross-section per unit mass of everything) is 

300 = [0 . 11 cm 

2 g −1 ] = [2 . 1 × 10 −5 pc 2 M 

−1 
� ] . (5) 

t follows that the presented total surface densities are given by 

 = 

τ300 

κ300 

= [4 . 8 × 10 4 M � pc −2 ] τ300 . (6) 

imilarly the temperature differential surface densities are given by 

� 

q 
= [4 . 8 × 10 4 M � pc −2 ] �τ300: q . (7) 

ince this involves a single, well-defined conversion factor, the
mages can easily be recalibrated if a dif ferent v alue of κ300 is deemed
ppropriate. 

None the less, even this is problematic, since κ300 is likely to vary
ith location in the Galaxy (and therefore along the line of sight),

n particular (i) due to spatial variations in interstellar metallicity,
nd (ii) due to variations in the mix of dust types in different
nvironments. Even if one neglects the likelihood that the mix of dust
ypes changes with metallicity, it is still to be expected that the amount
f dust increases, more-or-less monotonically, with metallicity. There
s at least a fourfold variation in metallicity between the central
egions of the Galaxy and the outer regions observed by Herschel
e.g. Wenger et al. 2019 ), and therefore presumably a comparable

or even greater (e.g. Galliano et al. 2021 ) – variation in the
bundance of dust. It is also to be expected that the properties of
ust will vary between different phases of the interstellar medium,
ue to coagulation and ice-mantle growth (e.g. Ormel et al. 2009 ,
011 ). In short, it is important to keep in mind that the fundamental
uantity deri v able from long-wavelength dust-continuum emission
as detected by Herschel or any other far-infrared telescope – is the
NRAS 523, 233–250 (2023) 
ust optical-depth (here τ300 ). Any other quantity derived therefrom
s dependent on uncertain conversion f actors, lik e the one we adopt
n equations ( 6 ) and 7 . 

Fig. 3 shows maps of temperature differential surface density
or the Galactic Centre tiles ( � 358 , � 000 , � 002), and for the dust-
emperature intervals for which there is significant emission ( T ≤
2 . 1 K, 12 . 1 K < T ≤ 14 . 3 K, etc.). 
In the � 002 tile there is little dust at T ≤ 14 . 3 K or T > 23 . 6 K.

onsequently the signal to noise in the corresponding maps (panels
a) and (f) in Fig. 3 ) is much lower than in the other temperature
ifferential maps, and so the corresponding estimates of surface
ensity are also extremely uncertain. This is the reason why there
s a discontinuity on these maps, between the � 002 tile and the
djacent � 000 tile. We note that in the 14 . 3 K < T ≤ 16 . 9 K,
6 . 9 K < T ≤ 20 . 0 K, and 20 . 0 K < T ≤ 23 . 6 K maps, where there
s higher signal-to-noise, there is no discernible discontinuity. Hence
here is also no discernible discontinuity on the map of total surface
ensity, Fig. 4 . 
The dust in the � 002 tile is also significantly cooler than that in

he other two tiles, by of order �T ∼ 3 K. If we adopt the canonical
elationship T ∝ U 

1 / [4 + βD ] , where U is the ambient radiant energy
ensity, and βD is the far-infrared/sub-millimetre emissivity index,
ith βD ∼ 2, this corresponds to the ambient radiation field being

oughly two times stronger in the � 000 and � 358 tiles than in the
 002 tile 

Fig. 4 shows the total surface density for the three Hi-GAL tiles
losest to the Galactic Centre ( � 002 , � 000 , � 358). These maps are
btained by summing the contributions from all the temperature
ntervals, 

 = 

q= Q ∑ 

q= 1 

{
�� 

q 

}
, (8) 

here Q is the total number of discrete temperatures, T 
q 

(i.e. by
dding all the maps in Fig. 3 ). 

In the sequel we first use the CNNs developed in Section 3 to
nalyse the maps of total surface density (e.g. Fig. 4 ), and in Section 7
e show that there appear to be two structural modes: one (the
ndulating mode) representing lines of sight with low surface density,
nd one (the monolithic mode) representing lines of sight with high
urface density. We then use the temperature differential information
e.g. Fig. 3 ) to show that there is no clear evidence for a distinction
etween these two structural modes on the basis of their distributions
f dust-vibrational temperature. 

 MAPS  O F  H A N D  S 

.1 Notation for estimates of H and S 

his section is necessarily rather laboured, but it makes an important
oint that is critical and should be kept in mind. Any procedure for
uantifying the structure of an image of the interstellar medium must
e explicit about the range of angular scales that is meaningfully
epresented. There cannot be any a priori expectation that the
esulting metrics (fractal dimension, multifractal spectrum, Hurst
arameter , scaling parameter , power spectrum, etc.) will be the same
f different ranges are considered, even if the procedure is notionally
erfect. 
This is illustrated by the maps of H and S generated and analysed

ere. These maps depend on two user-controlled parameters: (i) the
ngular size of the pixels, φmin ; and (ii) the size of the CNN used,
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Figure 3. Images of the temperature-differential surface density, �� 300: q , for the three Hi-GAL tiles towards the Galactic Centre ( � 002, � 000, � 358), and 
different ranges of dust temperature: (a) T ≤ 12 . 1 K (represented by T 1 = 8 . 00 K, T 2 = 9 . 45 K, and T 3 = 11 . 2 K, see Table C1 ); (b) 12 . 1 K < T ≤ 14 . 3 K 

(represented by T 4 = 13 . 2 K); (c) 14 . 3 K < T ≤ 16 . 9 K (represented by T 5 = 15 . 6 K); (d) 16 . 9 K < T ≤ 20 . 0 K (represented by T 6 = 18 . 4 K); (e) 20 . 0 K < 

T ≤ 23 . 6 K (represented by T 7 = 21 . 7 K); and (f) T > 23 . 6 K (represented by T 8 = 25 . 7 K, T 9 = 30 . 3 K, T 10 = 35 . 8 K, T 11 = 42 . 3 K, and T 12 = 50 . 0 K). 
Surface densities are derived from PPMAP estimates of the temperature-differential dust optical depth at 300 μm, using a standard conversion factor (see equation 
7 ). The tiles have been combined using the REPROJECT package (Robitaille, Deil & Ginsburg 2020a ). The co-ordinates, ( b , � ), are omitted in order to increase 
the size of each panel, but can be inferred from Fig. 4 , which shows exactly the same region. 

Figure 4. Images of the total surface density in the � 002, � 000, and � 358 Hi-GAL tiles. These tiles co v er an approximately 7 ◦ × 2 ◦ region in the direction 
of the Galactic Centre. Surface densities are derived from PPMAP estimates of the total dust optical depth at 300 μm, using a standard conversion factor (see 
equation 6 ). The three tiles have been combined using the REPROJECT package (Robitaille et al. 2020a ). 
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Table 3. The parameters regulating different estimates of H and S. The first 
and second columns give the symbols used for these estimates. The third 
column gives the dynamic range of angular scales that is registered, N , i.e. 
the number of pixels along one side of the grid. The fourth column gives the 
pixel size of the surface density image used, φmin . The fifth column gives the 
resolution of the resulting maps, φmax . 

H N×φmin 
S N×φmin 

N φmin φmax 

H 64 ×8 . 5 S 64 ×8 . 5 64 8.5 arcsec 544 arcsec 
H 32 ×17 S 32 ×17 32 17 arcsec 544 arcmin 
H 32 ×8 . 5 S 32 ×8 . 5 32 8.5 arcsec 272 arcsec 
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.e. the number of pixels, N , along one side of the patch on which
he CNN operates. 

The angular size, φmin , of the square pixels on the PPMAP image
etermines the angular size of the smallest structures that can be
esolved, which is ∼2 φmin . It is only ‘user-controlled’ in the sense
hat the user can chose to rebin the raw image, thereby degrading the
esolution but increasing the signal-to-noise. Here we use both raw
PMAP images (with 8.5 arcsec pixels, see Section 4 and Appendix C )
nd also rebinned PPMAP images (with 17 arcsec pixels). 

The size, N , of the square CNNs used determines the angular size
f the patches to be analysed, φmax = N φmin , and hence the size of
he largest structures that can be resolved, i.e. � φmax . 

In order to distinguish values of H or S produced with different
ombinations of φmin and N , we denote them H N×φmin 

and S N×φmin 
,

here in the subscripts to H and S it is implicit that φmin is measured
n arcseconds. F or e xample, H 32 ×8 . 5 is an estimate of H based on an
mage with 8.5 arcsec pixels, using CNN:32. It therefore registers
tructures with angular scale between 8.5 arcsec and 32 × 8.5
rcsec = 272 arcsec, and is different from (say) H 32 ×17 which
egisters structures with angular scale between 17 arcsec and 32 × 17
rcsec = 544 arcsec. Only under the idealized circumstance that (i)
he field being analysed is an exact xfBm field with dynamic range
xtending from �8.5 arcsec to �544 arcsec, and (ii) CNN:32 has
ero error ( εH :32 = 0), are the two estimates necessarily the same,
 32 ×8 . 5 = H 32 ×17 . 
In reality, observed fields are not exact xfBm fields. Consequently,

ven though observed fields are noisy, and as a result values of H
nd S estimated by the CNNs have errors (see Table 2 ), some of the
ifference between different estimates (for example, H N×φmin 

and
 N 

′ ×φ′ 
min 

, with N 
= N 

′ and/or φmin 
= φ′ 
min ) may be attributable to

eal physical factors. For example, if the power spectrum flattens
ith decreasing wavenumber, H 32 ×17 should (all other things being

qual) be smaller than H 32 ×8 . 5 . 

.2 Constructing maps of H and S 

o produce maps of H N×φmin 
and S N×φmin 

, we first specify the pixel
ize, φmin , and, if the raw surface density image has smaller pixels
han required, we rebin the image accordingly. 

Next we create a square N × N grid with N 

2 square pixels each
aving dimension φmin × φmin . This grid is placed on the surface
ensity image, thereby isolating a small φmax × φmax -patch, where 

max = N φmin , (9) 

nd CNN: N is then used to estimate a single value of H and a single
alue of S for this patch. 

The grid is then re-positioned and the process repeated. The grid
s al w ays positioned so that it only encloses whole pixels, and all
ossible positions of the grid are considered. For the relatively small
alues of N considered here ( N = 32 and 64), there are ∼2 × 10 6 

ifferent grid positions per tile when the raw PPMAP images are used
with φmin = 8.5 arcsec), and ∼5 × 10 5 different grid positions when
ebinned images with φmin = 17 arcsec are used. 

Once all possible positions of the grid have been treated, each pixel
s allocated values of H N×φmin 

and S N×φmin 
which are the means of

he values for all the grid positions that contain that pixel. Since the
rids have an angular extent of ∼φmax (see equation 9 ), and therefore
ull in information from pixels that far away, the resolution of the
esulting maps of H N×φmin 

and S N×φmin 
is ∼φmax . 

There is evidently a compromise to be made here. For a given map,
nd hence a given φmin , increasing N increases the range of scales
hat can be captured. If we are dealing with a perfect monofractal, an
NRAS 523, 233–250 (2023) 
ncreased range of scales is useful, since it allows a more accurate
 v aluation of the Hurst parameter. This is because the notion of
onofractality involves self-similarity (strictly self-affinity) across a

arge dynamic range, and so it is easier to measure when there is a
arge dynamic range. This is particularly true when the field analysed
s non-periodic, because under this circumstance the larger scales do
ot accurately reflect the underlying self-similarity. 
Ho we ver, as sho wn by Elia et al. ( 2014, 2018 ), the Hi-GAL tiles are

learly not monofractal, and the statistics of substructure are likely to
ary, both o v er an individual Hi-GAL tile (between lines of sight that
ntersect dense molecular gas, and lines of sight that intercept very
ittle) and between different Hi-GAL tiles. Increasing N increases

max (see equation 9 ), and thereby degrades the resolution, increasing
he likelihood that lines of sight with very different statistics are
nalysed together. There is therefore an advantage to using a
elativ ely small N , pro vided that the resulting estimates of H and S 

re sufficiently accurate. 
In Section 3 we have shown that CNN:64, and even CNN:32, return

cceptably accurate values of H and S (see Fig. 2 and Table 2 ). The
ompromise we adopt is therefore to use CNN:64 and CNN:32 in the
equel, in order to obtain better resolution than would be obtained
ith CNN:128. Specifically we consider the three combinations of
 and φmin whose properties are summarized in Table 3 . 

 T H E  TILES  TOWA R D S  T H E  G A L AC T I C  

E N T R E  

e illustrate these issues by analysing the three Hi-GAL tiles close
o the direction of the Galactic Centre ( � 358, � 000, and � 002). One
hould be mindful that in these tiles, as in all the other Hi-GAL
iles, the observed intensities, and hence also the estimated surface
ensities, reflect integrals along the line of sight. Consequently on
any lines of sight there may be confusion, due to contributions from

ifferent structures superposed along the line of sight. At the same
ime we note that, if the structures intercepted are truly monofractal,
s our analysis assumes, there is no problem with confusion, since
he statistical properties of a monofractal structure are independent of
esolution, and therefore independent of the distance to that structure.

The two panels on the top row of Fig. 5 show H 64 ×8 . 5 and S 64 ×8 . 5 ,
.e. estimates of H and S obtained with φmin = 8.5 arcsec (the raw
PMAP image) and CNN:64, for the three Galactic Centre tiles. The
aps capture the statistics of substructure between ∼8.5 arcsec and
φmax = 64 × 8.5 arcsec = 544 arcsec. The angular resolution of the
aps is ∼φmax , and for a region at distance D along the line of sight,

his angular resolution corresponds to a linear resolution of L ∼
3 . 2 pc [ D/ 5 kpc ]. In these tiles a significant fraction of the emission
s likely to come from structures at the Galactic Centre at distance
 ∼ 8 kpc , and hence for these structures the linear resolution is
 ∼ 21 pc . 
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Figure 5. Maps of H and S in the three tiles close to the direction of the Galactic Centre (tiles � 358, � 000, � 002). The left-hand panels show H, and the 
right-hand panels show S. The panels on the top ro w sho w H 64 ×8 . 5 and S 64 ×8 . 5 , i.e. values generated by applying CNN:64 directly to the high-resolution PPMAP 

images; these maps have an angular resolution of 544 arcsec and sample a dynamic range of angular scales, from ∼8.5 to ∼544 arcsec (i.e. × 64). The panels 
on the middle row show H 32 ×17 and S 32 ×17 , i.e. values generated by first rebinning the PPMAP image by a linear factor of two, and then applying CNN:32; these 
maps have an angular resolution of 544 arcsec (the same as those on the row abo v e), but a smaller dynamic range of angular scales, from ∼17 to ∼544 arcsec 
(i.e. × 32). The panels on the bottom ro w sho w H 32 ×8 . 5 and S 32 ×8 . 5 , i.e. v alues generated by applying CNN:32 directly to the high-resolution PPMAP image; 
these maps have an angular resolution of 272 arcsec (i.e. finer than that of the maps on the two rows above), and they register angular scales from ∼8.5 to 272 
arcsec (again a range of × 32, but registering smaller angular scales than those on the row abo v e, and disre garding larger angular scales). See the te xt for further 
details. The background contours represent surface density, as shown in Fig. 4 , and are labelled with the value of log 10 ( �/ [M � pc −2 ]), i.e. 1.2, 1.8, and 2.4. The 
tiles have been combined using the REPROJECT package (Robitaille et al. 2020a ). 
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We note that on the panels of Fig. 5 , there are sometimes linear
tructures marking the join between adjacent tiles, for example 
etween tiles � 000 and � 358 in Fig. 5 (a), at positive latitudes. These
eatures arise because the values of H and S for a given pixel are
btained by av eraging o v er a patch of pixels on the same tile, as
xplained in Section 5.2 . For two adjacent pixels on opposite sides
f the join between two tiles, this averaging pulls in values of H and
 from completely different patches (because they are on completely 
istinct tiles). Therefore such features are inevitable at joins where 
here is a gradient in the o v erall background on scales of order φmax .
n contrast, for adjacent pixels on the same tile, the associated patches
re offset by at most 

√ 

2 φmin . 
The two panels on the middle row of Fig. 5 show H 32 ×17 and S 32 ×17 ,

.e. estimates of H and S obtained with φmin = 17 arcsec (a rebinned
ersion of the PPMAP image) and CNN:32. The angular resolution 
f these maps is ∼φmax = 32 × 17 arcsec = 544 arcsec, the same
s the maps on the top ro w. Ho we ver, because the pixels are larger
 φmin = 17 arcsec rather than φmin = 8.5 arcsec), H 32 ×17 and S 32 ×17 
nly capture the statistics of substructures between ∼17 and ∼544 
rcsec. 

The two panels on the bottom row of Fig. 5 show H 32 ×8 . 5 and S 32 ×8 . 5 ,
.e. estimates of H and S obtained with φmin = 8.5 arcsec (the raw
PMAP image) and CNN:32. The angular resolution of these maps is
φmax = 32 × 8.5 arcsec = 272 arcsec � 4.5 arcmin. These maps

herefore have better resolution than the maps on the two rows abo v e,
ut they only capture the statistics of substructures between ∼8.5 and
272 arcsec. The corresponding linear resolution at distance D is 
 ∼ 6 . 6 pc [ D/ 5 kpc ], thus ∼ 10 . 6 pc for structures at the Galactic
entre. 
The solid contours on the panels of Fig. 5 represent lines

f constant surface density. They are labelled with the value of
og 

10 
( �/ [M � pc −2 ]), i.e. 1.2, 1.8, and 2.4. On lines of sight outside the

ontour labelled ‘1.2’ (equi v alently, lines of sight with surface density
 � 16 M � pc −2 , sub-millimetre optical depth, τ300 � 0 . 0003, and

isual extinction of A V � 0 . 7), PPMAP surface densities tend to
ecome less reliable, i.e. the uncertainties returned by PPMAP are 
MNRAS 523, 233–250 (2023) 
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ometimes comparable with the expectation v alues. Ho we ver, lines
f sight compromised in this way are only a very small fraction of
he total. 

PPMAP returns NaN (‘Not-a-Number’) for pixels that do not contain
nough signal to support a meaningful e v aluation of the surface
ensity. These pixels are mainly towards the edges of the tiles, but
here are a few in the interiors of the tiles. If the N × N −grid
 v erlaps a pix el with NaN, the CNN cannot operate. Consequently
hese pixels do not have estimates of H or S, and surrounding pixels
ave estimates of H and S that are more uncertain. An example of a
egion that is void for this reason can be seen near � = 0.75 ◦ on all
he panels of Fig. 5 . 

.1 Comparing maps of H and S with the same angular 
esolution but different dynamic range of angular scales 

f we treat H 32 ×17 and S 32 ×17 (middle row of Fig. 5 ) as our reference,
hen H 64 ×8 . 5 and S 64 ×8 . 5 (top row of Fig. 5 ) have the same resolution
 φmax = 544 arcsec) but capture a larger dynamic range of angular
cales ( φmax / φmin = 64, rather than 32, because they have smaller
min ). Specifically, substructures between ∼8.5 and ∼17 arcsec come

nto the reckoning when estimating H 64 ×8 . 5 and S 64 ×8 . 5 but are ignored
hen estimating H 32 ×17 and S 32 ×17 . 
Comparing the maps of H 64 ×8 . 5 (Fig. 5 a) and H 32 ×17 (Fig. 5 c),

here is both an o v erall morphological similarity and a systematic
hift, in the direction H 64 ×8 . 5 > H 32 ×17 . This implies a paucity of
mall-scale substructure between ∼8.5 and ∼17 arcsec (which at the
alactic Centre corresponds to linear scales between ∼ 0 . 3 pc and
0 . 6 pc ). Consequently the power spectrum steepens a little at large

avenumber, and this increases H slightly. 
The maps of S 64 ×8 . 5 (Fig. 5 b) and S 32 ×17 (Fig. 5 d) are mor-

hologically very similar, but S 64 ×8 . 5 is systematically larger than
 32 ×17 , implying that the small-scale substructures between ∼8.5
nd ∼17 arcsec have higher surface density than the more extended
ubstructures on the map, as would be expected if the small-scale
ubstructures tend to be nested within the larger ones. 

.2 Comparing maps of H and S with the same dynamic range
f angular scales but different angular resolution 

f we continue to treat H 32 ×17 and S 32 ×17 (middle row of Fig. 5 ) as our
eference, then H 32 ×8 . 5 and S 32 ×8 . 5 (bottom row of Fig. 5 ) capture the
ame dynamic range of angular scales ( φmax / φmin = 32) but with finer
esolution ( φmax = 272 arcsec, rather than 544 arcsec). Substructures
etween 8.5 and 17 arcsec come into the reckoning when estimating
 32 ×8 . 5 and S 32 ×8 . 5 but are ignored when estimating H 32 ×17 and S 32 ×17 .
onversely, substructures between 272 and 544 arcsec come into the

eckoning when estimating H 32 ×17 and S 32 ×17 but are ignored when
stimating H 32 ×8 . 5 and S 32 ×8 . 5 . 

Comparing the maps of H 32 ×8 . 5 (Fig. 5 e) and H 32 ×17 (Fig. 5 c), the
wo maps have comparable morphology, but H 32 ×8 . 5 (typically in the
nterval [0.8,1.0]) is systematically larger than H 32 ×17 (typically in
he interval [0.6,0.8]). Again this is attributable to a steepening of
he power spectrum at large wavenumber, and a flattening at small
avenumber. 
If we compare the maps of S 32 ×8 . 5 (Fig. 5 f) and S 32 ×17 (Fig. 5 d),

hey are quite similar, apart from the fact that S 32 ×8 . 5 has visibly
etter resolution ( ∼272 arcsec � 0.075 ◦, so 32 resolution elements
cross a tile) than S 32 ×17 ( ∼544 arcsec � 0.151 ◦, so 16 resolution
lements across a tile). In other words, if Fig. 5 (f) were re-gridded
o the resolution of Fig. 5 (d), the two maps would look very similar.
ince these maps reflect the scaling of surface density (i.e. �̄ ( L ),
NRAS 523, 233–250 (2023) 
he mean surface density on scales of order L ) – and by implication
he scaling of volume density (i.e. ρ̄( L ), the mean volume density
n scales of order L ; cf. Larson 1981 ) – this suggests that these
caling laws are self-similar across the full range of scales from 8.5 to
44 arcsec. 

 ANALYSI S  O F  T H E  W H O L E  G A L AC T I C  

LANE  

.1 The distributions of H and S for all Hi-GAL tiles 

he top row of Fig. 6 shows the distributions of (a) H 32 ×8 . 5 , (b) H 32 ×17 ,
nd (c) H 64 ×8 . 5 for all the non-NAN pixels on all the Hi-GAL tiles.
he middle row of Fig. 6 shows the corresponding distributions of

d) S 32 ×8 . 5 , (e) S 32 ×17 , and (f) S 64 ×8 . 5 . The bottom row of Fig. 6 shows
lots of (h) H 32 ×8 . 5 against S 32 ×8 . 5 , (i) H 32 ×17 against S 32 ×17 , and (j)
 64 ×8 . 5 against S 64 ×8 . 5 . 
These distributions reproduce the trends found for the tiles towards

he Galactic Centre, in Section 6 . Specifically, (i) the power spectrum
s curved, i.e. flatter at small wavenumbers, and steeper at large
avenumbers; (ii) the larger the range of scales represented (i.e. the

arger N = φmax /φmin ), the larger the value of S. We must also be
indful that the different pixels represented in Fig. 6 correspond to a

ariety of lines of sight, with a relatively small fraction intercepting
ense and highly structured star-forming molecular clouds, and a
arger fraction intercepting more quiescent regions at higher Galactic
atitudes. 

Consider first the distributions of H 32 ×8 . 5 (Fig. 6 a) and S 32 ×8 . 5 (Fig.
 d). Scales between 8.5 and 272 arcsec are represented, whilst scales
etween 272 and 544 arcsec are not, so the power spectrum is biased
owards larger wavenumbers, and is relatively steep, i.e. large H ∼ 1.
he dynamic range is relatively small (272 arcsec/8.5 arcsec = 32),
o S is also relatively small ( S ∼ 0 . 9). 

Next consider the distributions of H 32 ×17 (Fig. 6 b) and S 32 ×17 (Fig.
 e). Scales between 17 and 544 arcsec are represented, whilst scales
etween 8.5 and 17 arcsec are not, so the power spectrum is biased
ow ards smaller w avenumbers, and is somewhat flatter, i.e. smaller

. The dynamic range is again relatively small (544 arcsec/17
rcsec = 32), so S is again relatively small ( S ∼ 0 . 9). There are
ndications of bimodality in the distributions, and Fig. 6 (h) suggests
ne concentration of pixels with ( H 32 ×17 , S 32 ×17 ) = (0 . 9 , 1 . 0), and a
econd with ( H 32 ×17 , S 32 ×17 ) = (0 . 2 , 0 . 5). 

Finally consider the distributions of H 64 ×8 . 5 (Fig. 6 c) and S 64 ×8 . 5 

Fig. 6 f). Scales between 8.5 and 544 arcsec are represented, so the
ower spectrum reflects both smaller and larger wavenumbers and
he dynamic range is larger (544 arcsec/8.5 arcsec = 64). There are
gain indications of bimodality, and in general H 64 ×8 . 5 increases with
ncreasing S 64 ×8 . 5 , as shown on Fig. 6 (i). 

The bimodality reflects two distinct types of line of sight. One
ype is characterized by a mode which we label the ‘monolithic

ode’, with relatively large angular scales dominant (large H � 0 . 8)
nd quite high scaling parameter (large S � 1). The second type is
haracterized by a mode which we label the ‘undulating mode’,
ith a broader range of angular scales (intermediate H � 0 . 8) and

ower scaling parameter ( S � 1). With CNN:32 operating on the
n-rebinned PPMAP images ( φmin = 8 . 5 arcsec φmax = 272 arcsec ;
anels 6a, 6d, and 6g), the distinction between the two types of line
f sight is weak; the small dynamic range ( N = 32) makes it hard to
apture the broad range of angular scales of the undulating mode, and
he small φmax makes it hard to capture the large angular scales of the

onolithic mode. With CNN:32 operating on the rebinned PPMAP im-
ges ( φmin = 17 arcsec , φmax = 544 arcsec ; panels 6b, 6e and 6h), the
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Figure 6. Top row, left to right: the distributions of (a) H 64 ×8 . 5 , (b) H 32 ×17 , and (c) H 32 ×8 . 5 . Middle row, left to right: the distributions of (d) S 64 ×8 . 5 , (e) S 32 ×17 , 

and (f) S 32 ×8 . 5 . Bottom row, left to right: the 2D distributions of (g) H 64 ×8 . 5 against S 64 ×8 . 5 , (h) H 32 ×17 against S 32 ×17 , and (i) H 32 ×8 . 5 against S 32 ×8 . 5 . On each 
panel there is a value or point for each of the ∼2 × 10 8 pixels on the Hi-GAL maps. On panels (a) through (c), the bin size is � H = 6 . 70 × 10 −3 , and on panels 
(d) through (f) the bin size is � S = 1 . 80 × 10 −2 . On panels (a) through (f) the ordinate values have been divided by 10 7 , and give the number of pixels in that 
bin. The contours on panels (g), (h), and (i) represent 10 7 , 10 8 , and 7 × 10 8 points per bin, respectively. 
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imodality starts to emerge, because the monolithic modes are better 
aptured by the larger φmax . Finally, with CNN:64 operating on the 
n-rebinned PPMAP images ( φmin = 8 . 5 arcsec , φmax = 544 arcsec ;
anels 6c, 6f, and 6i), the bimodality becomes even clearer, because 
he undulating modes are now better captured by the larger dynamic 
ange ( φmax / φmin = 64). 
.2 H and S as a function of surface density, � 

he panels on the top row of Fig. 7 show the distributions of
 32 ×8 . 5 , H 32 ×17 , and H 64 ×8 . 5 against surface density, �. The panels

n the bottom row show the corresponding distributions of S 32 ×8 . 5 ,
 32 ×17 , and S 64 ×8 . 5 against �. In general H and S both increase with
MNRAS 523, 233–250 (2023) 
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M

Figure 7. Top row, left to right: the distributions of (a) H 64 ×8 . 5 , (b) H 32 ×17 , and (c) H 32 ×8 . 5 , against log 10 ( �/ [M � pc −2 ]), where � is the surface density, 
computed as described in Section 4 . Bottom row, left to right: the distributions of (d) S 64 ×8 . 5 , (e) S 32 ×17 , and (f) S 32 ×8 . 5 , against log 10 ( �/ [M � pc −2 ]). On each of 
these plots, there is a point for each of the ∼2 × 10 8 pixels on the Hi-GAL maps. The contour levels are the same as for Fig. 6 (i.e. 10 7 , 10 8 , and 7 × 10 8 bin −1 ). 
The bin sizes are: � H = 6 . 70 × 10 −3 , � S = 1 . 80 × 10 −2 , and � log 

10 
( �) = 1 . 44 × 10 −2 . 
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ncreasing surface density, especially for the maps that best capture
he bimodality (i.e. 64 × 8.5 best, 32 × 8.5 worst). In other words,
he substructure around pixels with large surface density tends to
ave a steeper power spectrum (power more concentrated towards
arge angular scales) and a larger range of surface density. Thus
he monolithic mode tends to correlate with high surface density,
 � 32 M � pc −2 , and the undulating mode tends to correlate with

ow surface density, � � 32 M � pc −2 . 
This in turn suggests that the monolithic mode describes molecular

louds where self-gravity is important (and therefore there may be
mminent or on-going star formation) and a power-law distribution
f surface density at high values (e.g. Kainulainen et al. 2009 ;
chneider et al. 2012 ; Girichidis et al. 2014 ; Schneider et al. 2015 ,
022 ). In contrast, the undulating mode describes regions where
urbulence maintains an approximately log-normal distribution of
urface density, with a flatter power spectrum (smaller H) and a
arrower range (smaller S). 

.3 H and S as a function of Galactic longitude, � 

he panels on the top row of Fig. 8 show the distributions of H 32 ×8 . 5 ,
 32 ×17 , and H 64 ×8 . 5 against Galactic longitude, � . The panels on

he middle row show the distributions of S 32 ×8 . 5 , S 32 ×17 , and S 64 ×8 . 5 

gainst � . The panel on the bottom row shows the distribution of total
urface density against � . Each black dot gives the mean value of H
upper plots), S (middle plots), or log 

10 
( �/ [M � pc −2 ]) (bottom plot)

or the individual tile at that longitude. The vertical colour-coded
ine through a black dot gives the distribution of the corresponding
NRAS 523, 233–250 (2023) 
uantity for the individual pixels in that individual tile. There are
63 tiles, hence 163 black dots on each plot. Each tile contains o v er
0 6 pixels, and therefore the colour-coded vertical distributions for
ndividual tiles are well defined. 

Since the larger values of H and S are associated with the mono-
ithic mode, and hence dense molecular clouds, the distributions of

, and to a lesser extent the distributions of S, involve significantly
o wer v alues in directions to wards the outer Galaxy (90 ◦ � � � 270 ◦).
s with all systematic trends, these signatures are weakest for the
alues obtained with ( N , φmin ) = (32 , 8 . 5), and strongest for those
btained with ( N , φmin ) = (64 , 8 . 5). As explained in Section 7.1 ,
his is because ( N , φmin ) = (64 , 8 . 5) is most able to capture the
onolithic mode, and ( N , φmin ) = (32 , 8 . 5) least able. 
The red dashed lines in Fig. 8 (g) mark the approximate longitudes

f the tangent lines to spiral arms, according to Hou & Han ( 2014 ,
015 ) (see the Caption to Fig. 8 for the identities of these lines).
here are weak features at all these positions, but there are many
ther equally strong features. In general, these surface density peaks
epresent the accumulation of many contributing molecular clouds
long the line of sight. An individual cloud at distance D , with cross-
ectional area A on the sky, and therefore linear extent L � A 

1/2 , only
ccupies a fraction 

 � 0 . 002 

[
L 

10 pc 

]2 [
D 

5 kpc 

]−2 

f the tile in which it is located. Therefore individual clouds are
nlikely to be clearly identifiable on this plot. 
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Figure 8. Top row, left to right: the distributions of (a) H 64 ×8 . 5 , (b) H 32 ×17 , and (c) H 32 ×8 . 5 , in each tile, against the longitude, � (in degrees). Middle row, left 
to right: the distributions of (d) S 64 ×8 . 5 , (e) S 32 ×17 , and (f) S 32 ×8 . 5 , in each tile, against � . Bottom row, panel (g), the distribution of total surface density in each 
tile, against � . On each panel, the black dots represent the mean value in the individual tile at that longitude, and the colour-coded vertical lines through a black 
dot represents the distribution of surface densities for the individual pixels in that tile; there are ∼10 6 pixels in each tile. The red dashed lines represent the 
approximate longitudes of the tangent lines to spiral arms, according to Hou & Han ( 2014 , 2015 ): � ∼ 32 ◦, Scutum Arm; � ∼ 51 ◦, Sagittarius Arm; � ∼ 282 ◦, 
Carina Arm; � ∼ 308 ◦, Centaurus Arm; � ∼ 327 ◦, Norma Arm. 
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.4 Temperatur e differ ential surface densities 

n the first instance, PPMAP delivers maps of temperature-differential 
urface density; these are then co-added to produce maps of total 
urface density. It is this fundamental aspect of the PPMAP procedure 
hat underpins the high resolution of the surface density maps 
nalysed in Sections 6 and 7 , and allows us to compute a meaningful
edian dust-vibrational temperature (see below). The individual 

emperature-differential maps (Fig. 3 ) cannot usefully be analysed 
ith the CNNs developed here, because it is unclear how the resulting
urst parameters should be interpreted. Under most circumstances 
MNRAS 523, 233–250 (2023) 
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M

Figure 9. Distributions of surface density, �/ [M � pc −2 ], for dust at all temperatures (black curves), then just for the dust below a given separatrix-temperature, 
T S (red curves), and just for the dust abo v e T S (blue curv es). From left to right, the fiv e columns hav e separatrix-temperatures T S = 12 . 1 K, 14 . 3 K, 16 . 9 K, 
20 . 0 K, and 23 . 6 K. On the top row the plots show the results for all ∼2 × 10 8 pixels. On the middle row the plots show the results when we restrict consideration 
to the ∼5 × 10 7 pixels with � > 23 M � pc −2 ; this threshold is equi v alent to A V ∼ 1. On the bottom row the plots show the results when we restrict consideration 
to the ∼3 × 10 5 pixels with � > 180 M � pc −2 ; this threshold is equi v alent to A V ∼ 8, and corresponds to the approximate threshold abo v e which low-mass 
star formation in Ophiuchus, Aquila/Serpens, and Taurus appears to be concentrated (cf. Johnstone, Di Francesco & Kirk 2004 ; K ̈on yv es et al. 2015 ; Marsh 
et al. 2016 ; Ladjelate et al. 2020 ; Howard et al. 2021 ). Both axes are scaled logarithmically. 
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t must be presumed that the different dust-vibrational temperatures
epresent dust in different layers of a structure (cloud, filament, or
hell) that is either predominantly heated by externally incident
adiation, resulting in a positive radial temperature gradient; or
redominantly heated by internally generated radiation (e.g. from
tars), resulting in a ne gativ e radial temperature gradient. 

We can ho we v er e xplore whether the two structural modes (mono-
ithic and undulating) that we have identified in Section 7.1 are asso-
iated with different temperature re gimes, giv en that the monolithic
ode appears to be correlated with higher surface densities than the

ndulating mode. The top row of Fig. 9 shows the distribution of
urface density in different dust-vibrational temperature intervals. In
ach panel the interval is defined by specifying a separatrix tempera-
ure, T S . The black histogram gives the distribution of surface density
or all dust. The red histogram then gives the distribution of surface
ensity only for dust with vibrational temperature T < T S , whilst
he blue histogram gives the distribution only for dust with T > T S .
eading from left to right, there are five values of T S = 12 . 1 K,
4 . 3 K, 16 . 9 K, 20 . 0 K, and 23 . 6 K. 
The middle row of Fig. 9 shows the corresponding distributions,

hen we limit consideration to pixels with surface density abo v e
3 M � pc −2 . In the solar vicinity, this corresponds to visual extinction
 V � 1 mag . 
The bottom row of Fig. 9 shows the corresponding distributions,

hen we limit consideration to pixels with surface density abo v e
80 M � pc −2 . In the solar vicinity, this corresponds to visual ex-
inction A V � 8 mag , and hence to the surface density abo v e which
ow-mass star formation in Ophiuchus, Aquila/Serpens, and Taurus
s concentrated (e.g. Johnstone et al. 2004 ; K ̈on yv es et al. 2015 ;

arsh et al. 2016 ; Ladjelate et al. 2020 ; Howard et al. 2021 ). 
NRAS 523, 233–250 (2023) 
Several features of Fig. 9 are noteworthy. First, the distribution of
urface density for all dust is, de facto, independent of T S , and hence
he black distribution is the same for each plot on the same row of
ig. 9 . On the middle and bottom plots, the vertical black line marks

he surface density cut-off (23 M � pc −2 or 180 M � pc −2 ). 
Secondly, if we focus on a single pixel, both the the surface

ensity corresponding to dust below the separatrix temperature,
nd the surface density corresponding to dust abo v e the separatrix
emperature, are necessarily smaller than the surface density of all
ust. Consequently (i) they do not normally contribute to the same
istogram-bin as the surface density of all dust (but rather to a lower
in), and (ii) one or both may actually contribute to a bin below
he cut-off. This means that the blue and red distributions can, and
nevitably do, at some surface densities lie above the black histogram,
specially, but not e xclusiv ely, at low surface densities. 

Thirdly, the median dust temperature is ∼ 20 K, and this result
s more-or-less independent of whether we apply a surface density
ut. In other words, irrespective of whether we consider all lines of
ight or only lines of sight with surface density abo v e the thresholds
23 M � pc −2 or 180 M � pc −2 ), half the dust is hotter than ∼ 20 K and
alf is colder. At first sight, this result seems rather surprising, given
hat in simple radiation transport models of externally heated clouds,
mploying symmetric geometries, the coldest dust is located on lines
f sight with large surface densities – and therefore predominantly
he monolithic mode. 

Ho we ver, we should be mindful of the fact that in nature lines of
ight that intercept dense molecular gas (i) usually also intercept
arge columns of more diffuse atomic gas, in which the dust is
ot significantly shielded from the ambient radiation field and is
herefore relatively warm; and (ii) often take in dust that is heated by
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earby star-formation activity, for example dust in photo-dissociation 
egions (PDRs). 

F ourthly, e xcept where the surface densities are very low, both the
ooler dust and the warmer dust approximate rather well to power- 
aw probability distributions at large surface densities, 

d P 

d � 

∝ 

1 

� 

3 
. (10) 

his corresponds to a slope of −2 on a plot of
og 10 

{
d P / d log 10 ( �/ [ M � pc −2 ]) 

}
against log 10 ( �/ [ M � pc −2 ]) 

cf. Girichidis et al. 2014 ; Schneider et al. 2015 ). The low surface
ensities, which appear to subscribe to a log-normal distribution, 
re only visible in the plots on the top row. Once a surface density
hreshold is introduced, they are not adequately sampled. 

 SU M M A RY  

e have developed and implemented a family of CNNs that can be
sed to analyse xfBm substructure in a pixelated map, in terms
f the Hurst parameter, H, and a scaling parameter, S. For 2D
mages, the Hurst parameter, H, is related to the power-la w e xponent,
� 2(1 + H), the perimeter-area fractal dimension, D 2:PA � 2 − H,

nd the box-counting fractal dimension D 2:BC � 3 − H. The scaling 
arameter, S, measures the range of intensities on the map. The 
NNs are very efficient, in terms of the computational resource 

equired to apply them. In addition, they e v aluate H more accurately
nd faster than � -variance, and can operate on smaller fields than
 -v ariance (fe wer pixels). The CNNs also return estimates of S,
hich � -variance does not. 
The CNNs developed here can operate on patches of N × N =

28 × 128, 64 × 64, or 32 × 32 pixels. If the pixels are square,
ith angular size φmin × φmin , the patch captures structures with size 
etween ∼φmin and ∼ φmax = N φmin ; thus N regulates the dynamic 
ange of the substructures that can be captured by the CNN, and the
ccuracy with which the parameters H and S are estimated; larger N 

iv es greater accurac y. We stress that when estimating the statistics
f substructure on maps that are not robust xfBm fields, it is essential
o be mindful of the range of structures that can be captured, i.e. the
ange [ φmin , φmax ], and that statistics estimated using different ranges 
ay be different for robust physical reasons. 
Smaller N allows the user to isolate a smaller patch on the map

eing analysed, and hence to estimate more distinctly localized 
alues of H and S. This has considerable advantages when the 
ap being analysed contains regions characterized by very different 

ubstructure, and this is certainly the case for maps of the surface
ensity of the interstellar medium, such as the Hi-GAL maps derived 
rom thermal dust emission that are considered here. We implement 
 procedure for obtaining values of H and S for an individual pixel
y considering, and averaging over, all possible positions of the CNN 

atch which o v erlap that pixel. 
To explore the trade-off between a larger dynamic range (larger 
 ) and finer resolution (smaller φmax = N φmin ), we first apply the

2 × 32 CNN to the raw PPMAP maps, which have 8.5 arcsec pixels
these results are labelled ‘32 × 8.5’); then we apply the 32 × 32
NN to rebinned PPMAP maps, which have 17 arcsec pixels (these 

esults are labelled ‘32 × 17’); and finally we apply the 64 × 64
NN to the raw PPMAP maps (these results are labelled ‘64 × 8.5’). 
Regions of higher surface density ( � 32 M � pc −2 ) are concen- 

rated towards the inner Galaxy, and tend to have larger H ( � 0 . 8)
implying a steep po wer spectrum, with po wer concentrated on large
ngular scales) and larger S ( � 1) (a broad range of surface densi-
ies); we term this the monolithic mode. Regions of lower surface 
ensity are more ubiquitous, and tend to have lower H ( � 0 . 8) (a
hallo wer po wer spectrum, with po wer on a broader range of angular
cales) and lower S ( � 1) (a smaller range of surface density); we
erm this the undulating mode. These structural differences between 
ifferent regions are most apparent when the analysis is performed 
ith 64 × 8.5, and least apparent when the analysis is performed
ith 32 × 8.5. 
We also analyse the distribution of surface density as a function

f dust temperature, distinguishing the surface density associated 
ith dust at temperatures less than, and more than, a user-defined

eparatrix temperature T S . This is done for T S = 12 . 1 K, 14 . 3 K,
6 . 9 K, 20 . 0 K, and 23 . 6 K. The median dust temperature is ∼ 20 K.
or all T S , both the cooler dust ( < T S ), and the warmer dust ( >
 S ), approximate well to a power-law surface density distribution, 
 P /d � ∝ � 

−3 (corresponding to a slope of −2 on a log–log plot) at
arge surface density. The distribution of dust-vibrational temperature 
ppears to be very similar for the two different structural modes
monolithic and undulating). 
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igure A1. Plots of the fractal dimension of the order of + 20 ( D + 20 ) against t
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ight-hand plot with fields having [10 3 × 10 3 ] pixels. 

 o
PPENDI X  A :  M U LT I F R AC TA L  ANALYSIS  

s an illustration of the difficulty of interpreting multifractal spectra,
e have revisited the plot of D + 20 (fractal dimension of order + 20)

gainst D −10 (fractal dimension of order −10), which was explored
y Elia et al. ( 2018 ) (their fig. 19), as one way of encapsulating the
roducts of multifractal analysis. The order, θ , of the generalized
ractal dimension, D 

θ
, can take any real value between θ = −∞

nd θ = +∞ . With large positive θ , D 

θ
reflects the scaling of

he higher density (i.e. more contrasted) structures within the map.
onv ersely, with large ne gativ e θ , D 

θ
reflects the scaling of lower

ensity structures. For details of how D 

θ
is computed, the reader is

eferred to Elia et al. ( 2018 ), where they show that a pure fBm
eld with a specific power-la w e xponent β = 2.4 (equi v alently
 = 0 . 2), and a specific random seed, here labelled ‘C’ (hence a

iv en o v erall structure, like the images in our Fig. 1 ) corresponds to
 specific ( D −10 , D + 20 ) = (2 . 25 , 1 . 96). Ho we ver, this would seem
o be of limited use, since a viable statistical parameter must
e independent of the random seed used to generate a particular
ealisation. 

Their fig. 19 is much more interesting because it shows the
istribution of ( D −10 , D + 20 ) for a large sample of trial fields with
 range of different characteristics, and is able to distinguish some
eatures quite clearly. (i) The HiGAL fields have 2 . 0 � D −10 � 2 . 3,
nd 0 . 7 � D + 20 � 1 . 8, suggesting that the higher density structures
ave a broader range of scalings than the lower density ones. (ii) In
ontrast, their fBm fields have 2 . 0 � D −10 � 2 . 9 and D + 20 ∼ 1 . 95
uggesting a broad range of scalings for the lower density structures,
nd an almost universal, marginally fractal scaling for the higher
ensity ones, as should be expected. (c) Finally the fields from
umerical simulations do not subscribe to either of these patterns.
 + 20 and D −10 tend to be anticorrelated, i.e. strong scaling of higher

ensity structures tends to combine with weak scaling of lower
ensity structures, and vice versa. It is therefore interesting to explore
here xfBm fields lie on this plot. 
Fig. A1 shows the results obtained for xfBm fields generated

sing the procedure described in Section 2 , but with [ N × N ] =
10 2 × 10 2 ] and [10 3 × 10 3 ]. The fields analysed have been generated
ith three discrete values of S, which are represented with different
arkers in Fig. A1 : S = 0 . 1, represented with filled circular dots;
 = 1, represented with stars; and S = 3, represented with crosses.
or each value of S, we generate 1000 realizations with random
he fractal dimension of the order of −10 ( D −10 ). Fields with S = 0 . 1 are 
d fields with S = 3 are represented with crosses. The colours of the symbols 
lot is obtained with fields having [ N × N ] = [10 2 × 10 2 ] pixels, and the 
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Table C1. The discrete dust temperatures used in the Marsh et al. ( 2017 ) PPMAP analysis. The first row gives q , the dust temperature ID. The second row 

gives the discrete dust temperature, T q . The third and fourth rows giv e, respectiv ely, the lower limit, 0 . 920 T q , and the upper limit, 1 . 087 T q , for the range of 
temperatures represented by T q . The lowest discrete temperature, T 1 = 8 . 00 K, must actually represent dust below its listed lower limit, ‘7 . 36 K’, and dust at 
these very low temperatures is therefore poorly represented; ho we ver, the results suggest that the amount of dust at these very low temperatures is extremely 
small. Similarly, the highest discrete temperature, T 12 = 50 . 0 K, must actually represent dust abo v e its listed upper limit ‘54 . 3 K’, and dust at these very high 
temperatures is therefore poorly represented; ho we ver, the results suggest that the amount of dust at these very high temperatures is again extremely small. 

q 1 2 3 4 5 6 7 8 9 10 11 12 
T q / K 8.00 9.45 11.2 13.2 15.6 18.4 21.7 25.7 30.3 35.8 42.3 50.0 

> 0 . 920 T q / K ’ > 7.36’ > 8.69 > 10.3 > 12.1 > 14.3 > 16.9 > 20.0 > 23.6 > 27.9 > 33.0 > 38.9 > 46.0 
≤ 1 . 087 T q / K ≤8.69 ≤10.3 ≤12.1 ≤14.3 ≤16.9 ≤20.0 ≤23.6 ≤27.9 ≤33.0 ≤38.9 ≤46.0 ‘ ≤54.3’ 
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alues of H distributed uniformly on the interval [0,1], and the 
arkers are colour-coded according to the value of H, using the 

olour-bar on the right-hand side of the figure. There is a clear trend
n the ( D −10 , D + 20 ) plane, and unsurprisingly it is somewhat better
efined with the [10 3 × 10 3 ] fields (right-hand plot) than with the
10 2 × 10 2 ] fields (left-hand plot). Ho we ver, gi ven the scatter, the
rend with increasing S, from low D −10 and high D + 20 to high D −10 

nd low D + 20 , is almost parallel to the trend with decreasing H.
onsequently this plot has limited use as a diagnostic of xfBm fields .
n xfBm image with given ( D −10 , D + 20 ) could have a range of H

nd S values, satisfying the approximate relation 

 [ 1 . 2 − H ] ∼1 . 5 {[ D −10 −2] 2 + [ D + 20 −2] 2 
}
, 0 ≤ H ≤ 1 . (A1) 

n contrast, the CNN-based procedure developed here raises this 
e generac y. 

PPEN D IX  B:  T H E  FIDELITY  O F  T H E  H U R S T  

AR A M ETER  F O R  NON-FBM  FIELDS  

n Bates et al. ( 2020 ) and this paper, we have applied � -variance and
NNs to determine the Hurst parameters of fields that are not true

ractional Brownian motion (fBm) fields – albeit that they are derived 
rom true fBm fields (by exponentiation plus additional procedures to 
ender them non-periodic and noisy; see Section 2 ). Therefore they 
l w ays have a well defined underlying Hurst parameter. Similarly 
tutzki et al. ( 1998 ) successfully apply � -variance to fields that
ave been obtained by squaring fBm fields. The question then arises
s to why these techniques ( � -variance and CNNs) are still able
o produce reasonably accurate estimates of the underlying Hurst 
arameter. 
We suggest here that this is because both techniques ultimately, 

f indirectly, measure the contour structure of the fields to which 
hey are applied – as indeed do the area-perimeter and box-counting 
rocedures for estimating fractal dimension. Neither exponentiation, 
or squaring, alters the structure of the contours, and therefore the 
urst parameter is not changed very much, if at all. In the case
f exponentiated (xfBm) fields, the height of the contours is of
ourse changed by exponentiation, but this is reflected in the scaling 
arameter, S. 
Indeed, we suggest that statistical characterization of a 2D field 

ecessarily requires two parameters, one reflecting the contour 
tructure (here H) and one reflecting the relative heights of the 
ontours (here S). Thus, in principle, a map of the Netherlands 
ight have the same H as a map of Switzerland, but a very different
. (In reality the H values for the two countries are probably very
ifferent because the geographical processes shaping their surfaces 
ave been very different.) 
PPENDI X  C :  T H E  PPMAP ANALYSI S  

RO C E D U R E  

he PPMAP analysis procedure used by Marsh et al. ( 2017 ) to analyse
he Hi-GAL tiles assumes that the radiation detected in the Herschel
ands is primarily thermal emission from dust; that the mass opacity
oefficient of the emitting dust can be approximated by 

λ
= κ300 [ λ/ 300 μm ] −2 (C1) 

Sada v oy et al. 2012 ); and that the emission is optically thin. The
ntensity on a given line of sight is then given by 

 

λ
� 

T =∞ ∫ 

T = 0 

B 

λ
( T ) 

d τ
λ

d T 
d T . (C2) 

n equation ( C2 ), B 

λ
( T ) is the Planck Function; T is the dust-

ibrational temperature; 

λ
( T ) = κ

λ

s=∞ ∫ 

s= 0 

ρ( T , s ) d s (C3) 

s the optical-depth along the line of sight due to dust at vibrational
emperatures less than T ; and ρ( T , s ) is the density of dust with
ibrational temperature less than T at distance s along the line of
ight. Equation ( C3 ) assumes that κ300 , and hence κ

λ
, do not vary

long the line of sight; otherwise κ
λ

cannot be taken outside the
ntegral. 

The standard procedure for analysing multiwavelength images 
f dust emission ( Modified Blackbody Fitting ) assumes that all the
ust along a given line of sight can be accurately represented by
 single mean vibrational temperature, T̄ . Equations ( C2 ) and ( C3 )
hen reduce to 

 

λ
� B 

λ

(
T̄ 

)
τ300 [ λ/ 300 μm ] −2 , (C4) 

here τ300 is the optical-depth at 300 μm, due to all the dust along
he line of sight. To estimate T̄ and τ300 , the observational data from
he different bands is first rebinned to the coarsest resolution (for
erschel this is 36 arcsec at 500 μm) and then the spectral energy
istribution is fit with equation ( C4 ). This procedure tends to o v er-
stimate τ300 , because the o v erestimated contribution from warmer 
han average dust out-weighs the underestimated contribution from 

ooler than average dust (e.g. Marsh et al. 2015 ; J ́aquez-Dom ́ınguez
t al. 2023 ; Juvela 2023 ). It also ignores a lot of high-resolution
nformation from the shorter wavelength Herschel bands. 
MNRAS 523, 233–250 (2023) 
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The PPMAP analysis procedure is predicated on the assumption
hat on most lines of sight there is a significant range of dust
emperatures, and that this range can be represented by Q discrete
ust temperatures, between T MIN and T MAX , viz. 

 1 = T MIN ; (C5) 

 

q 
= F 

2 T 
q−1 , 2 ≤ q ≤ Q ; (C6) 

here 

 = 

[
T MAX /T MIN 

]1 / 2[ Q −1] 
; (C7) 

nd hence T 
Q 

= T MAX . Each discrete dust temperature T 
q 

therefore
epresents a finite range of dust temperature, T 

q 
/F < T ≤ F T 

q 
. 

The integral in equation ( C2 ) is then approximated by a sum o v er
he discrete dust temperatures, 

 

λ
� 

q= Q ∑ 

q= 0 

{
B 

λ

(
T 

q 

)
�τ300: q 

}
[ λ/ 300 μm ] −2 . (C8) 

n equation ( C8 ), �τ300: q is the contribution to the optical depth at
00 μm, from the dust at temperature T 

q 
, or – strictly speaking – the

ust in the temperature-range T 
q 
/F < T ≤ F T 

q 
, i.e. 

τ300: q = 

T = FT q ∫ 

T = T q /F 

d τ300 

d T 
d T . (C9) 

arsh et al. ( 2017 ) adopt Q = 12, T MIN = 8 . 00 K, and T MAX = 50 . 0 K.
ence F = [50/8] 1/22 = 1.087. The resulting discrete dust temper-

tures, T 
q 
, and the finite ranges that they represent are given in

able C1 . 
The PPMAP procedure starts by giving the optical-depth contribu-

ions, �τ300: q , uncorrelated random values from a Gaussian distribu-
ion, and computing the resulting synthetic integrated intensities in
he observed Herschel bands, Hb, 

 Hb = 

λ=∞ ∫ 

λ= 0 

I 
λ
F Hb ( λ) d λ. (C10) 

here F Hb ( λ) is the spectral response function in the Hb band.
hese synthetic intensities are then compared with the true observed

ntensities, but with the uncertainties artificially inflated, so that,
espite the mismatch between the synthetic intensities and the true
NRAS 523, 233–250 (2023) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
ntensities being large, the fit is tolerable – in the sense that the
djustments to the �τ300: q values that are required to impro v e the fit
re in the linear regime. This process is then repeated recursively with
he uncertainties slowly but steadily reduced until they correspond
o the true noise. PPMAP thereby returns expectation values and
ncertainties for the optical-depth contributions, �τ300: q . 
By using the data at its native resolution, PPMAP delivers images

ith the finest resolution; for Herschel this is φmin = 8.5 arcsec
t 70 μm. 2 Thus each [2.4 ◦ × 2.4 ◦] tile furnishes 24 images, each
omprising [1440 × 1440] pixels, and representing the expectation
alues for �τ300: q , and the corresponding uncertainties, σ300: q , for
he 12 different temperatures, T 

q 
. 3 The effect of interpolating the

ong-wavelength emission to pixels that are smaller than the long-
avelength resolution is reflected in the uncertainties. By invoking a

ange of temperatures, the contributions from warmer than average
ust and cooler than average dust are estimated more accurately. The
stimated total optical-depth at the reference wavelength is 

300 = 

q= Q ∑ 

q= 1 

{
�τ300: q 

}
. (C11) 

 The PACS beam at 70 μm is distorted by the parallel PACS/SPIRE fast-scan
ode, and has dimensions ∼6 arcsec × 12 arcsec. Since the Hi-GAL maps

ombine Herschel observations from two orthogonal scan directions Marsh
t al. ( 2017 ) adopt a circular beam with FWHM equal to the geometric mean
f these dimensions (although strictly speaking the combined beam is not
xactly circular). 
 It is tempting to assume that the dust at different temperatures is concentrated
t different locations along the line of sight, and sometimes this may be a
easonable approximation. Ho we ver, it should be kept in mind that in reality
ome of the dust at different temperatures could simply be dust of different
ypes mixed together in the same region, or even small transiently heated
rains caught at different stages as they cool following a temperature spike.
nder this circumstance, κ300 should be a sum of the mass-opacity coefficients
f the different types of dust, weighted in proportion to their masses. 
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